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Abstract
We present a covariant scalar-field framework that unifies the space-time sin-
gularity regularization with dynamical dark energy. The theory extends general
relativity by introducing a scalar fieldΦwhose potential couples to the Lorentz-
invariant quantity X≡ uαuβT

αβ
matter, ensuring manifest covariance. The resulting

density-responsive scalar energy ρΦ exhibits dual behavior: (i) in high-density
regimes, it saturates at ρΦ ⩽ AM4

P/2, providing a Planck-scale upper bound
on the total energy density that regularizes classical singularities; (ii) in low-
density regimes, it approaches a constant ρΦ → AM4

U, driving cosmic accel-
eration as dynamical dark energy. A natural renormalization group evolution
with an anomalous dimension γ≈ 0.501 connects the Planck scale to the meV
dark energy scale without fine-tuning. The model makes distinctive, testable
predictions: w0 ≈−0.99 and wa ≈+0.03, where the positive wa distinguishes
it fromΛCDM and standard quintessence models. Despite the novel interaction
terms, the fifth forces are suppressed by βeff ∝ 1/ρ2m, yielding factors below
10−58 in laboratory environments, and ensuring compatibility with all precision
gravity tests. This framework demonstrates how a single quantum field theory
mechanism can simultaneously address UV singularities and IR dark energy,
providing concrete predictions for future Stage-IV cosmological surveys.
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1. Introduction

The reconciliation of general relativity (GR) and quantum mechanics remains a significant
challenge in modern physics. This schism manifests in two of the greatest puzzles of cos-
mology. At the highest energies, GR predicts its own breakdown in the form of space-time
singularities [1, 2], while at the lowest energies observations reveal a Universe undergoing
accelerated expansion [3, 4], driven by a mysterious dark energy component. The leading can-
didate, a cosmological constant Λ, suffers from a severe fine-tuning problem: its observed
value is approximately 120 orders of magnitude smaller than naive theoretical expectations
[5, 6].

These two phenomena, one marking the breakdown of physics at the Planck scale and the
other dominating the Universe’s evolution at the meV scale, may seem disconnected. However,
their shared origin in the interplay between energy and space-time geometry has inspired
numerous approaches that seek a unified origin.

The quest for quantum gravity has produced several distinct research programs. String the-
ory posits new fundamental entities and extra dimensions, while loop quantum cosmology
(LQC) utilizes a quantum description of geometry to resolve the Big Bang singularity via a
‘bounce’ [7]. Another prominent avenue is the asymptotic safety scenario, which proposes that
the ultraviolet behavior of gravity is controlled by a non-trivial fixed point of the renormaliz-
ation group (RG) flow, rendering the theory predictive and non-perturbatively renormalizable
[8, 9]. Such RG-based approaches have led to ‘quantum-improved’ black hole models, in
which singularities are regularized by the scale-dependent running of gravitational couplings
[10]. Complementary to these efforts, the emergent gravity paradigm suggests that the field
equations themselves, along with a positive cosmological constant, arise naturally from the
statistical mechanics of spacetime’s microscopic degrees of freedom [11].

A parallel effort seeks to understand gravity through the language of gauge theories, ana-
logous to the StandardModel, for example, by attempting to derive gravity from first principles
and postulating new fundamental symmetries [12].

In addition to these fundamental approaches, complementary self-tuning scenarios have
been proposed to address the dark-energy problem. Relaxion frameworks achieve dynamic
selection of vacuum energy via an axion-like field interacting with a dark gauge sector [13, 14].
Sequestering reformulates the cosmological constant problem as a global constraint and effect-
ively decouple vacuum-energy contributions from gravitational dynamics [15]. Screening
models, such as chameleon and symmetron theories, provide density-dependent scalar masses
that reconcile long-range fifth forces with local gravity tests while reproducing dark-energy
behavior on cosmological scales [16–18].While a quantitative comparison is beyond the scope
of this work, we emphasize that unlike our density-dependent potential, these mechanisms typ-
ically rely on non-minimal couplings or global constraints.

In contrast to these approaches, we present a phenomenologically driven framework that
acts as an effective field-theory extension of GR. Instead of replacing GR or postulating new
symmetries, we augment the theory with a single real scalar field Φ, whose potential U(Φ,X)
couples to the manifestly covariant Lorentz scalar

X≡ uαuβT
αβ
matter. (1)

This construction, motivated by Coleman-Weinberg mechanisms in a dense medium [19, 20],
allows the field to dynamically adapt to the local energy density.

The equilibrium energy density of this field ρΦ, dubbed the density-responsive scalar
energy, gives rise to a dual-purpose mechanism governed by a characteristic mass-scale MU
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that runs with renormalization scale µ. This RG evolution, driven by a natural anomalous
dimension γ≈ 0.501, connects the Planck scale to the meV scale and yields a natural emer-
gence of the observed dark-energy scale once the IR RG scale is tied to a geometric scalar
(e.g. µ= H or µ=

√
|R|), without parameter fine-tuning at the effective field theory (EFT)

level (see section 3.4). From this single underlying principle the framework yields two key
predictions:

(i) singularity regularization: in the high-density ultraviolet regime, ρΦ is capped, bounding
the total energy density, sourcing gravity and regularizing classical curvature singularities.

(ii) dynamical dark energy: in the low-density infrared regime, ρΦ drives cosmic acceleration
with a distinctive, testable equation-of-state evolution wa > 0, setting it apart from ΛCDM
and most standard quintessence models.

The remainder of this paper is organized as follows. In section 2, we establish a covariant
theoretical framework. Section 3 details the RG mechanism for generating a scale hierarchy.
Section 4 explores the physical consequences from singularity regularization to testable cos-
mological predictions. We conclude and compare to other models in section 5.

2. The covariant scalar field framework

The central challenge in constructing a theory in which a scalar field responds to its environ-
ment is to define the concept of the ‘local energy density’ in a coordinate independent manner.
A naive approach might utilize the time-component of the stress-energy tensor ρm = T00, but
this is an inherently frame-dependent quantity. Here, we resolve this foundational issue by
constructing a theory using manifestly covariant objects, thereby ensuring its validity under
general coordinate transformations.

2.1. Action and the covariant potential

We extend general relativity by introducing a single real scalar field Φ, whose dynamics are
governed by the total action

S=
ˆ

d4x
√
−g

[
M2
P

2
R− 1

2
M2
Kg
µν∂µΦ∂νΦ −U(Φ,X)+Lmatter

]
. (2)

Here, MP = (8πG)−1/2 is the reduced Planck mass1, R is the Ricci scalar, MK is the kinetic
mass scale (typically of order MP), and Lmatter is the Lagrangian density for all conventional
matter and radiation fields, which are assumed to be minimally coupled to gravity.

The key innovation of our framework is the scalar potential U, which is designed to couple
the dynamics of Φ to the surrounding matter-energy environment. To ensure that this coupling
is physically meaningful in any reference frame, the potential depends not on a frame-specific
density, but on the manifestly covariant Lorentz scalar defined by

X≡ uαuβT
αβ
matter. (3)

1 Throughout this study, we work with the reduced Planck mass MP ≡ (8πG)−1/2 ≃ 2.435× 1018GeV, not to be
confused with the (unreduced) Planck mass MPl ≡ G−1/2 ≃ 1.220× 1019GeV.
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In this definition, Tαβmatter is the stress-energy tensor of all matter species, obtained from the
matter Lagrangian alone:

Tµνmatter ≡− 2√
−g

δ(
√
−gLmatter)

δgµν
. (4)

The four-velocity uµ is uniquely defined as the future-directed, timelike eigenvector of the
total stress tensor Tµν ≡ (Tmatter +TΦ)µαgαν , satisfying

Tµν u
ν =−εuµ, uµuµ =−1. (5)

This definition corresponds to the Landau (energy) frame [21], ensuring that the energy
flux vanishes: qµ ≡−∆µ

αTαβuβ = 0 with∆µν ≡ gµν + uµuν . For multi-fluid or mildly non-
equilibrium configurations where Tµν is diagonalizable with a dominant timelike eigenvector,
this prescription yields a unique uµ. In the cosmological FLRW background relevant for
our analysis, uµ reduces to the familiar comoving four-velocity (1,0,0,0), and consequently
X= ρm.

The functional form of the potential U(Φ,X) is motivated by EFT considerations, specific-
ally by Coleman–Weinberg-type radiative corrections in a dense background medium, and is
designed to exhibit an inverse-tracking behavior [19, 20, 22]:

U(Φ,X) =M4
U (µ)

[
A

1+X/M4
U (µ)

+
h
2
(Φ −Φeq (X))

2
]
. (6)

The potential is characterized by three key components: First, MU(µ) is the running charac-
teristic energy scale of the potential, which connects different physical regimes via renormal-
ization group evolution, as detailed in section 3. Second, the leading term governed by the
dimensionless constant

Ath ≡
1

64π2
≃ 1.6× 10−3,

a canonical one-loop factor, establishes the inverse relationship between the potential’s energy
and the environmental density X. Third, the quadratic term, with a dimensionless curvature
h> 0, ensures that the potential is stable and possesses a well-defined minimum at an X-
dependent equilibrium valueΦeq(X). While this potential form is theoretically well-motivated,
we demonstrate in appendix D.1 that the core results of our framework-singularity regular-
ization and the RG-driven hierarchy-are robust against variations of this specific functional
form.

The scalar field contributes its own stress-energy tensor, obtained by varying the scalar
sector with respect to the metric:

TµνΦ =M2
K ∂

µΦ∂νΦ− gµν
(
1
2
M2
K ∂αΦ∂

αΦ+U

)
− 2

∂U
∂X

∂X
∂gµν

. (7)

The last term encodes the interaction between the scalar and matter sectors through the metric
dependence of X. Because U depends on X, the total stress-energy Tµν = Tµνmatter +TµνΦ is con-
served by the Bianchi identity, but the individual components exchange energy-momentum:
∇µT

µν
matter =−∇µT

µν
Φ whenever ∂U/∂X ̸= 0. This exchange is the microscopic origin of the

fifth-force effects analyzed in section 4.4. In the quasi-static regime relevant for cosmological
backgrounds (section 2.4), the kinetic terms become negligible and TµνΦ reduces to the algeb-
raic form given in equation (14).
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2.2. Equilibrium dynamics and the density-responsive energy

A crucial feature of the model, which enables a powerful simplification, is the rapid relaxation
of the field Φ to this equilibrium value Φeq(X). The stability of this minimum is determined
by the effective physical mass of the field’s fluctuations. Assuming the kinetic scale MK and
potential scaleMU share a common origin and thus run proportionally (MK ∝MU), the squared
mass is given by

m2
Φ =

1
M2
K

∂2U
∂Φ2

∣∣∣∣
Φeq

=
hM4

U (µ)

M2
K

. (8)

A natural assumption within this framework is that the kinetic scaleMK and the potential scale
MU share a common physical origin. This implies they should run proportionally under the RG
flow, i.e. MK(µ)∝MU(µ). While theoretically well-motivated, we analyze the robustness of
our framework against violations of this assumption in appendix D.2. Under this assumption,
the physical mass of the field fluctuations scales as mΦ ∝MU(µ).

A detailed stability analysis, provided in appendix A.2, confirms that this scaling leads
to a relaxation time, τroll ∼ m−1

Φ , that is always many orders of magnitude shorter than the
relevant dynamical timescale (e.g. H−1). This vast separation of scales robustly justifies the
quasi-static approximation throughout this work, where the field Φ is always considered to
be in its instantaneous minimum, Φ ≈ Φeq(X). In this limit, the kinetic energy of the field,
(∂Φ)2, is negligible compared to its potential energy. Thus, the field’s contribution to the total
energy budget of the Universe becomes a purely algebraic function of the local matter-energy
environment X and the running scale MU(µ).

We define this fundamental equilibrium energy density as the density-responsive scalar
energy, denoted ρΦ

ρΦ (X,µ)≡ U(Φeq (X) ,X;µ) =
AM8

U (µ)

X+M4
U (µ)

. (9)

The central equation encapsulates the core dynamic principle of the model. It exhibits two
limiting behaviors that are essential for its dual role in cosmology and singularity regularization

• For X≫M4
U (high-density environments, e.g. the early Universe or black hole interiors), the

scalar energy is suppressed: ρΦ ≈ AM8
U/X.

• For X≪M4
U (low-density environments, e.g. the vacuum of late-time cosmology), the scalar

energy approaches a constant value: ρΦ ≈ AM4
U, thus capable of acting as a source of cosmic

acceleration.

2.2.1. Validity of the quasi-static approximation. The quasi-static limitΦ ≃ Φeq(X) requires
that the field relaxes much faster than the background varies, i.e. τroll ≡ m−1

Φ ≪ H−1 and
mΦ ≫

∣∣Ẋ/X∣∣. These conditions are satisfied by many orders of magnitude across all relev-
ant regimes (cosmic expansion, gravitational collapse, neutron stars). A detailed estimate
in appendix A.2 shows that the tracking error is suppressed by factors between 10−16 and
10−60, and spatial gradients are negligible on scales ≫ λΦ = ℏc/mΦ. Only near the Planck
epoch can the approximation become marginal; there our conclusions rely on the algebraic
density bound rather than on a specific EoS.
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2.3. The full stress-energy tensor TµνΦ

To fully characterize the gravitational impact of the scalar field Φ and analyze potential non-
gravitational interactions, we must derive its complete stress-energy tensor. This is obtained
by the standard procedure of varying the scalar field part of the action, SΦ, with respect to the
metric gµν :

TµνΦ =− 2√
−g

δSΦ
δgµν

. (10)

This variation must account for both the explicit dependence of the action on gµν and the
implicit dependence through Lorentz scalar X, which contains Tαβmatter. The general result is

TµνΦ =M2
K

(
∇µΦ∇νΦ − 1

2
gµν∇λΦ∇λΦ

)
︸ ︷︷ ︸

kinetic term

−gµνU(Φ,X)− 2
∂U
∂X

∂X
∂gµν

. (11)

As established in section 2.2, the kinetic term is negligible in quasi-static approximation. The
second term represents the contribution of standard potential energy. The third term, however,
is new and crucial, as it introduces a direct interaction between the scalar field and matter
sector, mediated by the metric.

To evaluate the interaction term, we need ∂X/∂gµν . Starting from X= uαuβT
αβ
matter and

using the fact that uµ is the normalized timelike eigenvector of Tµνmatter, the variation yields
(see appendix A.1 for the complete derivation)

∂X
∂gµν

=−1
2
(ρm+ pm)u

µuν − 1
2
pmg

µν . (12)

In the quasi-static limit where Φ ≈ Φeq(X), the potential satisfies U(Φeq,X) = ρΦ(X).
Taking the derivative with respect to X

∂U
∂X

∣∣∣∣
Φeq

=
∂ρΦ
∂X

=− AM8
U(

X+M4
U

)2 =− ρΦ
X+M4

U

. (13)

Substituting equations (12) and this derivative into (11), we obtain

TµνΦ ≈−gµνρΦ + 2
ρΦ

X+M4
U

[
1
2
(ρm+ pm)u

µuν +
1
2
pmg

µν

]
=−gµνρΦ

(
1− pm

X+M4
U

)
+

(ρm+ pm)ρΦ
X+M4

U

uµuν

=

(
−ρΦ +

pmρΦ
X+M4

U

)
gµν +

(ρm+ pm)ρΦ
X+M4

U

uµuν (14)

The transition to the final form reveals the physical structure: the scalar field contributes
both an isotropic pressure (modified by matter pressure) and an anisotropic stress aligned with
the matter flow.

This tensor reveals several crucial physical features beyond those of the conventional scalar-
field theories. The gµν term shows that the effective pressure of the scalar field receives a
correction proportional to the local matter pressure pm. More significantly, the uµuν term rep-
resents a novel anisotropic stress contribution aligned with the matter flow direction. This term

6
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mediates a direct, dynamic energymomentum exchange between the scalar field and thematter
sector and constitutes the microscopic origin of the fifth-force effects analyzed in section 4.4.

The full dynamics of space-time are now governed by the modified Einstein field equations
as follows

Gµν = 8πG(Tµνmatter +TµνΦ ) . (15)

While the total stress energy is covariantly conserved by the Bianchi identity ∇µ(T
µν
matter +

TµνΦ ) = 0, neither component is conserved separately. The non-zero divergence ∇µT
µν
Φ =

−∇µT
µν
matter quantifies the energy-momentum transfer. This interaction is the source of poten-

tial fifth-force effects and violations of the weak equivalence principle, which we analyze in
detail and constrain with observational data in section 4.

2.3.1. Key assumptions and their implications. The above derivation relies on two key
assumptions that warrant explicit discussion. First, the quasi-static approximation requires
mΦ ≫ H, which we have verified holds across all relevant regimes (appendix A.2). Second,
we assumed that the kinetic and potential scales run proportionally under the RG flow:
MK(µ)∝MU(µ). This assumption, while natural in hidden-sector models, where both scales
share a common origin, affects the field’s effective mass, mΦ ∝MU/MK. Different running
behaviors would modify the regime of validity for our approximations, although the qualitat-
ive features of the model are expected to be robust. The complete UV theory determines this
relationship from the first principles.

2.4. Effective equation of state and background cosmology

Since the scalar sector exchanges energy-momentum with matter (∇µT
µν
Φ ̸= 0), the separate-

conservation shortcut w=− 1
3 dlnρ/dlna does not apply. Instead, the effective variables must

be read off from the stress tensor. Using equation (14) in FLRWwith uµ = (1,0,0,0) (where uµ

denotes the Landau-frame four-velocity defined in section 2.1), we define ρeffΦ ≡ TµνΦ uµuν and
TijΦ = peffΦ g

ij. For late-time dust (wm = 0) this yields a closed expression for the instantaneous
EoS,

weff
Φ (a) =− ρm (a)+M4

U

M4
U+ 2ρm (a)

, ρm (a) = ρm,0 a
−3, (16)

with the limits weff
Φ →−1 for ρm ≪M4

U and weff
Φ →− 1

2 for ρm ≫M4
U. Although the UV limit

is finite, the scalar remains negligible at early times because

ρΦ
ρm

≃ A

(
M4
U

ρm

)2

∝ a6 → 0 (a→ 0) . (17)

The background Friedmann equation therefore uses the tensor-derived variables,

H2 (a) =
8πG
3

[
ρm (a)+ ρr (a)+ ρeffΦ (a)

]
. (18)

If a geometric RG scale is adopted (e.g. µ= H(a) or
√
|R(a)|), one replacesMU→MU(µ(a))

in the above and solves the background implicitly as discussed in section 3.4. This leaves the
algebraic form of weff

Φ unchanged and only produces small late-time shifts (see also section 3.4

7
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for a robustness estimate). For convenience, writing s(a)≡ ρm(a)/M4
U gives the Chevallier–

Polarski–Linder (CPL) mapping at a= 1,

w0 =− 1+ s0
1+ 2s0

, wa =
3s0

(1+ 2s0)
2 , s0 =

ρm,0
M4
U

. (19)

These relations allow us to constrain the model directly from observation. By adopting the
central value w0 =−0.99 from Planck data as an input, we fix the model’s primary parameter
s0 =−(1+w0)/(1+ 2w0)≈ 0.0102. This, in turn, yields a concrete prediction for the evolu-
tion parameter:

wa =
3s0

(1+ 2s0)
2 ≈+0.029. (20)

For clarity in subsequent discussions, we refer to these fiducial predictions using the rounded
values w0 =−0.99 and wa =+0.03.

3. Scale hierarchy from renormalization group evolution

A defining feature of the framework presented here is the proposal that the characteristic mass
scale of the potentialMU, is not a fundamental constant, but a running parameter that evolves
with the renormalization scale µ. This renormalization group evolution provides a powerful
and natural mechanism to connect the physics of the Planck era with the vastly different energy
scale of dark energy today, thereby addressing the severe hierarchy problem between them.

3.1. The RG equation for MU

We postulate that the running of MU is driven by its coupling to quantum fields, potentially
within a hidden sector that does not directly interact with the Standard Model, except grav-
itationally. In EFT, such running is generically described by a one-loop RG equation of the
form

µ
dMU

dµ
= γMU, (21)

where γ is the anomalous dimension of the mass operator associated with MU
2. This Callan-

Symanzik form and its use is standard in gravitational settings (see e.g. [23, 24]) and its
parameter γ encapsulates the physics of the quantum fields that were integrated out. A value
γ =O(1) is natural in the technical sense, as it does not require an extreme fine-tuning of
microphysical parameters.

The assumption of a scale-independent γ is an approximation valid at the one-loop level
of the renormalization group. In a more complete theory, γ itself would run with the energy
scale µ, its evolution governed by its own beta function, βγ . However, for the class of strongly-
coupled gauge theories that our model points towards (see section 3.3), particularly those near
a conformal window, the running of couplings and anomalous dimensions is suppressed. We
estimate that higher-loop corrections would modify our derived value of γ≈ 0.501 by at most

2 We define γ ≡ d lnMU/d lnµ. This differs by a minus sign from the mass anomalous dimension used in many QFT
texts, where µdm/dµ=−γmm; in our notation γ =−γm.

8
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O(10%). Such a variation is well within the theoretical uncertainties of our effective frame-
work and does not alter any of ourmain conclusions. The constant-γ approximation is therefore
sufficiently robust for the phenomenological scope of this study.

3.2. Connecting the Planck and dark energy scales

The solution to the RG equation provides a direct relationship between the value ofMU at two
different energy scales. By integrating (21) from a high-energy UV scale, which we identify
with the Planck mass µUV ∼MP, down to a low-energy IR scale relevant for cosmology today
µIR ∼ H0, we obtain

MU (H0) =MU (MP)

(
H0

MP

)γ
. (22)

It is natural to assume that at the Planck scale, where quantum gravity effects dominate,
the only relevant scale is the Planck scale itself. Therefore, we set the boundary condition
MU(MP)∼MP, which simplifies equation (22) to

MU (H0)≈MP

(
H0

MP

)γ
. (23)

This equation forms the cornerstone of the solution to the hierarchal problem. To determine
the anomalous dimension γ, we require the value of MU(H0). To determine the anomalous
dimension γ, we require the value of MU(H0). As will be shown in section 4.3, the observed
dark energy equation of state w0 =−0.99 requires MU(H0) = 5.84 meV. Using this value:

γ =
ln(MU (H0)/MP)

ln(H0/MP)
=

ln
(
5.84× 10−3 eV/1.22× 1028 eV

)
ln(1.44× 10−33 eV/1.22× 1028 eV)

≈ 0.501. (24)

The crucial result is that the required anomalous dimension is of order unity (γ≈ 0.501).
Extreme fine-tuning of γ to a very large or very small value not required. The enormous hier-
archy of 61 orders of magnitude between H0 and MP is naturally bridged by the logarithmic
nature of the RG evolution.

To illustrate the dramatic scale separation achieved, consider the concrete numerical values:

• at the Planck scale: MU(MP) =MP = 1.22× 1019GeV
• at present: MU(H0) = 5.84× 10−3 eV = 5.84meV
• ratio: MU(H0)/MU(MP) = 4.8× 10−31.

This represents a hierarchy of 31 orders of magnitude in the mass scale MU, which translates
to a 124-order-of-magnitude hierarchy in energy density (ρ∼M4

U). For comparison, achieving
this hierarchy with a power-law runningMU ∝ µn would require n≈ 0.5, whereas exponential
suppression would require fine-tuning of the decay constant.

It should be emphasized, however, that while γ≈ 0.501 appears natural from a QFT per-
spective, this specific value is ultimately determined by matching to observed dark energy
through the constraint on MU(H0). Thus, our model trades the fine-tuning of Λ to determine
γ. Nevertheless, this represents significant progress: an O(1) parameter arising from micro-
physics is far more natural than the 120-order-of-magnitude fine-tuning required for a bare
cosmological constant.

9
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3.3. Microphysical Origin and Phenomenological Viability

The required anomalous dimension, γ≈ 0.501, finds a natural physical origin in a strongly-
coupled hidden gauge sector. As we illustrate in appendix B.2, a minimal pure SU(3) gauge
theory can generate this value with a fine-structure constant of αH ≈ 0.57. This points towards
a strongly interacting sector, a key prediction of our framework.

While ‘hidden’ from direct interactions, such a sector must still be consistent with preci-
sion cosmology and could produce other observable signatures. We have performed a detailed
analysis of its phenomenological viability:

• Early universe radiation (∆Neff): We demonstrate in appendix B.4 that the contribution
to the effective number of relativistic species is well below current observational bounds,
ensuring consistency with BBN and the CMB.

• Further signatures:we discuss potential signals from gravitational waves, dark matter can-
didates, and other astrophysical probes in appendix B.5.

The successful consistency check of the required hidden sector establishes a solid physical
foundation for our framework. We are now equipped to explore its consequences across all
cosmic epochs.

3.4. From RG to cosmology: µ(a), IR freezeout, and background dynamics

The one-loop RG flow from equation (21) must be connected to a covariant scale in cosmo-
logy. (We adopt the convention that the sign in (21) is absorbed into the definition of γ, so
that the explicit solution readsMU(µ) =MP(µ/MP)

γ .) We consider two physical realizations
that map the running MU(µ) to the cosmological background. Throughout this analysis, we
employ the Landau-frame four-velocity uµ defined in section 2.1, which reduces to the comov-
ing (1,0,0,0) in FLRW, and use the tensor-derived effective quantities from section 2.4.

3.4.1. IR freezeout (baseline). If the hidden sector develops a mass gap or undergoes con-
finement at scale µfreeze, the running of MU halts:

MU (a) =

{
MP (µ(a)/MP)

γ
, µ(a)> µfreeze

MIR
U ≡MU (µfreeze)≃ const, µ(a)⩽ µfreeze.

(25)

For late times (z≲ few), we have µ(a)< µfreeze and thus MU becomes effectively constant.
This justifies treating MU as a fixed parameter in the cosmological analysis of section 4.3,
together with the tensor-derived effective variables and EoS of section 2.4.

3.4.2. Continuous RG improvement. Alternatively, if the running persists to low ener-
gies, we tie µ to a geometric scalar such as the Hubble parameter µ(a) = H(a) or the Ricci
scalar µ(a) =

√
|R(a)|. The scale MU then becomes dynamically coupled to the background

evolution:

H2 (a) =
8πG
3

[
ρm (a)+

AM8
U (µ(a))

ρm (a)+M4
U (µ(a))

]
, MU (µ) =MP

(
µ

MP

)γ
. (26)

For µ= H, equation (26) becomes a self-consistent fixed-point equation for H(a). With γ ≃
0.5, this yields M4

U ∝ H2, causing the ratio s(a)≡ ρm/M4
U to remain nearly constant at late

10
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times. Consequently, the effective equation of state weff
Φ =−(1+ s)/(1+ 2s) exhibits minimal

evolution, suppressing wa relative to the freezeout case.
Both realizations produce unique, regular cosmological backgrounds consistent with the

tensor-derived effective fluid description. Our baseline predictions (w0 ≃−0.99, wa ≃+0.03)
correspond to the freezeout scenario, where MU remains constant over the redshift range rel-
evant for CPL parameterization.

3.4.3. Robustness to thresholds and slow drift. The late-time observables are remarkably
insensitive to small variations inMU. Since the equation of state depends onMU only through
the combination s(a)≡ ρm/M4

U, a fractional change δ in M
4
U induces predictable shifts:

∆w0 ≃
1

(1+ 2s0)
2 ∆s, ∆wa ≃

3(1− 2s0)

(1+ 2s0)
3 ∆s,

where∆s/s≃−δ and s0 ≡ ρm,0/M4
U ≃ 0.010 for our fiducial parameters. Thus a conservative

±10% variation in M4
U-whether from RG thresholds or slow drift-shifts w0 by only |∆w0|≲

10−3 and wa by |∆wa|≲ 3× 10−3, well below Stage-IV survey sensitivities (appendix C.1).

4. Physical consequences and phenomenological tests

The covariant framework established in section 2 and the scale-generating mechanism in
section 3 give rise to a rich phenomenology across all energy scales. In this section, we explore
the key physical consequences of the model, progressing from high-energy singularity regu-
larization to low-energy dark energy phenomenology and local gravity constraints.

4.1. Singularity regularization in the high-density regime

A key prediction of the framework, essential for its potential role in the quantum theory of
gravity, is the regularization of classical space-time singularities. This regularization emerges
naturally when we consider the behavior of the density-responsive scalar energy ρΦ, in
the high-energy UV regime, where the running scale MU(µ) approaches the Planck mass
MU →MP.

From equation (9), in the high-energy limit where MU →MP

ρΦ (X,MU →MP) =
AM8

P

X+M4
P

. (27)

This expression reveals a fundamental saturation behavior. Regardless of the size of the con-
ventional matter-energy density X becomes, ρΦ possesses a finite upper bound

ρΦ (X,MU →MP)⩽ AM4
P = AρP, (28)

where ρP =M4
P is the Planck density and A≈ 1/(64π2) is the theoretically derived one-loop

factor. This means the contribution of scalar field to the total energy density cannot diverge; it
is capped at a small fraction (∼5× 10−3) of the Planck density.

This intrinsic cap on ρΦ has profound consequences for the total energy density that sources
the gravitational curvature. The total effective energy density is ρtotal = X+ ρΦ. It is a generic
expectation in quantum gravity that quantum effects on matter will prevent the matter dens-
ity X from diverging, imposing a physical cutoff X⩽ ρP. Our mechanism works in line with

11
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this expectation. Under this assumption, the total energy density in our model is bounded as
follows

ρmax
total ⩽ ρP+ ρΦ (ρP) = ρP+

AM8
P

M4
P+M4

P

=

(
1+

A
2

)
ρP. (29)

Because A is small, the maximum total energy density is finite and of the order Planck density.
This mechanism robustly prevents the divergence of the gravitational source term.

This bounded energy density directly leads to a finite space-time curvature, thus resolving
the classical singularities of GR in two key scenarios:

(i) the Big Bang singularity: In the standard FLRW model, as the scale factor a→ 0,
ρm →∞, leading to a curvature singularity. In our framework, the total energy dens-
ity ρtotal saturates at a Planck-scale value. This implies a finite maximum Hubble rate
H2

max ∼ ρP/M2
P =M2

P, and thus a finite maximum curvature. The classical Big Bang is
replaced by a ‘Planck-scale bounce’ or a loitering phase, as seen in other non-singular
cosmological models like LQC [7].

(ii) black hole singularities: Inside a classical black hole, matter collapses to a point of infinite
density at r= 0, creating a curvature singularity. In our model, as the density of collapsing
matter X approaches ρP, the total energy density ρtotal remains finite. This replaces the
central singularity with a regular de Sitter-like core of the Planckian density and curvature.
This feature is characteristic of various ‘regular black hole’ solutions inspired by quantum
gravity [25, 26].

In both cases, all scalar curvature invariants (e.g. the Kretschmann scalarK= RαβγδRαβγδ),
which are polynomials in energy density and pressure, remain finite. A detailed analysis of the
boundedness of curvature for both cosmological and static spherically symmetric solutions is
provided in appendix C.4.2. This singularity regularization is not an ad-hoc addition, but a
direct and unavoidable consequence of the same field dynamics that generate dark energy at
low densities.

The finite curvature bound has profound implications beyond mere avoidance of math-
ematical divergence. In cosmology, this implies that the Big Bang is replaced by a ‘Planck-
scale bounce’ with a maximum energy density ρmax ∼ (1+A/2)ρP ∼ 1093 kgm−3, corres-
ponding to a minimum cosmic scale factor amin ∼ (H0/MP)

1/2 ∼ 10−30 in natural units. For
black holes, the central singularity is replaced by a de Sitter core with radius rcore ∼ ℓP and
quasi-static internal metric, fundamentally altering the causal structure compared to classical
general relativity.

Our model provides a concrete physical origin for the regularizing energy-momentum
source, a feature it shares with quantum-improved black hole models derived from asymp-
totic safety, where the RG running of Newton’s constant leads to a similar regularization of
the central singularity

4.1.1. Dynamical saturation of the effective source. In the Planck regime the large curvature
ofU(Φ,X) impliesmΦ≫H, so that the field adiabatically tracksΦeq(X). The coupling ∂U/∂X
in TµνΦ then provides a negative feedback on the matter sector that opposes further growth of
the density X.

With the UV scale frozen at MU→MP, the total source entering the Friedmann equation,

E (X) ≡ X+ ρΦ (X;MU →MP) = X+
AM8

P

X+M4
P

, (30)

12
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is monotonically increasing for X⩾0 since E ′(X) = 1− AM8
P

(X+M4
P)

2 ⩾ 1−A> 0. Hence, if

quantum effects enforce an upper bound X⩽ ρ∗, one obtains the model-independent bound

E (X) ⩽ E (ρ∗) = ρ∗ +
AM8

P

ρ∗ +M4
P

. (31)

For the natural Planckian cutoff ρ∗ = ρP(=M4
P) this gives E(X)⩽ (1+ A

2 )ρP, i.e. a finite upper
bound on the curvature source.

This saturation is approached smoothly asX→ρP, without discontinuities or instabilities. In
the same regime the tensor-derived equation of state remains a finite negative number, weff

Φ =
−(1+ s)/(1+ 2s) with s≡ X/M4

U, taking values in [−1,− 1
2 ] (e.g. w

eff
Φ =−2/3 at X=M4

P
whenMU=MP). This negative pressure halts homogeneous collapse and enables a nonsingu-
lar bounce; see appendix C.6 for explicit Oppenheimer–Snyder evolutions. Conceptually this
mirrors quantum-improved black-hole scenarios where RG-running induces a high-density
regularization of classical singularities [10].

4.2. Regular black-hole solutions

Having established the general mechanism for singularity regularization through bounded
energy density, we now examine its specific realization in static black hole geometries.

To demonstrate the singularity regularization concretely, we examine static black hole
solutions.

In this model, the central singularity was replaced by a core with a constant energy density.
Our framework naturally provides the physical source for such a core, which reaches the bound
from equation (29):

ρmax
total = (1+A/2)ρP, (32)

where A is the coupling constant. Using the observationally determined value A= 0.024, we
obtain ρmax

total ≈ 1.012ρP. Even with the theoretical one-loop value Ath = 1/(64π2)≈ 0.00158,
the bound is ρmax

total ≈ 1.0008ρP, still providing a finite cutoff. The Kretschmann scalar at the
center remains finite in both cases

K(r= 0) =
8
3
(8πG)2 (ρmax

total)
2 ≈ 2.7M4

P. (33)

To put this curvature scale in perspective, the maximumKretschmann scalar Kmax ≈ 2.7M4
P

corresponds to a characteristic curvature radius Rcurv ∼ K−1/4 ≈ 0.8ℓP. For comparison:

• Classical GR singularity: K→∞, Rcurv → 0 (no scale)
• Our regular core: Rcurv ≈ 0.8ℓP (sub-Planckian, finite)
• Schwarzschild horizon (r= 2GM): Rcurv ∼ GM≈ 1038ℓP for solar mass
• Earth’s surface: Rcurv ≈ 1031ℓP

This hierarchy shows that the regularized core has a curvature radius of the order of the Planck
length, which is the smallest meaningful length scale in quantum gravity. While this represents
extreme curvature by any astrophysical standard, it remains finite and provides the expected
Planck-scale cutoff. Thus, the classical singularity is replaced by a regular region of Planckian
but finite curvature.
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A full derivation, including smooth matching to an exterior Schwarzschild-de Sitter metric,
is provided in appendix C.3.

To confirm that this regularization mechanism is not an artifact of static solutions but
a robust dynamical feature, we simulated the gravitational collapse of a pressureless dust
sphere (a modified Oppenheimer–Snyder model). The detailed analysis in appendix C.6 and
the accompanying figure C2 explicitly shows that collapse is halted before a singularity can
form. The system reaches a minimum radius, where the total density is capped at the pre-
dicted maximum, and subsequently undergoes a non-singular bounce. This bounce is driven
by the effective negative pressure that emerges as the density approaches the Planck scale,
causing the acceleration to become positive (ä> 0) and leading to a violation of the Strong
Energy Condition (ρtotal + 3ptotal < 0). This provides strong evidence that, within the validity
of the EFT, our framework dynamically regularizes gravitational singularities by yielding a
finite-density de Sitter-like core.

4.3. Cosmological dynamics: from early Universe to dark energy

On cosmological scales, theUniverse is well-described by a homogeneous and isotropic FLRW
metric. In this context, the covariant density X simplifies to the average matter-energy density
of the Universe X= ρm(z) = ρm,0(1+ z)3, where z is the cosmological redshift. The density-
responsive scalar energy ρΦ from equation (9), and thus becomes a function of the redshift

ρΦ (z) =
AM8

U

ρm (z)+M4
U

. (34)

Here, MU refers to its present-day, low-energy valueMU ≡MU(H0) = 5.84meV3.

4.3.1. From the Planck epoch to the present day. The evolution from a singularity regu-
larization to dark energy illuminates the power of our framework. In the Planck epoch, where
ρm ∼ ρP, the scalar energy ρΦ saturates at (A/2)ρP, providing the bound that regularizes the
Big Bang singularity. As the Universe expands and cools, two coupled effects occur: the
matter density dilutes as ρm ∝ a−3, while simultaneously the characteristic scale runs from
MU(MP)∼MP down to MU(H0) = 5.84meV according to the RG flow. This evolution trans-
forms ρΦ from a singularity-regulating component in the early Universe to a dominant dark
energy component today. Remarkably, the same field that prevents ρtotal from diverging at
t→ 0 now drives cosmic acceleration at t→∞.

This component acts as a dynamical dark energy fluid, modifying the standard Friedmann
equation as follows

H(z)2 =
8πG
3

[
ρm (z)+ ρr (z)+ ρeffΦ (z)

]
, (35)

where ρr(z) is the radiation density, which is negligible at later times. Since the scalar
exchanges energy with matter, the background uses the tensor-derived effective variables
ρeffΦ ,p

eff
Φ (section 2.4); the algebraic ρΦ is an intermediate quantity.

Because ∇µT
µν
Φ ̸= 0, the shortcut w=−1− 1

3 dlnρ/dlna (valid for separately conserved
fluids) does not apply. The effective EoS follows from the tensor decomposition (section 2.4).

3 Note that while the characteristic dark energy scale is (ρΛ,0)
1/4 ≈ 2.3 meV, our model parameterMU = 5.84 meV

differs by the factor A−1/4 ≈ 2.5 due to the structure of the potential.
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Table 1. Key parameters and their values in the model. Theoretical values represent
one-loop estimates or natural scales, while observational values are derived from cos-
mological data fitting.

Parameter Symbol Theoretical Observational

Loop factor A 1.6× 10−3 2.4× 10−2

Anomalous dimension γ O(1) 0.501
Energy scale today MU(H0) ∼meV 5.84meV
Equation of state w0 — −0.99
Evolution parameter wa — +0.03

For late-time dust (wm = 0),

weff
Φ (a) =− ρm (a)+M4

U

M4
U+ 2ρm (a)

. (36)

At high redshift (ρm ≫M4
U) this approaches w

eff
Φ →−1/2, while at low redshift (ρm ≪M4

U)
weff
Φ →−1.
This result demonstrates a clear dynamic evolution. In the matter-dominated era (z≫ 1),

weff
Φ →− 1

2 . Nevertheless, ρΦ/ρm ∝ (M4
U/ρm)

2 ∝ a6 → 0, so the scalar remains negligible at
early times. As the Universe expands and ρm(z) dilutes, wΦ(z) evolves towards wΦ →−1,
driving late-time cosmic acceleration.

This dynamic behavior can be constrained by observations. We determine the model’s two
free parameters A andMU by fitting them to the observed dark energy densityΩΛ ≈ 0.7 and the
EoS parameter w0 from the Planck data [4]. Setting ρeffΦ (z= 0) = ΩΛρcrit,0 and using Ωm,0 ≈
0.3, the parameters are uniquely fixed byw0. With s0 ≡ ρm,0/M4

U, the tensor-derived EoS gives
s0 =−(1+w0)/(1+ 2w0), hence

s0 =− 1+w0

1+ 2w0
,

M4
U =

ρm,0
s0

=− 1+ 2w0

1+w0
ρm,0,

A=
ΩΛ

Ωm,0

s0 (1+ s0)
2

1+ 2s0
. (37)

For w0 ≃−0.99 and Ωm,0 ≃ 0.3 this yieldsMU ≃ 5.84meV and A≃ 2.4× 10−2, numerically
unchanged to within the quoted precision. This observationally inferred value for A is larger
than the canonical one-loop estimate Ath ≈ 1/(64π2)≈ 1.6× 10−3 by a factor of ∼ 15. This
enhancement is naturally explained within the framework of strongly-coupled gauge theories.
As detailed in appendix B.2, for example, our benchmark SU(3) hidden sector with Nf = 10
fermions, which is consistent with all other constraints (see appendix B.4), can readily provide
an enhancement factor of this order. The remaining factor of∼ 2 can arise from several sources:
(i) contributions from gauge boson loops, (ii) higher-order corrections in the strongly-coupled
regime where g2/(4π)∼ 1, and (iii) potential RG running of A itself over the vast energy
range from MP to H0. Such O(10) enhancements are typical in strongly-interacting theories-
for comparison, in quantum chromodynamics (QCD) the ratio ΛQCD/mq ∼ 100 exhibits even
larger dynamical enhancement [27, 28]. The key parameters are listed in table 1.

With the model’s parameters now fixed by observation, we can compute the scalar energy
density across the cosmic history. The density-responsive scalar energy evolves dramatically:
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• today (z= 0): ρΦ(0)≈ 0.7ρcrit (by construction, driving dark energy).
• matter-radiation equality (z≈ 3400): The ratio ρΦ/ρrad is suppressed to ≈ 10−20, render-
ing it completely negligible.

• during BBN (T∼ 1MeV): The suppression is even more extreme, with ρΦ/ρrad ≈ 10−69,
ensuring no impact on nucleosynthesis.

• near Planck epoch: In the high-density limit, ρΦ saturates at its maximum value relative
to the background density, ρΦ → (A/2)ρP ≈ 0.012ρP, providing the singularity-regulating
cutoff.

These values confirm that ρΦ remains dynamically irrelevant throughout most of cosmic his-
tory, becoming important only at the extremes: providing the cutoff that regularizes the Big
Bang singularity in the very early Universe, and driving cosmic acceleration today. This leads
to concrete and falsifiable predictions. The evolution of the equation of state is well-described
by the CPL parameterization, weff

Φ (z)≈ w0 +wa(1− a), with a distinctive prediction derived
directly from our model:

w0 =−0.99, wa ≡− dweff
Φ

da

∣∣∣∣
a=1

≈+0.03. (38)

The prediction of a positive wa is a key feature, as most simple quintessence models predict
wa ⩽ 0. To quantitatively assess the testability of this signature, we performed a comprehensive
Fisher matrix forecast for Stage-IV surveys. As detailed in appendix C.1, our analysis shows
that this prediction is testable at the ∼ 1.1σ level with upcoming galaxy clustering data alone,
with prospects for a 2−3σ detection in combination with other cosmological probes.

4.3.2. Survey specifications and results. We assume 14 000 deg2 sky coverage with four
redshift bins spanning z ∈ [0.5,1.3], galaxy densities matching the DESI specifications, and
spectroscopic redshift precision σz/(1+ z) = 0.001. The analysis marginalizes over seven cos-
mological parameters and eight nuisance parameters (four galaxy biases and four shot noise
amplitudes). Using the public code cosmicfishpie [29], we obtained marginalized 1σ con-
straints ofσ(w0) = 0.019 andσ(wa) = 0.028, with a correlation coefficient ρ(w0,wa) =−0.72
reflecting the well-known degeneracy between these parameters.

These uncertainties imply that our model’s prediction (w0 =−0.99,wa =+0.03) can be
distinguished from ΛCDM at a significance of

S=
|wa− 0|
σ (wa)

=
0.03
0.028

≈ 1.1σ. (39)

Although not a definitive detection with galaxy clustering alone, this significance will
increase substantially when combined with complementary probes. Type Ia supernovae
provide direct luminosity-distance measurements, weak lensing constrains the matter power
spectrum evolution, and CMB data anchors the early-Universe parameters. A joint analysis
of these probes typically improves the dark energy constraints by factors of 2−3, potentially
pushing our model into the 2−3σ discovery range. The primary cosmological predictions and
their observational tests are presented in figures 1 and C1, respectively.
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Figure 1. Cosmological predictions of the model. (a) The equation of state weff
Φ (z)

evolves from w≈−1/2 at high redshift towards w→−1 today, with a distinctive pos-
itive slope wa ≈+0.03. (b) The expansion rate H(z) shows a characteristic deviation of
0.29% from theΛCDMmodel, providing an observational target for upcoming surveys.

4.3.3. Bounce and effective energy conditions. Near Planckian densities, the metric vari-
ation of U(Φ,X), including the implicit dependence via δX/δgµν , modifies the background
equation into a LQC-like form,

H2 =
8πG
3

ρtot

(
1− ρtot

ρcrit

)
, ρtot ≡ ρm+ ρeffΦ , ρcrit ∼O

(
M4
P

)
. (40)

This dynamics admits a non-singular bounce at ρtot = ρcrit, whereH= 0, and the Raychaudhuri
equation becomes

Ḣ = −4πG (ρtot + ptot)

(
1− 2

ρtot
ρcrit

)
. (41)

At the bounce, Ḣ> 0 holds even if (ρtot + ptot)⩾ 0, showing that the bounce originates from
the modified gravitational dynamics rather than exotic matter. Interpreted as a single effect-
ive fluid this looks like an effective NEC violation, while microscopically both the matter
and scalar sectors satisfy the standard energy conditions. A derivation of (40) is provided
in appendix C.7.

4.3.4. Early Universe Consistency. A crucial consistency check is the model’s impact on the
early Universe. The density-responsive mechanism ensures that the scalar field is dynamically
irrelevant during these epochs. During Big Bang Nucleosynthesis (T∼ 1MeV), its relative
energy density is suppressed to ρΦ/ρrad ≈ 10−69, having no impact on light element abund-
ances. At recombination, its contribution is larger, ρΦ/ρm ≈ 0.5%, but remains well below
current CMB constraints on additional smooth energy components. A more formal constraint
comes from the hidden sector’s contribution to the effective number of relativistic species,
which, as shown in appendix B.4, is∆Neff ⩽ 0.03, ensuring full compatibility with precision
cosmology.
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4.3.5. Inflationary era. If slow-roll inflation is driven by an external sector contained in
Lmatter, our model remains consistent. In this scenario, the RG scale is set by the background,
µ= H. For γ ≃ 1

2 , this implies M4
U(µ)∝M2

PH
2, and the ratio s≡ ρdom/M4

U is approximately
constant at s≃ 3. The fractional energy density of our scalar field, derived from the full tensor
(section 2.4), is then

ρeffΦ

ρdom
= A

1+ 2s

s(1+ s)2
≃ 7

48
A. (42)

For the range of A considered in this study, this fraction is very small, spanning 2.3× 10−4 to
3.5× 10−3. Such a sub-dominant contribution affects the Hubble rate and slow-roll dynam-
ics only at the per-mille level or less, ensuring that the field Φ adiabatically tracks its min-
imumΦeq(X) (see appendix A.2). A dedicated scenario in whichΦ itself drives inflation would
require additional model structure and lies beyond the scope of this study.

4.4. Local gravity constraints and fifth forces

Any modification of general relativity must confront stringent constraints from high-precision
local gravity experiments. Between the cosmological scales discussed above and the strong-
field regime of black holes, our model must reproduce standard gravity in the Solar System
and laboratory settings.

The novel interaction terms in our scalar field’s stress-energy tensor TµνΦ (equation (14)),
mediate energy-momentum exchange with ordinary matter, potentially generating fifth forces
or violations of theweak equivalence principle [30, 31]. Here, we demonstrate that these effects
are naturally suppressed far below the current experimental sensitivities.

The energy-momentum transfer is quantified by Qν ≡∇µT
µν
matter =−∇µT

µν
Φ . For non-

relativistic matter in weak fields, this generates an anomalous acceleration on the test bodies.
A detailed derivation (appendix A.3) yields the following

aanom ≈−AM8
U

ρ3m
∇ρm. (43)

The key observable is the ratio of anomalous to Newtonian forces:

βeff (ρm)≡
∣∣∣∣aanomaN

∣∣∣∣≈ AM8
U

ρ2m
. (44)

This 1/ρ2m suppression constitutes an efficient screening mechanism that renders the fifth
forces negligible in all but the most tenuous environments. This screening depends only on
the local density; possible IR running ofMU in cosmology does not affect laboratory or Solar-
System conditions, where MU is effectively constant. Hence the bounds in table 2 are robust
for both RG prescriptions discussed in section 3.4.

To illustrate the efficiency of this screening across different environments, we compute
βeff explicitly in table 2. For a reference density of water (ρ≈ 1gcm−3), the coupling is sup-
pressed to βeff ≈ 2× 10−584. Even in the best laboratory vacuums, where the density is much
lower, the coupling remains far below the current experimental sensitivity of torsion-balance
experiments, which constrain anomalous forces to β < 10−13 [31].

4 This value serves as our benchmark calculation. A full analysis including kinetic and higher-derivative terms could
only further suppress the effective coupling.
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Table 2. Effective coupling βeff in different astrophysical environments.

Environment Density (g cm−3) βeff

Laboratory vacuum 10−17 ≲10−24

Earth’s surface 5.5 ≲10−59

Solar core 150 ≲10−62

Neutron star surface 1014 ≲10−88

This automatic screening ensures the viability of the model without requiring additional
mechanisms or fine-tuning. For astrophysical objects such as Solar System bodies or neut-
ron stars, where densities are much higher, the suppression is even more dramatic. Therefore,
we treat all local fifth-force constraints as automatically satisfied, and do not pursue a more
detailed phenomenological analysis.

4.5. Geometrical interpretation and emergent time

It is insightful to interpret this fifth force from a geometrical perspective. The model’s energy-
momentum exchange implies that matter particles do not strictly follow the geodesics of the
background metric gµν . Their motion can, however, be described as geodesic motion in an
effective metric g̃µν , which is conformally related to the Einstein-frame metric via the scalar
field [32, 33]

g̃µν =Ω2 (Φ)gµν . (45)

In this picture, the fifth force is a manifestation of the gradient of the conformal factor Ω(Φ).
For our density-responsive framework, we expect Ω to be a function of the scalar energy
density Ω(ρΦ), leading to a direct connection between the local matter environment and the
effective geometry. This naturally introduces the concept of an emergent causal structure,
where the rate of physical time dτphys =Ω(ρΦ)dτgrav, depends on the density-responsive scalar
energy. While precision tests like the Shapiro time delay are sensitive to such effects, they are
suppressed by βeff ≲ 10−58 in the Solar System and thus unobservable [30, 34]. However,
it could lead to significant time dilation near the regularized cores of black holes, where
ρΦ → ρP, thus complementing the primary singularity regularization mechanism. A full deriv-
ation of the functional form of Ω(ρΦ) is a compelling direction for future work.

4.6. Black hole remnants and thermodynamics

The replacement of the classical singularity with a finite-density de Sitter-like core has signi-
ficant thermodynamic consequences. By preventing the core from shrinking below the Planck
length, our framework implies a minimum black hole massMmin ∼O(MP), and consequently
a maximum Hawking temperature

Tmax
H =

M2
P

8πMmin
. (46)

This suggests that Hawking evaporation naturally halts, leaving a stable Planck-scale remnant
with mass Mmin ≃

√
1+A/2MP.

Such remnants could serve as a concrete repository for quantum information, offering a
new angle on the information paradox [35, 36]. The detailed thermodynamics and semiclas-
sical particle flux from these regular black holes are part of our ongoing investigation, see
also appendix C.4 for the core geometry.
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4.7. A Unified dark sector: Dark matter and gravitational waves

Intriguingly, the strongly-coupled SU(3)H hidden sector required by our RG mechanism may
itself constitute the Universe’s dark sector.

4.7.1. Self-interacting dark matter. The lightest stable bound states of this theory, the ‘dark
baryons’, are natural dark matter candidates. Crucially, as particles of a strongly-interacting
gauge theory, they would possess a significant self-interaction cross-section. Standard thermal
freeze-out calculations show that these particles can naturally achieve a relic abundance
of ΩHSh2∼0.01− 0.15. Remarkably, the expected self-interaction strength of σ/m∼ 0.1−
1cm2 g−1 falls precisely in the range required to address long-standing small-scale structure
puzzles, such as the core-cusp problem [37].

4.7.2. Gravitational Wave Signatures. Moreover, a first-order phase transition in this confin-
ing hidden sector at T∗ ∼ 100GeVwould generate a stochastic gravitational-wave background
peaking around fpeak∼10−5Hz, squarely within the LISA band. A more detailed discussion is
presented in appendix B.5.

This raises the tantalizing possibility that dark energy, a solution to the small-scale structure
crisis via self-interacting dark matter, and a future gravitational wave signal could all share a
common origin within the present framework.

4.8. Theoretical consistency and limitations

While our framework successfully addresses several fundamental issues, it is important to
acknowledge its limitations and potential theoretical challenges:

(i) UV completion: The model is formulated as an EFT valid below the Planck scale.
The precise mechanism generating the scalar potential U(Φ,X) and its coupling to
matter requires UV-complete theory, possibly involving the hidden sector discussed in
section 4.7.

(ii) quantum corrections: We worked at the tree level with a one-loop RG running. Full
quantum corrections to the scalar potential can modify the precise bound on ρtotal and
introduce additional scale dependence. However, the qualitative features, singularity reg-
ularization, and dark energy behavior, are expected to be robust.

(iii) instabilities: While the scalar field is stable around its minimum in all regimes studied,
exotic matter configurations or extreme anisotropies could potentially trigger instabilities.
A complete stability analysis in fully dynamic, anisotropic space-times remains for future
work.

(iv) black hole information:Although our regular black hole solutions avoid classical singu-
larity, they do not automatically resolve the information paradox. The fate of information
in a regular core requires a quantum treatment beyond the classical framework.

(v) scope near-Planckian densities: Our analysis is explicitly formulated within an EFT.
All statements about singularity regularization are made at the EFT level: the density-
responsive potential generates an effective negative pressure that produces a bounce and

5 A quantitative estimate using the standard relic density formula and a discussion of specific self-interaction signa-
tures are provided in appendix B.5.
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keeps curvature invariants finite within the classical metric description. A UV completion
may changeO(1) coefficients in the high-density windowwithout affecting the qualitative
outcome (finite invariants instead of divergences).

Despite these limitations, the model’s concrete predictions for both UV (singularity regu-
larization) and IR (dark energy) physics, combined with its testability and naturalness, make
it a compelling phenomenological framework worthy of further theoretical and observational
investigation.

5. Discussion and conclusion

In this paper, we presented a comprehensive and fully covariant framework for a scalar field
Φ that unifies the regularization of classical space-time singularities with a predictive model
for dynamical dark energy. By constructing the scalar potential U(Φ,X) as a function of the
Lorentz-invariant matter-energy density X, we established a theoretically robust extension of
general relativity.

5.1. Summary of results

The model is characterized by a series of compelling and interconnected features that address
several long-standing problems in fundamental physics:

• covariant formulation: this theory is manifestly covariant, resolving the frame-dependence
issues of earlier phenomenological proposals. The derivation of the full stress-energy tensor
TµνΦ reveals novel interaction terms that mediate a consistent energy-momentum exchange
between the scalar field and matter.

• RG link across scales: a simple one-loop renormalization-group flow with an O(1) anom-
alous dimension (γ≈ 0.501) naturally connects the Planck scale to the meV dark-energy
scale at the EFT level, without fine-tuning.

• unified mechanism for UV and IR physics: a single, dual-purpose mechanism governs
physics at both ends of the cosmic energy scale. In the high-density UV regime, the density-
responsive scalar energy ρΦ is capped, providing a natural cutoff that regularizes the classical
singularities. In the low-density IR regime, ρΦ becomes the dominant energy component,
driving the cosmic acceleration.

• testable cosmological predictions: the model is both explanatory and predictive. It yields
a distinctive equation of state evolution for dark energy, characterized by w0 ≈−0.99
and a positive slope wa ≈+0.03. These signatures, along with predicted shifts in cosmic
expansion history and matter growth, are concrete targets for future stage-IV cosmological
surveys.

• observational viability: despite the new interaction terms, the model’s predictions for the
fifth forces and violations of the weak equivalence principle are suppressed by factors as
small as 10−58 in testable environments. Therefore, the framework is fully consistent with
all high-precision local gravity tests.

5.2. Comparison with other approaches and outlook

Our framework offers a novel perspective on the interplay among gravity, cosmology, and
particle physics. It is instructive to compare our approach with other established paradigms
that address similar problems.
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Table 3. Comparison with other theoretical frameworks.

Our model Quint. LQC Chamel. Run. Vac.

Core mechanism Density-resp. Slow-roll Quantum Screening RG running
scalar scalar geometry scalar of Λ

Covariant Yes Yes Partiala Yes Yes
Singularities
regularized

Yesb No Yes No Partialc

Dark energy Natural Tunedd Noe Yes Yes
Screening Built-in No N/A Designed No
RG hierarchy Yes No No No Yes
Key prediction wa > 0 Model-dep. Bounce 5th forces ρvac(z)
Fine-tuning γ =O(1) V(ϕ) None ϕmin ν param.
a Full covariance in group field theory only.
b Within the regime of validity of the EFT.
c Only cosmological singularity via RG.
d Requires flat potential against radiative corrections.
e Needs an additional dark energy component.

5.2.1. Comparison with fundamental vs effective theories. At the foundational level, our
approach represents an EFT extension of GR, which can be contrasted with efforts to derive
gravity from first principles as a fundamental gauge theory. For instance Partanen & Tulkki
[12] postulated new U(1) symmetries to construct a renormalizable quantum theory of gravity
from ground up. Our philosophy is different: instead of replacing GR, we augment it with a
new dynamical field whose behavior is governed by well-established QFT mechanisms. The
strength of our approach lies in its direct, testable connection between UV physics (singularity
regularization) and IR observables (dark energy), which provides a clear phenomenological
path forward.

Beyond these fundamental considerations, our model can be compared more directly with
other phenomenological approaches that address dark energy and/or singularity regularization.
Table 3 summarizes the key features of the various frameworks.

5.2.2. A detailed comparison of key features. Quintessence models [38] share our use
of a dynamical scalar field but differ fundamentally in their mechanism. While quintessence
requires careful tuning of the potential to maintain slow-roll conditions (|V ′ ′|/V≪ 1), our
model’s dark energy behavior emerges algebraically from the density-responsive potential.
Quintessence typically predicts wa ⩽ 0 (thawing models) or requires additional fine-tuning
for wa > 0 (freezing models). Our prediction of wa =+0.03 is generic and robust.

LQC [7] provides a rigorous quantum geometry framework for singularity regularization,
replacing Big Bang with a bounce at ρ∼ ρP. While both the LQC and our model achieve
singularity regularization via a maximum density, the mechanisms differ: the LQC modifies
the geometry itself through quantum corrections, while we introduce a new energy component
within the classical geometry. Importantly, the LQC does not address dark energy, requiring
additional mechanisms for late-time acceleration.

Chameleon theories The model’s automatic suppression of fifth forces through βeff ∝ 1/ρ2m
warrants a comparison with established screening mechanisms. Chameleon [16] and symmet-
ron theories rely on environment-dependent effective masses to hide the scalar field, typically
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yielding a weaker suppression (∝ 1/ρm or step-function-like). Vainshtein screening, based on
non-linear derivative self-interactions, operates differently, suppressing modifications within
a source-dependent radius. Our mechanism’s key advantages are its strength and naturalness.
The ρ−2

m suppression is more efficient than that of typical chameleon or symmetron models.
Furthermore, unlike mechanisms that are specifically engineered to pass local gravity tests,
our screening emerges automatically from the same density-responsive potential that unifies
singularity regularization and dark energy. This inherent completeness, connecting UV, IR,
and local phenomenology from a single principle, is a distinctive feature of our framework.

Running vacuummodels [39] share our use of RG methods but apply them differently. They
parameterize ρvac = ρ0 + νH2M2

P with ν ∼ 10−3, linking vacuum energy to the global expan-
sion rate. Our approach ties scalar energy to the local matter density, enabling both singularity
regularization and dark energy. While running vacuum models can address the cosmological
constant problem, they do not naturally resolve the singularities.

5.2.3. Unique advantages of our framework:.

(i) unification: a single mechanism addresses both UV (singularities) and IR (dark energy)
problems connected by the RG flow,

(ii) predictivity: the model makes concrete, falsifiable predictions (w0 =−0.99, wa =
+0.03) distinguishable from ΛCDM and most alternatives,

(iii) naturalness: only O(1) parameters are required, and the hierarchy emerges from logar-
ithmic RG running and

(iv) completeness: built-in screening ensures compatibility with all local tests without addi-
tional mechanisms.

5.3. Outlook and future directions

While this paper establishes the core principles and viability of the density-responsive scalar-
field framework, its most exciting implications point towards future research. As introduced in
sections 4.5 through 4.7, the model provides a rich and testable phenomenology that connects
fundamental theory with observation.

The most prominent research directions involve a deeper, quantitative exploration of these
consequences: a first-principles derivation of the emergent spacetime geometry and its
impact on precision measurements; a detailed study of the thermodynamics of regular black
hole remnants; and a comprehensive analysis of the unified dark sector, including its dark
matter candidates and gravitational wave signatures.

These avenues outline a compelling research program. By unifying UV and IR physics
and linking them to testable phenomena across multiple frontiers, from cosmology and astro-
physics to gravitational wave astronomy, this framework offers a promising new direction for
exploring the deepest puzzles of our Universe.

5.4. Conclusion

We have established a coherent and covariant scalar field framework that connects Planck-
scale physics to meV-scale dark energy through the dynamics of a single, environmentally
responsive field. The model naturally regularizes classical singularities (within EFT), provides
a compelling candidate for dynamical dark energy with distinctive and testable signatures, and
satisfies all current observational constraints.
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Table 4. Key observational signatures of our model and the forecast precision of upcom-
ing Stage-IV surveys.

Observable Our Prediction Survey Signif.

Equation of state, w0 −0.99 DESI/Euclid (σw0 ≈ 0.019) —
Evolution, wa +0.03 DESI/Euclid (σwa ≈ 0.028) ∼ 1.1σ
H(z) deviation 0.29% at z≈ 1.7 DESI/Rubin (< 1%) Testable
Growth index,∆γ −0.0038 Euclid (σγ < 0.005) Testable

The upcoming generation of cosmological surveys will provide unprecedented precision
in measuring the dark energy equation of state. Our model’s prediction of wa > 0 provides a
clear, falsifiable signature that distinguishes it from ΛCDM and most quintessence models.
Combined observations from multiple probes could potentially detect the predicted deviations
at the 2–3σ level.

By bridging the gap between theoretical consistency and phenomenological predictability,
this work offers a promising new direction for exploring the fundamental nature of gravity,
dark energy, and the structure of space-time. The rich phenomenology across all scales, from
Planck-scale singularity regularization to present-day cosmic acceleration, demonstrates the
power of EFT methods in addressing fundamental questions in physics.

Table 4 summarizes the key observational tests that can distinguish our model from ΛCDM
and other dark energy scenarios.

Data availability statement

All data that support the findings of this study are included within the article (and any supple-
mentary files).

Appendix A. Covariant field theory details

A.1. Derivation of the scalar field stress-energy tensor Tµν
Φ

The stress-energy tensor TµνΦ for the scalar field Φ is derived by varying the scalar part of the
action in (1) with respect to the metric gµν . The action SΦ is

SΦ =

ˆ
d4x

√
−g

[
−1
2
M2
Kg
αβ∂αΦ∂βΦ −U(Φ,X)

]
. (A.1)

The variation δSΦ is given by

δSΦ =

ˆ
d4x

[
δ (
√
−gLΦ)

δgµν
δgµν +

∂ (
√
−gLΦ)

∂X
δX

]
. (A.2)

Using δ
√
−g=−1/2

√
−ggµνδgµν and the standard variation of the kinetic term, the first part

yields the standard kinetic and potential contributions to TµνΦ . The second part, containing the
implicit dependence on the metric via X, requires variation δX.

For a perfect fluid, Tαβmatter = (ρm+ pm)uαuβ + pmgαβ , and the scalar is X= ρm. The vari-
ation of X is non-trivial as both ρm and uα can depend on the metric. However, a more direct

24



Class. Quantum Grav. 42 (2025) 225016 M Drobczyk

approach is to use the general formula for the variation of a Lagrangian that depends on the
matter fields ψm and metric [40]

∂L(ψm,gµν)
∂gµν

=
1
2
T(ψm)
µν . (A.3)

In our case, the potential U(X) depends on Tαβmatter. Its variation with respect to gµν is thus
related to Tµνmatter itself. The term −2∂U/∂gµν in the full tensor definition becomes

−2
∂U
∂gµν

=−2
∂U
∂X

∂X
∂gµν

. (A.4)

The quantity ∂X/∂gµν can be identified with −1/2 times the part of the matter stress tensor
that is not proportional to uµuν [41]. For a perfect fluid, this results in

∂X
∂gµν

=
1√
−g

δ (
√
−gX)

δgµν
=

1
2
[(ρm+ pm)u

µuν − pmg
µν ] . (A.5)

Note the sign difference in certain conventions. With our metric signature (−,+,+,+) and
the definition of Tµν , this leads to the expression for TµνΦ in equation (14).

To evaluate ∂X/∂gµν explicitly, we start from

X= uαuβT
αβ
matter = uαuβ

[
(ρm+ pm)u

αuβ + pmg
αβ

]
= ρm, (A.6)

where we used uαuα =−1. However, this naive approach misses the implicit metric depend-
ence through four-velocity normalization.

The correct approach recognizes that under a metric variation gµν → gµν + δgµν :

δX= δ
(
uαuβT

αβ
matter

)
= 2uαδuβT

αβ
matter + uαuβδT

αβ
matter. (A.7)

The variation of the normalized four-velocity, maintaining uµuµ =−1, results in

δuµ =
1
2
uµu

αuβδgαβ . (A.8)

Using the eigenvector property Tµνmatteruν =−ρmuµ) and varying the metric dependence sys-
tematically yields

∂X
∂gµν

=−1
2
[(ρm+ pm)u

µuν + pmg
µν ] . (A.9)

This result is crucial for determining the interaction between the scalar field and the matter
sectors.
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A.2. Analysis of the quasi-static approximation

The validity of the quasi-static approximation rests on the field’s ability to adiabatically
track its density-driven minimum, Φeq[X(t)]. The deviation from this minimum, δ(t)≡ Φ(t)−
Φeq[X(t)], evolves as a driven, damped harmonic oscillator:

δ̈+ 3Hδ̇+m2
Φ δ =−

(
Φ̈eq + 3H Φ̇eq

)
, (A.10)

where m2
Φ ≡ ∂2U/∂Φ2|Φeq . The solution shows that the tracking error |δ| is quadratically sup-

pressed by the ratio of the field’s intrinsic relaxation time, τroll ≡ m−1
Φ , to the timescale τX on

which the background density X evolves:

|δ| ≲
(
τroll
τX

)2 ∣∣∣ ∂Φeq

∂ lnX

∣∣∣[1+O
(
H
mΦ

)]
. (A.11)

Thus the approximation is highly accurate whenever the relaxation time is much shorter than
any relevant dynamical timescale.

Numerically, the separation of scales is enormous. For the fiducial parameters used in this
work, the field mass is mΦ ≃ 8× 10−4 eV, yielding a relaxation time τroll ≃ 8.2× 10−13 s. In
contrast, even rapid astrophysical phenomena like gravitational collapse occur on timescales
of τX ∼ 10−3 s, giving (τroll/τX)

2 ≲ 10−18. For the much slower late-time cosmology, where
τX ∼ H−1 ∼ 1017 s, the factor is < 10−59.

Spatial gradients are relevant only on scales comparable to the Compton wavelength
λΦ = ℏc/mΦ ≃ 0.25mm, which is negligible for all astrophysical and cosmological purposes.
The only regime where the approximation could become marginal is near the Planck epoch.
However, our singularity-regularization mechanism in this limit relies on the algebraic satur-
ation of the total energy source, a feature independent of the detailed field dynamics.

A.3. The fifth-force estimate in the high-density regime

Matter and scalar stress tensors exchange energy-momentum via Qν ≡∇µT
µν
matter =−∇µT

µν
Φ .

For non-relativistic motion in a weak static field (uµ ≃ (1,0,0,0), gµν ≃ ηµν) the geodesic
equation acquires the term Qi/ρm:

aanom =
Q
ρm
. (A.12)

From equation (14), the stress-energy tensor TµνΦ for dust (pm = 0) in the quasi-static limit
(∂0T

µν
Φ = 0) yields

TijΦ ≈−ρΦ δij+
ρmρΦ

ρm+M4
U

δij. (A.13)

Taking the divergence and using ∇iδ
ij = 0:

Qi =−∇jT
ij
Φ =−∇i

(
ρΦ

M4
U

ρm+M4
U

)
. (A.14)
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A.3.1. High-density limit. For ρm ≫M4
U we have ρΦ ≃ AM8

U/ρm (see (9)), hence

aanom =−AM8
U

ρ3m
∇ρm. (A.15)

For a point source where |∇ρm|/ρm ∼ 1/r and using |aN|= GM/r2, the ratio becomes

βeff ≡
|aanom|
|aN|

≃ AM8
U

ρ2m
. (A.16)

A.3.2. Numerical illustration. With the cosmologically fixed values A= 2.4× 10−2, MU =
5.84 meV and ρlabm ≃ 4.3× 1018 eV4 (water) we find βlab

eff ≃ 2× 10−58, forty-five orders below
the current torsion-balance limit βexp < 10−13 [31].

A.3.3. Scope of approximations. (i) Quasi-static: mΦ ∼ 10−4 eV ≫ GHz lab frequen-
cies. (ii) High-density: even intergalactic gas satisfies ρm >M4

U. (iii)Weak field: hΦ ∼ GρΦ ⩽
10−122. Under these conditions, equation (A.16) is robust and establishes a built-in screening
mechanism.

Appendix B. Renormalization group analysis details

This section provides detailed calculations supporting the renormalization group evolution of
mass-scale MU, as discussed in section 3.

B.1. Detailed calculation of the anomalous dimension γ

The RG evolution of mass-scale MU is governed by the one-loop equation presented in (21)

µ
dMU

dµ
=−γMU. (B.1)

This is a separable differential equation that can be integrated between the high-energy UV
scale µUV =MP and low-energy IR scale µIR = H0:

ˆ MU(H0)

MU(MP)

dMU

MU
=−γ

ˆ H0

MP

dµ
µ
. (B.2)

Solving the integral yields

ln

(
MU (H0)

MU (MP)

)
=−γ ln

(
H0

MP

)
= γ ln

(
MP

H0

)
. (B.3)

Assuming the natural boundary condition MU(MP)≈MP, this simplifies to the relation
MU(H0) =MP(H0/MP)

γ given in (23).
To obtain the required anomalous dimension γ, we solve it using the following values:

• Planck mass: MP ≈ 1.22× 1028 eV.
• Hubble constant: H0 ≈ 1.44× 10−33 eV.
• target dark energy scale: MU(H0)≈ 5.84× 10−3 eV.
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The ratios are

H0

MP
≈ 1.44× 10−33

1.22× 1028
≈ 1.18× 10−61,

MU (H0)

MP
≈ 5.84× 10−3

1.22× 1028
≈ 4.79× 10−31. (B.4)

Solving for γ as in (24)

γ =
ln
(
4.79× 10−31

)
ln(1.18× 10−61)

=
−70.08
−139.98

≈ 0.501. (B.5)

This confirms that an O(1) anomalous dimension is sufficient for generating a large-scale
hierarchy.

Thus, the naturalness of this result cannot be overstated. In EFT, anomalous dimensions
generically arise from loop corrections and typically take the values γ =O(g2/16π2) where
g is a relevant coupling. For γ ∼ 0.5, this suggests g2/(16π2)∼ 0.5, implying g∼ 5.6, which
corresponds to a strongly coupled but still perturbative regime. This is precisely the regime
expected near the boundary of the conformal window in non-Abelian gauge theories, lending
further credence to the hidden sector interpretation detailed in appendix B.2.

B.2. Illustrative model for the origin of γ

The anomalous dimension γ for the mass operator is generated by quantum loop corrections. A
physically plausible scenario involves a hidden, non-Abelian gauge sector. For our benchmark
model, we consider a pure SU(3) gauge theory. The relation between the anomalous dimension
and gauge coupling at one-loop order is of the form γ = β0αH/(4π), where β0 = 11Nc/3 is
the one-loop beta function coefficient for a pure SU(Nc) theory. For SU(3), this gives β0 = 11.

To generate our required value of γ≈ 0.501, the coupling must be

αH =
4πγ
β0

=
4π × 0.501

11
≈ 0.57. (B.6)

This value indicates a strongly coupled but still perturbative regime, similar to QCD at inter-
mediate scales, and is thus a viable and minimal choice.

B.2.1. Note on alternative scenarios. It is instructive to note that other choices of matter
content would yield different results. For instance, an SU(3) theory with Nf = 12 Dirac fer-
mions would give a much smaller β0 = 3. This would formally require αH ≈ 2.1 to generate
the same γ, pushing the theory into a non-perturbative regime. Such near-conformal theories,
while theoretically interesting, would require non-perturbative methods beyond the scope of
this study. Our choice of a pure SU(3) sector therefore represents the minimal model that is
consistent with generating γ≈ 0.501 while maintaining theoretical control.

B.3. Scale invariance of the loop factor A

The dimensionless parameter A is identified with the canonical one-loop factor Ath =
1/
(
64π2

)
≃ 1.6× 10−3. This factor arises from integrating out heavy degrees of freedom in a

loop, and its value is primarily determined by the dimensionality of space-time and combin-
atorial factors from Feynman diagrams [19].
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Table B1. Effective degrees of freedom gSM∗S in the SM as a function of decoupling
temperature.

Tdec (GeV) ≫ 103 102−103 10−100 1−10

gSM∗S 106.75 96.25 75.75 10.75

The RG equation for MU describes how the overall scale of the potential changes. The
dimensionless shape parameters of the potential, such as A and h, are typically assumed to be
less sensitive to the RG flow or to run much more slowly. At the one-loop level of approxima-
tion for theMU running, we can consistently assume that A and h are scale-invariant constants.
A full two-loop analysis would introduce a running for A and h themselves, but these correc-
tions are expected to be sub-dominant and would not alter the main conclusion of the paper.
This approximation is the standard in many EFT analyses.

B.4. Hidden-sector thermal history and ∆Neff

In our framework the required anomalous dimension is generated by a hiddenSU(Nc) gauge
sector with Nf Dirac fermions (see section 3.3). If this sector was once inthermal equilibrium
with the SM, it behaves as anadditional relativistic component after chemical decoupling and
thereforecontributes to the effective number of neutrino species,Neff = 3.044+∆Neff. The
quantity ∆Neff is tightly constrained by BBN and the CMB.

B.4.1. General expression. If the hidden sector decouples at temperature Tdec, itstemper-
ature subsequently scales as THS ∝ a−1, while theSM plasma is reheated by entropy release
from particle annihilations. The hidden contribution at a later temperature T≪ Tdec is6

∆Neff (T) =
4
7

(
11
4

)4/3

g∗HS
[
gSM∗S (T)

]4/3 [
gSM∗S (Tdec)

]−4/3
. (B.7)

with

g∗HS = 2
(
N2
c − 1

)
+

7
8
2NcNf, (B.8)

and gSM∗S the usual entropic degrees of freedom in the SM.
For the relevant decoupling temperatures we adopt to B1.

B.4.2. Results. Figure B1 displays ∆Neff as a function of Nf for SU(2) (solid) and SU(3)
(dashed) hidden sectors at Tdec = 10, 100, 1000GeV. For the two benchmark models intro-
duced in section 3.3 we obtain the results presented in B2. Even in the most conservative case
(Tdec = 10GeV, when dilution is smallest) all values remain well below the current CMB +
BBN limit ∆Neff < 0.15 at 95% C.L. [4]. The hidden sector required by our RG mechanism
is therefore fully compatible with standard cosmology.

The results, shown in figure B1, confirm that our benchmark models are fully compatible
with standard cosmology.

6 We count two physical helicities for each massless gauge boson, hence the factor 2(N2
c − 1) in g∗HS.
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Table B2. Effective number of additional neutrinos for different gauge groups.

Gauge Group Nf

∆Neff

10GeV 100GeV

SU(2) 4 0.009 0.006
SU(3) 10 0.029 0.021

Figure B1. Hidden-sector contribution to ∆Neff versus fermion flavors Nf. Solid
(dashed) curves correspond to SU(2) (SU(3)); colors denote Tdec = 10 GeV (purple),
100GeV (orange) and 1000 GeV (green). The horizontal band shows the Planck+BBN
2σ bound∆Neff < 0.15. The red circle and blu square mark the two benchmark models
quoted in the text.

B.5. Further observational signatures of the hidden sector

Beyond the cosmological constraint from∆Neff discussed above, the hidden sector responsible
for generating γ≈ 0.501 may leave additional observable imprints accessible for current or
near-future experiments.

B.5.1. Gravitational wave signatures. A strongly-coupled hidden sector may undergo
phase transitions in the early Universe, potentially generating a stochastic gravitational wave
background [42, 43]. For a first-order phase transition at temperature T∗, the peak frequency
today is

fpeak ≈ 1.6× 10−5Hz

(
T∗

100GeV

)( g∗
100

)1/6
. (B.9)

For transitions at the electroweak scale or above, this falls within the sensitivity bands of
LISA (10−4 − 10−1Hz) [44] or the Einstein Telescope (1− 104Hz) [45]. The amplitude
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depends on the transition strength and bubble dynamics, with detectable signals possible for
α≡∆V/ρrad ⩾ 10−2 [46].

B.5.2. Dark matter connections. If the hidden sector contains stable particles, they could
constitute a sub-component of the dark matter. The thermal relic abundance of these ‘dark
baryons’ depends on their annihilation cross-section during freeze-out dynamics [47, 48]. The
standard approximate formula for a thermal relic is:

ΩHSh
2 ≈ 0.1

( xf
20

)(10−8GeV−2

⟨σv⟩

)( mHS

100GeV

)2
, (B.10)

where xf = mHS/Tf denotes the freeze-out parameter. For weak-scale masses and couplings,
this naturally yieldsΩHS ∼ 0.01− 0.1, providing a significant fraction of the total dark matter.
For instance, a reference point withmHS = 50GeV and an annihilation cross-section of ⟨σv⟩ ≃
2× 10−8GeV−2 yieldsΩHSh2 ≃ 0.0125. The associated self-interaction cross-section for such
a strongly-coupled particle would be σ/m∼O(1)cm2 g−1, consistent with the range discussed
in section 4.7.

This sub-dominant component can be distinguished from standard cold dark matter through
several observational channels:

• Self-interaction signatures in galaxy cluster collisions [37, 49]
• Modifications to small-scale structure formation [50]
• Distinct velocity-dependent cross-sections [51]

B.5.2.1. Collider constraints and opportunities. Although the hidden sector couples to the
Standard Model only gravitationally at low energies, quantum gravity effects could mediate
interactions at high energies [52, 53]. At the LHC, these would manifest as

• Missing energy signatures from hidden sector particle production
• Modifications to multi-jet distributions at

√
s∼ TeV

• Virtual graviton exchange processes

Current bounds from mono-jet + missing energy searches constrain the effective quantum
gravity scale M∗ ⩾ 5TeV. Future 100 TeV colliders could probe M∗ ∼ 15TeV, potentially
accessing the hidden sector if M∗ ≪MP due to extra dimensions or other UV physics.

B.5.2.2. Astrophysical probes. Hidden sector particles could affect stellar evolution and
compact object physics:

• Stellar cooling: Light hidden particles (m< 10keV) produced in stellar cores can enhance
the energy loss. Current bounds from horizontal branch stars and white dwarfs constrain
such scenarios [54, 55].

• Supernova dynamics: A trapped hidden sector could affect core-collapse dynamics and
neutrino emission, constrained by SN1987A observations [56, 57].

• Black hole superradiance: Ultralight hidden bosons (m∼ 10−13 − 10−11 eV) can form
clouds around rotating black holes, extracting angular momentum and producing mono-
chromatic gravitational wave signals [58, 59].
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These diverse observational avenues provide multiple independent tests of the hidden sector
hypothesis, making our framework falsifiable despite the sector’s weak coupling to ordinary
matter.

Appendix C. Phenomenological and physical consequences

This section provides technical derivations supporting the physical predictions discussed in 4.

C.1. Fisher Forecast Details

To estimate the future constraints on the dark energy equation of state parameters (w0,wa), we
performed a Fisher matrix analysis using the public code cosmicfishpie [29], which utilizes
the Boltzmann solver CAMB. The Fisher matrix Fαβ quantifies the maximum information that
an experiment can provide on a set of parameters {pα}:

Fαβ =−
〈
∂2 lnL
∂pα∂pβ

〉
, (C.1)

where L is the likelihood of data. The inverse of this matrix provides the covariance matrix for
the parameters, with the marginalized 1σ error on parameter pα given by σ(pα) =

√
(F−1)αα.

C.1.1. Survey specifications. We modeled a Stage-IV spectroscopic galaxy survey, similar
to the Euclid or DESI experiments. We focused on the constraining power of galaxy clustering
(GCsp), which combines Baryon Acoustic Oscillations (BAO) and Redshift-Space Distortions
(RSD). The fiducial cosmology was set to a flat w0waCDM model with parameters consist-
ent with the predictions of our model: {Ωm = 0.31,h= 0.67,ωb = 0.0224,ns = 0.965,σ8 =
0.81,w0 =−0.99,wa =+0.03}. We vary a set of seven cosmological parameters and include
internal marginalization over survey-specific nuisance parameters such as galaxy bias.

C.1.2. Results and constraints. The resulting constraints on the dark energy parameters
are shown in figure C1. After marginalizing over all other parameters, we find that the 1σ
uncertainties are

σ (w0)≈ 0.019

σ (wa)≈ 0.028. (C.2)

This forecast confirms that our model’s prediction of wa =+0.03 is testable at a significance
of approximately 1.1σ. The contour plot visualizes the expected degeneracy between w0 and
wa and highlights the model’s distinct position relative to theΛCDM point (w0 =−1,wa = 0).

C.2. Cosmological perturbations

We analyzed the behavior of linear scalar perturbations in a conformal Newtonian gauge,
where the line element is

ds2 = a2 (τ)
[
−(1+ 2Ψ)dτ 2 +(1− 2ΦN)dx2

]
, (C.3)

whereΨ andΦN are the Bardeen potentials. The scalar fieldΦwas perturbed around its homo-
geneous background value Φ(τ,x) = Φeq(τ)+ δΦ(τ,k).
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Figure C1. Forecasted 1σ and 2σ constraints on the dark energy equation of state para-
meters (w0,wa) for a Stage-IV spectroscopic survey. The red point marks the prediction
of our model (w0 =−0.99,wa =+0.03), while the black cross indicates the ΛCDM
model. The forecast shows that these twomodels are distinguishable at the∼ 1.1σ level.

Varying the action (see equation (2)) with respect to Φ yields the perturbed Klein–Gordon
equation. In the quasi-static limit, the dynamics of δΦ are dominated by the effective massmΦ,
which is much larger than the Hubble rate H. Thus, the dominant effect of the field perturba-
tions is to act as a smooth energy component.

The effective sound speed squared c2s , of scalar fluid ρΦ determines its clustering properties.
It is defined as c2s ≡ δpΦ /δρΦ in the rest frame of the fluid. For a scalar field with a canonical
kinetic term (as Φ is, after normalization by MK), the intrinsic propagation speed of perturb-
ations is the speed of light. Because the potential U(Φ,X) does not depend on the derivatives
of Φ, the effective sound speed is given by c2s = 1 [38]. A sound speed of unity implies that
the pressure support is maximal, preventing the scalar fluid from collapsing on sub-horizon
scales. Therefore, ρΦ acts as a smooth dark energy component, and its perturbations do not
contribute significantly to structure formation.

The presence of ρΦ modifies the background expansion history H(z), which in turn affects
the growth rate of matter density perturbations δm. The growth rate f(a) = dlnδm/dlna is
often parameterized as f(a)≈ Ωm(a)γgrowth . The growth rate of matter density perturbations,
f(a) = d lnδm

d lna , is often parameterized as f(a)≈ Ωm(a)γgrowth . The growth index, γgrowth, serves as
a powerful tool to distinguish between different dark energy models. Building on the founda-
tional works in [60, 61], refined approximations for a time-varying equation of state have been
developed [62]. A particularly convenient expansion in terms of the CPL parameters is given
by:

γgrowth ≈
3(1−w0)

5− 6w0
− 3

125
(1−w0)(1− 3w0/2)

(1− 6w0/5)
2 wa+ . . . (C.4)

Using our model’s predictions w0 =−0.99 and wa ≈+0.03, we find

γgrowth ≈ 0.5416. (C.5)
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For ΛCDM (w0 =−1, wa = 0), the value is γΛ ≈ 0.5454. The predicted shift,∆γ = γgrowth −
γΛ ≈−0.0038, is a subtle but potentially measurable signature in large-scale structural data.

C.3. Singularity regularization: curvature invariant calculations

Here, we explicitly demonstrate that the bounded total energy density ρtotal ensures that space-
time curvature invariants remain finite in the two key scenarios where classical General
Relativity predicts singularities.

C.3.1. Early Universe (FLRW model):. In a radiation-dominated early Universe, the total
energy density is ρtotal(a) = ρr(a)+ ρΦ(ρr(a)). As shown in (29), the maximum density is
bounded as ρmax

total ≈ (1+A/2)ρP. The Kretschmann scalar K for a flat FLRW metric is dom-
inated by the Hubble rate K= 12H4. The Friedmann equation H2 = (8πG/3)ρtotal implies
that H2 is bounded by H2

max ≈ (8πG/3)ρP =M2
P/3. Consequently, K is bounded by a finite

Planck-scale value

Kmax ≈ 12
(
M2
P/3

)2
=

4
3
M4
P. (C.6)

Because ρtotal and its time derivatives remain finite, all scalar curvature invariants are bounded,
and classical Big Bang singularity is avoided.

C.3.2. Static, spherically symmetric core (Black hole interior):. Wemodeled the regularized
core of a black hole as a static, uniform-density sphere with total energy density ρtotal(0)⩽
ρmax
total ≈ (1+A/2)ρP. The space-time inside such a configuration is described by the interior

Schwarzschild metric. The Kretschmann scalar at the center (r= 0) of this solution is given
by

K(r= 0) =
8
3
(8πG)2 ρtotal (0)

2
=

8
3

(
1
M2
P

)2

ρtotal (0)
2
. (C.7)

Using the observational value

A≈ 0.024,

ρtotal(0) was bounded by≈ 1.012ρP = 1.012M4
P. Therefore, the curvature at the center is also

bounded as follows

K(r= 0)⩽ 8
3

(
1.012M4

P

)2
M4
P

≈ 2.73M4
P. (C.8)

The curvature does not diverge at r= 0. The classical point-like singularity is replaced by a de
Sitter-like core of finite, Planckian curvature. This provides a robust mechanism for the regu-
larization of black hole interiors. A more detailed analysis involving smooth density profiles
and matching with an exterior metric is left for future work.

C.4. Regular black–hole interiors in the density-responsive scalar framework

Here, we provide the full derivation and consistency checks for the regular Schwarzschild
core announced in section 4.2. The presentation follows four steps: (i) constant-density core
solution, (ii) curvature-invariant budget, (iii) junction to the exterior Schwarzschild-de Sitter
region, and (iv) thermodynamic and phenomenological implications.
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C.4.1. Planck-density constant-core solution

C.4.1.1. Setup. Consider a static, spherically-symmetric line element

ds2 =−f(r) dt2 + g(r)−1 dr2 + r2dΩ2, (C.9)

where f,g> 0 for r< rH. Inside the core r⩽ rc we assume an (approximately) uniform matter
density ρm(r) = ρc and negligible bulk motion7. The scalar contribution in our framework is

ρΦ (r) =
AM8

U (µc)

ρc+M4
U (µc)

, µc ∼ 4
√
ρc, (C.10)

such that the total energy density is ρtotal = ρc+ ρΦ.

C.4.1.2. Running of the mass scale. Using the RG solutionMU(µ) =MP(µ/MP)
γ (see (23)

with γ ≃ 0.501) we obtain, for the Planckian core density ρc → ρP =M4
P,

MU (µc)
ρc→ρP−→ MP, ⇒ ρmax

Φ = AM4
P/2.

Hence, we recover the maximum density bound from equation (29)

ρmax
total = (1+A/2) ρP. (C.11)

C.4.1.3. Interior metric. For constant total density the exact interior Schwarzschild solution
gives

g(r) = 1− 2Gm(r)
r

,

m(r) =
4
3
π r3ρtotal,

[2pt] f(r) =
1
4

[
3
√
g(rc)−

√
g(r)

]2
. (C.12)

Energy conditions hold automatically: ρtotal > 0, ρtotal + ptotal = 0 (WEC and NEC saturated).

C.4.2. Curvature invariants. The primary curvature invariant is the Kretschmann scalar K=
RαβγδRαβγδ . For the interior Schwarzschild solution with a constant total density ρtot, the
scalar at the center r= 0 is given by

K(r= 0) =
8
3
(8πG)2 ρ2tot. (C.13)

Using the relationship 8πG= 1/M2
P and the maximum density from (C.11), the maximum

possible curvature at the center of the core can be calculated. With the observational value
A≈ 0.024, ρmax

tot ≈ 1.012ρP = 1.012M4
P. This yields

Kmax (r= 0) =
8
3

(
1
M2
P

)2 (
1.012M4

P

)2 ≈ 2.73M4
P. (C.14)

7 A constant core is a standard toy model and suffices to demonstrate finiteness; a smooth Gaussian profile is analyzed
in equation (C.16).
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This confirms that the curvature is bounded and of order the Planck scale, thus regularizing
the classical singularity.

C.4.3. Israel matching at r= rc. At rc we require the continuity of the induced metric and
extrinsic curvature [gab]rc = [Kab]rc = 0. With ptotal(rc) = 0 the second condition is automatic-
ally satisfied, and the first sets the ADM mass M= m(rc). In addition, the line element is

fext (r) = gext (r) = 1− 2GM
r

− Λeff

3
r2, Λeff = 8πGρvacΦ . (C.15)

For astrophysicalM≫MP the Λeff-term is utterly negligible: Λeff(GM)2 ∼ 10−122.

C.4.4. Smooth density profile (consistency check). Gaussian matter profile

ρm (r) = ρc exp
[
−r2/r2c

]
, (C.16)

yields the total density ρtotal(r) = ρm(r)+ ρΦ[ρm(r)] with the same upper bound (see (C.11)).
Integrating the TOV system {dptotal/dr, dm/dr} numerically we obtain m(r)∼ r3 as r→ 0,
thereby reproducing the finiteness of equation (C.14).

C.4.5. Thermodynamics and evaporation. The surface gravity at the outer event horizon rH
is κ= 1

2 ∂rfext|rH , such that

TH =
κ

2π
=

1
4π rH

[
1−Λeffr

2
H

]
.

For stellar-mass black holes the correction is ∼ 10−121, but for M→MP the regular core
enforces a maximum temperature

Tmax =
MP

2π (1+A/2)
≈ 0.16MP,

halting Hawking evaporation and suggesting a Planck-mass remnant scenario [25, 26, 63].

C.4.6. Observational consistency. The exterior observables depend exclusively on fext(r).
The leading fractional deviations scale as δ ∼ Λeff(GM)2 and are therefore δrph/rph ⩽ 10−76

for the photon sphere and similarly small for ring-down frequencies or ISCO shifts. The current
and foreseen observations are insensitive to these effects.

In summary, the density-responsive scalar-field automatically converts the GR singular-
ity into a finite-curvature de Sitter core while leaving all macroscopic black-hole signatures
unchanged. This demonstrates how the same RG-evolved field that generates meV-scale dark
energy today naturally regularizes Planck-scale singularities, providing a concrete realization
of our unified UV/IR framework. The mechanism is conceptually identical to the cosmological
bounce discussed in section 4.3, with both phenomena arising from the single underlying prin-
ciple of equation (9).
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Table C1. Parameters for the Oppenheimer–Snyder simulation in Planck units

Parameter Value Motivation

Initial matter density, ρm,0 10−3 ρP Sub-Planckian; allows observation of dynamics
Initial scale factor, a0 1 Standard normalization
Initial velocity, ȧ0 −0.5 Ensures significant collapse
Coupling constant, A See text Both theoretical and observational values

C.5. Black hole solutions and the exterior metric

Outside the core (X≈0) the scalar energy attains its vacuum value ρvacΦ = AM4
U(H0), which acts

as an effective cosmological constant Λeff = 8πGρvacΦ . Accordingly, the exterior line element
is the Kottler metric f(r) = 1− 2GM/r−Λeffr2/3.

The value ofΛeff was identical to the observed cosmological constant today. Its effect on the
event horizon radius rH ≈ 2GM of an astrophysical black hole was negligible. The correction
∆rH can be estimated by solving f(rH) = 0 as follows

∆rH
rH

∼ Λeff (GM)
2 ∼ ρDE

ρP

(
rH
lP

)2

. (C.17)

For a solar-mass black hole (rH ∼ 3 km), this correction is on the order 10−78, far beyond
any possibility of detection. Therefore, the model is perfectly consistent with all astrophysical
observations of black holes, such as those from the Event Horizon Telescope, as the modific-
ations are confined to the unobservable deep interior.

C.6. Dynamical collapse in a modified Oppenheimer–Snyder model

To demonstrate that the singularity regularization is a robust dynamical feature and not merely
a property of static configurations, we adapt the classic Oppenheimer–Snyder (OS) model of
a collapsing dust sphere to our framework. In the OS picture, a homogeneous, pressureless
sphere of dust with a comoving radius R(τ) and initial density ρm,0 evolves as a closed FLRW
patch. The evolution is governed by the scale factor a(τ), which is normalized to a(τ = 0) = 1.

In our framework, the dynamics are governed by the effective LQC-like Friedmann equation
derived in appendix C.7, which incorporates both the contribution from the density-responsive
scalar-field and leading-order quantum gravity corrections:

H2 =
8πG
3

ρefftot

(
1− ρefftot

ρcrit

)
− k
a2
, (C.18)

where ρefftot = ρm+ ρeffΦ is the total effective energy density from the tensor-derived variables,
ρcrit = (1+A/2)ρP is the critical density at which the bounce is initiated, and k> 0 represents
a positive spatial curvature.

For the numerical integration, we adopted the parameters summarized in table C1. The
initial conditions included a substantial inward velocity to ensure proper collapse dynamics.
The system of equations was solved using an adaptive Runge–Kutta method to handle the
numerical stiffness near the bounce.

We perform the simulation for two values of the coupling constant A: the theoretical one-
loop value Ath ≈ 1.58× 10−3 and the observationally determined value Aobs = 0.024. The res-
ults, shown in figure C2, confirm that in both cases, the collapse is halted and replaced by a
non-singular bounce.
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Figure C2. Modified Oppenheimer–Snyder collapse for observational (A= 0.024, top)
and theoretical (A≈ 0.0016, bottom) coupling values, simulated using the full LQC-like
dynamics. Left: Scale factor evolution showing a non-singular bounce (blue) versus the
classical singularity (red dashed). Right: Energy densities, with the total effective density
(blue) peaking as the system bounces. The bounce occurs at 139.2% (99.0%) of the GR
singularity time for the observational (theoretical) values, respectively.

For the theoretical value, the simulation shows that the scale factor reaches a minimum
of amin ≈ 0.073 at τ ≈ 1.88. This occurs at 99.0% of the time it would take for the classical
GR singularity to form, indicating a minimal but crucial modification to general relativity that
suffices to regularize the spacetime.

For the observational value, the quantum effects are stronger. The bounce occurs signific-
antly earlier, at τ ≈ 2.65, which is approximately 139% of the classical singularity time. The
minimum scale factor reached is amin ≈ 0.088.

The bounce mechanism is driven by the effective quantum gravity dynamics encapsulated
in equation (C.18). As the total effective density ρefftot approaches the critical density ρcrit, the
effective Hubble rate is driven to zero, halting the collapse. The subsequent positive accelera-
tion (ä> 0) is guaranteed by the modified Raychaudhuri equation (see appendix C.7), which
leads to an effective violation of the Strong Energy Condition. This robustly prevents the
formation of a singularity, evading the conclusions of the Penrose–Hawking singularity the-
orems [64]. It is noteworthy that the peak energy density reached dynamically can slightly
exceed the critical density ρcrit, which marks the point of zero expansion rate (H= 0), a com-
mon feature in such dynamical systems.

The difference between the theoretical and observational values of A can be understood
from the hidden sector contributions discussed in section 3.3. While the minimal one-loop
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contribution gives Ath ≈ 1.6× 10−3, a strongly-coupled hidden sector can enhance this value,
yielding a result consistent with Aobs. This demonstrates that our singularity regularization
mechanism is robust across a range of parameter values, with the theoretical value providing
a minimal deviation from GR and the observational value offering stronger quantum gravita-
tional effects.

This result confirms that the combination of the density-responsive scalar energy and
leading-order quantum corrections dynamically enforces a maximum curvature, preventing
the formation of a singularity. We emphasize that this OS model is a simplified toy model
that neglects pressure gradients and inhomogeneities. However, the present calculation is suf-
ficient to demonstrate the internal consistency and robustness of the singularity regularization
mechanism.

C.7. Derivation of the effective bounce equation

This appendix sketches the derivation of the effective Friedmann equation that leads to a non-
singular bounce, as discussed in the main text. The starting point is the action (2) evaluated
for a homogeneous and isotropic FLRW line element with lapse function N(t):

ds2 =−N2 (t) dt2 + a2 (t) d⃗x2, H≡ ȧ
aN

. (C.19)

In the adiabatic regime (section 2.2), the fast dynamics of the scalar field can be integrated out
by setting Φ≃ Φeq(X), reducing U(Φ,X) to the algebraic Ueq(X) = AM8

U/(X+M4
U). Varying

this effective potential with respect to the metric yields for dust (wm ≃ 0)

ρeffΦ = Ueq −XUX (UX ≡ ∂U/∂X) , (C.20)

which matches the expression obtained from the full tensor projection in the main text8.
At Planckian curvature, the EFT necessarily acquires higher-curvature corrections that, at

minisuperspace level, generate a positive contribution ∝ H4 to the Hamiltonian constraint.
This may be viewed either as the net effect of the metric dependence δX/δgµν in U(Φ,X) or,
equivalently, be captured by the leading covariant counterterm

SR2 =
β

2M2
P

ˆ
d4x

√
−gR2, β > 0, (C.21)

which adds a positive H4 term in FRW (up to total derivatives and terms ∝ HḢ).
Varying the total minisuperspace action with respect to the lapse N(t) then gives

3M2
PH

2 − M2
P

H2
∗
H4 = ρm + ρeffΦ ≡ ρefftot, (C.22)

whereH∗ is set by the positive Wilson coefficient β. Using the standard low-curvature relation
H2 = (8πG/3)ρefftot, this can be recast in the LQC-like form

H2 =
8πG
3

ρefftot

(
1− ρefftot

ρcrit

)
, ρcrit ≡ 9M2

PH
2
∗ =

9H2
∗

8πG
∼ O

(
M4
P

)
. (C.23)

8 For Ueq = AM8
U/(X+M4

U) one finds UX =−AM8
U/(X+M4

U)
2 and thus Ueq −XUX = AM8

U(M
4
U + 2X)/(X+

M4
U)

2, identical to the tensor-derived result.
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where the last estimate assumesH∗ ∼MP (order-unity factors absorbed into ρcrit). This predicts
a non-singular bounce at ρefftot = ρcrit with H= 0. The subsequent evolution obeys

Ḣ = −4πG
(
ρefftot + pefftot

)(
1− 2

ρefftot

ρcrit

)
, (C.24)

so that Ḣ> 0 at the bounce even if each microscopic sector obeys the NEC, ρi+ pi ⩾ 0. In a
single-fluid rewriting this corresponds to an effective NEC violation.

Two features are immediate: (i) for ρefftot ≪ ρcrit one recovers the standard Friedmann
equation, so late-time cosmology is unchanged; (ii) while the exact value of ρcrit depends
on the Wilson coefficient, its Planck-scale magnitude is generic. This provides a robust EFT
underpinning for the bounce mechanism used in the main text.

Appendix D. Robustness of the Framework

D.1. Dependence on the Potential Form

The specific functional form of the potential U(Φ,X) chosen in equation (6), while motivated
by one-loop corrections, is a key assumption of our model. Here, we investigate the robustness
of our main conclusions with respect to variations of this form. Any physically viable poten-
tial must satisfy general constraints: covariance, UV saturation (U→ finite as X→∞), and a
stable IR limit (U→ const. as X→ 0).

We consider two alternative classes of potentials that meet these criteria and compare their
qualitative predictions to our fiducial model in table D1.

D.1.1. Power-law family. A straightforward generalization is the power-law potential

Un (X)∝
1

1+
(
X/M4

U

)n . (D.1)

Our model corresponds to the case n= 1. For any n> 0, this form successfully regularizes
singularities and generates late-time acceleration. However, the specific dark energy equation
of state and the fifth-force screening law depend sensitively on the value of n.

D.1.2. Logarithmic form. Another possibility is a logarithmic potential

Ulog (X)∝ ln

(
1+

M4
U

X

)
. (D.2)

This form also provides a UV cutoff, but the approach to saturation is much slower (ρΦ ∝
ln(X) at high density). While this still regularizes singularities within EFT, the dark-energy
phenomenology and screening behavior are significantly altered.

D.1.3. Conclusion on robustness. As summarized in table D1, the model’s core
mechanisms-singularity regularization via a density bound and the RG-driven link between
Planck and dark energy scales-are robust features independent of the precise form of the poten-
tial. However, the specific predictions for dark energy phenomenology (w0,wa) and the effi-
ciency of the fifth-force screening are model-dependent. Our choice of a potential with n= 1
represents the minimal, theoretically motivated form that successfully and simultaneously
addresses all phenomenological requirements without introducing additional free parameters.
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Table D1. Robustness of key results under different potential forms.

Result / Feature Our Model (n= 1) Power-law (n ̸= 1) Logarithmic

Singularity regularization Yes Yes Yes
Late-time Acceleration Yes Yes Modified
w0 ≈−1 Yes Modified (w0 =−1/n) No
Fifth-force Screening ∝ 1/ρ2m ∝ 1/ρ1+n

m ∝ 1/(ρm lnρm)
RG Hierarchy Solution Yes Yes Yes

D.2. Relation between Kinetic and Potential Scales

Our analysis assumes that the kinetic scale MK and the potential scale MU are directly pro-
portional, i.e.MK(µ) = ξMU(µ) with ξ =O(1) being a constant. This assumption affects the
effective mass of the scalar field fluctuations, mΦ =

√
h/ξ ·MU, and thus the validity of the

quasi-static approximation. Here, we justify this assumption and analyze the model’s robust-
ness against its violation.

D.2.1. Theoretical Motivation. In a fundamental theory, it is natural to expect both scales
to originate from the same underlying physics, leading to proportional running under the RG
flow. For example:

• Composite models: If Φ is a composite field arising from a strongly-coupled hidden sector
with a confinement scale ΛH, both scales would be tied to ΛH, naturally yielding ξ =O(1).

• EFT: From an EFT perspective, the kinetic and potential terms are simply the leading terms
in an expansion. Unless there is a specific symmetry protecting the kinetic term, its scaleMK

and the potential scaleMU are expected to be of the same order and receive similar quantum
corrections, thus running proportionally.

D.2.2. Phenomenological Consistency. The key predictions of our model are remarkably
insensitive to the precise value of the ratio ξ =MK/MU.

• The background cosmology, including the dark energy equation of state (w0,wa) and the
mechanism for singularity regularization, depends only on the potential U(Φ,X) and thus
only on the scale MU.

• The fifth-force suppression factor, βeff ∝ AM8
U/ρ

2
m, is likewise independent of MK.

The only significant constraint on ξ comes from requiring the quasi-static approximation to
be valid, i.e. the field relaxation time must be much shorter than the Hubble time (mΦ ≫ H).
This translates to

mΦ

H
=

√
hMU

ξH
≫ 1 ⇒ ξ ≪

√
hMU

H
. (D.3)

Using the values at the present day (MU ∼ 10−3 eV, H0 ∼ 10−33 eV, h∼ 0.01), this yields an
extremely weak upper bound of ξ ≪ 1029. Therefore, for any reasonable value of ξ ∼O(1)−
O(100) that would be expected in a natural UV-completion, the quasi-static approximation
remains valid by many orders of magnitude.
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D.2.3. Conclusion on robustness. The assumption of a proportional running MK ∝MU, is
theoretically well-motivated and natural. However, even if this proportionality were violated
and the ratio ξ varied by several orders of magnitude from unity, the primary results of our
framework would remain entirely intact. The value of ξ only affects the detailed dynamics of
field fluctuations, which are not the focus of this work. Our choice of ξ =O(1) is therefore a
simplifying and natural, but not a strictly necessary, assumption.
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