gk DHBW

Duale Hochschule
Baden-Wirttemberg
Mannheim

DLR

Development and Validation of a Hardware-in-the-Loop System for
Robotic Seismic Exploration

BACHELORARBEIT

fir die Priiffung zum

BACHELOR OF SCIENCE

des Studiengangs Informationstechnik

der Dualen Hochschule Baden-Wiirttemberg Mannheim

von

Luis Wientgens

Abgabe am 30. August 2022

Bearbeitungszeitraum: 07.06.21 — 30.08.22

Matrikelnummer, Kurs: 3135171, TINF19IT1

Abteilung: Institut fiir Kommunikation und Navigation
Ausbildungsfirma:;: Deutsches Zentrum fiir Luft- und Raumfahrt e.V.

Betreuer der Ausbildungsfirma: Dr.-Ing. Ban-Sok Shin
Gutachter der Dualen Hochschule: Prof. Dr. Holger Gerhards

Erklarung

Ich versichere hiermit, dass ich meine Bachelorarbeit mit dem

THEMA

Development and Validation of a Hardware-in-the-Loop System for Robotic
Seismic Exploration

selbststandig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe.

Ich versichere zudem, dass die eingereichte elektronische Fassung mit der gedruckten
Fassung iibereinstimmt.*

* falls beide Fassungen gefordert sind

Weflling, den 30. August 2022

Abstract

The exploration of the subsurface of planetary bodies in our solar system is a
promising approach for future space missions. Until now planetary seismology has
been constrained to a single or very few seismic stations. Recent proposals suggest the
use of a swarm of robotic rovers carrying seismic sensors for the use in this exploration
as they offer higher flexibility due to their ability to relocate. To this end in this
thesis a hardware in the loop system for the simulation of seismic surveys is designed
and introduced. The system is built on top of the second version of the Robot
Operating System and is designed to be distributed and extensible. Verification
experiments are conducted in simulation and using real robotic rovers.

Zusammenfassung

Die Erkundung des Inneren von Planeten und planetaren Koérpern in unserem
Sonnensystem ist ein vielversprechender Ansatz fiir zukiinftige Erkundungsmissio-
nen. Bis jetzt war Seismologie auf fremden Himmelskorpern auf eine oder wenige
Messstationen beschréankt. Aktuelle Missionskonzepte schlagen zu diesem Zweck die
Verwendung von robotischen Rovern augestattet mit seismischen Sensoren vor, da
diese sich repositionieren kénnen. In diesem Sinne wird in dieser Arbeit ein System
zur Hardware-in-the-Loop-Simulation von seismischen Kampagnen entworfen und
vorgestellt. Das System baut auf der zweiten Version des Robot Operating System
auf und ist auf Verteiltheit und Erweiterbarkeit ausgerichtet. Zur Verifikation werden
Experimente als Simulation und mit realen Rovern ausgefiihrt.

Contents

List of Figures VI
List of Tables VIII
List of Listings and Algorithms IX
List of Symbols X
Acronyms XI
1 Introduction 1
1.1 Motivation 1
1.2 Requirements Definition L. 2
1.3 Chapter Outline 3

2 Robot Operating System and Hardware 4
2.1 Middleware)
2.2 Nodes e)
2.3 Communication Methods 5)
2.3.1 Topics 6

2.3.2 Services 6

2.3.3 Actions 6

24 Robots 7

3 Seismic Exploration and Inversion 8
3.1 Overview of Seismic Reflection 8
3.2 Numerical Forward Modeling 10
3.3 Inversion by Normal Moveout Correction 13

4 System Design 15
4.1 Hardware-in-the-Loop Testing 15
4.2 Simulation Loop. 16
4.3 System Components 16
4.3.1 Measurement Component 16

-1V -

Contents

4.3.2 Inversion Component
4.3.3 Movement Component

5 Implementation

51 ROS Nodes e
5.1.1 Plugin Architecture
5.1.2 Imterface and Coordinator
5.1.3 Path Planner
5.1.4 Measurement Simulation
5.1.5 Inmversiono

5.2 System Configuration

6 Verification Experiments and Evaluation

6.1 Movement Experiments o0
6.2 Seismic Experiments
6.3 Evaluation oo

7 Summary
8 Outlook

Bibliography

21
21
23
23
25
29
32
35

38
39
44
48

20

ol

XI

List of Figures

2.1 3D model of a dwarf rover (modeled by swarm exploration group at

DLR) . o oot

3.1 Reflection and refraction of a seismic wave at an interface between
two layers of differing velocity

3.2 Notation used in the finite difference grid model for numerical solution
of the wave equation

3.3 Schematic illustration of receiver placements and resulting offsets in a
seismic reflection survey Lo Lo

4.1 High level system flowchart illustrating the logical steps of the HITL-
Simulation
4.2 Component architecture of the system

5.1 Full rosgraph of the running system showing the nodes and their
communication channels 0000000000
5.2 File organisation for the plugin architecture
5.3 Rosgraph of the running system showing only movement related nodes
and their communication channels
5.4 Speed model and corresponding simulated wavefield at different time
Steps . . e e e
5.5 Flowchart of NMO algorithm

6.1 Dwarf rovers in measurement formation in the Holodeck
6.2 Path of one rover from position (11.3, 1) to position (5, 2). The
triangle markers illustrate the waypoints.
6.3 Paths of three rovers relocating from a vertical to a horizontal line
formation.
6.4 Paths of three rovers relocating to a parallel line formation.
6.5 Paths of five rovers relocating from a vertical to a horizontal line
formation.
6.6 Paths of five rovers relocating a horizontal line formation while shifting
position by one meter. Lo

“VI -

List of Figures

6.7

6.8
6.9
6.10
6.11
6.12
6.13

Paths of five rovers relocating from a horizontal to a vertical line

formation.o 43
Measurement at position (3, 2) with source at (1,2). 45
Measurement at position (11, 2) with source at (1,2). 45
Characteristic function of a seismic signal. 46
Seismic signal with two arrivals visible. 46
Bad estimation of ¢y caused by bad travel time picks for regression. . 47
Acceptable estimation of ¢y based on the picked travel times. 47

- VII -

List of Tables

4.1
4.2
4.3
4.4

5.1
5.2
5.3

6.1
6.2

Interface of measurement component 17
Parameters of measurement component L. 17
Parameters of inversion component 18
Parameters of movement component 18
Plugin interface of path planner node 29
Plugin interface of measurement node 32
Plugin interface of inversion node 33
Experiment setup parameters 38
Parameters for the STA/LTA picker. 44

- VIII -

List of Listings and Algorithms

5.1 Greedy Goal Assignment
5.2 Measurement Message Definition
5.3 Measurement Data Formatting

CIX -

List of Symbols

RO g TR sy g

SEND

UNMO
U

function of x € R3, ¢

first spatial direction in the exploration domain
second spatial direction in the exploration domain
depth below surface

time

nabla operator

wave propagation velocity

function for the wave propagation velocity at x €
Ri’)

finite difference operator for dimension d € (z,y, 2)
number of timesteps in the simulation

reciever offset from source

offset corrected traveltime

normal moveout velocity

seismic layer velocity

seismic layer height

Acronyms

HITL Hardware In The Loop

API Application Programming Interface
ROS Robot Operating System

DDS Data Distribution Standard

PDE Partial Differential Equation
NMO Normal Moveout

MAPF Multi Agent Path Finding
IDL Interface Description Language
STA - LTA Short Term Average - Long Term Average

- XTI -

1 Introduction

One of the most fascinating and prominent aspects of space research is the exploration
of foreign planetary bodies. Currently state of the art planetary exploration is mostly
focused on investigating physical properties visible from orbit or accessible for
exploration by a single lander. Examples include the recent (2021) landing of the
Perseverance rover as part of the Mars 2020 mission [1] and the European orbiters
MarsExpress [2] and BepiColombo [3]. Therefore missions are mostly constrained
to properties above and on the planetary surface while subsurface characteristics of
a body remain hidden. One major field of interest in future planetary missions is
therefore the seismic exploration of subsurface structures on our nearest panetary
neighbor, the red planet Mars [4]. First steps in the direction of planetary seismology
were conducted during the moon landings of the Apollo program [5]. A few years
later for the first time a seismometer was placed on Mars carried by the Viking
lander, however due to problems in deployment the data proved to be of limited
usability [6]. More recently in the context of the InSight mission to mars, a single
seismometer was deployed and used for passive seismic inferometry [7]. Data from
this seismometer was used to gain information about the upper mantle structure of

mars [8].

1.1 Motivation

The number of seismometers that will be available for exploration on planetary
surfaces is likely to be significantly lower than the number used for surveys on earth,

resulting from the challenges imposed by mass constraints and planetary landings.

1.2 Requirements Definition

Furthermore there are no human operators available to manually reposition the
seismometers for the concstruction of new recording grids. Therefore the spatial
resolution of the data that can be obtained is constituting a limiting factor. One
strategy to mitigate this challenge is the use of robotic rovers that can freely move
and reposition themselves as a platform for seismometers. Possibilities of this
approach include the emulation of bigger recording grids by repositioning of the
rovers during a measuremnt while using the same seismic source and adapting the
sampling topologie in an irregular fashion to further inspect discovered features of
interest. In line with this approach, recently a swarm robotics based system for
seismic planetary exploration has been proposed by the German Aerospace Center
[9]. As a step towards that vision in this thesis a system for Hardware-in-the-Loop
(HITL) simulation of robotic seismic exploration strategies using multiple robotic

agents is developed and evaluated.

1.2 Requirements Definition

The system developed over the course of this thesis has multiple design goals, which

are stated and explained as follows.

o Accuracy - The simulation components should approximate the real world

conditions to a reasonable degree

o Extensibility - The system should scale with varying numbers of agents and

should allow for the use of different algorithms over well defined interfaces

(APIs).

o Adaptability - The system should provide the possibility of freely adaptable

sampling topologies

e Ready for autonomy - The system should allow for the seamless addition of

autonomous operation to replace the human input factor

1.3 Chapter Outline

1.3 Chapter Outline

Starting out with Chapter 2 - Robot Operating System and Hardware we give an
overview of the robot hardware in use as well as the relevant concepts of the Robot

Operating System. The capabilities and constraints of the robots will be introduced.

Chapter 3 - Seismic Exploration and Inversion outlines the basic elements of seismic
exploration in general and seismic inversion using normal moveout correction as a
modeling technique in particular. Relevant mathematical concepts and notation are
described.

The high level design of the presented system is the topic of Chapter 4 - System
Design where the substructures and the communication flow as well as the design

considerations are described.

In Chapter 5 - Implementation we continue on the software level with implementation

details, algorithms and challenges during the implementation process.

Verfication of the system is based on a series of experiments conducted in simulation
and with real hardware in the laboratory. Chapter 6 - Verification Exmperiments and
Evaluation documents the setting and results of these experiments. The described
results are critically evaluated, especially with respect to the design goals formulated

in this introduction.

Proceeding in Chapter 7 - Summary we summarize the work that has been done

over the course of the thesis and the accompanying results.

Finally the thesis is concluded in Chapter 8 - Outlook where we discuss the results of
the thesis in the bigger picture of the surrounding scientific applications and possible

future developments.

2 Robot Operating System and

Hardware

The Robot Operating System (ROS) is a free and open-source software project that
is often described as a meta operating system (meta with respect to conceptually
being on a higher abstraction level as and running on top of the regular operating
system) for robotic systems [10][11]. More specifically it is a set of libraries built
upon a middleware layer that handels communication between a distributed set of
nodes that in their entirety comprise the system. Additionally a collection of tools
for building and distributing robot software based on ROS is part of its ecosystem.
The development of ROS originally started at Stanford Univeristy [12] but is now
supervised by the Open Source Robotics Foundation [13].

Development of ROS follows a distribution based scheme that approximately matches
the release cycle of Ubuntu Linux. There are however two distinct versions of ROS
namely the original ROS and the younger ROS2 project that introduces significant
changes and upgrades, especially with respect to real time capability and fault
tolerance. In this thesis the Galactic release of ROS2 is used and for the remainder
of this work the usage of the acronym ROS refers to this version. For further
information in regard to the differences between ROS1 and ROS2 the reader is
referred to [14].

2.1 Middleware

2.1 Middleware

ROS is built on top of a middleware layer that implements the Data Distribution
Service (DDS)[15] standard. DDS has been specified as a framework for realizing
transparent communication in distributed systems while beeing robust and reliable
enough to be employed in safety critical and real time systems. Because DDS
transparently communicates over physically distinct computers, the task separation
induced by the nodes can easily be translated to a physically distributed system
and in extension swarm systems like the presented application using multiple rovers.
DDS is well suited as a middleware layer for ROS as it is assuming the same
publish /subscribe principle for message passing that ROS is based on. This concepts

are described in the next two sections.

2.2 Nodes

The fundamental building block of every ROS system is the set of its nodes. A node
is the ROS concept to describe a self-contained programm unit that can interact
with other nodes by publishing and subscribing to ROS messages. A ROS message
defines the structure of the data to be exchanged between communicating nodes
and can be composited to represent custom data types. Nodes are implemented by
extending the Node class exposed by the API of the ROS client library [16].

Conceptually each node should have a well defined task in the context of the system
and decouple this task from the other nodes. There is no shared state or environment
as all relevant data is exchanged by using the DDS middelware for message passing

and the communication is entirely asynchronous.

2.3 Communication Methods

Topics, Services and Actions are the concepts that ROS exposes to implement the

distributed communication pattern in a system of nodes. They are communication

2.3 Communication Methods

channels that are used for the transmission of messages. Although they are similar

in nature and share concepts they are each used for a particular purpose.

2.3.1 Topics

Topics are the method of communication that is most true to the basic publish/sub-
scribe pattern of the DDS middleware layer. They are used for stateless transmission
of messages over the channel identified by the respective topic name. Multiple
nodes can publish to or subscribe to the same topic, making it a many-to-many

communication method.

2.3.2 Services

In contrast to topics, services are specialized on one to one communication and
provide a request /response pattern. A service consists of a request by the client and
a response by the server each one being a node. They are distinct from using topics
as a service client only recieves a response when specifically requested opposed to

whenever a publisher decides to send data.

2.3.3 Actions

Actions are a communication method for issuing long running tasks with the option
for cancelation and intermediate progress updates. Conceptually they are intended
to implement functionalities of a ROS system that influence real world actions,
especially actuator commands, that require the possibility to be interupted during

execution.

2.4 Robots

Figure 2.1: 3D model of a dwarf rover (modeled by swarm exploration group at DLR)
2.4 Robots

The robots used in this study are track-based rovers that have been custom-built by
the Swarm Exploration Group of the Institute of Communication and Navigation
at the German Aerospace Center. They are equipped with a Raspberry Pi running
nodes in a ROS environment and are connected to the network over onboard WIFI.
The rover can be manipulated by sending velocity commands to the respective
cmd__velocity topic to control the speed of the two onboard motors that each drive
one of the tracks. Nicknamed dwarf, a rendering of the rover can be seen in Figure
2.1. Apart from monitoring of battery voltage the rovers itself do not provide sensor
data and do not have the capability of positioning themselfes or recognize nearby
objects. Positioning is instead provided globally by a Vicon Tracking System [17] that
identifies each rover by a unique pattern of reflectors and publishes the positional
data at a rate of 100 Hz using a ROS node as a bridge between the Vicon software
and the system. Vicon systems are commonly used to provide ground truth position
information in robotics research and can provide positioning with a mean error lower
than 2 mm for moving objects [18]. Each rover is equipped with a platform that can
be used to optionally mount external sensors. As in this study the data recording is

numerically simulated no sensors are mounted on the robots.

3 Seismic Exploration and Inversion

Seismic exploration as a field of research is concerned with the goal of discovering and
modelling underground structures by using acoustic waves. Mathematical models of
the physics of wave propagation are applied in order to gain information on properties
of subsurface structures by using data recorded by sensors on the surface, hence it
can be seen as comparable to other remote sensing methods like ground penetrating

radar based on electromagnetic waves [19)].

3.1 Overview of Seismic Reflection

As the first step of any seismic exploration survey measurements must be taken to
record the relevant data in the process of data aquisition. Here the method of active
seismic reflection surveying is fundamental for gathering the required seismic data. In
such a seismic survey receivers in the form of geophones or seismometers record the
ground motion or acceleration using either a spring damped mass in a magnetic field
to translate movement into electric signals or microelectromechanical systems that
function as accelerometers [19]. They are placed on the surface over the exploration
domain in a formation that is called the recording or sampling topology. In reflection
surveys the topologies are often regular with the stations placed along a line or in
a grid formation. An active seismic source (e.g. explosives) is used to generate a
seismic shock and cause the released energy to propagate trough the subsurface. The
resulting data that represents the ground movement or acceleration at each receivers
position over time constitutes a seismogram. Another term for the recording of the
seismic wave at a specific position is trace with a survey recording multiple traces

per seismic shock which is also called shot [20].

3.1 Overview of Seismic Reflection

Similar to optics seismology uses both the model of waves and the model of rays to
describe propagation of acoustic energy in planetary bodies. While both models de-
scribe the same underlying physical phenomenon, they allow for different approaches
of imaging the physical parameters of the subsurface. Rays model the propagation
path of energy while waves model the displacement or pressure as a function of
location and time. Seismic rays travel orthogonal to the corresponding wavefront of
the propagating acoustic wave [20]. While seismic reflection uses the ray model to
interpret the propagation in the subsurface, the resulting recorded seismograms are
representations of acoustic waves and therefore the wave model is relevant for their
interpretation and also their simulation as part of the HITL system. Additionally
there is a further distinction between longitudinal and transversal waves which are

also called pressure (P-) and shear (S-) waves respectively [19].

freflected

% source

S

first layer

second layer

IDI/& Srefracted

Figure 3.1: Reflection and refraction of a seismic wave at an interface between two layers
of differing velocity

The underlying assumption of seismic surveys is that different materials have distinct
physical properties that affect the propagation of seismic waves. In this context
the most important property is the seismic velocity of the material, meaning the
speed of acoustic waves propagating trough it. By gathering information about
the time it takes for a signal to travel from the source to a receiver, information
about the seismic velocity and therefore the corresponding material can be gained.

Planetary subsurfaces are approximately comprised of layers of geological material

3.2 Numerical Forward Modeling

with their differing seismic velocities and anomalies like gas enclosures, faults or
caves where the seismic velocities additionally differs from the surrounding material
[19]. The boundaries between this layers are called interfaces. The velocity change
that correspond to a change in the acoustic impedance of the material causes seismic
waves to be reflected and refracted at this boundaries which leads to a change in
direction of the corresponding raypaths. Figure 3.1 illustrates the reflection and
refraction of a seismic wave at an interface. While the refraction angle 6 is dependent
on the ratio of velocities of the two layers, the reflection angle ¢ can be expressed
as 180° — ¢ and is therefore dependent on the angle of incidence relative to the
layer normal [19]. For each interface the reflection causes a subseqent arrival of
seismic energy at a receiver after the arrival of the direct wave from the source to
the respective receiver. In conducting seismic exploration by using reflection the
aim is now to use the traveltime for each of the multiple arrivals at the receivers
to estimate the depth of layers as well as their velocity in the interpretation of the

recorded data.

3.2 Numerical Forward Modeling

Measurements in this thesis are simulated by an existing python program from
[21]. The propagation of seismic waves is modeled mathematically by the acoustic
wave equation that takes the form of a partial differential equation (PDE). In most
general cases it is not possible to give an analytical solution to PDEs which requires
approximate solving by numeric computation [22][23]. The general wave equation
for a three dimensional simulation domain 2 takes the form of Equation (3.1) [22].
In this general form u is a function of x, ¥, z and ¢ giving the amplitude of the wave
which in the context of the thesis denotes the acoustic pressure at a given position
and time and caused by the seismic wave. The squared nabla operator V indicates
the partial differentiation of u in each spatial dimension resulting in Equation (3.2).
The dimensions z and y are assigned to correspond to the dimensions of the surface
plane with z denoting the depth. There is also a dependency on the propagation

velocity of the wave c.

- 10 -

3.2 Numerical Forward Modeling

2
8&5 =c*Vu te(0,7] (3.1)
Pu Pu O*u

Viu = 922 + Oy + 9.2 | z,y,2€0 (3.2)

The general equation as given above assumes a static propagation velocity over the
whole domain. For simulation of subsurfaces with seismic velocitys that vary w.r.t.
to the position in space this model is to simple and the equation needs to be extended
to include variable coefficients in the form of a function ¢ for the propagation velocity

at each position in the domain [22].

For the numerical computation the equation needs to be brought in a discrete
form using finite differences to approximate the differentials. Therefore the partial
differential is replaced by a finite difference operator D, for the corresponding
dimension d. The calculation of the finite differences in the spatial dimensions
require the consideration of the neighbouring values in each direction. Therefore
the computation requires a discretized seismic velocity model as input. A regular
grid with fixed offsets Az = Ay = Az between the grid points is used where the
velocity function ¢ is defined for each grid point. The discrete notation is shown in
Figure 3.2. A similar model discretization has already been used in a previous work
that implemented a parallel solver for a high frequency approximation of the wave

equation [24].

Now the wave equation can be given in discrete form for the cases of uniform velocity

g=c Vx € Qas Equation (3.3) and for varying velocities as Equation (3.4) [22].

[DiDyu = ¢*(DyDyu + DyDyu+ D.D.u) + f]7 ;4 (3.3)
[pDiDyu = (DyqDyu + DygDyu + D.qD.u) + f17; (3.4)

- 11 -

3.2 Numerical Forward Modeling

4i,j+1.k

qij,k—1
qi—1,5.k Qi .k Qi+1,5,k

4i,j,k+1

Gij—1,k

Figure 3.2: Notation used in the finite difference grid model for numerical solution of the
wave equation

The discrete equation is solved iteratively at each point for each time step n resulting
in the wavefield. For each iteration the solutions for the preceeding timesteps need
to be known which means the wavefield for ¢ = 0 needs to be instantiated with
initial conditions that set the values for the solution at timestep t¢,, = 0. This initial
condition includes setting a source term at the location of the source. Also on the
edges of the domain damping boundary conditions need to be defined to specify the
value of neighbours for grid points on the boundary and to prevent the boundaries

from introducing additional reflections [25].

The resulting wavefield takes the form of a four-dimensional array of length 7" that
holds a field of values at each spatial position corresponding to the result of the wave
equation at this position over time for each timestep t,. For each position on the

surface this gives the simulated seismogram for a receiver at that position.

It is important to be aware of the limits of this numerical simulation. Multiple sorts

of errors that are well known in numerical analysis are introduced, including the

- 12 -

3.3 Inversion by Normal Moveout Correction

discretization error and the error due to machine precision [23]. Further the resulting
simulated seismograms are noise free which is a severe simplifictation compared to

real seismograms that always contain noise added to the signal [26].

3.3 Inversion by Normal Moveout Correction

Seismic inversion is a set of methods that has the goal of estimating the physical
parameters of the subsurface by using the information obtained in a seismic survey.
In this thesis the data gathered by the simulated seismic reflection survey is inverted
by using the method of normal moveout correction (NMO) [27] for estimation of

layer depth and velocity.

» increasing offset x,

receiver r
r
source z o o o o o surface

Zdepth ‘
|
|
|
I
I
|
|
|
|
|
|
|
|
|
I
U .
: interface

Figure 3.3: Schematic illustration of receiver placements and resulting offsets in a seismic
reflection survey

In a seismic reflection survey as described in Section 3.1 the receivers are placed in a
line which results in each receiver r having an increasing offset x, from the source
position. Seismic waves need to travel an increasingly long distance to reach the
receivers placed further out as is illustrated in Figure 3.3. To use the travel time to

estimate depth and velocity however the path of the seismic ray should be reflected

- 13 -

3.3 Inversion by Normal Moveout Correction

by the interfaces at normal incidence. Normal moveout correction mitigates the

spatial offset of the receivers to calculate ¢, according to Equation (3.5)

.’E2

2=t — v?w;o (3.5)

removing the part of the traveltime attributed to sideways propagation [28]. Here t
is the offset corrected arrival time for a reflection at a receiver r at offset x, with ¢
being the measured arrival time. However in the presented case the equation has
a second unknown, namely the velocity vyao. Therefore one variable has to be
estimated for the inversion. As the recording is in a line, for the same reflection the
traveltimes get longer with increasing distance from the source. This results in a
parabolic curve of the traveltimes that can be used to estimate t; using polynomial
regression. With ¢y obtained the layer velocity v; can be estimated by using Equation
(3.6)

T,

V2t At

with At =t — ¢, for ¢t at x, [27]. The depth h of the corresponding layer can be
calculated by using Equation (3.7).

(3.6)

v =

to
h= ol .
vy (3.7)

Information can also be found for multiple layers by considering additional later
reflections and taking the root mean square average of the velocity for all preceeding
layers and applying Dix’s Formula as shown in [19]. The height of the deeper layers
can then be found by using the calculated layer velocity and applying Equation 3.7
with ¢ replaced by the traveltime acutally spent traversing the layer. This interval
time can be calculated by taking the difference of the ¢, for the top and the base

interface of the layer respectively.

- 14 -

4 System Design

The system design is oriented at the distributed nature of the ROS node architecture.
The components are not only logically separated but also are able to run on distinct
physical computers. On a higher level it can be subdivided into two functional parts,
namely the system under test and the simulation components. We first present the

general simulation loop before going into more detail on the system under test.

4.1 Hardware-in-the-Loop Testing

Hardware-in-the-Loop (HITL) testing is usually employed in the case that testing a
system under real conditions is not possible or feasible for economic or other reasons
[29]. System in this context is used to describe a process that depends on external
sensory input and acts back on the environment based on this information. Examples
range from simple control loops in embedded devices up to more complex and safety
critical systems like avionics hardware in aerospace applications [30][31] or control
systems in medical devices [32]. To conduct the necessary testing all aspects of the
system that are infeasible for real testing need to be physically simulated. Therefore
the input data to the hardware system needs to be obtained from the simulation by
considering the effects previous output data would have under real conditions. All
input and output data is recorded to evaluate the behavior of the system after tests.
Applied to this work the hardware ascpect is comprised of the rovers that position
themselves at locations where simulated measurements are taken and new positions

are fed back to the rovers.

- 15 -

4.2 Simulation Loop

4.2 Simulation Loop

The highest level of the system design is the HITL simulation loop of the aquistion
system. Its conceptual function is to perform all steps of a seismic survey. The
participating agents start from their inital positions and measurements for this
positions are taken from the simulated wavefield. Following the data is processed
with an inversion method. Then the system can either exit or reposition the agents
in a new configuration for a new iteration of the measurement and processing steps.

This high level behaviour is illustrated by Figure 4.1.

4.3 System Components

On a lower level of abstraction the system is divided into three functional components.
The measurment system responsible for the simulation of seismic measurements, the
inversion system responsible for processing of the measured data and the movement
system that interfaces with the rovers and therefore controls the actual hardware.
The single components communicate using messages and have no shared state. They
can therefore be distributed in a transparent fashion even over multiple computers
as long as they can resolve the names of their communication peers which is a
characteristic of a distributed system [33]. Additionally this alows for easy refactoring
and implementation of new algorithms internal to the components, as the only
guarantees they give are their defined message interfaces. Following the presentation
of the concept and functionality of each compomnent, the whole architecture is

shown in Figure 4.2.

4.3.1 Measurement Component

The measurement components responsibility is to provide seismic measurements for
the current positions of the sensors. These measurements can be either simulated

or using real sensors. The public facing interface of the measurement component is

- 16 -

4.3 System Components

therefore a message that includes all relevant information for representing the seismic

data. Table 4.1 shows the information that should be included in the communication.

H Attribute Name H Explanation H
position sensor position
source position of the seismic source
duration length of the duration (s)
data measurement data

Table 4.1: Interface of measurement component

Additionally the measurement component should be provided with all parameters
that are necessary to provide simulated measurements. A numerical simulation of
seismic wave propagation is therefore an integral part of this component. Table 4.2

is listing the required parameters.

H Parameter Name H Explanation H
X real domain size in x direction (m)
y real domain size in y direction (m)
z real domain size in z direction (m)
d discretization factor (scalar, controls model scaling)
source position of the seismic source
model velocity distribution
solver algorithm choice

Table 4.2: Parameters of measurement component

This component needs to be continously supplied with the current position of the

sensors by a localization source to set the position attribute.

4.3.2 Inversion Component

The inversion component is responsible for processing of the aquired measurement
data. Its interface is therefore the recieving end of the previously defined measurement
message send by the measurement component. The inversion component keeps its

own model of the seismic properties of the simulation domain, therefore it requires

- 17 -

4.3 System Components

some of the same parameters as the measurement component. Table 4.3 shows all
the relevant parameters. At the current stage of the system concept the inversion
component is only a receiver that writes out its processed results but does not feed
back into the system. It is however trivial to feed back messages as it does not affect

its internal state.

H Parameter Name H Explanation H
X real domain size in x direction (m)
y real domain size in y direction (m)
z real domain size in z direction (m)
d discretization factor (scalar, controls model scaling)
scheme algorithm choice

Table 4.3: Parameters of inversion component

4.3.3 Movement Component

The movement component controls the robotic agents participating in the system.
This includes path planning and communicating with the agents. This component
needs to be continously supplied with the current position of the agents by a
localization source to be aware of the positions as start points for path planning.
Also information about the extend of the domain is required for path planning. Table

4.4 shows the relevant parameters.

H Parameter Name H Explanation H
X real domain size in x direction (m)
N real domain size in y direction (m)
d discretization factor (scalar, controls resolution of positions)
planner algorithm choice

Table 4.4: Parameters of movement component

The movement component provides the ability to specify the next positions and to

execute the planned paths by supplying them to the robotic agents.

- 18 -

4.3 System Components

initial
-- - agent
positions

I T

simulate
wavefield

S

measure
at current
positions
—
process
seismo-
grams

reposition
agents

no

yes

Figure 4.1: High level system flowchart illustrating the logical steps of the HITL-
Simulation

- 19 -

4.3 System Components

Localization

position

Movement
Component

paths

Hardware

Figure 4.2: Component architecture of the system

source

Measurement
Component

data

Inversion
Component

- 920 -

5 Implementation

The following chapter will describe how the system design introduced in the preceding
chapter is implemented for usage in the experiments. Furthermore the algorithmic
implementation for path planning and the normal moveout correction is presented in

more detail.

5.1 ROS Nodes

To implement the system design, the component architecture needs to be mapped
to the concepts of the ROS architecture. Each component is implemented as one
or multiple ROS nodes. Additionally a managment interface is implemented to
allow control of the system. For visualization of the generated data this interface
also contains a node responsible for plotting the results. The full system is then
constructed from all running nodes. The combination of running nodes and their
communication channels is called rosgraph in the context of ROS. A visualization off
the full rosgraph ! is shown in Figure 5.1. Each node is an executable inside a ROS
package that can be used to further organize the node hierachy. Packages live inside
a workspace that bundles a specific functionality or logical entity like the system
in this thesis. Packages can also contain additional material like configuration files
and additional librarys and modules. Following is a presentation of all packages and
their nodes detailing their implementation and features. Prior to that the simple
plug-in system that is used to allow for the integration of different algorithms for

relevant functionality is introduced.

'For a system with 3 simulated rovers, hence all rovers are embedded in a simulated vicon
namespace.

- 21 -

5.1 ROS Nodes

Nicon

Nicon/eitri/simulated_driver

Ivicon/eitri

Ivicon/eitri/eitri

Ivicon/eitri/cmd_vel

Iicon/eitri/path_planner

Znoaa__\m.ac_a

Niconffili

Ivjconfilijemd_vel

Iviconffili/path_planner

\<_S;\m_3§ Cirl_array

Ivicon/kili/path_planner

Ivicon/kili

Ivicon/kili/simulated_driver

Iviconffiliffili

Ivicon/kili/pose_ctri_array

%

Ipath_planner

[eurrent_positions

[iterate/_action/feedback

[iterate/_action/status

€ fforward_sim

[eurrent_positions

/measurement_position
Ishutdown
Inext_positions
Icoordinator Ishutdown
Iseismometer
fshot Jshutdown

Iseismometer

[eurrent_positions

Ivicon/eitri/pose_ctrl_array

Iviconffili/pose ctrl array

Ivicon/kili/pose_ctri_array

Nisualization

Full rosgraph of the running system showing the nodes and their communica-

tion channels

Figure 5.1

9292 -

5.1 ROS Nodes

5.1.1 Plugin Architecture

One of the formulated goals of the system is the extensibility w.r.t. the integration
of new algorithms. To this end a simple plug-in architecture has been designed that
is used for the algorithms used for path planning, inversion and forward modelling.
The approach uses path names to select the appropriate algorithms without using a
registration scheme. To include a new algorithm a new folder needs to be created
in the plugin directory with a file using a specific name and containing a function

having a specific signature as defined by the respective use case.

Inside each package containing a node that implements the plugin architecture, a
plugin folder holds all algorithm implementations. Algorithm selection is implemented
using the Python importlib library to import the implementation based on its name
that can be set as a parameter during system configuration as will be presented in
Section 5.2. Figure 5.2 shows the conceptual organisation of the file hierachy as
relevant for the plugin architecture. The two consecutive folders using the name of

the respective package are thereby a consequence of the ROS package structure.

The interface defined for each plugin use case will be presented in the description of

the respective node.

5.1.2 Interface and Coordinator

The interface is comprised of all nodes and scripts that are not part of the system
itself but deal with control and data input/output. The coordinator is an additional
ROS node injected into the communication flow between the components for control

and synchronization purposes.

Interface For manual control of the system a ROS node is implemented that exposes
a text based terminal interface. The interface communicates with the relevant nodes
using the ROS communication channels to relay the command information. All

command options that are exposed to the user are the following:

- 923 -

5.1 ROS Nodes

workspace/src

ipackage—name

i package-name

i plugins

0 plugin-name

plugin.py
additional python files...

L other plugin...

node.py

additional python files...

Figure 5.2: File organisation for the plugin architecture

- 24 -

5.1 ROS Nodes

e D - input next positions: input a string of integers separated by "/" representing

the coordinates of the next measurement position
e i- iterate: execute the repositioning of the agents

e s-input new shot point: set a new position of the seismic source and regenerate

simulated wavefield for this source position

e m - measure: take measurements and execute inversion for current agent

positions

e - exit: save generated data and exit

Visualizer The visualizer is a node implemented for visualization of measurement
and path data. It collects the relevant data by subscribing to the topics publishing
the agent paths, positions and measuremnt data. Upon recieving the data is plotted

and saved at a user specified location.

Coordinator The coordinator node does not have any simulation related function-
ality but instead relays the requested new positions from the interface to the path
planner nodes and keeps track of the number of measurements taken to request the
execution of the inversion service of the inversion node. This design decision has
been made to decouple the decision of when to execute inversion from the actual

implementation of the inversion node.

5.1.3 Path Planner

The implementation of movement control is composed of two levels of path planning
and execution. The rovers themselves only take direct velocity commands for control
of the two motors. However they also come with a path planner that takes waypoints
or list of waypoints in the domain and translates them into the velocity commands
required for movement to this waypoints. A waypoint is a message of the ROS
message type Pose. A Pose is a combination of position and orientation in space. For

the purposes of this work we only need the x and y components of the position while

- 95 -

5.1 ROS Nodes

we do not care about rover orientation when the rover has reached its goal position.
This path planner for translation of waypoints into motor control commands is from

now on reffered to as the low level path planner.

To determine the waypoints the rovers need to pass, a high level path planner is
implemented that translates the rover positions and the goals in form of the requested
next positions in a list of waypoints for each rover that comprise the individual paths.
Each time the agents reposition themselves, they have to move in an environment that
has multiple other dynamic agents they could potentially cross paths with. Therefore
a strategy is needed to find and execute paths for all agents without agents colliding
on their respective path. This problem falls into the category of planning problems
and is central to and known as multi agent path finding (MAPF)[34]. A multitude of
approaches to this problem have been proposed [35]. One big challenge of MAPF is
the size of the state space of the planning problem. The individual state spaces of the
agents are combined combinatorically which results in an exponential size increase.
Therefore in general a complete and optimal solution to the MAPF problem is an
NP-hard problem [35]. Practically usable approaches therefore compromise on either
completeness or opitmality of the solution to reduce the complexity. In this work
optimality is not the most important constraint as yet there is no critical time or
path length limit for agent repositioning. Completeness is a more important metric,

if a solution exists it should be found.

The approaches presented in the literature can be classified in different categories
based on their fundamental idea in the categories Reduction-Based, Rule-Based and
Search-Based [35]. Reduction-based solvers focus on optimality but are less efficient
and not always complete. They have not been considered in this work. Rule based
solvers focus on completeness and plan paths by applying a set of defined movement
rules at each planning step [35]. The last categorie puts emphasis on nearly optimal
solution sacrificing completeness and are based on graph search. A recently proposed
search-based approach that has become highly popular [35] for MAPF in general
is the CBS-MAPF (Conflict Based Search) algorithm [36]. It plans paths for each
individual agents on a low level and avoids path collisions by using a data structure

called Constraint Tree. While it is optimal, it is not complete and inefficient on

- 926 -

5.1 ROS Nodes

open space graphs [36]. A python implementation of CBS ha s been tried as a path
planning algorithm, however the runtime and rate of successfully found paths proved
to be poorly for our setup and we moved on to a new approach. Furthermore in
most of the MAPF approaches as presented above assumptions are made regarding
the capability of the agents that are not applicable for the conditions in this work.
Specifically those are the existence of a wait step i.e. a path step where the rovers
maintain their position and a fixed length for each movement step. The low level
path planners of the rovers themself do not support a fixed length wait state in a
path. Also they aren’t synchronized or tick based for fixed length movement steps.
As a consequence such time slot based solutions to the MAPF problem are not

applicable to the situation at hand.

To solve the path planning issue therefore a different approach is taken to the general
MAPF solutions. The strategies named above assume that all agents execute their
movements concurrently which is the root cause for the problem of dynamic obstacles.
If instead the agents move sequentially, the other agents can be treated as static
obstacles in the navigation graph with their start position as well as their goal
positions. This way the order in which the paths are executed is arbitrary. As the
individual path planner for each agent the A* (a-star) graph search algorithm is
used. A* was already proposed in 1968 in a seminal paper by Hart et. al. [37] in
the context of robotics research at Stanford. A* is complete and optimal for the
construction of shortest paths through graphs. For each agent a start and a goal
position is used and A* expands trough the graph while considering an addtional
admissible heuristic when choosing the next position in the graph [37]. For path
planning we discretize the domain in a regular grid while including a discretization
factor to increase the graph size which translates to increased resolution in the real
world. Each grid point has 8 considered neighbors, in the cardinal and diagonal
directions respectively. When requesting new agent positions, which agent ends up
at which position is arbitrary and not defined. Therefore at first a task assignment
has to be done that assigns each start position a goal position to determine a (start,
goal) tuple as input to the path planner. For the task assignment a greedy approach
is chosen that loops trough the remaining goals for each start position and selects

the nearest remaining goal. For both the A* heuristic and the task assignment the

- 97 -

5.1 ROS Nodes

Algorithm 5.1 Greedy Goal Assignment

Require: start positions start, goal positions goal,
// Assign goal positions to start positions
assignments < ||
if ds € start == g € goal then

add (s,g) to assignments
remove s from start
remove g from goal
end if
for s in start do
ndex < 0
best <— 0
best value + 0
for g in goal do
distance « euclidean__distance(g — s)
if best == 0 then
best value < distance
else
if distance < best _wvalue then
best value <+ index
best < index
end if
end if
mdex <— index + 1
end for
add (s, goal[best]) to assignments
remove goal[best] from goal
end for
return assignments

- 98 -

5.1 ROS Nodes

H Parameter H Name Explanation H
Main file name || planner.py | name of the file containing plugin entry function
Function name plan name of the plugin entry function

Argument starts list of start positions
Argument goals list of goal positions
Argument grid navigation graph
Return value paths list of lists of positions
Return value || concurrent | flag to indicate wether concurrent execution is pos-
sible

Table 5.1: Plugin interface of path planner node

euclidean distance on the grid is chosen. The goal assignment algorithm implemented

is shown in Algorithm 5.1.

The path planner node is one of the nodes implementing the plugin architecture
presented in 5.1.1. Consequently the planning approach presented above has been
implemented as a plugin while the node itself only recieves the requested next
positions, keeps track of the current positions and communicates the planned paths
to the low level planners per agent. The interface definition for the plugin architecture
is as illustrated in Table 5.1.

The nodes and communication channels participating in the movement system are
visualized as a rosgraph 2 in Figure 5.3. This illustration also shows the low level
path planner node for each agent and the topic it uses to send movement commands

to the motor driver node.

5.1.4 Measurement Simulation

Simulation of the seismic measurements is implemented by the simulation (for-
ward__sim) node. Its two responsibilities are the simulation of the seismic wavefield
for a given subsurface model and the creation and publishing of measurements for

the current rover positions.

2 Again for the system with 3 simulated rovers as in the full graph above.

- 99 -

5.1 ROS Nodes

Ivicon

Nicon/kili

Nicon/kilicmd_vel

Ivicon/kilifsimulated_driver

Nicon/kili/path_planner

Nicon/eitrifemd_vel .

Iiconfeitri

Ivicon/eitri/pose_ctrl

IVicon/eitri/simulated_driver Iicon/eitri/path_planner

Ivicon/eitri/eitri ‘

[Iicon/eitri/pose_ctrl_array

Ivicon/fili/emd_vel l

Iviconffil

i Iviconffilifpath_planner
icoifi “
|

Iviconffili/simulated_driver

iconffilifpose_ctrl_array

Jpath_planner

Jeurrent_positions

[iterate

[iterate/_action

[iterate/_action/feedback

Jiterate/_action/status

Ishutdown

Inext_positions

Icoordinator

Iseismometer
Imeasurement_position

Rosgraph of the running system showing only movement related nodes and

their communication channels

Figure 5.3

- 30 -

5.1 ROS Nodes

speed model wavefield at sample nr. 1000

depth (grid points)
depth (grid points)

T T T T T
10 20 30 40 50 10 20 30 40 50
length (grid points) length (grid points)

wavefield at sample nr. 2000 wavefield at sample nr. 3000

v

"
o
length (grid points)

depth (grid points)

=
o

30 40 50 10 20 30 40 50
length (grid points) depth (grid points)

10 20

Figure 5.4: Speed model and corresponding simulated wavefield at different time steps

The wavefield is simulated in its entirety at node startup using the specified solver
plugin and the simulation is rerun upon setting a new source point so the retrieval
of measurements is only a matter of taking the timeseries representing the seismic
signal at the requested position from the wavefield without computation for each
measurement individually. Figure 5.4 shows a visualization of the simulated wavefield

for a velocity model with one interface using snapshots at different time steps.

The simulation node also implements the plugin architecture so different numerical
solvers can be used. The interface is defined as according to Table 5.2. This interface
definition also includes optional arguments that may or may not be used by the

algorithm implemented by the plugin depending on its needs.

The interface definition of a measurement is implemented by defining a ROS message

type called Measurement. Custom ROS messages are defined using an Interface

- 31 -

5.1 ROS Nodes

H Parameter H Name Explanation H
Main file name solver.py name of the file containing plugin entry function
Function name || get_ wavefield name of the plugin entry function

Argument source tuple, position of seismic source
Argument model three dimensional array defining the speed model
Argument X physical model height (m)
Argument y physical model width (m)
Argument Z physical model depth
Argument d discretization (points/m)
Optional duration simulation time (s)
Optional frequency center frequency of source signal
Optional time shift shift of source signal start time

Return value wavefield four dimensional array holding the wavefield

Table 5.2: Plugin interface of measurement node

Despriction Language (IDL) that is translated to the relevant languages by a code
generator during the build process. The required attributes of a measurement are
elabortated in Section 4.3.1. Implementation using the ROS IDL looks like shown
in Listing 5.1.4 where Point is a predefined ROS message denoting a position with
cartesian coordinates. This also demonstrates how ROS messages can be nested to

create more complex and abstract message types.

Listing 5.2: Measurement Message Definition

1
2
3
4

geometry_msgs/Point position
geometry_msgs/Point shot_position
float32 duration

float32[] data

5.1.5 Inversion

The inversion node implements data processing for inversion of the seismic mea-
surements. Therefore this node also implements the plugin architecture so different
inversion schemes can be integrated. Table 5.3 specifies the interface definition.

Again optional arguments are used. The directory argument has the intent to specify

-39 -

5.1 ROS Nodes

H Parameter H Name Explanation H
Main file name || inversion_scheme.py | name of the file
containing plugin entry function
Function name invert name of the plugin entry function
Argument measurements list of measurement messages
Optional directory directory to save internal plugin
data
Optional initial model existing model estimate
Return value layers list containing layer depths
and corresponding velocities

Table 5.3: Plugin interface of inversion node

a directory to save diagnostic data and visualizations about the inversion process
internal to the plugin. Some schemes could make use of the existing version of the
model estimate, so this is also provided as an optional argument. Therefore internally
the inversion node keeps its own subsurface model that represents the estimated
subsurface based on the inversion results. This model is updated with each inversion

to include the information obtained by new measurement data.

For testing purposes the normal moveout correction as explained in Section 3.3 is
implemented. A flowchart of the implemented algorithm is shown in Figure 5.5.
The first step in the algorithm is the formatting and sorting of the measurement
data. As input the algorithm takes a list of seismic trace data in the form of the
Measurement message introduced in the previous section. Those messages arrive
at the inversion node in a random order, so the measurement data first needs to
be sorted by ascending offset from the seismic source so they are in the correct
order for the polynomial refression step. Using Algorithm 5.3 a new list of tuples
containing the source to receiver distance and the corresponding raw measurement

data is constructed.

For the next step the travel times require the knowledge of the arrival time of the
reflection under consideration. Arrival times are determined using seismic event
pickers like those based on the STA/LTA ratio [38] that puts into relation the short
term average of the signal amplitude to the long term average and thereby enhances

short term increases in the signal amplitude. In a previous work [39] the usage and

- 33 -

5.1 ROS Nodes

Algorithm 5.3 Measurement Data Formatting

Require: seismic traces tr
// Format and sort seismic measurement data
shot,, < tr.shot_position.x
shot, < tr.shot_position.y
of fset +]
for t € tr do
distance < 0
pos, — tr.position.T
pos, < tr.position.y
if pos, == shot, then
distance < |pos, — shot,|
else
if pos, == shot, then
distance < |pos, — shot,|
end if
else
distance < euclidean__distance(shot — pos)
end if
add (distance, tr.data) to offset
end for
sort offset by shortest distance first
return offset

- 34 -

5.2 System Configuration

configuration of this trigger algorithms has been studied using the implementations
in the Python library Obspy, a package for computational seismology [40]. Picker
algorithms need to be parameterized and parameter setting is highly dependent on
the characteristics of the seismic signal and survey condtions as well as the noise

and resulting from this there is no general "silver bullet" solution [41].

When the individual travel times are known they need to be used as a basis to deduce
the travel time without any source offset of the receiver. With enough individual
travel times gathered as data points, regression can be applied to this problem.
To this end the zero offset travel time is estimated using second order polynomial
regression [42] based on prior knowledge of the approximately parabolic form of
the function describing the arrival time dependent on the receiver offset. For this
estimation of ¢y the Numpy library [43] provides an implementation of polynomic
regression. As the picking of the onset times is not guranteed to deliver the correct
arrival time for the reflection in question the regression will give false estimates for
to in some cases. In the worst case scenario ty will be estimated as being negative
and would therefore violate causality. From a mathematical perspective it will lead
to an undefined square root in the velocity esitmation. Therefore a negative zero
offset travel time is caught as an error condition that hints to a wrong picking of

arrival times.

5.2 System Configuration

For configuring and launching multiple Nodes, ROS provides a tool called roslaunch
[44] that allows the definition of system startup actions in a programmatic way using
Python scripts that in this context are called launch files. This launch files contain a
Launch Description that contains all nodes that should be launched including their

configuration int the form of ROS parameters and topic name remappings.

To allow for the easy configuration of the whole system, launch files have been
written that start up all nodes and set the parameters mapping to the component
parameters defined in Chapter 4. Some of the nodes have semantically equivalent

parameters like the model parameters for the simulation node and the inversion node

-35 -

5.2 System Configuration

input: seismic traces

sort by
ascending
offset

pick arrival
time of
relevant
reflection

determine
to by
regression

calculate
At for
each trace

calculate calculate
depth velocity

output: layer depth and velocity

Figure 5.5: Flowchart of NMO algorithm

- 36 -

5.2 System Configuration

that should have the same dimensions and discretization. Those nodes are grouped
in a single launch file where the parameters can be set at a central point to prevent
inconsitencies. The launch file for the movement components also starts up the path
planners for the individual agents and in the case of a fully simulated setup like in

the rosgraph illustrations above also a node for agent and vicon simulation.

- 37 -

6 Verification Experiments and

Evaluation

Experiments have been conducted in simulation as well as using the real robots to
verify the integration with hardware. The laboratory environment called Holodeck
has a space for robot experiments that is fully covered by the Vicon System. A
picture of rovers in a measurement line can be seein in Figure 6.1. The picture also
shows the reflector balls for identification by the Vicon system. In the following
experiments an area of 14x5 meters is used as the exploration domain. The scaling
factor for the seismic modeling is chosen to be 4 giving a 56x20x20 points domain
which includes a depth of 5 meters. The scaling factor for the path planner is set to
2 giving a resolution of 0.5 meters in the z and y directions for possible waypoints.
Additionally the origin of the world coordinate system is shifted for internal use to
position it in the upper left corner of the experimentation area. All parameters of

the experiment setup are summarized in Table 6.1.

H Parameter H X ‘ y ‘ zZ H
Experimentation Area 14 m 5 m -
Seismic Model Scaling x4 x4 -

Seismic Model Dimensions || 14 m (56p) | 5 m (20p) | 5 m (20p)
Seismic Model Resolution 0.25 m 0.25 m 0.25 m
Path Planner Scaling x2 x2 -
Path Planner Dimensions 28 10 -
Waypoint Resolution 0.5 m 0.5 m -
Origin Offset +11.3 m +3 m -

Table 6.1: Experiment setup parameters

- 38 -

6.1 Movement Experiments

Figure 6.1: Dwarf rovers in measurement formation in the Holodeck
6.1 Movement Experiments

The first category of experiments tests the path planning and movement aspects of
the system. To this end the movement components are tested with different numbers

of participating agents using the parameters defined in Table 6.1 for the environment.

The first test is using one rover to confirm that a path is planned and executed in a
simple setting. As start and goal respecitvely the positions (11.3, 1) and (5, 2) are
chosen. This ensures that the agent has to translate in both spatial dimensions. The
resulting path is shown in Figure 6.2. This also shows the individual waypoints and

the waypoint resolution of 0.5 meters.

Next path planning and movement is tested with three participating agents. In the
first scenario the agents relocate their measurement line formation from a vertical

line to a horizontal line. The resulting paths are shown in Figure 6.3. Again the

-39 -

6.1 Movement Experiments

individual waypoints are illustrated by the line markers. In this scenario it can be
seen how the planned paths for two of the agents conflict which could cause a collision
if executed concurrently. It can also be seen how the path planner circumvents the
goal position of the agent belonging to the blue path with the orange path, so that
no collision occurs in the case the blue path is executed before the orange one. In a
next scenario the horizontal measurement line is relocated to a parallel horizontal
line. The resulting paths are shown in 6.4. It can be seen that the goal assignment
strategy correctly assigns each agent to the respective new position that has the
same coordinate in the x dimension. The resulting paths have no common waypoint
positions so this is a case where parallel execution would be possible even with the

used non conflict free path planning approach.

In a final test the number of agents is further increased to five. The first scenario is
again the relocation from a vertical to a horizontal measurement line. All the resulting
paths are shown in Figure 6.5. Here there are multiple points of potential collision.
Again it can be seen how the path planner is planning around the goal positions of
other agents in the case of the blue and purple paths to allow for arbitrary path
execution order. The next scenario adapts the parallel relocation of the measurement
line by including a shift by one meter in horizontal direction for each goal position.
Resulting paths are visualized in Figure 6.6. Here a pathological case can be seen
where the greedy goal assignment strategy breaks down. Each agent gets assigned
the nearest position in the order they are considered. Resulting from the ordering
however for the last agent the only position left is actually the farthest away from
its current position resulting in the very long purple path. To mitigate such cases
the task assignment would need to be changed to a globally optimal assignment
approach. As a last scenario the agents relocate back to a vertical line. This scenario
is constructed to include the special case that one of the start positions equals one
of the goal positions. This case is treated as special before the task assignment to
make sure no other agent than that already at this positions gets the goal assigned.
All resulting paths can be seen in Figure 6.7. This is yet another case where no path

conflicts occur and a parallel execution would be possible.

- 40 -

6.1 Movement Experiments

m)

y coordinate (

0 T T T T
0 2 4 6 8 10 12 14
x coordinate (m)

Figure 6.2: Path of one rover from position (11.3, 1) to position (5, 2). The triangle
markers illustrate the waypoints.

y coordinate (m)

0 T T T T
0 2 4 6 8 10 12 14
X coordinate (m)

Figure 6.3: Paths of three rovers relocating from a vertical to a horizontal line formation.

_4] -

6.1 Movement Experiments

y coordinate (m)

O T T T T T T
0 2 4 6 8 10 12 14
x coordinate (m)

Figure 6.4: Paths of three rovers relocating to a parallel line formation.

y coordinate (m)

0 T T T T T T
0 2 4 6 8 10 12 14
X coordinate (m)

Figure 6.5: Paths of five rovers relocating from a vertical to a horizontal line formation.

- 492 -

6.1 Movement Experiments

y coordinate (m)

0 T T T T T T
0 2 4 6 8 10 12 14
x coordinate (m)

Figure 6.6: Paths of five rovers relocating a horizontal line formation while shifting
position by one meter.

4-
E 3] *
9
@©
C
5
[e]
S 21
>
1.
0 . . . —_—
0 2 4 6 8 10 12 14

X coordinate (m)

Figure 6.7: Paths of five rovers relocating from a horizontal to a vertical line formation.

- 43 -

6.2 Seismic Experiments

6.2 Seismic Experiments

In the seismic experiments the measurement and inversion components of the system
are tested. The rovers are placed in a line with the position of the seismic source.
We use a velocity model that has a seismic velocity in the first layer of 200 m/s
and a depth to the first interface of 5 meters. Two examples of the simulated signal
measured at different offsets from the source can be seen in Figure 6.8 and Figure
6.9. The source position is marked in the plots with a star and a line extending
out to the position of the agent which equals the sensor position. The signals are
normalized to the intervall [—1,1]. Tt can be seen that the signal for the sensor with
the larger source offset has a later onset time than the signal for the sensor closer to

the source which indicates that the source offset is reflected in the travel times.

For the inversion experiments a configuration file for the picker parameters of the
NMO plugin is implemented to allow for experimentation in order to find acceptable
picker and trigger settings. The configurable parameters are as summarized in Table
6.2.

H Parameter H Explanation Units H
STA Length of the STA window int, nr. of samples
LTA Length of the LTA window int, nr of samples
High threshold || Threshold for reflection arrival onset int, abs. value
Low threshold Threhold for end of reflection arrival int, abs. value
Cutoff frequency Optional lowpass filter int, Hz or 0 to toggle off

Table 6.2: Parameters for the STA/LTA picker.

The STA/LTA picker returns a characteristic function that describes the ratio of the
short term average over the long term average for each sample. The thresholds are
used to determine the moment of a reflection arrival when the value of the character-
istic function rises above the threshold. Figure 6.10 shows the characteristic function
of the measurement shown in Figure 6.11. It can be seen how the characteristic
function has two peaks that coincide with the peaks that are visible in the signal
below. In this case a value between 1.5 and 2 would be sensible for the high threshold

in the parameter settings.

- 44 -

6.2 Seismic Experiments

y coordinate (m)

0 T T T T
0 2 4 6 8 10 12 14
X coordinate (m)

1.0 1

0.5

0.0

_05 4

simulated signal (a.u.)

_10 4

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
time (s)

Figure 6.8: Measurement at position (3, 2) with source at (1, 2).

y coordinate (m)

o

0 2 4 6 8 10 12 14
x coordinate (m)

simulated signal (a.u.)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
time (s)

Figure 6.9: Measurement at position (11, 2) with source at (1, 2).

- 45 -

6.2 Seismic Experiments

3.5 1

3.0 1

2.5 1

2.0

1.5 1

cf value (a.u.)

1.0 1

0.5 1

0.0 1

0 200 400 600 800 1000 1200 1400
sample number

Figure 6.10: Characteristic function of a seismic signal.

1.0 1

0.51

0.0 1

simulated signal (a.u.)

_05 4

_10 4

0.00 0.05 010 0.15 020 0.25 030 035 040
time (s)

Figure 6.11: Seismic signal with two arrivals visible.

- 46 -

6.2 Seismic Experiments

0.250 A
0.225 A1
v
0.200 A

0.175 A

o
=
o
o
!

travel time (s)

0.125 A1

0.100 A

0.075 A1

0.050 -

0 2 4 6 8 10 12
offset (m)

Figure 6.12: Bad estimation of ¢y caused by bad travel time picks for regression.

0.072 A1

0.070 1

0.068 A

0.066

travel time (s)

0.064 1

0.062 1

0.060 A

0 2 4 6 8 10 12
offset (m)

Figure 6.13: Acceptable estimation of ¢y based on the picked travel times.

- 47 -

6.3 Evaluation

In practice however the consistent picking of valid travel times for all measurements
presented a challenge. Often a set of picker parameters only provided useful travel
time picks for one or two measurements while picking wrong for the others. An
example of this is shown in Figure 6.12 where the picked traveltimes, which are
marked by the orange triangles, fluctuate up and down. The visualized regression
parabola therefore is a bad estimation of the true travel time curve and the estimated
to marked by the blue star is not usable. In another measurement in Figure 6.13
the picked travel times follow the principal form of increasing in a parabola with
one outlier at an offset of eight meters. Using the estimated ¢y for inversion delivers
an estimated layer velocity of 170 m/s (True velocity of 200 m/s) and a depth of 5
meters rounded to the next integer which corresponds to the true depth of 5 meters.
Therefore the implemented NMO algorithms works when provided with consistent
and valid travel times, but those cases are rare and the ususal results have been
inconsistent picks, so travel time picking needs significant improvement to make the

NMO inversion robust enough for practical use.

6.3 Evaluation

The experiments show the already implemented capabilities and also the remaining
limitations of the system. It has been shown that the components of the system are
able to interact in the intended way to execute a seismic survey. Looking back at

the initially defined requirements leads to the following conclusions.

o Accuracy - This aspect is relevant for the seismic simulation and the inversion.
When presented with acceptable arrival time picks on the basis of the simu-
lated seismograms the inversion delivered a result that was accurate to a few
meters/second in velocity. This present a reasonable baseline to improve upon

with better time picking.

» Extensibility - The system was able to operate with different numbers of agents,

hence it is extensible in the number of sensors. Further a plugin architecture

- 48 -

6.3 Evaluation

was implemented that allows to integrate new algorithms for seismic simulation,

inversion and path planning.

o Adaptibility - The system itself makes no assumptions about the position of
agents hence the agents can be placed in arbitrary formation. This does not
mean however that certain inversion schemes like NMO do not have their own

requirements regarding measurement formation.

o Ready for autonomy - The path planner can get new positions from any source
that publishes on the relevant ROS topic. Therefore it is straigthforward to
implement a node that automatically sends new position and measurement

commands. This is a task that could be delegated to the coordinator node.

All in all the implemented system is providing a working base layer that still has
some major flaws that need to be worked on. Besides the issue of travel time
determination the inversion node model update is still not flexible enough. The
current implementation assumes that layer depths are constant over the whole domain.
Here improvement is necessary to allow layer depth updates on a per axis or even

per position basis to invert more complex models.

- 49 -

7 Summary

This thesis presented the development and validation of a Hardware-in-the-Loop
system with the goal of simulating seismic data gathering and processing for sub-
surface models using multiple robotic rovers. To this end a distributed multi agent
exploration system was implemented using the ROS robot middelware framework.
General interfaces for seismic data gathering as well as data processing are provided
that allow for the use of different data sources and inversion algorithms and contribute
to the extensibility of the system. The system can work with different numbers of
agents which influences the time it takes to change measurements position and the
amount of information gathered with each measurement. Emphasis was laid on the
extensibility and adaptibility of the system so that new algorithms for inversion,
forward modeling and path planning can easily be integrated and tested. The ROS
node architecture also hides the implementation details of the components so that
the system is adaptable to different combinations of real and simulated aspects.
An algorithm for path planning and for inversion using normal moveout have been
implemented and presented. Using these algorithms validation experiments have been
conducted in simulation and with real hardware to validate the workflow. Agents
are able to reposition themselves without collision using sequential path execution
and simple velocity profiles can be detected using NMO if the reflection arrival time
estimation is giving valid results which still is a challenging problem. There are still
constraints left concerning the efficiency and flexibility of the path planning and
the limited capabilities of the implemented inversion scheme and the uncertainty
introduced by the arrival time picking. Also manual definition of the measurement
configuration is necessary. To conclude the thesis the following Chapter 8 will give

an outlook and suggestions on possible future extensions and improvements.

- 50 -

8 Outlook

With the basic framework of the Hardware-in-the-Loop system developed, future
work will focus on extending and improving its capabilities. This includes addressing
the constraints mentioned in the evaluation in Chapter 6. Path planning algorithms
should be adapted to the system and included that allow for concurrent path
execution without active control or fixed time steps. Even without other algorithms
a simple first improvement could be to check the paths planned by the current
algorithm for collisions and mark the paths as concurrently exectuable if none are
found. Alternatively a promising approach is to extend the path planning with an
optimization step to reduce the overall execution time of the repositioning even for
the case of non concurrent path execution. More work is also necessary to improve
the inversion logic. The general model update needs to be extended to include
multiple layers and local layer depths to allow for more complicated velocity models.
Additional improvements could regard the forward modeling. The execution time
of the numerical simulator should be optimized, either by using multiprocessing
or threading or by implementing a wave equation solver on a parallel hardware
architecture like a GPU. Of vital importance if to find a more robust solution for
the estimation of travel times as this step presented the main challenge in the

experiments.

As the motivation behind the system is to serve as a testbed for algorithms in a
multi-agent seismic survey, a major goal should be to develop, integrate and test this
new algorithms. This includes the mentioned path planners but also the inversion
schemes. More advanced inversion techniques such as seismic tomography and full
waveform inversion should be studied using the system. As with the wave equation

solver again the distributed nature of the system would allow for this algorithms to

-5l -

8 Outlook

be implemented and to run on computers containing specialized hardware to increase
performance. Another approach in this regard would be the training and usage of
physics informed neural networks on dedicated GPU accelerators for use in inversion.
Those experiments could also look at the automatic determination of new positions
based on the inversion results which is a topic that hasn’t seen much attention yet

in the context of seimology.

Finally the hardware aspect can recieve a further look. The simple sending and
recieving of waypoints while being a limiting factor for path planning, makes few
assumptions about the used robots and their capabilities which allows for the testing
and evaluation of new platforms. Of special interest here is the replacement of the
external localization provider by the capability of self localization for the agents as

will be required in real environments without an external localization provider.

-5 -

Bibliography

[11]

[12]

National Aeornautics and Space Administration. Mars 2020. 2022. URL:
https://mars.nasa.gov/mars2020/ (visited on 08/01/2022).

European Space Agency. MarsEzpress. 2022. URL: https://www.esa.int/Sc
ience_Exploration/Space_Science/Mars_Express (visited on 08/01/2022).

European Space Agency. BepiColombo. 2022. URL: https://sci.esa.int/
web/bepicolombo (visited on 08/01/2022).

W. Sun et al. “Detection of seismic events on Mars: a lunar perspective”. In:
FEarth and Planetary Physics (2019). DOI: 10.26464/epp2019030.

Y. Nakamura, G. Latham, and H. Dorman. “Apollo Lunar Seismic Experiment
- Final summary”. In: Journal of Geophysical Research (1982). DOI: 10.1029/
JBO871iS01p0OA117.

D. L. Anderson et al. “Seismology on Mars”. In: Journal of Geophysical
Research (1977).

G. K. Becker. “Crustal thickness from seismic noise correlations in preparation
for the InSight mission to Mars”. Dissertation. Georg-August Universitéat, 2018.

A. Khan et al. “Upper mantle structure of Mars from InSight seismic data”.
In: Science (2021). DOI: 10.1126/science.abf2966.

B.-S. Shin and D. Shutin. “Subsurface exploration on Mars and Moon with a
robotic swarm”. In: Global Space Ezploration Conference (GLEX 2021) (2021).

S. Macenski et al. “Robot Operating System 2: Design, architecture, and
uses in the wild”. In: Science Robotics 7.66 (2022), eabm6074. DOI: 10.1126/
scirobotics.abm6074. URL: https://www.science.org/doi/abs/10.1126/
scirobotics.abm6074.

Open Robotics. ROS 2 Documentation: Galactic. 2022. URL: https://docs.
ros.org/en/galactic/.

K. Wyrobek. The Origin Story of ROS, the Linuz of Robotics. 2017. URL:
https://spectrum.ieee.org/the-origin-story-of-ros-the-linux-of-
robotics (visited on 06/27/2022).

- XI -

https://mars.nasa.gov/mars2020/
https://www.esa.int/Science_Exploration/Space_Science/Mars_Express
https://www.esa.int/Science_Exploration/Space_Science/Mars_Express
https://sci.esa.int/web/bepicolombo
https://sci.esa.int/web/bepicolombo
https://doi.org/10.26464/epp2019030
https://doi.org/10.1029/JB087iS01p0A117
https://doi.org/10.1029/JB087iS01p0A117
https://doi.org/10.1126/science.abf2966
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://docs.ros.org/en/galactic/
https://docs.ros.org/en/galactic/
https://spectrum.ieee.org/the-origin-story-of-ros-the-linux-of-robotics
https://spectrum.ieee.org/the-origin-story-of-ros-the-linux-of-robotics

Bibliography

[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]

[21]

OSRF. Open platforms for robotics. 2022. URL: https://www.openrobotics.
org/ (visited on 06/27/2022).

G. Stavrinos. “ROS2 for ROS1 Users”. In: Robot Operating System (ROS). The
Complete Reference (Volume 5). 2021. DOI: 10.1007/978-3-030-45956-7 _2.

OMG. DDS 1.4 Specification. 2015. URL: http://www.omg.org/spec/DDS/1.4
(visited on 06/27/2022).

OSRF. rclpy API documentation. 2019. URL: https://docs.ros2.org/
latest/api/rclpy/.

Vicon Motion Systems Ltd. Vicon Tracker. 2022. URL: https://www.vicon.
com/software/tracker/ (visited on 06/27/2022).

P. Merriaux et al. “A Study of Vicon System Positioning Performance”. In:
MDPI Sensors (2017). DOI: 10.3390/s17071591.

A. E. Mussett and M. A. Khan. Looking into the Earth. Cambridge University
Press, 2002.

E. Robinson and S. Treitel. Digital Imaging and Deconvolution: The ABCs
of Seismic Exploration and Processing. Society of Exploration Geophysicists,
2008. por: 10.1190/1.9781560801610.

B.-S. Shin and D. Shutin. “Adapt-then combine full waveform inversion for
distributed subsurface imaging in seismic networks”. In: IEEE International
Conference on Acoustics, Speech and Signal Processing (2021).

H. P. Langtangen and S. Linge. Finite Difference Computing with PDFEs.
Springer Open, 2017. DOI: 10.1007/978-3-319-55456-3.

A. Meister and T. Sonar. Numerik. German. 2019. DOI: 10.1007/978-3-662-
58358-6.

L. Wientgens. Implementation and Analysis of an Eikonal Equation Solver for
Seismic Tomography on a Graphics Processing Unit. Study Report. DHBW
Mannheim, 2021.

D. Komatitsch and J. Tromp. “A perfectly matched layer absorbing boundary
condition for the second-order seismic wave equation”. In: Geophyscial Journal
International (2003).

P. Bormann and E. Wielandt. “Seismic Signals and Noise”. In: New Manual of
Seismological Observatory Practice. Ed. by P. Bormann. 2nd ed. GFZ German
Research Centre for Geosciences, 2013. Chap. 4.

O. Yilmaz. Seismic Data Analysis. Society of Exploration Geophysicists, 2001.
DOI: 10.1190/1.9781560801580.

- XIT -

https://www.openrobotics.org/
https://www.openrobotics.org/
https://doi.org/10.1007/978-3-030-45956-7_2
http://www.omg.org/spec/DDS/1.4
https://docs.ros2.org/latest/api/rclpy/
https://docs.ros2.org/latest/api/rclpy/
https://www.vicon.com/software/tracker/
https://www.vicon.com/software/tracker/
https://doi.org/10.3390/s17071591
https://doi.org/10.1190/1.9781560801610
https://doi.org/10.1007/978-3-319-55456-3
https://doi.org/10.1007/978-3-662-58358-6
https://doi.org/10.1007/978-3-662-58358-6
https://doi.org/10.1190/1.9781560801580

Bibliography

[28]
[29]

[30]

[31]

L. Uieda. “Step-by-step NMO correction”. In: The Leading Edge (2017). DOIL:
10.1190/t1e36020179.1.

J. A. Ledin. “Hardware-in-the-Loop Simulation”. In: Embedded Systems
Programming (1999).

M. Ghorbani et al. “Real-time hardware-in-the-loop test for a small upper
stage embedded control system”. In: 2018 Real-Time and Embedded Systems
and Technologies (RTEST) (2018). DOI: 10.1109/RTEST.2018.8397164.

A. Kaden, B. Boche, and R. Luckner. “Hardware-in-the-loop Flight Simulator -
An Essential Part in the Development Process for the Automatic Flight Control
System of a Utility Aircraft”. In: Proceedings of the FuroGNC 2013, 2nd CEAS
Specialist Conference on Guidance, Navigation € Control (2013).

C. di Mascio and G. Gruosso. “Hardware in the Loop Implementation of the
Oscillator-based Heart Model: A Framework for Testing Medical Devices”. In:
MDPI Electronics (2020). DOIL: 10.3390/electronics9040571.

G. Bengel et al. Masterkurs Parallele und Verteilte Systeme. German. 2015.
DOI: 10.1007/978-3-8348-2151-5.

S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

H. Ma. “Graph-Based Multi-Robot Path Finding and Planning”. In: Current
Robotics Reports (2022). DOI: 10.1007/s43154-022-00083-8.

G. Sharon et al. “Conflict-based search for optimal multi-agent pathfinding”.
In: Artifical Intelligence (2015). DOI: 10.1016/j.artint.2014.11.006.

P. Hart, N. Nilsson, and B. Raphael. “A formal basis for the heuristic determi-
nation of minimum cost paths”. In: IEEE Transactions on Systems Science
and Cybernetics (1968).

L. Kiperkoch, T. Meier, and T. Diehl. “Automated Event and Phase Identifi-
cation”. In: New Manual of Seismological Observatory Practice. Ed. by
P. Bormann. 2nd ed. GFZ German Research Centre for Geosciences, 2013.
Chap. 16.

L. Wientgens. Seismic data acquisition and processing with Raspberry Shake
modules. Study Report. DHBW Mannheim, 2020.

M. Beyreuther et al. “ObsPy: A Python Toolbox for Seismology”. In: Seismo-
logical Research Letters 81.3 (05/2010), pp. 530-533. DOL: 10.1785/gssrl.81.
3.530.

A. Trnkoczy. Understanding and parameter setting of STA/LTA trigger al-
gorithm. Information Sheet. GFZ German Research Centre for Geosciences,
1999. por: 10.2312/GFZ.NMSOP-2_IS 8.1.

- XIIT -

https://doi.org/10.1190/tle36020179.1
https://doi.org/10.1109/RTEST.2018.8397164
https://doi.org/10.3390/electronics9040571
https://doi.org/10.1007/978-3-8348-2151-5
https://doi.org/10.1007/s43154-022-00083-8
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1785/gssrl.81.3.530
https://doi.org/10.1785/gssrl.81.3.530
https://doi.org/10.2312/GFZ.NMSOP-2_IS_8.1

Bibliography

[42] L. Massaron and A. Boschetti. Regression Analysis with Python. Packt
Publishing, 2016.

[43] C. R. Harris et al. “Array programming with NumPy”. In: Nature (2020). DO
10.1038/s41586-020-2649-2.

[44] A. Bockenkamp. “roslaunch2: Versatile, Flexible and Dynamic Launch Config-
urations for the Robot Operating System”. In: Robot Operating System (ROS).
The Complete Reference (Volume 5). 2020. pOI: 10.1007/978-3-030-20190-
6.7.

“XIV -

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/978-3-030-20190-6_7
https://doi.org/10.1007/978-3-030-20190-6_7

	List of Figures
	List of Tables
	List of Listings and Algorithms
	List of Symbols
	Acronyms
	Introduction
	Motivation
	Requirements Definition
	Chapter Outline

	Robot Operating System and Hardware
	Middleware
	Nodes
	Communication Methods
	Topics
	Services
	Actions

	Robots

	Seismic Exploration and Inversion
	Overview of Seismic Reflection
	Numerical Forward Modeling
	Inversion by Normal Moveout Correction

	System Design
	Hardware-in-the-Loop Testing
	Simulation Loop
	System Components
	Measurement Component
	Inversion Component
	Movement Component

	Implementation
	ROS Nodes
	Plugin Architecture
	Interface and Coordinator
	Path Planner
	Measurement Simulation
	Inversion

	System Configuration

	Verification Experiments and Evaluation
	Movement Experiments
	Seismic Experiments
	Evaluation

	Summary
	Outlook
	Bibliography

