
Technische Universität München
TUM School of Computation, Information and Technology

Fast Learning-Based Motion Planning and

Task-Oriented Calibration for a Humanoid Robot

Johannes Valentin Tenhumberg

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz : Prof. Dr. Achim Lilienthal
Prüfende der Dissertation:

1. Prof. Dr.-Ing. Darius Burschka

2. Prof. Dr.-Ing. Berthold Bäuml

3. Prof. Dr.-Ing. Udo Frese

Die Dissertation wurde am 06.12.2024 bei der Technischen Universität München ein-
gereicht und durch die TUM School of Computation, Information and Technology am
07.07.2025 angenommen.

Abstract
Dextrous humanoid robots hold immense potential from manufacturing to healthcare.
The capability to move and act autonomously in challenging environments is critical for
their successful application. Besides understanding the environment, the robot needs
an accurate model of itself to navigate safely and perform tasks accurately. The thesis
tackles this interplay of fast and accurate motion planning for humanoid robots.
The first part focuses on accurately modeling the robot’s kinematics, including elas-

ticities and mass distribution, through efficient and self-contained calibration. We in-
troduce a general approach that works for diverse robots and calibration setups. Our
theory strictly distinguishes between the actual measurement setup used to collect the
data and the robot’s intended task, which should be improved through calibration. A
typical example is using a camera to measure pixels to improve an end-effector’s carte-
sian accuracy. In the trade-off between a minimal and self-contained measurement setup
and the full description of all aspects of the task, this work combines a probabilistic view
of the data collection with minimizing the intended task error. The methods are demon-
strated for the elastic humanoid Agile Justin using its internal RGB camera and for the
DLR Hand-II with its tree-like structure using contact measurement, highlighting the
viability on complex hardware and the broad applicability of the approach.
Avoiding self-collision and handling obstacles in diverse environments are critical issues

for motion planning. For a complex robot in an unstructured world, motion planning
has many local minima of various quality and can have drastically different solutions if
the input (i.e., world, start, target) changes only slightly. We use an optimization-based
technique for its speed and easy extensibility. However, the cost landscape is challenging
for gradient-based techniques, as they operate only locally and, thus, depend entirely on
the initialization to avoid local minima. The idea is to mitigate this dependence by using
neural networks to predict educated initial guesses, which lie in the area of attraction
of the global minimum. We discuss two variants for training such networks. A super-
vised approach which uses an exhaustive dataset of successful motions in challenging
environments, and an unsupervised approach which uses the objective function directly
to update the network weights. Crucial for training and the ability to generalize to new
environments was to encode the worlds with Basis Point Sets. By extending the work
to inverse kinematics, additional insight could be achieved into the network structure in
the context of the mode switches, which are fundamental for motion planning.
Overall, the work improved the accuracy and planning time of the humanoid Agile

Justin with its 19 degrees of freedom. The maximal error at the end-effector was reduced
from 6 cm to 0.8 cm, and the motion planning time in self-acquired high-resolution voxel
models from up to 10 s to realtime-capable 0.2 s. Both improvements are significant
steps towards more dexterity and autonomy and are meanwhile indispensable for the
daily work on the research robot in the lab and at multiple fairs and conferences.

i

Zusammenfassung
Geschickte humanoide Roboter bergen ein immenses Potenzial, von der Fertigung bis
zur Gesundheitsfürsorge. Die Fähigkeit, sich in schwierigen Umgebungen autonom zu
bewegen, ist zentral für ihren erfolgreichen Einsatz. Neben dem Verständnis der Um-
gebung benötigt der Roboter ein genaues Modell seiner selbst, um sicher zu navigieren
und Aufgaben präzise auszuführen. Diese Arbeit befasst sich mit dem Zusammenspiel
von schneller und genauer Bewegungsplanung für humanoide Roboter.
Der erste Teil konzentriert sich auf die genaue Modellierung der Kinematik durch eine

effiziente und in sich geschlossene Roboterkalibrierung. Es wird ein allgemeiner Ansatz
beschrieben, der die Wahl des Robotermodells, die Sensitivitätsanalyse und die optimale
Versuchsplanung umfasst. Ein besonderer Schwerpunkt liegt auf der Unterscheidung
zwischen dem tatsächlichen Messaufbau, der zur Datenerfassung verwendet wird, und
der beabsichtigten Aufgabe des Roboters, die durch die Kalibrierung verbessert werden
soll. Diese Arbeit kombiniert dabei eine probabilistische Sicht der Datenerfassung mit
der Minimierung des beabsichtigten Aufgabenfehlers. Die Methoden werden anhand
des humanoiden Roboters Agile Justin mit seinem elastischen Oberkörper und der DLR
Hand-II mit ihrer baumartigen Struktur demonstriert, um die Durchführbarkeit auf
komplexer Hardware und die breite Anwendbarkeit des Ansatzes zu verdeutlichen.
Die Vermeidung von Selbstkollisionen und die Bewältigung von Hindernissen in unbe-

kannten und vielfältigen Umgebungen sind zentral für Bewegungsplannung. Für einen
komplexen Roboter in einer unstrukturierten Welt gibt es bei der Bewegungsplanung vie-
le lokale Minima, und die Ergebnisse hängen stark von den Randbedingungen ab. Diese
Kostenlandschaft stellt eine Herausforderung für optimierungsbasierte Verfahren dar, da
sie nur lokal arbeiten und daher auf die Initialisierung angewiesen sind, um lokale Mini-
ma zu vermeiden. Die Idee ist, diese Abhängigkeit zu verringern, indem neuronale Netze
Anfangswerte vorhersagen, die ein Optimierer schnell zu global optimalen Lösungen ite-
rieren kann. Die Verwendung der Zielfunktion zur generierung von Trainingsdaten und
zum Steuerung des Trainings hat sich als entscheidend erwiesen. Darüber hinaus half
das Training auf zufälligen Simplex-Welten und die Kodierung dieser Welten mit Basis-
punktmengen bei der Verallgemeinerung auf neue, nicht gesehene Umgebungen. Durch
die Ausweitung der Arbeit auf die inverse Kinematik führte zu zusätzliche Erkenntnisse
über die Netzwerkstruktur und den Wechsel zwischen Lösungsmoden.
Insgesamt konnte die Arbeit die Genauigkeit und Planungszeit des humanoiden Agile

Justin mit seinen 19 Freiheitsgraden verbessern. Der maximale Fehler am Endeffektor
wurde von 6 cm auf 0.8 cm und die Planungszeit in ungesehenen Umgebungen von bis zu
10 s auf 0.2 s reduziert. Beide Verbesserungen sind bedeutende Schritte in Richtung mehr
Geschicklichkeit und Autonomie und sind mittlerweile ein unverzichtbarer Bestandteil
der aktuellen Arbeit am Forschungsroboter.

ii

Preface

This cumulative thesis is based on five peer-reviewed core publications [1; 2; 3; 4; 5] and
deals with two key topics for autonomous robot motion:

• Robot calibration [1; 2; 3] in Chapter 2. This chapter derives a theoretical
framework to tackle self-contained and task-oriented calibration on a wide range
of robotic systems by combining a probabilistic view on data collection with the
goal of improving a desired task. It is submitted as a advanced journal paper
[TBB24] to IEEE Transactions on Robotics and currently under review.

• Robot motion planning [4; 5] in Chapter 3. This chapter analyzes supervised
and unsupervised learning techniques to speed up optimization-based motion plan-
ning and inverse kinematics in challenging unseen environments.

Most publications include accompanying videos in order to visualize the results and
especially to showcase their application on actual hardware. Readers who prefer a visual
overview of the topics, please refer to the respective video links [3], [4], [5], and [Ten+24].
The written links and all further publication details are listed in the bibliography section.

iii

https://www.youtube.com/watch?v=dkG9xz1fhO
https://www.youtube.com/watch?v=fKe1_vUNCew
https://www.youtube.com/watch?v=k96r7l2s384
https://www.youtube.com/watch?v=CZBMXDM1_Tk

Contents

1 Introduction 1

2 Task-Oriented Robot Calibration 3
2.1 Introduction . 3
2.2 Related Work . 4
2.3 Bayesian Calibration with Task-Oriented Weighting 9

2.3.1 Maximum a Posteriori Estimation 9
2.3.2 Modeling Systematic Error with Virtual Noise 11
2.3.3 Task-Oriented Weighting . 14

2.4 Sensitivity Analysis and Optimal Experimental Design 18
2.4.1 Sensitivity Analysis . 18
2.4.2 Optimal Experimental Design . 19
2.4.3 Efficient Data Collection . 20

2.5 Robot Model and Measurement Functions 21
2.5.1 Geometric Robot Model . 21
2.5.2 Non-geometric Robot Model . 23
2.5.3 Efficient Compensation . 25
2.5.4 Types of Measurement Functions 26

2.6 Experiments . 30
2.6.1 DLR-Hand II - Contact-based Calibration 30
2.6.2 Agile Justin - External Tracking System 34
2.6.3 Agile Justin - Internal RGB Camera 35
2.6.4 Agile Justin with Sticks . 37

2.7 Summary . 39

3 Learning-Based Motion Planning 40
3.1 Introduction . 40
3.2 Related Work . 41
3.3 Optimization-Based Motion Planning on Voxel Models 48

3.3.1 Path Representation with Substeps 48
3.3.2 Objectives for Short, Close, and Collision-Free Paths 49
3.3.3 Combined Objectives for Motion Planning and Inverse Kinematics 53

3.4 Learning for Speeding-Up Optimization-Based Motion Planning 56
3.4.1 Environment Representation . 56
3.4.2 Robot Representation . 58
3.4.3 Supervised Learning . 60
3.4.4 Unsupervised Learning . 65

iv

Contents

3.5 Experimental Evaluation . 69
3.5.1 Challenging Datasets and Test Environments 70
3.5.2 Learning-Based Motion Planning 72
3.5.3 Learning-Based Inverse Kinematics 74
3.5.4 Generalization to Self-Acquired Voxel Models 77

3.6 Summary . 78

4 Conclusion 80

Bibliography 82

Publications of the Author 95
Core Publications . 95
Additional Publications . 96

Appendix: Full Text of Publications 102

v

1 Introduction

Potential of Humanoid Robots Two prominent applications of humanoid robots are
in manufacturing and healthcare. A robot capable of human-like dexterity can mitigate
the industry’s labor shortage and open new possibilities to design and manufacture
products. Moreover, a humanoid robot that can autonomously act in environments as
unstructured as people’s homes can assist people to live a self-determined life longer.
As a step towards these possibilities, the thesis focuses on the interplay of two building
blocks for the successful applications of humanoids. First, the robot needs an accurate
model of itself. Second, this model must be combined with understanding the world to
move and act safely and accurately in unknown and challenging environments and thus
enable fast and accurate motion planning for humanoid robots.

Application on DLR’s Agile Justin While the developed methods are general and
apply to various robotic systems, DLR’s humanoid Agile Justin (see Fig. 1.1) is the
benchmark for validating and testing the discussed methods on actual hardware. This
robot is a complex mechatronic system with 53 degrees of freedom (DoF). It drives on
four wheels and has an upper body with a rope mechanism and a passive joint to redirect
torques and keep the chest upright. Agile Justin has two arms. Each consists of a light-
weight robot arm (LWR III, 7DoF) and a DLR-Hand II (12DoF), which enables it to
perform a wide range of dextrous manipulation tasks. In its actuated head is a Kinect
camera with RGB and depth sensors, which the robot uses to model its environment.
Those self-acquired high-resolution voxel models are the basis for collision-free motion
planning of the humanoid. This setting of a complex elastic humanoid robot with many
DoF and the self-acquired high-resolution voxel models of the environment provides the
context and the application for calibration and motion planning in this thesis.

Robot Calibration As robotic systems become more autonomous, the necessity for an
efficient and accurate calibration of the mechatronic system itself is evident. When the
robot’s operations are not limited to preprogrammed and taught configurations, an ac-
curate system model throughout the whole configuration and task space is crucial and
a prerequisite for safe and precise movements. Besides providing an accurate model
of the physical robot, calibration should be practical, easy to apply, and designed for
repeatability. If the robot uses its internal sensors to gather measurements, it reduces
the dependence on external equipment and extends the calibration chain to those sen-
sors. This self-reference makes the calibration more holistic and brings it closer to the
final application of the system. When designing a calibration, one must consider the
requirements of the robotic task that needs improvement. However, this does not always

1

1 Introduction

Figure 1.1: Agile Justin is spelling DLR by building a tower out of lettered cubes. Be-
sides the dextrous in-hand manipulation, an accurately calibrated robot (see
Chapter 2) and fast motion planning (see Chapter 3) is crucial to perform
this combined task. See also the video [Ten+24] for the full experiment.

align with the constraints derived from the measurement setup. Robot calibration must
balance accessible measurement collection with utilizing their information optimally to
achieve high final accuracy in the task space.
With a sound Bayesian formulation, this work analyzed practical and theoretical as-

pects of the calibration problem. The task-oriented approach enabled the calibration
of the humanoid with all geometric parameters and elasticities using only the internal
RGB camera and the contact-based calibration of the robotic DLR-Hand II. The errors
could be significantly reduced in both cases and so enable safe and dextrous motions.

Motion Planning The central problem is that robots still have to start planning from
scratch for every new task. They have no memory of previous tasks, neither successful
nor failed ones. Humans have an image of motion in their mind, a sketch of the necessary
actions to reach the goal since they have done this motion or a similar one many times
before. The idea is to enable robots to draw from experience, to help in similar as well
as in unknown situations and so make its motions faster and more efficient.
To achieve this, this work combined optimization-based motion planning (OMP) with

warm starts from neural networks. OMP can handle problems with many parameters,
produce smooth motions, and elegantly incorporate additional terms into the objective
function. The downside of this approach is that the optimization is always only a
local corrective to an initial guess. Therefore, the overall convergence and feasibility
depend on the initial guess and are susceptible to local minima. This work moved away
from brute force and random multistarts towards more educated and experience-based
initial guesses in order to mitigate those drawbacks. Neural networks trained using
modern deep-learning techniques significantly reduced the planning speed and enabled
fast motion planning in challenging and unknown environments.

2

2 Task-Oriented Robot Calibration

2.1 Introduction

Robotic systems are continually evolving, becoming more capable and autonomous. In-
tegrating and fusing multiple sensors allows for skillful behavior in diverse settings. As
the capabilities rise and robots can perform more complex tasks autonomously, the un-
derlying robot model must also provide accuracy far away from pre-taught poses and
default motions. Therefore, an accurate model of the robot and its sensors remains the
basis for reliability and dexterity.
There are many factors to consider when calibrating such a robot model. Foremost

is the relation to the task that needs improvement or is failing because of an inaccurate
kinematic. This task should guide the design of the measurement setup, the sample
selection, and the identification of the model parameters. Besides, an easy application,
repeatability, and autonomous data collection with minimal external requirements are
relevant practical aspects of robot calibration. Extensive measurement setups can read-
ily provide all relevant information for the task but often restrict the easy applicability.
This work explores the intersection between task-oriented and practical calibration. Cen-
tral is the distinction between the function to quantify the task accuracy and the actual
measurement setup used to collect samples on the hardware. A typical example is a
camera-based calibration that measures pixels that should increase the cartesian accu-
racy of an end-effector. The goal is to provide a general framework for calibrating robots
with different kinematic structures and measurement setups while always focusing on
the final robotic task.

Contributions

This work unifies and extends the concepts from three preceding papers, which showed
the non-geometric calibration of a humanoid robot kinematics with an external tracking
system [1] and an internal RGB camera [2] and the contact-based calibration of a robotic
hand [3]. In detail, we present:

• A unified robot calibration, with the forward kinematics as central mapping, over
the choice of the measurement setup, sensitivity analysis, the Bayesian formulation
of the identification problem, and optimal sample selection

• Formalization of the distinction between the actual calibration and the robot task,
with different measurement functions and different sets of robot joint configurations

3

2 Task-Oriented Robot Calibration

Figure 2.1: Calibration of two complex mechatronical systems; left : vison-based cali-
bration of the humanoid Agile Justin [Bäu+14] with internal RGB camera.
right : contact-based calibration of the DLR-Hand II [J B01].

• Generalization of the concept of sensitivity analysis and OED to mitigate the prob-
lems arising from those differences in measurement and task sets and functions [3]

• Introduction of task-oriented weighting (TOW) to minimize the remaining system-
atic errors in the task space

• Extensive studies in simulation on synthetic data and examples on actual hardware
in different challenging settings [1; 2; 3] to analyze and validate the methods

A significant extension of this work is the derivation of TOW. It allows us to combine the
full probabilistic model to account for measurement uncertainties with an approximation
to a true task function and minimize the remaining systematic errors in the desired space.
Fig. 2.2 shows this combined approach’s different aspects and acts as a visual table of
contents for Section 2.3. Our TOW approach is universal and can be applied to arbitrary
calibration and measurement setups (see the Bayesian graphs in Fig. 2.7 and Fig. 2.20).

2.2 Related Work

Roth et al. [RMR87] outline four critical aspects of robot calibration: the robot model,
the dataset, the identification of the model parameters, and the compensation [VW88] of
this robot model. They also distinguish between identifying geometric parameters and
non-geometric calibration, including, for example, joint elasticities and gear backlash.
Hollerbach et al. [HW96] also provide a taxonomy and a calibration index based on
the motion equation. They emphasize the distinction between open-loop and closed-
loop calibration. Open-loop calibration requires external measurement systems to track
robot positions or markers in the workspace, while closed-loop calibration relies solely
on internal sensors.

4

2 Task-Oriented Robot Calibration

Figure 2.2: A: Probabilistic view of the calibration problem for three different probabilis-
tic models. Only when the modeled uncertainty matches the true process
and each sample is weighted appropriately does the calibration converge cor-
rectly. B: If the model is imperfect, the systematic error can be modeled by
adding virtual noise Λ̄e

a. Again, the combined covariance has to match the
true data generation process to get a close approximation of the true function
outside the model’s scope. C: When approximating a function outside the
model, the space in which we minimize matters. The respective solutions for
the parameters Θ are not necessarily good fits for the other measurement
space. D: The full probabilistic model for ha is combined with minimizing
the systematic error in the task space ht.

Open-loop Geometric Calibration

As accurate forward kinematics is relevant for most robotic applications, many examples
of successful calibrations exist. Often, a robotic arm’s geometric model is calibrated with
an external tracking system [PD90; GM11; PK11; Xio+17; WFC19]. Many variations
exist; for example, a static camera was used to track the reflections of line lasers on
metallic spheres [YCX18]. For a robotic hand, a visual approach with an external
tracking system and individual markers on each finger was demonstrated by Lee et
al. [Lee+13] . Using an electromagnetic tracking system to measure the position and
orientation of the fingertips of a soft robotic hand is less prone to occlusions [TGR18].
However, it is still an open-loop calibration, requiring additional equipment.

5

2 Task-Oriented Robot Calibration

Open-loop Non-Geometric Calibration

Industrial robots often achieve high accuracy through pure geometric calibration. How-
ever, in scenarios involving robots constructed from lightweight components, a purely
geometric model may fall short, particularly when elasticities in the joints become a
significant source of non-geometric errors. Joint torque sensors can address this issue, as
demonstrated for the MIRO robot arm [Klo+11] and an LWR arm [BOG16]. This ap-
proach incorporates sensor measurements into the kinematic model and is only suitable
for control rather than planning, as it relies on real-time sensor reading. Furthermore,
it cannot account for additional effects like lateral elasticities.
An alternative method for handling elasticities involves identifying a mass model of the

robot and calculating torques at static equilibrium for each pose. Caenen et al. [CA90]
presented a technique for integrating torques into the DH-formalism by introducing
torque-dependent linear offsets to the rotational DH parameters. For relatively rigid
robots, this linearization works well and can be directly applied [KB19].
While often ignored, the iterative search for the torque equilibrium [Lee13; ZNK14b]

is highly relevant for robots with larger elasticities. For very flexible robots, more is
needed than including joint elasticities, and one also must account for lateral elasticities
or even the mechanical bending of the individual links [KB02]. One can also use a neural
network to model the non-geometric errors [NLK19]. While this might not be relevant
for simple joint elasticities, this approach can model general unknown effects. However,
a challenge for such complex robot models is their efficient compensation.

Closed-loop Visual Calibration

The calibration model should not only accurately represent the true robot, but the
calibration process should also be fast and easy, ensuring broad applicability and simple
repetition if necessary. In an ideal scenario, the robot employs its internal sensors
for self-calibration, ensuring that the same kinematic chain used for performing tasks
is used for the calibration process [Ma96]. Hubert et al. [HSB12] demonstrated
this by incorporating a Bayesian approach and conducting hand-eye calibration on an
anthropomorphic robot using a checkerboard marker. For the humanoid Nao, the joint
offsets were calibrated using the robot’s internal RGB camera to track the position of
four checkerboard markers on its hands and feet [MWB15].

Closed-loop Geometric Calibration

Another calibration approach, sidestepping the need for a camera system, leverages
geometric constraints on the kinematic chain. Early work constrained the end-effector
motion on a plane to calibrate a robotic arm [IH97]. Bennett et al. [BH91] applied this
idea to a robotic hand, calibrating the Utah-MIT hand through the rigid connection of
two fingertips with a plate, resulting in a closed-loop kinematic chain. Subsequent works
used mechanical fixtures [MD00; Wu+15], relative calibration techniques [SGK09], and
precise reference plates [JB15] for the calibration of robotic arms without a vision system.

6

2 Task-Oriented Robot Calibration

A specific case of geometric calibration relies on self-contact. Multiple works on this
topic focus on the humanoid robot iCub. Roncone et al. [Ron+14] calibrated its
DH parameters using self-touch with a tactile skin containing 4200 sensing points. Fur-
thermore, there was a simulation study [SPH19] and experiments on the hardware
combining and comparing multiple sensor modes [Ste+22]. Self-contact can also be used
for incremental updates to the kinematic scheme [Zen+18] or identifying the layout of
an artificial tactile skin [Rus+21].

Optimal Experimental Design

Data collection in robotics is often time-consuming, and one wants to rely on a minimal
number of measurements. In addition, the final accuracy often strongly depends on the
specific choice of measurement configurations in the dataset. Two key words here are the
observability index [HW96] and the optimality alphabet [SH08] from the literature of
optimal experimental design (OED). Those terms describe measures of the information
in a given sample or a set of samples. The underlying idea is to choose configurations
in which the effect of the parameters on the measurement is significant compared to the
measurement noise [DP90; HXZ08]. The Noise Amplification Index [NH96] is often less
sensitive to measurement noise than the classical optimality alphabet, as demonstrated
for the combined calibration of kinematic parameters and the joint stiffness of a robotic
arm [ZKR10]. Which of those different optimality measures is the best choice depends on
the robotic task [Dan02; Xio+17; KB19; Jia+20], but they are often closely correlated.
A good calibration set makes the identification of those parameters more accessible and

robust. However, finding an optimal set is an enormous combinatorial problem, which
one can generally only approach approximately using heuristics. Only for the small-scale
calibration sets the combinatorial problem can be solved exhaustively [Car+13]. Besides
a greedy search, DETMAX [ZNK14a; YCX18] is a common heuristic that iteratively
swaps samples starting from an initial guess. Furthermore, genetic algorithms [ZWH97],
tabu search [DPM05], and simulated annealing [LW08] were applied to this problem.
Finally, the calibration goal is to improve the robot’s performance on a specific task.

Therefore, the performance on a calibration set is often the wrong metric. To bridge this
mismatch, one needs to consider a task; either only containing a single pose [Kli+12] or
a set of relevant task poses [Car+13]. With those task sets, one can compute the desired
optimality measures and use them as guidance for constructing a respective calibration
set. One can go even further and design the calibration so that the production line in
which the robot will be applied is more efficient, which differs from a high cartesian
accuracy [LB90].

Parameter Identifaction

Another aspect of robot calibration is to identify the optimal values of the model param-
eters. Li et al. [LLL21] compare basic least-squares, least-squares with regularization,
Levenberg-Marquart (LM), particle filter algorithms, and Bayesian Maximum a poste-
riori (MAP). They show that the optimal algorithms strongly depend on the type of

7

2 Task-Oriented Robot Calibration

calibration problem. The consecutive idea is to use a hybrid approach to the parameter
identification [Luo+21]. The authors could increase the final accuracy by combining
a first optimization step with LM followed by differential evolution. Tohme et al.
[TVY20] provides a general Bayesian viewpoint on model calibration with a focus on
model evidence. One crucial goal they achieved was that the calibrated model’s declared
confidence would accurately match the actual measurement data, allowing for safe and
educated use.

Bundle Adjustment

A related problem in computer vision is bundle adjustment [Tri+00]. It tackles the
simultaneous localization of a scene geometry and camera calibration from images. A
pivotal difference to robotic calibration is that the individual measurements are not
tightly coupled through a robot kinematic. In its most basic form, only the bundles of
light radiating from the different camera positions onto landmarks of the scene are ad-
justed. This setup with only relative frames differs from robot calibration as no forward
model couples the measurements. Without a system, systematic errors are not relevant.
However, the optimization problem can become large [Aga+10] and is often split up and
tackled iteratively [Ila+17]. There are known ways to include uncertainties of the mea-
surements in the calibration and propagate errors from previous measurements [EL09;
Eud+10; Sib+09] to new sets of images. In general, one uses the design matrix, which is
the Jacobian of the forward model, to map the uncertainties of the measurements into
the parameter space and weigh the different samples and types of measurements.
This idea was also applied to a robotic context. To combine multiple types of mea-

surements into a single calibration, Pradeep et al. [PKB14] projected the measurement
uncertainties back to the parameter uncertainties using the Jacobians of the measure-
ment functions for the linearized mapping.

Work and Applications on Agile Justin

The humanoid 19DoF Agile Justin [Bäu+14] together with its 12DoF DLR-Hand II [J
B01] are complex mechatronic systems built from lightweight and custom components
(see Fig. 2.1). In earlier work, the head-mounted cameras, the hand-eye chain, and
the IMUs in the head and the base were calibrated [Car+13; BB14; BFB15]. The
applications range from moving accurately and safely [4; 5] through its self-acquired
voxel models [WFB13] for the upper body to dextrous manipulation [SPB22; Pit+23]
and grasping [Win+22; Hum+23] for its DLR-Hands II. We validated our proposed
methods on these two distinct systems.

8

2 Task-Oriented Robot Calibration

Table 2.1: Calibration Nomenclature

actual meas. fun. ha(q,Θ) describes the meas. process
task meas. fun. ht(q,Θ) describes the desired task
true meas. fun. h(q) true process; approximation goal
systematic error ∆h arises because model can not fully represent reality
virtual noise Λ̄e additional uncertainty to model systematic error

Figure 2.3: The concept robot calibration: By measuring the actual robot and compar-
ing its current model with these measurements, one can adapt the model
parameters to enable a good fit between the measured and modeled robot.

2.3 Bayesian Calibration with Task-Oriented Weighting

The central equation in robotics is the forward kinematics f(q,Θf) = F (see Sec-
tion 2.5.1). It maps from the generalized joint angles q to the robot’s physical pose
in the cartesian workspace F . Everything from path planning and checking for obsta-
cle collision or self-collision to grasping depends strongly on an accurate model of the
robot’s kinematics. The calibration goal is to find parameters Θf that accurately model
the true robot kinematics in the task context.
Fig. 2.3 shows the idea behind calibration. The true robotic arm is measured and

compared to the robot model. Identifying the model parameters means finding a set that
minimizes the error between the measured and modeled robot. How the measurement
setup looks in detail depends on the robot, the available measurement hardware, and
the application. Fig. 2.4 gives an overview of different measurement setups, which
are described in Section 2.5.4 in more detail. In general, we distinguish between two
measurement functions. The task measurement function ht describes the robotic task
and captures all relevant of the desired application. The actual measurement function
ha describes the data collection and can be applied on the hardware.

2.3.1 Maximum a Posteriori Estimation

While the central parameters of the forward model are the DH parameters Θf , often, one
must estimate additional parameters jointly with the kinematic parameters. Examples
are camera intrinsics or additional frames to close the measurement loop. We denote
the combination of all calibration parameters Θ. These parameters can be identified
using a dataset S = {(q(n), y(n))}NS

n=1 of corresponding pairs between the robot’s config-

9

2 Task-Oriented Robot Calibration

Figure 2.4: Sketches of different open and closed-loop setups, showing the required hard-
ware and the type of measurement. See Section 2.5.4 for details.

uration q(n) and the measurement y(n). Those q and y are at the opposite ends of the
measurement function h and are therefore needed to identify it

y = h(q,Θ) = h(f(q,Θf),Θ)). (2.1)

The calibration goal is function approximation, that is, to find a set of parameters Θ∗

that minimizes the distance from the model h(q,Θ) to the true function h(q)

Θ∗ = argmin
Θ
∥h(q)− h(q,Θ)∥. (2.2)

In a fully deterministic setting or for a sufficiently large dataset, the best one can do
is to use least squares (LS)

argmin
Θ

∑

n

(∆y(n))T(∆y(n)) (2.3)

with ∆y(n) = y(n) − h(q(n),Θ). (2.4)

However, suppose the data collection is noisy, and one wants to optimally use the
information of a limited number of uncertain measurements. In that case, it is better
to formulate the problem as a probabilistic estimation problem [Bis06]. The idea is to
find the maximum of the posterior distribution p(Θ|S) given the measurements S. The
maximum a posteriori (MAP) results in a weighted least squares problem

argmin
Θ

∑

n

log(p(y(n)|q(n),Θ)) + log(p(Θ))

= argmin
Θ

∑

n

(∆y(n))TΛ−1
y ∆y(n) +∆ΘTΛ−1

Θ ∆Θ (2.5)

with ∆Θ = Θ0 −Θ, ΛΘ = Diag (σ2
Θ).

10

2 Task-Oriented Robot Calibration

The central covariance Λy describes the uncertainty of the measurements and weighs
the samples accordingly. The measurement noise is often modeled as uniform Gaussian
N (0,Λy) with zero mean and diagonal variance, which is just added to the determin-
istic forward model. However, the uncertainty model should capture the real process,
and depending on the setting, the covariance Λy can be more complex and, in general,
q-dependent. Furthermore, this approach includes the initial uncertainty in the param-
eters with a Gaussian distribution around the nominal parameters Θ0 and a diagonal
covariance ΛΘ. Incorporating this prior regularizes the method and ensures a minimum
exists, even if there are redundancies in the robot or measurement model.
This probabilistic view allows us to weigh samples according to their certainty and rely

more on measurements with low expected noise and trust measurements with high noise
levels less. Standard MAP finds the model parameters Θ, which makes the observed
data S the most probable. LS can be viewed as a special case of MAP with uniform
measurement covariance Λy and infinite large prior ΛΘ.

2.3.2 Modeling Systematic Error with Virtual Noise

The probabilistic framework, which incorporates the uncertainty of the measurements
into the estimation, is robust. However, in general, MAP does not result in a model that
minimizes the distance to the true function (2.2) as LS. It gives optimal fits only if the
calibration model can fit the truth well (or the uncertainty is uniform). The problem is
that one often can not capture all relevant effects, mainly when dealing with complex
systems or relying on a simple model for easy applicability of the calibrated model. In
such a setting, an error remains between the model and the truth even for the optimal
set of parameters Θ. We denote this remaining mismatch of the model systematic error

∆h = min
Θ
∥h(q)− h(q,Θ)∥. (2.6)

It stems from the limited expressiveness of the model and can not be further reduced by
collecting more measurements.
When ignoring the systematic error, MAP overestimates the certainty of samples and

tries to fit the model too close to measurements it believes certain, leading to larger
errors for uncertain regions. Because the model can not reproduce the measurements
everywhere, this leads to an overall suboptimal fit. To tackle this, the systematic error
is modeled as additional virtual uncertainty Λ̄e

a in the measurements

Λ̂a(q) = Λa(q)︸ ︷︷ ︸
Λ̃a(q)+Λ̄a

+ Λ̄e
a. (2.7)

It is virtual as it only models the gap to the true function and does not originate from
a noisy measurement process.
Fig. 2.5 demonstrates the idea. The true function ha(q) = q3 is cubic, and the mea-

surement process has a quadratic covariance Λa(q) = q2+0.01 with high certainty in the
center and less certainty towards the edges. We use this setup to generate measurement

11

2 Task-Oriented Robot Calibration

Figure 2.5: Detailed view of panel B in Fig. 2.2. Three linear models with different
covariances try to fit the true model using MAP. The inverse covariance
matrix acts as weighting for the error terms. Samples with higher covariance
are less certain and get weighted less in the minimization (2.5).

data, and we want to approximate the true function with a linear model using MAP and
compare three different covariances to weigh the measurements.
The model using the same covariance as the true process (green) neglects that it can

not fully represent the true model and, therefore, weights the measurements in the center
too heavily, ignoring the edges. The model with a constant covariance (light blue) does
not account for the different noise levels of the samples, emphasizing the noisy edges too
heavily and making the prediction in this example too steep. This behavior shows the
downside of pure LS. Because it weighs all samples uniformly, ignoring their uncertainty,
it puts too much emphasis on samples with larger noise at the cost of valuable informa-
tion in the more certain measurements. For a low number of measurements, this leads
to a high variance in the estimated parameters between different rollouts of the data
collection. When the true variance and the virtual noise are correctly combined (dark
blue), the linear model optimally fits the true function from the noisy measurements.
In contrast to the green model, here, a small mismatch for the measurements with high
certainty is allowed if this leads to a better global fit of the true function. This approach
balances the probabilistic viewpoint with the goal of approximating the mean value of
a true function.
Fig. 2.6 shows in the top how the distance to the true function goes down for a higher

number of measurements NS. One can see that the model with the true covariance
(green) leads to reasonable estimates for a small number of samples where the differ-
ent levels of measurement noise have a significant impact but ultimately converges to
a suboptimal solution. Pure LS (constant covariance, light blue) converges to the best
linear fit (black) with enough data points. Its downside, however, is that it does not
efficiently use the information in the noisy measurements, which leads to wrong pre-
dictions for small datasets. The dotted lines are variations of the combined covariance
Λ̂a with different magnitudes of the virtual noise. All three models exhibit the desired
convergence behavior. They use the information about different levels of uncertainty for
a smaller number of samples. With more data points, they become closer to pure LS

12

2 Task-Oriented Robot Calibration

Figure 2.6: Analysis of the example from Fig. 2.5 over different number of measurements.
Top: Three ways to determine the level of the virtual noise Λ̄e

a. Bottom:
Distance of the different models to the true function as mean over random
10000 rollouts for each dataset size.

and ultimately converge to the optimal fit to the true function. This shows that the
additional virtual noise can account for the systematic error in the probabilistic context.
To achieve the wanted behavior, the magnitude of the virtual noise matters (see

Fig. 2.6, bottom). While the systematic error ∆h for a given model is constant, its
description as virtual measurement noise depends on the number of samples. The addi-
tional noise is virtual and is only introduced to model the systematic error. Therefore,
its effect should not be reduced with more samples like it is the case for measurement
errors, which diminish with

√
NS. Even for a vast dataset, the model can not be more

“certain” than the systematic error ∆h. Therefore, the additional virtual noise should
be chosen so that after calibration, the variance in the predicted measurements is larger
by exactly this margin. This condition can be expressed as a difference in variances

EΘ [EQ,Y [Eq [∆V]]]
!
= (∆h)2 (2.8)

with ∆V = Vary∼p̂(y|q,Θ̂∗)[y]− Vary∼p(y|q,Θ∗)[y]

Θ∗(Q, Y) = argmax
Θ

p(Y |Q,Θ)

Θ̂∗(Q, Y) = argmax
Θ

p̂(Y |Q,Θ)

with p̂(y|x,Θ) = [N(|0, Λ̄e) ∗ p(|x,Θ)]y.

It can be computed by first sampling different sets of parameters from the prior distri-
bution to generate an ensemble of datasets. Those measurements can then be used to
calibrate two models, one normal and one with the added virtual noise. Finally, one can

13

2 Task-Oriented Robot Calibration

compare the uncertainty in the predicted measurements and choose Λ̄e
a that the differ-

ence in the variance of the models is equal to the systematic error (∆h)2. As Fig. 2.6
shows, Λ̄e

a can also be approximated by (∆h)2
√
NS, which matches the intuition that

the systematic error modeled as measurement noise should persist even for large NS.
Alternatively, Λ̄e

a can be determined experimentally with a validation set.

2.3.3 Task-Oriented Weighting

While MAP with virtual noise combines the probabilistic model with function approx-
imation, it still minimizes the remaining errors in the actual measurement space ∆ya.
However, when performing function approximation, the space in which we minimize
matters. We aim to find a set of parameters Θ∗

t that approximates the task measure-
ment function ht well in the presence of systematic errors. Therefore, we extend the
concept of virtual noise to the task space.
To achieve this methodologically, we start from the standard posterior for ya and

include the relation to the task measurements by expanding and marginalizing over yt

p(ya|q,Θ) =

∫
p(ya|yt, q,Θ) p(yt|q,Θ)dyt. (2.9)

To minimize in the task space we alter p(yt|q,Θ) and add a virtual noise Λ̄e
t

p̂(yt|q,Θ) = N (yt|ht(q,Θ),Λt(q) + Λ̄e
t). (2.10)

As for the virtual noise in the actual space, this modification happens outside the proba-
bilistic framework and allows us to fit the calibration model defined through the param-
eters Θ closer to the true function. In this case the approximation is towards p(yt|Sa) in-
stead of p(ya|Sa). To perform the marginalization over yt for the altered version of (2.9),
we need to compute p(ya|yt, q,Θ). Using the graph of the linear Gaussian system (see
(2.14)), we can compute the covariance Λa|t of the conditional probability. Marginilizing

over yt results in the altered posterior distribution p̂(ya|q,Θ) = N (ya|ha(q,Θ), Λ̂a) with

Λ̂a = Λa + ΛatΛ
−1
t Λ̄e

tΛ
−1
t Λta. (2.11)

The adjusted covariance is the only change necessary to the standard MAP approach
in (2.5) and allows us to combine the full probabilistic model of ha with the function
approximation towards ht in a general manner.

Probabilistic Bayesian Graphs

We use Probabilistic Bayesian graphs to derive (2.11) and compute its components.
Probabilistic graphs can describe arbitrary measurement setups, and Fig. 2.7 shows
three different graphical models of calibration processes with various relations between
the nodes. The stochastic variables of the actual measurement ya can be expressed as
a function ha of the input nodes q and Θ. In general, calibration is a probabilistic

14

2 Task-Oriented Robot Calibration

Figure 2.7: Detailed view of panel D inFig. 2.2. Three probabilistic graphs with different
structures. They describe how the actual ya (blue) and the task measure-
ments yt (red) are computed from the joint configuration q and the model
parameters Θ for each of the N samples. For the sequential case in 1), the
approach to minimize the error in the task space can be interpreted as adding
virtual noise (1a) to the task measurement yt and propagating it through the
graph to ya. The box provides the TOW for the two sequential and the gen-
eral case.

process with multiple different sources of noise. To start, the graphical model allows
the computation of p(ya|q,Θ), which includes how the different noise sources get prop-
agated through the graph and accumulate as uncertainty for the actual measurement.
Furthermore, one can use graphical models to compute every conditional probability,
specifically p(ya|yt, q). This distribution tells us the relation between task yt and actual
measurement (q, ya) even for case 2) if yt follows after ya, or there is no direct connection
between yt and ya like in case 3). We can always compute all conditional probabilities
for any directed acyclic graph [Bis06].
While, in general, the calibration model includes non-linear functions, one can linearize

around the measurement points and approximate the graph with a linear system of
Gaussians. The edges of the graph can be defined through

p(xi|pai) = N (xi|
∑

j∈pai
Wijxj + bi,Λi). (2.12)

15

2 Task-Oriented Robot Calibration

Here, pai denotes the parent nodes of a child i. It follows that all conditional and
marginal distributions are also Gaussian. To compute them, it is convenient to start
from the joint distribution, which can be built iteratively by following the structure of
parent and child nodes through the graph

E[xi] =
∑

j∈pai
Wijxj + bi

Cov[xi, xj] =
∑

k∈paj
Wik Cov[xi, xk] + IijΛj.

(2.13)

From the joint distribution, one can order and separate variables block-wise to obtain
the conditional probabilities

p(x) = N
([

xk

xl

] ∣∣∣
[
µk

µl

]
,

[
Λk Λkl

Λlk Λl

])

µk|l = µk + ΛklΛ
−1
l (xl − µl)

Λk|l = Λk − ΛklΛ
−1
l Λlk.

(2.14)

Special Cases

If the actual measurement ya follows directly from the task measurment yt (see Fig. 2.7,
1a), our approach results in

Λ̂a = Λa +
tJa Λ̄

e
t
tJT

a , (2.15)

with the Jacobian tJa = ∂ya
∂yt

describing the mapping from task to actual measurement.
For example, this known form of the additional covariance arises for camera-based cal-
ibration, where the actual image ha is projected from the cartesian position ht. In this
case, our approach can be viewed as adding virtual noise [2] at the task node in the
probabilistic graph (see Fig. 2.7, 1a) and propagating it to the task node.
In case 2) yt follows after ya. Here, the relation between the task and actual space

can not always be directly resolved

Λ̂a= Λa+ (Λa
aJt)(

aJT
t Λa

aJt)
−1Λ̄e

t(
aJT

t Λa
aJt)

−1(aJT
t Λa)

Λ̂a= Λa+
aJ−T

t Λ̄e
t
aJ−1

t , only if aJt is invertible. (2.16)

If the Jacobian aJt is invertible, we can reduce the additional covariance to a famil-
iar form. The general version allows us to compute the available parts of the inverse
mapping, even if there happens to be information loss between ya and yt.
While those two edge cases in 1) and 2) can also be tackled separately, our method can

compute the correct weighting to minimize the desired task space instead of the actual
measurement space for all acyclic-directed graphs. Furthermore, the actual and task
nodes can be distributed and arbitrarily related (3). The task-oriented weighting allows
us to balance between Bayesian estimation and function fitting. For Λ̄e

t = 0, we have

16

2 Task-Oriented Robot Calibration

a purely probabilistic view of Bayesian estimation, which provides information on how
trustworthy different actual measurements are depending on the noisy forward process
that produced them. For Λa=0, one is in the domain of purely deterministic function
fitting where one tries to find the closest fit for a family of functions and maps everything
in the relevant space (see Fig. 2.2).

Alternative Approach - Minimization in Task Space

If we asume that all probabilities are Gaussian and we can transform actual measure-
ments into task measuments using their means, we can derive the TOW also by perform-
ing MAP in the task space. This approach is more strict on the choice of probability
functions, and the derivation over (2.9) holds in general and only relies on Gaussians
only for the easier computability of the different terms.
Forumlating MAP in task space yields

argmin
Θ

∑

n

log(p(y
(n)
t |q(n),Θ)) + log(p(Θ)) (2.17)

= argmin
Θ

∑

n

(∆y
(n)
t)T Λ−1

t ∆y
(n)
t +∆ΘTΛ−1

Θ ∆Θ (2.18)

with ∆y
(n)
t = yt

(n) − ht(q
(n),Θ). (2.19)

After iteratively setting up the joint distribution of all variables in the graphical model
with (2.13), one can use (2.14) to obtain the task measurement y

(n)
t as mean of p(yt|ya, q)

p(yt|ya, q) = N (µt + ΛtaΛ
−1
aa (ya − µa), Λt|a). (2.20)

Here the means µa and µt are given through the measurement models ha(q,Θ) and
ht(q,Θ). This leads to the estimation for the error in the task measurement as mapping
from the actual measurement error

∆y
(n)
t ≈ ΛtaΛ

−1
a (y(n)a −ha(q

(n),Θ))=ΛtaΛ
−1
a ∆y(n)a . (2.21)

The virtual noise to account for the systematic error can be directly added to the task
covariance Λt + Λ̄e

t. Combining this adaption with the quadratic error terms to a single
covariance in the actual measurement space leads to

Λ̂a = (Λ−1
a Λat(Λt + Λ̄e

t)
−1ΛtaΛ

−1
a)−1 (2.22)

Finally everything is expressed through the measured quantities {(q(n), y(n)a)}NS
n=1 More-

over, the error term is in ∆ya but scaled with a transformed covariance. For simple
graphs (Fig. 2.7, 1 & 2), one can directly verify the equivalence of the two views derived
in (2.11) and (2.22).

17

2 Task-Oriented Robot Calibration

Summary

Fig. 2.2 summarizes the different aspects of our approach and is worth studying in
closer detail. The goal is to estimate the parameters of model to match a true function
as closely as possible. For this, the estimated uncertainty of each sample needs to
match the true process that generated the measurements. Otherwise, the weighting
of the error terms through the covariance is off and leads to wrong parameters. This
weighting is already relevant if the model can fully describe the truth (A). If this is
not the case and the model can not capture all aspects of the true function, this gap
must be acknowledged. We achieve this by modeling the systematic error as virtual
measurement noise. This addition happens outside the probabilistic model and does
not represent a noise but an unmodeled error. Adding this term allows the model to
be less accurate in regions where the true noise model would predict a high certainty to
approximate the true function better overall. Fig. 2.5 demonstrated this behavior for a
simple example (B). Furthermore, when we are in the regime of function approximation,
the space in which we minimize the remaining model errors matters. A good solution for
one metric is not necessarily a good fit for another (C). Finally, given noisy measurements
in the actual space, we want a minimal error in the task space. Therefore, we combine
the full probabilistic model for the measurements to estimate how informative different
samples are with a weighting to perform the function approximation in the task space by
mapping the virtual noise from the task space into the actual measurement space (D).
The introduction of virtual noise and its extension into the task space lead to corrected
calibration models. Without using these adaptions, the calibration will converge to a
suboptimal set of parameters - independent of the number of measurement points.

2.4 Sensitivity Analysis and Optimal Experimental
Design

2.4.1 Sensitivity Analysis

As we will show in the Section 2.5.4, the measurement functions can differ quite dras-
tically in the spaces they describe and how much information they provide. The first
step when designing a calibration setup is determining if a chosen measurement func-
tion h leads to any non-identifiable parameters. We can answer this question directly
by looking at the jacobians of the different measurement functions

Js =
∂h(qs,Θ)

∂Θ

∣∣∣
Θ0

. (2.23)

Each measurement is d-dimensional, and concatenating those matrices for each of the
NS measurements leads to the combined jacobian J = [J1, . . . , JNS] with dimensions
(NS ·d)×NΘ. We can investigate which parameters are identifiable by the measurement
function h by looking at the nullspace of JTJ. The size of the nullspace marks how many
of the model parameters Θ cannot be identified. From the eigenvectors corresponding

18

2 Task-Oriented Robot Calibration

Figure 2.8: This figure shows the ordered eigenvalues for different measurement setups of
the DLR-Hand II to analyze the sensitivity. The task measurement function
ht is blue, and our contact measurement function hs is red. Furthermore, we
show three modes. For the one where all the pairs are calibrated simulta-
neously (⬢), the kernels of both measurement functions have the same size.
The same is true for the calibration with three fingers (▲) However, the ker-
nel sizes differ for a single pair (•). The light gray vertical lines indicate the
maximal number of parameters for each mode.

to the eigenvalues close to zero, one can identify sets of parameters that one cannot
measure.
When one deals with two distinct measurement functions, as we described with the

desired task ht and the actual measurement function ha, the necessary condition is that

Kernel(JT
a Ja) ⊆ Kernel(JT

t Jt). (2.24)

If this condition is satisfied, one can use the actual measurement function ha to identify
all parameters relevant to the task, defined by ht. Note that this is less strict than
demanding that both kernels are zero and applies in general to distinct measurement
functions for calibration and evaluation. We allow for unidentifiable parameters if they
do not influence our desired measurement function.

2.4.2 Optimal Experimental Design

Given a set of measurements, we can use the TOW approach to perform the minimization
in the task space. However, one can often additionally choose the configurations where
the measurements should be collected. OED describes how to do this optimally. The
intuition is to collect samples with maximal information for the calibration problem.
Following Carrillo et al. [Car+13] , we use task D-optimality to select appropriate
samples for measuring. However, we have two key differences in our setup. First, we
have a theoretical task measurement function ht and an actual measurement function
ha that we can apply to the hardware. Second, the actual dataset Sa might drastically
reduce the configuration space. Ultimately, we want a good fit for the desired task

19

2 Task-Oriented Robot Calibration

measurement function ht on the given task set St.
We generalize the optimality framework to account for those mismatches between

measurement functions and data distributions. The central equation decouples [Car+13]
and the task D-optimality can efficiently be computed by using

OD =
1

NSt

det
(
Cov(Θ)

NSt∑

i=1

J
(i)
t

TJ
(i)
t

)
. (2.25)

The sum over J
(i)
t

TJ
(i)
t is constant for a given task set St of size NSt and a desired

task measurement function ht. The covariance over the calibration measurements can
be estimated using the actual measurement function ha and the actual calibration set
Sa. Let Sa = {si}NS

i=1 be a subset of a larger calibration set and the combined jacobian
Ja = [Js1

a , . . . , J
sNS
a] corresponding to this subset of measurements. Then, the covariance

of Θ is given through this sum

Cov(Θ) = JT
aΛaJa +Diag(σ2

Θ). (2.26)

Here, the uncertainty in the actual measurements and prior get mapped into an uncer-
tainty in the calibrated parameters.
(2.25) lets us compute how well different actual calibration sets ya are suited to mini-

mize the error of the task measurement function yt over a desired task set. This criterion
can be used to choose a good set of suitable poses for measuring. Besides reducing the
overall size of the necessary calibration set, this selection criterion also counteracts the
mismatch in the measurement functions and the calibration and task sets.

2.4.3 Efficient Data Collection

One can use the task D-optimality in the OED framework to select an optimal set of
measurement configurations for a given task. However, one needs a large and diverse set
for this search. If the underlying set is too small or homogeneous, the final set can not
be diverse and informative.
We propose exhaustive rejection sampling to generate a suitable basis set (see Fig. 2.9).

The critical challenge is that the actual measurement setup often poses many constraints
on the possible configurations. For example, when a camera is used to collect measure-
ments of markers, the markers must be in the camera’s field of view, must not be
occluded, and must face toward the camera. Another problem is that measurements
can become ambiguous if multiple markers are visible simultaneously. The detection is
often easier if one ensures that only a single marker is visible. Other measurement setups
pose different constraints. For geometric fixtures, those mechanical constraints directly
reduce the measurement space. In all cases, one must model and simulate the robot and
the respective sensors to check those constraints. Furthermore, all configurations must
be feasible regarding joint limits and self-collision for the robot. As the data collection
happens before the calibration, one must account for uncertainties with larger safety
margins when moving the robot. These precautions are particularly relevant to avoid

20

2 Task-Oriented Robot Calibration

Figure 2.9: Scheme showing the data sample generation. We use rejection sampling to
check all constraints on the measurement setup and the robot. Appropriate
safety margins for those checks are crucial to account for the possible large
uncalibrated errors of the robot kinematics.

invalid measurements and collisions for uncalibrated system with significant errors.
In general, the measurement process collects pairs (q, y) to calibrate the parameters

of the measurement function h(q,Θ) = y. For vision-based measurements, one collects
the cartesian position y(n) for selected joint angles q(n). A key difference to a geometric
calibration method, like contact-based calibration, is that one does not know the exact
joint configuration beforehand, but it must be measured. For contact-based measure-
ments, the y(n) is known a priori; the contact is, by definition, y(n) = 0. The contact
measurement delivers the exact configuration qi, which leads to contact. Therefore, for
geometric measurement, one can not directly move to a predefined configuration, and
the setup must also include a search strategy to find the exact configuration that satisfies
the geometric constraint.
If hysteresis is not a problem, ordering the configurations for the measurements is

beneficial. Reducing the distance between the measurements via a traveling-salesman
heuristic can make the data collection more time-efficient, and fast execution is always
crucial for robotic applications.

2.5 Robot Model and Measurement Functions

2.5.1 Geometric Robot Model

The function we want to calibrate is the forward kinematics f(q) = F . This function is
central for robotics and maps from the robots’ joints q to the robot’s body frames F . A

21

2 Task-Oriented Robot Calibration

Figure 2.10: The kinematic tree structure of the humanoid Agile Justin with torso, head,
and two arms, showing its 19DoF (red) and the mass model (blue) used for
the elastic calibration of the complete robot.

common representation uses the Denavit–Hartenberg (DH) parameters. In this formula-
tion, four values ρi = [di, ri, αi, θi] describe the transformation between two consecutive
frames of the robot

i−1Ti = Rotx(αi)·Transx(ri)·Rotz(θi)·Transz(di). (2.27)

This minimal representation with two translational (ri, di) and two rotational parameters
(αi, θi) is enough to describe an arbitrary robot. The joints qi are treated as offsets to
θi for rotational joints and as offsets to di for prismatic joints.
The frame 0TE of an end-effector (i = E) relative to the robot’s base frame (i = 0) is

calculated by following the kinematic chain and applying the transformations in series

0TE = 0T1 · 1T2 · . . . · E−1TE. (2.28)

For robots with a kinematic tree structure, like humanoids or robotic hands with multiple
end-effectors Ek,k=1...NE

, equation (2.28) holds for each branch of the kinematic tree.
For a calibrated robot, not only is an accurate mapping to the end-effector relevant,

but the whole chain needs to be modeled adequately. Only then can self-collisions be

22

2 Task-Oriented Robot Calibration

avoided, and grasps using the whole surface of the hand can be performed stably. So,
the forward kinematics maps from joint configurations q ∈ Q to all the frames F of the
robot

f(q, ρ) = F = [0T1,
0T2, . . . ,

0TNF
]. (2.29)

Each of the NF frames Fi describes a full 6D pose (Fi,x, Fi,r) ∈ R3 × SO(3). Fi,x is the
translational and Fi,r the rotational part of the homogeneous transformation Fi.

2.5.2 Non-geometric Robot Model

Only considering the geometric model can fall short of describing the true robot. Typical
cases where non-geometric effects must be modeled are robots with high elasticities or
gear backlash. When requiring higher accuracy, it becomes necessary to also include
non-geometric effects. Given that the DH parameters can describe any robot, it is
practical to incorporate non-geometric effects into this formalism. The idea is to keep
the basic structure of the DH parameters, which describe the consecutive mapping along
the frames of the kinematic tree. The non-geometric effects act as offset on the geometric
DH parameters

ρ = ρ(ρ0, ρn) = ρ0 + g(ρn). (2.30)

In general, g can be an arbitrary function parameterized by the additional non-geometric
DH parameters ρn. However, aspects like computation speed are essential as the forward
kinematics is central in most robotic applications. This work focuses on torques as the
primary source of non-geometric effects. Generally speaking, an acting torque will bend
the robot and produce a slightly different pose F . Often, a linear dependence is sufficient
to model the torque-induced bending of the robot, as Caenen et al. [CA90] first showed
for a robotic arm

ρ = ρ(ρ0, κ, τ) = ρ0 + κ τ (2.31)

They also neglected any lengthening effects of the links, and the matrix κ = [0, 0, κα, κθ]
describes only compliance around the respective axes, corresponding to the rotational
DH parameters [α, θ] and the acting torques τ = [τx, τ z].
The non-geometric forward kinematics f now depends via the DH parameters ρ on

the torques τ and the elasticity parameters κ:

F = f(q, ρ(ρ0, κ, τ)) (2.32)

One option to calculate the forward kinematics is to measure the acting torques in
each joint and use those values to compute the offsets to the geometric DH parameters.
However, this is not possible if one wants to use this model beforehand for planning,
as at this time, no sensor readings are available. Furthermore, torque sensors can only
measure the torques acting in the joints (which relate to an offset in θ).

23

2 Task-Oriented Robot Calibration

A self-contained approach is required if one wants to use the forward kinematics for
planning or also needs to consider lateral elasticities. In the regime of no external forces
and reasonably slow, quasi-static motions, the torques originate only from the robot’s
weight and its specific distribution. For a frame, the pair νj = [mj, wj] describes the
mass mj and its position wj relative to this frame (i.e., 0wj = 0Tjwj). The torques
produced by this mass due to the gravity vector g around the respective coordinate axes
of another frame i with origin 0pi can be calculated [CA90] by1:

τxij = ((0Tj wj − 0pi−1)×mjg) · 0exi−1

τ zij = ((0Tj wj − 0pi)×mjg) · 0ezi

The contributions from all masses that act on the respective link must be summed
up to calculate the full torque τi acting on a link i; that is, the torques from all masses
higher up in the robot’s kinematic tree.
The torques τ = τ(F, ν) now depend on the weight distribution ν = [ν1, ν2, . . .] of the

robot and therefore on the frames F which are depending on the DH parameters ρ:

ρ = ρ(ρ0, κ, τ(F (q, ρ), ν)). (2.33)

This implicit equation for the DH parameters defines the equilibrium between the torques
due to gravity and the torques due to the robot’s flexion. We define the solution to this
equation as the non-geometric DH parameters

ρ∗ = ρ∗(q, ρ0, κ, ν). (2.34)

One possibility to solve (2.33) is by the following iteration:

ρn = (1− λ)ρn−1 + λρ(ρ0, κ, τ(F (q, ρn−1), ν)) (2.35)

ρ∞ = ρ∗ (2.36)

Choosing an appropriate λ ∈ [0, 1] for the weighted sum ensures the convergence of
the iteration even for very soft (or strongly non-linear) robots. Interpreting the DH
parameters as generalized coordinates and the update rule as the discretized integration
over time of a damped dynamical system gives an intuition for the convergence of this
iterative update. The robot moves due to gravity and swings into the torque equilibrium.
A suitable choice for the start of the iteration are the geometric DH parameters ρ0 which
can be interpreted as a robot with zero gravity or infinite stiffness. Finally, the non-
geometric forward kinematics is then given by

F = f(q,Θf) = f(q, ρ∗(q, ρ0, κ, ν︸ ︷︷ ︸
Θf

)),

1Those torques act on the rotational axes parameterized by αi and θi, described in (2.27). Because
they make up a frame by sequential stacking, they do not all share the same frame of reference.

24

2 Task-Oriented Robot Calibration

Figure 2.11: Flowchart of the optimization loop in light gray. Dark gray shows the addi-
tional loop for the static torque equilibrium. As the outer loop converges,
no additional passes through the inner torque loop are necessary.

where ρ∗ describes the solution of the non-geometric DH-parameters in torque equilib-
rium, resulting from the robot’s mass distribution ν in configuration q.

2.5.3 Efficient Compensation

The calibration goal is to find a set of parameters Θ which describes the robot as
accurately as possible. Nevertheless, the speed and ease of use of the calibration model,
e.g., in motion planning, are also crucial. Incorporating the new set of DH parameters
ρ is straightforward and works without any changes or additional costs as they replace
the old DH parameters. The same holds for masses m and compliances κ. However, to
determine the elastic effects, one must find the static equilibrium between acting torques
and elasticities described in (2.33). While it might be feasible for calibration (offline
procedure) to use the iterative algorithm (2.35), it is more prohibitive for compensation
(online). One should carefully evaluate this trade-off between accuracy and simplicity
when choosing a calibration model for a robot.
Knowing that we will use the forward kinematics mostly in the framework of an

optimization-based path planner has further implications. Such a planner works on
paths in configuration space Q = [q1, q2, ..., qn] and performs iterations to get from an
initial path Q0 to a converged path Q∗. For each step, the optimizer considers the

25

2 Task-Oriented Robot Calibration

Figure 2.12: Simulated convergence towards the static torque equilibrium for robots of
different stiffness. For iteration zero, the elastic effect is ignored. The bands
indicate the standard deviation for 1000 different joint configurations.

objective function H(Qi) and updates the path using the gradient information. The
nested structure of the forward kinematics

f ∗(q) = f(q, ρ(f(q, ρ(f(...)))) (2.37)

leads to highly non-linear gradients, making the model more difficult to use. As a
solution to this, we separate the torque equilibrium search in a separate loop, as shown
in Fig. 2.11. After determining the acting torques accurately and updating the DH
parameters accordingly, we assume these to be constant for the gradient calculation
∂F/∂q. This allows us to use the pure geometric forward kinematics, implicitly assuming
∂ρ/∂q = 0. Although we completely omit the torque iterations for the gradients, this
approximation does not hinder convergence in our tests.
The second important aspect visualized in Fig. 2.11 is the combination of the opti-

mization loop and the torque equilibrium loop. Even if the updates of the configurations
are large at the beginning of the optimization, when the planner converges, the pose up-
dates get small. If those updates are significantly smaller than the offset produced by
a torque update, it is unnecessary to search for a new static equilibrium iteratively. In
other words, it is sufficient to reuse the already computed frames, calculate the acting
torques, and update the DH parameters only once while nevertheless solving the forward
kinematics f ∗ exactly. The outer loop of the converging optimizer makes it unnecessary
to perform inner iterations when searching the torque equilibrium.

2.5.4 Types of Measurement Functions

To identify the parameters of the forward kinematics Θv, we need a measurement setup
that relates the joint configuration to the robot frames. The following section describes
different types of measurement functions, both open-loop and closed-loop variants, and

26

2 Task-Oriented Robot Calibration

gives detailed descriptions and formulas to the sketches in Fig. 2.4.

Cartesian Measurement Function

One common approach to collect measurements is to mount markers on the kinematic
tree and use a tracking system to collect cartesian measurements of these markers.
Assuming that the markers are fixed at position Ekx relative to end-effector Ek, the
cartesian measurement function

yk = hv(q,Θ)k = cT0 · fEk
(q,Θf) · Ekx (2.38)

describes how a marker moves dependent on the joint configuration q and the parameters
Θf . Suppose one wants to calibrate the forward kinematics jointly for multiple end-
effectors. In that case, one can concatenate the measurements for each of the NE markers
to a combined measurement function hv = [h1

v, . . . , h
NE
v], hk

v ∈ R3. Multiple markers per
end-effector also make estimating the frame’s orientation possible. The full calibration
parameters consist now of the parameters to describe the forward kinematics Θf and
additionally the relative frame of the camera system to the robot base cT0 and the
relative positions of the NE markers Ekx

Θ = [Θf ,
cT0, [

Ekx]NE
k=1︸ ︷︷ ︸

Θv

]. (2.39)

While, in general, an external camera can measure without constraining the robot di-
rectly, one still needs to account for self-collision and a clear view of the markers. These
additional constraints reduce the possible configuration space for the measurements.

Image Measurement Function

One can also use a single camera instead of an entire tracking system. However, one
cannot directly measure the marker’s cartesian position, only its projection into the
image space U : R3 → R2. Here, we use the classical pinhole model with radial distortion
to project the 3D position of the marker x into 2D pixel coordinates u [BFB15]. First,
the marker’s position x must be transformed into the camera frame 0Tc. Then, the
relative position is projected along the z-axis of the camera frame by P (x) and radial
distortion D(u, ξc) is added. The marker’s pixels u in the image are then calculated as
an offset from the camera’s center point cc scaled with the focal length lc:

u = U(0x, 0Tc,Θci) = cc + lc ·D(P (cT0
0x), ξc)

with P (x) =

(
xx

xz

,
xy

xz

)T
; D(u, ξc) =

u

1 + ξc|u|2
(2.40)

27

2 Task-Oriented Robot Calibration

Figure 2.13: Visualization of the constrained workspace of the different fingers of the
DLR-Hand II. For each finger, the colored dots indicate the common
workspace with the three other fingers. Contact needs to happen in those
shared subspaces. In light grey, the total workspace is indicated.

This yields the measurement function for a single marker

yk = hc(q,Θ)k = U(fEk
(q,Θf)·Ekx︸ ︷︷ ︸

0xEk

, fc(q,Θf)·cTγ︸ ︷︷ ︸
0Tc

, Θci). (2.41)

This formulation includes both open and closed-loop setups depending on whether the
camera is mounted on the robot or fixed outside the robot and, therefore, relative to the
robot’s static base. Again, one can concatenate the measurements for each of the NE

image markers to a combined measurement function hc = [h1
c, . . . , h

NE
c], hk

c ∈ R2. Besides
the position of the markers 0xEk

= 0TEk

Ekx and frame of the camera 0Tc =
0Tc

cTγ relative
to the forward kinematics F , the intrinsic parameters of the camera Θci can also be part
of the calibration. Those additional parameters are combined and denoted as

Θ = [Θf ,
cTγ, [

Ekx]NE
k=1,

Θci︷ ︸︸ ︷
cc, lc, ξc︸ ︷︷ ︸

Θc

]. (2.42)

As for a tracking system, one must account for self-collision and a clear view of the
markers without obstruction or occlusions. Furthermore, the 2D image space differs
from the Cartesian space and provides less information per sample.

Contact Measurement Function

Another option for performing the actual measurement is to use geometric information.
For example, one could constrain the end-effector’s motion on a known plane or to a
fixture. These cases are also open-loop, as the location of the additional tools must be
known. A more general closed-loop formulation uses the contact information of the robot
itself. In other words, the corresponding measurement function measures the distance
between different robot parts. To achieve this, one needs the exact geometry of the
two bodies to compute the distance dv between a pair of bodies v = (Ek, El) on the

28

2 Task-Oriented Robot Calibration

kinematic tree. The distance depends then only on the relative position and orientation
of the bodies EkTEl

, which can be directly computed from the forward kinematics of the
two respective frames

dv(EkTEl
) = dv((fEk

(q,Θf))
−1 · fEl

(q,Θf)). (2.43)

This formalism can also describe a setup with an external fixture. In that case, one body
is static and does not depend on the robot’s joint configuration. This can be modeled
by linking that body to the robot’s base.
If the bodies at Ek and El have simple geometric forms, one can directly compute the

distance dv. The more general case is that the geometries are given as arbitrary meshes.
In this case, one has to use, for example, algorithms like GJK [GJK88] to compute the
distance. The contact measurement function for the pair v can now be written as

yv = hs(q,Θ)v = dv(f(q,Θf)). (2.44)

This function can only measure the scalar distance between two body pairs. With NE

end-effectors on the kinematic tree, there are in total NV =
(
NE

2

)
pairs. The combined

function for all those pairs is hs = [h1
s , . . . , h

NV
s], hk

s ∈ R.
This minimal measurement function depends solely on the robot’s kinematics and not

on additional external tools. If the shape of the robot’s surface and structure is known,
there are no additional tools needed, and no additional parameters

Θ = Θf . (2.45)

As only configurations in contact can be measured, the available configuration space is
drastically reduced (see Fig. 2.13).

Relative Position Measurement Function

This function is included to show that a task measurement function is not necessarily
practical for the real hardware. Instead, it should capture the requirements of the task
accurately.
For example, for a robotic hand to move the fingers in a controlled manner and perform

dextrous manipulation, an accurate model for the relative (not the absolute) positions
of the fingertips to each other is necessary [SPB22; Pit+23].
For NE end-effectors, NE − 1 distance vectors define the whole set. One can choose

one tip E1 as the basis and compute the positions relative to it for the remaining ones

yk = hk
r (q,Θ) = f(q,Θf)Ek,x − f(q,Θf)E1,x . (2.46)

Concatenating the measurements for all the end-effector pairs yields the combined func-
tion hr = [h2

r , . . . , h
NE
r], hk

r ∈ R3. This results in 3 · (NE − 1) data points per robot pose
for the three spatial directions and NE end-effectors. Note that (2.46) is a theoretically
desired measurement function, which measures all the information relevant for precise

29

2 Task-Oriented Robot Calibration

in-hand manipulation. For example, it cannot detect a simultaneous translational offset
of all end-effectors like a cartesian tracking system could. However, such a shift does
not change the end-effectors’ relative behavior and is irrelevant to the task.

Task Test Set

Besides defining a measurement function ht to describe the task, a suitable task set St

is crucial to evaluate the calibration quality. Depending on the robot application, this
set can vary. Often, one wants a high accuracy across the whole Cartesian workspace.
However, setups that focus on smaller subsets are also possible. Generally, this task set
St differs from the actual calibration set Sa. This difference is especially prominent if
the actual measurement setup poses additional constraints on the robot configurations
that are not present for the task.

2.6 Experiments

We conducted multiple simulation and hardware experiments to verify the methods
introduced in Sections 2.3 and 2.4. Simulations help, especially for OED and our TOW,
to validate the results of an extensive number of experiments and to directly compare
all relevant metrics for the actual and task measurement functions. For the analysis,
we focus on two systems: the humanoid robot Agile Justin and the DLR-Hand II. Both
robots have a tree-like structure and many DoF, making them challenging examples for
calibration.

2.6.1 DLR-Hand II - Contact-based Calibration

The first robotic system we analyze is the DLR-Hand II (see Figs. 2.1 and 2.14). This
four-fingered hand has 12DoF and is torque-controlled. It is capable of performing
dextrous grasping [Win+22; Hum+23] and in-hand manipulation [SPB22; Pit+23]. The
small form factor makes visual calibration prone to occlusions and impractical. So, we
opt for a purely contact-based calibration. We include all four DH parameters per joint
for the forward kinematics model, resulting in NΘ = NDoF × 4 calibration parameters.
Each finger has three active and one passive joint. This results in 16 DH parameters
per finger and 64 for the whole hand. Each finger has three parallel joints, and the ring
and middle finger are mounted on the base with the same orientation, which leads to
redundancies.

Sensitivity Analysis

For grasping and in-hand manipulation, the relative position of the fingers is crucial to
interact with different objects dextrously. Therefore, the task measurement function is
ht = hr (see (2.46)). To check if the actual contact measurement function ha = hs (see
(2.44)) can identify all the parameters relevant to the task, we compute the nullspace of

30

2 Task-Oriented Robot Calibration

Figure 2.14: The DLR-Hand II in a finger contact pose from the test set a) with the mea-
sured joint angles q mirrored to a nominal b) and a calibrated c) model.
The model’s error is visibly reduced from a distance of 8.3mm to a pene-
tration of 1mm, allowing dextrous in-hand manipulation.

JTJ as described in Section 2.4.1. We evaluate the Jacobians Ja and Jt for the nominal
kinematic at 100 configurations from the two respective sets.
Fig. 2.8 shows the sensitivity analysis for the DLR-Hand II. The task measurement

function ht is blue, and the actual contact measurement function ha is red. Higher eigen-
values relate to better sensitivity, and eigenvalues below 10−6 indicate that parameters
become hard to identify numerically. All the finger pairs are calibrated simultaneously
for the rightmost mode (⬢). Both measurement functions have 56 eigenvalues larger
than 10−6. Analyzing the eigenvectors confirms that the kernel of our contact measure-
ment function hs is fully included in the kernel of the task measurement function ht.
Therefore, we can identify all parameters relevant to the task. The parallel axes explain
the 8(= 2×4) unidentifiable parameters for the hand. Each finger has three parallel axes
along which a shift can be adjusted without influencing the end-effector. This results in
a two-dimensional nullspace and 14 identifiable parameters from the 16 for each finger.
The leftmost mode (•) shows the calibration of just a single pair. Here, from the

32(= 2× 16) total parameters, 28(= 2× 14) should be identifiable. However, measuring
between two chains yields less information than measuring between three or more chains.
The task measurement using the relative positions can identify 27 parameters. However,
when restricting the measurements to a single pair, the scalar distance function can
measure even less, and only 26 parameters are identifiable. An intuition is that two end-
effectors can move on a sphere around each other without changing the scalar distance
between them. In that case, one cannot identify all the parameters relevant to the task
by pure contact measurements. This invariance generally resolves when adding a third
chain (▲) to the picture, favoring a holistic calibration of all parts of the kinematic tree.

31

2 Task-Oriented Robot Calibration

Figure 2.15: Convergence of mean and maximal cartesian error ∆yv on the uniform
cartesian test set for different calibration sets for the contact measurement
function hs. Randomly chosen sets (red) converge slower than the sets
designed according to task D-optimality (2.25). The greedy strategy is
green, and the detmax[Mit00] strategy is blue. The distribution mismatch
between calibration and test set can explain why the gap between random
and selected samples remains significant even for larger calibration sets.

Optimal Experimental Design

We conducted extensive simulations to study the influence of different calibration sets
on the resulting task accuracy. Using the nominal DLR-Hand II as a basis, noise was
applied to the DH parameters to obtain variations of the robot. For the rotational DH
parameters α and θ we add uniformly sampled noise in the range of ± 5◦ and for the
translational parameters DH d and r we used uniform noise ± 5mm. In this fashion, we
created 100 different kinematics to ensure a broad distribution of robot models. Next,
we simulated the data collection step and collected measurements for the actual contact
measurement function ha = hs and the task measurement function ht = hr. The mean
deviation from those models was 21mm from the nominal kinematic on the uniform
cartesian task set.
Fig. 2.15 shows the results of the optimal sample selection introduced in Section 2.4.2.

The cartesian error ∆yv on the cartesian task set is drawn over the number of contact
measurements for different selection strategies. Randomly chosen sets (red) converge
slower than the sets designed according to task D-optimality (see (2.25)). We compare a
greedy strategy (green), which at each step adds the sample si, which improves the task
D-optimality most against the DETMAX algorithm [Mit00] (blue). This procedure tries
to swap samples in an existing calibration set to improve the task D-optimality. Both
selection strategies outperform the random approach, significantly reducing the mean
error to 0.1mm for a set of 300 measurements.
The configurations for the contact measurements differ from the uniform distribution

in the cartesian workspace on which we evaluate the calibrations. This distribution
mismatch explains why the gap between random and optimized samples remains signif-
icant even for larger calibration sets. Using task D-optimality as a selection criterion

32

2 Task-Oriented Robot Calibration

Figure 2.16: We collect measurements using the Vicon tracking system to evaluate our
approach in the cartesian space. This external tracking system consists of
six cameras mounted on the ceiling that directly track the cartesian position
of retro-reflective markers with high accuracy.

directly accounts for this shift and significantly improves contact calibration with its
strict constraints on data generation.

Real-world Experiments

After performing the sensitivity analysis and OED, we calibrated the DLR-Hand II using
only pairwise contact measurements hs. For this, we collected 300 samples over all finger
pairs to ensure a large enough set for calibration and evaluation. The uncalibrated model
has a mean error of 6mm over all 300 samples and a maximal error of up to 17.7mm for
the scalar distance measurement. Calibrating all the DH parameters leads to a model
that has a maximal error of 3.7mm and a mean error of 0.7mm. Fig. 2.14 shows the
improvement through our proposed contact-based calibration on the real DLR-Hand II.

33

2 Task-Oriented Robot Calibration

Figure 2.17: Histogram of the residual error at the end-effectors before and after
calibration, highlighting the need for non-geometric modeling of Agile
Justin [Bäu+14]. The circles on the x-axis mark the mean µ of the er-
ror.

Table 2.2: ”Leave-one-out analysis”: residual Cartesian err. ∆yv [mm]

full −κθ −α −θ −κα −r −d
µ 3.12 9.09 6.48 6.35 4.85 4.33 3.46
σ 1.71 4.23 2.93 3.16 2.28 2.03 1.73

max 8.23 24.59 17.25 18.89 13.37 11.09 8.97

2.6.2 Agile Justin - External Tracking System

DLR’s Agile Justin is a humanoid robot with two arms and a torso on a mobile platform.
Overall, it has 19 DoF, an RGB camera, and a depth sensor mounted on its head. For the
actual calibration, we first used an external cartesian tracking system ha = hv (see (2.38))
to generate ground truth data (see Fig. 2.16). In this case, the actual measurement setup
is identical to the desired task ht = hv. The calibration should improve the cartesian
accuracy of the end-effectors.
We collected 500 samples with the external tracking system and split them into a

calibration set with 300 and a test set with 200 samples. In what follows, we calibrate
all the geometric DH parameters plus the stiffness parameters Θ = [ρ, κ,Θv]. The priors
used for the calibrations were chosen based on previous experiments with the robot, with
uncertainty ΛΘ in lengths of 0.1m, angles of 0.2 rad, and elasticities of 0.1 rad/kNm. As
the first step, the additional frames parametrized by Θv must be determined to close
the measurement loop. Only calibrating those frames gives the accuracy of the nominal
kinematics before calibration, with a mean residual error of 20mm over the 200 test
poses. In the worst cases, the error was larger than 60mm. After calibration, the
mean residual error of the whole model is reduced to 3.1mm and the maximum error to
8.2mm.
Fig. 2.17 compares the nominal model (red), a pure geometric calibration without

elasticities (green), and the full non-geometric calibration (blue). This comparison high-
lights the need for a non-geometric calibration model for Agile Justin. The joints’
elasticities and lateral elasticities produce significant errors, which a purely geometric

34

2 Task-Oriented Robot Calibration

Figure 2.18: With its internal camera, the robot collects RGB images of markers on
both hands and a pole in front of it. The blue chains show how forward
kinematics plus camera projection close the measurement loop. Even if
the arms are not directly involved in the pole measurements, their mass
distribution in different positions influences the torso elasticities.

Table 2.3: Error in image and cartesian space for different setups.

Calibrate Image Error [px] Cartesian Error [mm]
on Θci TOW µ σ max µ σ max

Images no no 1.05 0.59 3.76 4.77 2.29 11.75
Images yes no 0.97 0.53 3.44 4.65 2.27 11.58
Images no yes 1.21 0.70 4.13 4.11 1.87 9.34
Images yes yes 1.15 0.62 3.97 3.94 1.83 9.16
Position - - - - - 3.12 1.71 8.23

model cannot capture. In Table 2.2, starting from the full model on the left, only a
specific parameter type was left out one at a time. This analysis shows how crucial joint
and lateral elasticities are for accurately modeling Justin’s kinematics. One reason for
the prominent joint elasticities is that we model not only the mechanical elasticity of a
joint but also the elasticity of the joint position controller. We use a relatively simple
joint position controller as it is robust (e.g., it does not rely on the torque sensors, which
are notoriously drifting and hard to maintain). However, it results in an additional joint
elasticity.

2.6.3 Agile Justin - Internal RGB Camera

To make the calibration more practical, we replace the measurement with the external
tracking system through a visual calibration using the robot’s RGB camera. For the
calibration of the entire kinematic tree, the internal camera tracks two markers at the
ends of the chain for the arms and one external marker for the torso. The calibration
sketch is shown in Fig. 2.18 and examples of the actual measurements in Fig. 2.19. This
setup allows the calibration to be performed autonomously everywhere, not only in a

35

2 Task-Oriented Robot Calibration

Figure 2.19: DLR’s Agile Justin collects measurements to calibrate its non-geometric
forward kinematics. The images are from the robots’ internal RGB camera
with a resolution of 640×480, showing examples for the left arm, the pole,
and the right arm. The markers’ distances to the camera vary between
measurements from 0.2m up to 1.5m. Without a correction (red), the pixel
error is uniformly distributed over the distances, leading to more significant
cartesian errors for detections further away from the camera as pixels here
correspond to a larger area. Our TOW (blue) counteracts this and improves
the cartesian accuracy.

laboratory with dedicated measurement equipment. Furthermore, this setup is closer to
the robot’s intended application. Here, the robot uses its internal cameras to model the
environment [WFB13] and localize objects for interacting and grasping. Therefore, an
accurate calibration of the hand-eye chain together with the flexible torso is crucial for
successful task execution.
The task measurement function stays cartesian ht = hv, but the actual setup mea-

sures the markers pixels in the image space ha = hc (see (2.41)). This discrepancy has
implications for the parameter identification. Agile Justin is a complex mechatronic
system; even the elastic robot model does not capture all the relevant effects. With-
out adjustment, the MAP approach tries to distribute those remaining errors equally in
the image space, not the cartesian workspace. We use the proposed weighting through
the adapted covariance (see Section 2.3.3) to counteract this. This general formulation,
which weights the individual samples based on the relevance to hv, results in a weight-
ing factor ∝ 1

z2
for the image measurement function hc. Samples farther away from the

camera are weighted stronger, as the same pixel error at a larger distance relates to a
more significant cartesian error.
This weighting helps distribute the error evenly in the task-relevant cartesian space

(see Table 2.3). While the pixel error increases slightly, the mean and maximal cartesian
error gets smaller by over 20% when correcting for the mapping between the image and
task space. Furthermore, we show that it is possible to include the camera intrinsics Θci

36

2 Task-Oriented Robot Calibration

Figure 2.20: Study to show the generality of our TOW approach. A) Agile Justin with
unmodeled elasticities holding two 0.7m long sticks. The actual measure-
ments (red) are the position of the left wrist hl

v and the end of the right
stick hr,s

v . The task measurements (blue)are crosswise the right wrist hr
v and

the end of the left stick hl,s
v . B) Probabilistic graph of the calibration setup

with branching from the upper body yu into the two sides. C) Comparison
between standard MAP (dotted) and our TOW approach (solid, see Sec-
tion 2.3.3) on the cartesian task error over different actual calibration set
sizes. Especially for the marker on the end of the stick the error reduction
with TOW on the task set is significant.

in the calibration, further improving accuracy. The final mean error at the end-effectors
is 3.9mm on average and 9.2mm in the worst case. These results are comparable to a
calibration using the cartesian measurements of an external tracking system, which is
reported in the last row.

2.6.4 Agile Justin with Sticks

We simulated a calibration of Agile Justin in a more challenging setting to demonstrate
the general applicability of our TOW approach. Fig. 2.20 shows in A) the setup with
the robot holding two 0.7m long sticks and in B) the respective probabilistic graph. The
robot is calibrated using an external tracking system ha = hv. The actual measurements
(red) are the position of the left wrist hl

v and the end of the right stick hr,s
v . The task

measurements (blue) are crosswise the right wrist hr
v and the end of the left stick hl,s

v .
Intuitively, focusing on the extended sticks means that with a longer leverage, errors in
the orientation outweigh the errors in the position. Using our TOW approach, we can
adjust the calibration to find an optimal set of parameters for the task space, even in
this convoluted setting.
500 variations of Agile Justin were generated by adding noise to the forward kine-

37

2 Task-Oriented Robot Calibration

Figure 2.21: This graph visualizes the different calibration sets and the weighting of
individual configurations stemming from Section 2.3.3. From left to right,
the actual calibration setups are Agile Justin with its internal RGB camera
(hc), Agile Justin with an external tracking system (hv), and the DLR-Hand
II using the contact information (hs). The high-dimensional configuration
spaces were mapped into 2D using standard t-SNE [VH08].

matic’s nominal DH parameters. As minimization in the task space is only relevant if
the model is imperfect, we generated data including elasticities. However, the calibration
model only contains the geometric DH parameters. In the experiments, we analyze how
those purposely unmodeled errors get distributed for different measurement functions
and weightings. Fig. 2.20 shows in C) that our TOW approach of task space mini-
mization helps increase the task’s accuracy. The remaining errors of the task cartesian
measurement at the right wrist hr

v and the left stick hl,s
v are drawn over different cali-

bration set sizes for a standard MAP (dotted) and our additional TOW (solid). The
calibration itself is always performed on actual measurements, while the evaluation is
done on a different task set of configurations. The errors at the stick ends are signifi-
cantly larger overall. The longer the leverage is, the more the errors in the parameters
become apparent. While TOW performs slightly worse on the actual calibration set,
there is an apparent reduction of cartesian task error, especially at the end of the left
stick. This improvement over the standard MAP is especially prominent for small cali-
bration sets. However, it is still visible for larger calibration sets, with a final reduction
of 10% from 4.9 cm to 4.4 cm for hl,s

v .
Fig. 2.21 shows a visualization of our proposed weighting for the individual measure-

ment configuration. The calibration set for Agile Justin’s internal RGB camera is on
the left, the setting of Agile Justin with markers on extended sticks is in the center,
and on the right is the set for the contact-based calibration of the DLR-Hand II. The
dimensionality reduction of the high-dimensional joint spaces to 2D using t-SNE [VH08]
shows the sparse and scattered structure of the available subspaces for each actual mea-
surement setup. The projection from cartesian to image space in the left image relates to
the smooth and continuous distribution of the sample weighting, as here, the weighting
is proportional to the marker’s distance from the internal camera. For the contact-based

38

2 Task-Oriented Robot Calibration

calibration, configurations with different weights can lie closer together, as the relation
between a change in the scalar distance between two surfaces and the cartesian dis-
tance of the two frames is essential here. Independent of the specific relation between
ht and ha, as long as both measurement functions can identify all relevant parameters,
task-oriented weighting helps to minimize unmodeled errors in the relevant task space.

2.7 Summary

Our work offers a unified approach to robot calibration and tackles the misalignment
between the actual measurement setup and the final robotic task. Acknowledging those
differences in the measurement functions and the configuration sets allows us to select
practical measurement setups while keeping the task’s performance in mind. Our contri-
butions formalize these differences and help to mitigate them. Starting with a sensitivity
analysis, one can test if the calibration setup can capture all information relevant to the
task. Central is the introduction of TOW to combine the full probabilistic view with
an additional weighting to reduce the remaining errors in the desired task space for
arbitrary measurement setups and select the best model parameters to approximate the
desired function. Finally, we discussed selecting an optimal set of measurement con-
figurations for a task defined by a measurement function and a corresponding set of
configurations. Extensive simulation studies, as well as real-world experiments on Agile
Justin and the DLR-Hand II, demonstrate the soundness and broad applicability of the
proposed methods.

Future Work

Future work in robotic calibration could explore advanced modeling approaches, such as
polynomial functions or simple neural networks, to effectively capture non-geometric ef-
fects. While those models are more expressive, an important aspect will be their efficient
compensation and easy applicability. Additionally, a Bayesian evaluation of parameter
stability over time is promising. The overall goal is to integrate the information of
prior and current measurements more tightly to minimize the effort for recalibrations
and make them more efficient. A further route is to combine the kinematic calibration
firmer with the calibration of other internal sensors. Examples are torque sensors in the
motors or tactile skin on the end-effectors. Moreover, calibrating the entire body with
all frames and the surface of all links is highly relevant, instead of just the mapping to
the end-effector. Overall, a holistic approach to calibration is beneficial, primarily if the
robot uses multiple sensors and body parts, as it is the case for the fingers of a hand
when manipulating an object.

39

3 Learning-Based Motion Planning

3.1 Introduction

At the core, robotic motion planning is about getting from the start joint configuration to
a goal configuration while avoiding obstacles in the environment and self-collision along
the path. For the most common robotic tasks, such as picking and placing objects,
one does furthermore need the solution to the inverse kinematics (IK) to know how
to configure the robots’ joints to reach a specific position in the workspace. In general,
motion planning and IK are a combined problem. For example, positioning a cup upright
on a cluttered table requires motions with cartesian constraints at the end-effector. This
joint problem of solving the IK and getting a collision-free trajectory is challenging, so
it is often divided into two sub-problems [Sch+14]. First, the IK is solved to find
the final configuration for grasping the object, and then the trajectory from the initial
configuration to the goal configuration is planned.
Solving a motion task and IK fast and efficiently does not only mean that the robot

spends less time contemplating and more time moving. If a solver can find a feasible
solution in a fraction of a second, this opens up the door for more reactive planning and
integrating the global planner more tightly into the sensor-action loop. Furthermore, we
can tackle more high-level tasks with multiple smaller motion problems if each substep
can be solved efficiently.
A promising approach for speeding up motion planning and inverse kinematics is not

to solve each planning problem anew but to use experience from having solved related
motion tasks before. Important for the applicability of such learning-based planners to
real-world problems is that they not only allow for arbitrary start and goal configurations
but also for arbitrary environments as input. The goal is to encode the robot’s specific
kinematic structure and how it relates to blocked and free space in the workspace.
This chapter presents two deep learning-based enhancements for an optimization-

based motion planner and IK solver that allows robot planning in high-resolution en-
vironments with complex obstacle geometries. We tackle problems of efficient data
generation, a suitable encoding of the problem, and the inherent ambiguity of inverse
kinematics. For the humanoid robot Agile Justin [Bäu+14] with 19DoF, feasible trajec-
tories can be computed in only 200ms on a single CPU core (see Fig. 3.1a). IK solution
gets especially hard when incorporating self-collision avoidance and avoiding collisions
with obstacles in arbitrary environments (see Fig. 3.1b, right).

40

3 Learning-Based Motion Planning

(a) Motion Planning. Agile Justin is moving
along a collision-free path Q in a challeng-
ing obstacle environment generated with
simplex noise. The sphere model of the
19DoF humanoid is shown as wireframes.

(b) Inverse Kinematics. Agile Justin in a
shelf environment. The frames for the
IK problem were sampled randomly in
the respective compartments of the shelf
(left). Placing an additional obstacle in the
workspace makes the previous solution in-
feasible, which leads to a different collision-
free solution (right).

Figure 3.1: Motion Planning and IK for Agile Justin [Bäu+14] during training and ap-
plication in challenging environments.

3.2 Related Work

The following section gives a combined overview of the related work on robot motion
planning and inverse kinematics. The problems are challenging because they involve
handling the non-linear structure of the robot’s kinematics and understanding free and
blocked space in unknown environments. However, a fast and efficient solution to those
problems is crucial for safe and dextrous motion and interaction with the environment.

Motion Planning and Inverse Kineamtics

The goal is to have a fast and reactive motion planner on a low level that can plan
between arbitrary robot configurations while avoiding collisions with the environment
and self-collision [Bel+07]. Two popular but fundamentally different approaches to
solving a motion task in robotics are sampling-based planning (SMP) and optimization-
based motion planning (OMP).

Sampling-based Motion Planning SMP [LaV06] uses randomness at its core and can
guarantee to find a feasible collision-free path globally if there is any. Examples are

41

3 Learning-Based Motion Planning

Figure 3.2: The standard OMP approach is on the top left (1, Section 3.3). The local
method iterates on an initial guess to converge to a solution. The idea is
to replace the random multi-starts through a learning-based guess to speed
up the planning (3, Section 3.4). The classical approach in 1) can be used
to generate training data for the neural network to encode the experience
via supervised learning (2a, Section 3.4.3). Alternatively, one can apply
an unsupervised approach and use the objective U directly to update the
weights of the network directly through backpropagation (2b, Section 3.4.4).
All figures hold for motion planning and inverse kinematics.

Probabilistic Roadmaps [Kav+96] and Rapidly exploring Random Trees (RRT) [KL00],
which explore the configuration space iteratively and build a graph of possible configu-
rations until a branch finds the goal. As the search space grows exponentially with the
robots’ degrees of freedom, vanilla variants of SMP do not scale well to complex robots.
Furthermore, SMP often produces suboptimal paths with many kinks, leading to lengthy
and dynamically costly motions. Extensions to RRT address those issues partially by
using a heuristic to search in an ellipsoid around the direct connection [GSB14], focusing
the computations after an initial solution on improving the optimality [Kar+11] or using
the implicit geometric structure of a batch of random samples [GSB15].

Optimization-based Motion Planning OMP formulates the motion task as an opti-
mization problem [BKC08], and one can apply various non-convex optimization tech-
niques to find a solution. STOMP [Kal+11] is a gradient-free method that uses stochastic
information to make iterative updates on an initial trajectory. ITOMP [PPM12] also
uses a stochastic optimization framework for dynamic environments by computing a
local bound for each obstacle. CHOMP [Zuc+13] uses a covariant Hamiltonian formula-
tion to make gradient updates perpendicular to the geometry of the current path. Tra-

42

3 Learning-Based Motion Planning

jOpt [Sch+14] uses an SLSQP approach that sequentially solves quadratic problems with
linearized constraints to converge to an optimal solution. Furthermore, newton-based
methods [Tou14] and methods that use particle swarm optimization (PSO) [KL15] have
been applied to robot motion planning. Another challenging aspect of motion planning
includes additional dynamic constraints [CLS16; PM14] or non-differential constraints
like contacts or collisions [ZLB21].
The computational complexity of those methods can scale linearly with the DoF and

converge quickly to a smooth trajectory. For gradient descent at each iteration, only the
gradient computation and its addition to the current configuration are performed. Both
operations are linear in the DoF when using automatic differentiation. However, they
only find a local minimum and strongly depend on the initial guess.
The objective function usually has many local minima for non-trivial robot kinemat-

ics and environments. Therefore, a multi-start approach is needed to find a feasible
global solution that will massively slow OMP in complex scenarios. STOMP [Kal+11]
and CHOMP [Zuc+13] try to mitigate the strong dependency on an initial guess by
introducing stochasticity to the optimization. TrajOpt [Sch+14] uses convex hulls to
represent the robot and its environment and thus increases the attraction basin for each
optimum. However, OMP still needs multi-starts to find a feasible global solution.

Jacobian-based Inverse Kinematics There exists a multitude of non-learning-based
methods to solve the IK problem. Many are based on the Inverse Jacobian method [TS00;
SB11; Sug11; CT15]. A popular algorithm is TRAC-IK [BA15], combining a Newton-
based algorithm with a Sequential Quadratic Programming (SQP) method. Running
both methods in parallel and terminating if one succeeds improves speed and robustness.
Quick-IK [Lia+17] also utilizes parallelism and simultaneously tries many speculative
initial guesses. Falco et al. [FN11] analyze the general convergence of Inverse Jacobian
methods and report the results for an 11DoF robotic arm.
However, other optimization methods have also been applied to the IK problem.

Collinsm et al. [CS17] use PSO for snake-like robots with many DoF. Trutman et
al. [Tru+22] describe the IK as a polynomial optimization problem, which they use to
find a globally optimal solution for serial 7DoF robots. Tringali et al. [TC20] use
a randomized matrix to weight the pseudo inverse in a Jacobian-based method. This
adaptation allows them to improve the convergence to a globally optimal IK solution.
Ferrentino et al. [FSC21] use dynamic programming to solve the IK with obstacles

and make it available in ROS. Giamou et al. [Gia+22] formulate the IK problem as a
distance-geometric problem, allowing them to use semidefinite programming methods to
find a low-rank solution. While the approach is elegant and fast, it can only incorporate
spherical obstacles. Zhao et al. [Zha+21] introduce a modern and fast solver that
combines Inverse Jacobian methods, SQP, and PSO. Their method can handle dynamic
obstacles but is limited to spheres.

43

3 Learning-Based Motion Planning

Learning for Motion Planning and Inverse Kinematics

Motion Planning Whether the underlying approach is optimization-based or search-
based, there are different options for incorporating learning and speeding up the methods
efficiently. For SMP, a common idea is to adapt the sampling strategy of new leaves in
the search tree. [IHP18] proposes a methodology for non-uniform sampling, whereby a
sampling distribution is learned through a conditional variational autoencoder (CVAE)
from demonstrations and then used to bias sampling. When sampling a small percentage
of the new leaves uniformly, one can keep the completeness guarantees while speeding
up the convergence significantly by focusing on relevant regions in the configuration
space. For mobile robots in 2D, this non-uniform sampling distribution can be directly
represented by a CNN [Wan+20].
An elegant approach to speed up OMP is using experience from previously solved

motion tasks to provide an educated initial guess. Jetchev et al. [JT13] proposed
saving a database of feasible trajectories and looking for a reasonable first guess for a
new problem. Merkt et al. [MIV18] improved the idea through more efficient database
storage and tested it on a humanoid robot.
Instead of databases, neural networks are often used to encode the experience. The

expectation is that they are more memory efficient, encode various solutions implicitly,
learn a general understanding of feasible trajectories, and produce valuable predictions
in unseen settings. Qureshi et al. [Qur+19] coined the term Motion Planning Network
(MPNet) and then improved on the idea [Qur+21]. They used an RRT planner to
collect feasible trajectories in 2D and 3D worlds and encode the environment with point
clouds. Their method works on the Baxter robot for ten known table scenes with 1000
paths per scene. Strudel et al. [Str+20] showed that they could outperform these
results by employing the PointNet [Qi+17] architecture to encode the point clouds of
the environments. They achieved good results in 3D with a sphere and a rigid S-shape
with three translational and rotational DoFs but did not consider a robotic application.
Bency et al. [BQY19] and Lembono et al. [Lem+20] applied variations of the idea
successfully to the two humanoids, Baxter and PR2. However, they only used a single
fixed environment without generalization to different worlds. Lehner et al. [LA18]
trained a Gaussian mixture model to steer the search in a probabilistic roadmap. The
approach was demonstrated on a real 7DoF robot but equally only for one fixed world.
Some works combine the whole pipeline from visual input to the motor actions into a

single end-to-end learning problem [Pfe+17]. The visual input can also be used to make
data-driven predictions on how a robot’s actions will change the environment [FL17].
This visual approach is especially well suited to navigation problems in 2D, as all the
tools of computer graphics and image processing can be applied directly [LMT19]. Still,
those cannot scale directly to more complex robots in 3D.
Other learning methods have also been applied to this problem. For example, Jur-

genson et al. [JT19] used reinforcement learning with convolution layers to process the
occupancy map of the world for 2D serial robots. They invoke a classical planner only
for cases where random exploration fails to find a feasible solution, so they implicitly use
this expert knowledge to guide the training. Pandy et al. [PLC21] introduce a different

44

3 Learning-Based Motion Planning

approach, where the dataset generation is skipped entirely, and the network is directly
trained using the objective function of the planning problem as the training loss, i.e.,
no supervision is used. However, they only use geometric primitives to represent envi-
ronments with few obstacles, limiting the flexibility. Diffusion models were also applied
to robot motion planning [Jan+22]. While their generative capabilities are promising,
conditioning them on realistic environments is still challenging.

Inverse Kinematics There are also many learning-based approaches for solving the
IK problem more efficiently. One problem all those methods suffer from is the sizeable
nullspace of possible configurations [KRS18] and the inherent ambiguity of the IK so-
lution. An early idea to make learning in the vast configuration space faster and more
manageable was to use function decomposition [AT05]. Goal babbling [RSG10] permits
us to explore this space more efficiently and without the direct need for a large amount of
expert knowledge. Structuring and combining predictions can help to tackle ambiguous
solutions [Boc+11], and using the underlying symmetries of the IK problem is essential
for a good generalization [RSG09]. It can be beneficial to split the robot kinematics
into distinct parts and learn the inverse mapping for similar parts separately [AZ19]. To
improve the speed and portability of IK methods, Zaidel et al. [Zai+21] introduce a neu-
romorphic approach that they apply to a 7DoF robot arm. Combining neural networks
and fuzzy hints is another possibility to learn joint-wise inverse kinematics [AWI06] or
the complete inverse mapping for the whole workspace [DGD19]. Further complexities
arise when the kinematic is not purely geometric, but secondary aspects like elasticities
need to be modeled [CL16].
All learned IK methods described so far consider an obstacle-free working environment.

Lehner et al. [LRA22] leverage transfer learning between similar robot kinematics in a
single environment with obstacles. They use the network predictions to guide a Rapid
Random Tree (RRT) motion planner. IK can also be understood as a means to avoid
self-collision. The nullspace of redundant robots can be used to move different body
parts out of collision [SAL15; HLH24]. Another option is to use Generative Adversarial
Networks (GANs) to learn constrained robot configurations [Lem+21]. They use the
predictions of those networks as an initial guess for an optimization-based planner to
warm-start the IK problem and as samples for an RRT motion planner. They consider
the environment for their tasks, but for each new scene, an ensemble of GANs needs to
be trained to counteract the mode collapse and produce valuable samples.

Obstacle Collision

Avoiding obstacles in the environment is a central aspect of robot motion planning and
IK. The combination of a complex kinematic structure and narrow and cluttered envi-
ronments subdivides the solution space into many separate valleys. This fragmentation
is a challenge for both local optimization-based approaches and search-based methods.
The first step in including obstacle avoidance in motion planning is to encode the

environment. Gilbert et al. [GJ85] introduce the concept of distance functions and
their applications to robot path planning. Potential Fields [RK92] work similarly and

45

3 Learning-Based Motion Planning

can be used to represent actual obstacles or to model additional virtual constraints of
the planning problem.
For learning-based methods, one needs to encode the environment for neural networks.

Only then can they learn the spatial relations efficiently and make valuable predictions
in unseen and challenging environments. While point clouds are a typical representa-
tion coming directly from the robot’s sensors, they are not directly usable for an NN
because they are not permutation invariant. PointNet [Qi+17] directly tackles this issue
by adding an invariant operation at an early high-dimensional feature space. Another
option is to fuse the depth information into a binary occupancy map [WFB13]. Espe-
cially when working with larger environments with many relevant details at different
resolutions, data structures like OctTrees are helpful. OctNet [RUG17] brings this hier-
archical concept into the machine learning domain, leading to a more efficient encoding
of deep and high-resolution maps.
A different route is not to represent the high-resolution sensor inputs but to find

a more compact representation. Composing a map into a collection of convex objects
would be especially suitable. Convex objects can be implicitly interpreted as a collection
of half-space constraints or support functions, which makes them especially suited for
neural networks. On the other hand, a fast and accurate decomposition of an arbitrary
map enables well-established methods for distance and collision-checking, which also
speeds up motion planning in general [Sch+14]. Deng et al. [Den+20] demonstrate
how to learn this decomposition for a diverse set of objects, but not yet on the scale of
whole maps of challenging environments.
A robot-centered idea to reduce complexity is to learn the SDF of each link individ-

ually [Liu+23]. This separation allows one to directly query the distance from the 6D
position of a body part to an arbitrarily placed point in the environment, sidestepping
the need to learn the kinematic structure and coupling of the robot’s joints.
For complex mechatronic systems, efficient self-collision avoidance is crucial to motion

planning and IK. In a naive approach, every body part must be checked against all the
others, which is expensive, especially for robots with tree structures like humanoids.
SCAFoI [Fan+15] predicts and dynamically selects the relevant link pairs to be checked
online to improve the computation efficiency. A support vector machine (SVM) predicts
the status of the relative positional relationship for each region of interest.
A central concept in collision avoidance is the swept volume. This measure describes

the workspace volume the robot moves through when following a path. It can be used to
avoid self-collision efficiently [TBF11] or to reduce the problem complexity by focusing
on the irreducible pace space [Ort+18]. While the swept volume is valuable, its accurate
computation for complex robots is often expensive. Therefore, learning-based approaches
to predict the swept volume [Bax+20; Chi+21] between two joint configurations are a
promising alternative to estimate the covered area of a motion.

Contributions

While many learning-based approaches to motion planning and IK exist, none of them
strongly focus on generalizing to arbitrary unseen environments. With the adaption of

46

3 Learning-Based Motion Planning

Basis Point Sets (BPS) [PLR19] as world encoding into the robotics domain and efficient
data generation and training schemes, we introduced a learning-based motion planner [4]
and a learning-based IK solver [5] that can handle complex robots in challenging unseen
environments. For the humanoid Agile Justin, the high-resolution environment model
is generated in real-time from sensor data [WFB13]. We can now use the BPS encoding
of this model directly to plan fast and efficiently in those environments. This quick
motion and IK planning on the self-acquired voxel maps is the basis to safely combine
the different skills of Agile Justin to dextrous grasping and manipulation tasks [Ten+24].
Our main contributions are:

• The introduction of the BPS [PLR19] into learning-based motion planning and
inverse kinematics. This memory- and computational-efficient encoding enables
training and generalization for complex robots in challenging environments.

• A fast learning-based motion planner between arbitrary configurations for complex
previously unseen environments (200ms for the 19DoF humanoid Agile Justin on
a self-acquired high-resolution voxel grid).

• A learning-based fast and accurate solver for IK (for humanoid Agile Justin an
accuracy of 10−4m and 10−3 rad in 10ms).

• Building challenging training and testing environments using Simplex [Gus05]
noise. The worlds can be autogenerated with configurable complexity.

• A supervised training scheme, where we combine the network and the objective
function as a metric to clean, extend, and boost an initial dataset efficiently.

• An unsupervised training scheme where the objective function is used directly to
train the weights of a neural network, skipping data generation entirely.

• Extensive experiments in simulation for different robots ranging from a simple 2D
sphere bot to the 19 DoF humanoid Agile Justin in 3D.

• A report of first real-world experiments for Agile Justin, showing the successful
Sim2Real transfer of the training on Simplex worlds.

• A detailed analysis of the challenges in learning ambiguous IK with collision avoid-
ance and the resulting network, including a twin-headed architecture, a singularity-
free output representation, and boosting.

• The optimal solution to the IK problem varies not smoothly across the workspace.
We show that two heads are enough for a network to predict the sharp switches
between those regions of different modes.

• A benchmark of the supervised and the unsupervised learning approach shows a
ten times faster training time for the latter and a more straightforward training
procedure while outperforming the random baseline significantly.

47

3 Learning-Based Motion Planning

3.3 Optimization-Based Motion Planning
on Voxel Models

In this section, motion planning is formalized. The goal is to move fast and collision-free
through the world. One can distinguish between moving to a given joint configuration
and moving to a cartesian point in the workspace. We humans know the former from
dancing or acrobatics, where the body should move into a particular posture. The latter
is common when interacting with the world. When grasping an object, the important
thing is to reach the object collision-free and not directly to the precise configurations
of all joints and body parts.
The problem of finding a robot configuration that reaches a certain point in the

workspace is called inverse kinematics (IK). As the combined problem of motion plan-
ning plus inverse kinematics is challenging, this work separates it into two distinct
problems. First, solving the IK determines the final joint configuration that reaches
the wanted point. In the second step, the motion from the current configuration of the
robot to this new IK configuration is planned to move collision-free and smoothly through
the world. We rely on an optimization-based motion (OMP) to compute collision-free
paths [Zuc+13] and solutions to the IK. The basic idea is to formulate the motion prob-
lem as an objective function, where finding the optimum of this function is equivalent
to finding an optimal path or IK.
Central to the problem formulation is the robot model, calibrated in Section 2.5.1.

The forward kinematics maps from joint configurations q ∈ RNDoF to the all link frames

f(q) = {Fi}NF
i=1. (3.1)

Each homogenous transformation matrix Fi describes a full 6D pose (Posi,Roti) ∈
R3 × SO(3). The position Pos(Fi) = Posi and orientation Rot(Fi) = Roti of the end-
effectors and all frames of the kinematic tree are relevant to check for self-collisions and
collisions with the environment. In the following, we formulate the different parts of the
objective function for motion planning and the IK.

3.3.1 Path Representation with Substeps

To describe a motion over time Q, we use a discrete set of waypoints

Q = [q1, . . . , qNt], qt ∈ RNDoF , (3.2)

where the relevant terms to build a cost function can be computed for each joint config-
uration along the path. With a finer time resolution of the path, more detailed motions
can be described. However, as those waypoints are the variables of the optimization
problem, there is a direct trade-off between finer resolution and the optimization prob-
lem’s dimensionality and, therefore, the required computation time.
In extension to the original CHOMP algorithm [Zuc+13], we subdivide the path be-

48

3 Learning-Based Motion Planning

Figure 3.3: Discretization of a robotic arm’s motion in space and time. Each robot body
part is modeled as a collection of spheres (yellow) to detect collision with
itself and the environment. The environment is modeled as a voxel model
(black). To ensure all collisions are detected, we use substeps qt,u between
two discrete waypoints qt and qt+1 to explicitly calculate the swept volume
of the path in higher resolution (blue).

tween two consecutive waypoints into substeps qt,u via linear interpolation (see Fig. 3.3).

qt,u = qt +
u

Nu

(qt+1 − qt). (3.3)

This way, a collision-free path can be guaranteed when the number of substeps Nu is
adjusted to the step length and the resolution of the environment model. Also, other
types of interpolation, such as B-splines, are possible. The essential advantage is that
this formulation allows for a moderately small number of optimization parameters while
still capturing all relevant aspects of the motion through the world. So, the swept volume
of each sphere is explicitly (see Fig. 3.3) computed instead of the implict computation
CHOMP performs via a projection of the cartesian velocity vector of the moving spheres.

3.3.2 Objectives for Short, Close, and Collision-Free Paths

Path Length

When ignoring all constraints like collisions, the essential criterion is that the path is
short. One can directly express this in the configuration space by computing the squared
Euclidian norm between two configurations

Uq
l (qa, qb) =

1

2
∥qa − qb∥2. (3.4)

49

3 Learning-Based Motion Planning

Extending this to a path Q in configuration space, one can compute the length cost

Up
l (Q) =

Nt − 1

Uq
l (qNt , q1)

Nt−1∑

t=1

Uq
l (qt+1, qt), (3.5)

which favors short and smooth trajectories. It is convenient to scale the length cost by
the minimal possible path length, the direct connection between qNt and q1. Then, the
shortest possible path always has a cost of one. Scaling the different objective terms in
such a fashion makes weighting them in a total objective function easier.
Another possibility to measure the distance between two configurations is in the carte-

sian workspace

Uq

l̃
(qa, qb, e) =

1

2
∥Pos(f(qb)e)− Pos(f(qa)e)∥2. (3.6)

For this, it is convenient to focus on a relevant frame e, like the end-effector carrying
a cup of tea, or it is possible to sum up the motion of all body parts. This extends
analogous to for a path Q

Up

l̃
(Q) =

Nt − 1

Uq

l̃
(qNt , q1)

Nt−1∑

t=1

Uq
l (qt+1, qt). (3.7)

One can also combine the metrics in the configuration space and in the workspace.
Another related option is to use an energy-based formulation. Here, the robot should
minimize the motion of its mass distribution.

Avoiding Obstacle Collision

To calculate the collision cost between the robot and the environment, we need a model
for both. The forward kinematics F = f(q) maps from joint configurations to the link

frames Fi, and each link’s geometry is described by a set of spheres Si = {xik, rik}Ns,i

k=1

with centers and radii. The world is represented by an SDF D(x), which gives the
distance to the closest obstacle for each point x in the workspace. The collision cost is
then given by the sum of all the collisions of the different body parts

Uq
w(q) =

NF∑

i=1

Ns,i∑

k=1

c
(
D
(
Fi(q) · xik

)
− rik

)
. (3.8)

When considering a path Q, one needs to sum over all waypoints and the substeps
between them

Up
w(Q) =

Nt,Nu∑

t,u

Uq
w(qt,u). (3.9)

50

3 Learning-Based Motion Planning

Figure 3.4: The three images show different constraints of motion planning plus the
corresponding gradients with respect to the joints. Moving locally in these
directions brings the robot closer to fulfilling these constraints.
Left: aligning the end-effectors with desired goal frames Uq

f (3.15);
Center: avoiding obstacle collision with voxel model of the world Uq

w (3.8);
Right: avoiding self-collision with the different body parts Uq

s (3.11).

The smooth clipping function c is introduced to transform the inequality into an equal-
ity constraint, which is then written as an additional cost term in the objective [Sch+14]

c(d) =




−d+ ϵ

2
, if d < 0

1
2ϵ
(d− ϵ)2 , if 0 ≤ d ≤ ϵ

0 , if ϵ < d
(3.10)

It considers only the parts of the robot that are in collision by setting positive distances
to zero. Thus, a collision-free solution has a cost of zero.

Avoiding Self-Collision

In addition to collisions with the world, complex robots must also account for self-
collision. These constraints become challenging, especially when dextrously working
with multiple arms in a small workspace. Using the same sphere model of the robot as
for the obstacle collision, the cost sums up all the collisions between the different body
pairs

Uq
s (q)=

NF,NF∑

j>i

Ns,i,Nsj∑

k,l

c
(∥∥Fi(q)·xik − Fj(q)·xjl

∥∥− (rik + rjl)
)
. (3.11)

51

3 Learning-Based Motion Planning

Figure 3.5: The three robots used in the experiments in environments generated with
Simplex Noise [Per01]. The Flat Arm in 2D helps to analyze and visualize
the IK problem in detail. The LWR III and Agile Justin demonstrate the
capabilities of our method for complex robotic systems.

As the number of checks grows quadratic with the number of spheres in the robot
model, it is often helpful to model the robot with fewer convex shapes or use multiple
layers of accuracy for the collision model. This second approach keeps the computations
straightforward but limits the computation of all detailed spheres to cases where the
coarser representation already detected a collision. Here again, we use substeps to
guarantee collision-free paths by explicitly checking the swept volume along a path Q

Up
s (Q) =

Nt,Nu∑

t,u

Uq
s (qt,u). (3.12)

Reaching End-Effector Target

The equality constraint for the IK is that the distance between a specific frame in the
chain Fe and a target frame F̄ is zero. This can be expressed as an objective function
with a translational part

Uq
p (q, F̄ , e) =

1

2
∥Pos(f(q)e) − Pos(F̄)∥2 (3.13)

and a rotational part

Uq
r (q, F̄ , e) =

1

2
(3− Trace (Rot(f(q)e) · Rot(F̄−1

)). (3.14)

The combined objective term is just the weighted sum of those two terms

Uq
f (q, F̄ , e) = λpU

q
p (q, F̄ , e) + λrU

q
r (q, F̄ , e). (3.15)

52

3 Learning-Based Motion Planning

Figure 3.6: Gradient Descent to solve a simple motion Problem. Even in 2D with a
sphere robot, multi-starts are necessary to find a global solution.

3.3.3 Combined Objectives for
Motion Planning and Inverse Kinematics

Motion Planning

After formalizing the individual aspects of robotic motion planning, we can write the
overall objective function as a weighted sum of

Upath(Q) = λwU
p
w(Q) + λsU

p
s (Q) + λlU

p
l (Q). (3.16)

Note that the weighting factors can be normalized independently of the robot and envi-
ronment and are mainly to ensure the higher importance of the collision terms over the
secondary objectives like length. The advantage of this formulation is that it is easy to
incorporate additional goals like energy efficiency or avoiding certain workspace regions.
With this formulation, the optimal path Q∗ and solution to the motion task is the one

with the lowest objective value

Q∗ = argmin
Q

Upath(Q). (3.17)

A direct approach to find a solution of this optimization problem for iteratively finding
a minimum of the objective function, starting with the initial guess Q0,

Qi+1 = Qi − α
∂Upath(Qi)

∂Qi

. (3.18)

53

3 Learning-Based Motion Planning

We use standard gradient descent (see Fig. 3.6), as efficiency in the OMP part is not the
primary concern of our method, and it allows for easy adaption and parameterization.

Inverse Kinematics

In the overall objective U ik for the IK, one part is concerned with the frame at the
end-effector Uq

f , and one part accounts for the collisions and additional objectives UA:

U ik = Uq
f + UA

with Uq
f = λpU

q
p + λrU

q
r (3.19)

and UA = λwU
q
w + λsU

q
s + λlU

q
l .

While the mapping from the joint configuration to the end-effector frame is unique,
the same does not hold for the inverse mapping. For an over-actuated robot, infinitely
many joint configurations can reach a given frame in the workspace. However, one is
usually not interested in an arbitrary solution but one which satisfies additional criteria.
We introduce an additional term to the objective, namely the closeness Uq

l (q, q̄) to a
default configuration q̄: minimizing Uq

l makes the mapping unique and ensures that
the solutions are close to the default configuration, making motion planning to this
configuration faster and easier. The optimal configuration q∗ and solution to the IK
problem is the one with the lowest objective

q∗ = argmin
q

U ik(q). (3.20)

Solver with Nullspace Projection

While this formulation as an optimization problem is complete and (3.19) is used to
train the unsupervised networks in Section 3.4.4, it is often not efficient to solve this
complex cost function jointly. To weaken the impact of competing terms in the objective
function, we solve the IK problem in two steps.
First, we solve the pure IK with a projection step to ensure the constraints at the end-

effector Uq
p and Uq

r are satisfied. This root search can be solved by iteratively applying
the pseudo-inverse of the end-effector constraints:

∆p =
[
Uq
p (q) , U

q
r (q)

]
(3.21)

J =

[
∂Uq

p (q)

∂q
,
∂Uq

r (q)

∂q

]
(3.22)

qi+1 = qi + J†∆p (3.23)

For the humanoid Agile Justin, the IK requirements in the real world are to be accurate
below 10−4m and 10−3 rad. This numerical threshold is one order of magnitude more
accurate than the actual accuracy of the calibrated system [1; 2].
In the second step, we apply gradient descent with nullspace projection to satisfy the

collision constraints and optimize the additional terms in UA. Each gradient step is

54

3 Learning-Based Motion Planning

Figure 3.7: The graphic visualizes the two-stage solution process for a collision-free IK.
The naive approach with random guesses is on the left, and the sped-up
approach using the learned prediction of a neural network is on the right.

again projected on the IK manifold to ensure the constraints at the end-effector stay
satisfied

qi+1 = qi + (I − JT (JT)†)
∂UA(q)

∂q
. (3.24)

These update steps push the configuration out of collision and closer to the default pose.
While those gradient-based approaches are straightforward to implement and converge
quickly for a given sample, they are also susceptible to the initial guess. Especially
for complex robots and environments, multiple samples are necessary until a feasible
solution is found.
Fig. 3.7 shows the steps of the two-stage IK procedure and compares random mul-

tistarts and the prediction of a neural network as initial guesses. In the left image, 20
initial random guesses of configurations (light blue) colors are used. These configurations
are then projected onto the desired end-effector (red coordinate system) using (3.23),
ensuring that translational and rotational constraints are satisfied (steel). Then, we
compute the gradient of UA and apply gradient descent inside the end-effector nullspace
(3.24) to move the robot out of collision and closer to the default configuration (dark
blue). After these steps, only five feasible solutions remain. This ratio gets even worse
for more complex robots in challenging 3D environments, which Table 3.5 analyzes in
more detail.
The right image showcases the same two-stage process when using the single prediction

of an IK network but for two network variants. As the predictions of both networks are
close to the desired end-effector, the projection step on the end-effector is not shown

55

3 Learning-Based Motion Planning

Figure 3.8: Representation capabilities of SDF and BPS for different resolutions.

here. The neural networks eliminate the need for exhaustive multi-start searches and
can speed up the computation significantly. The design and training of such networks
follow in the next section.

3.4 Learning for Speeding-Up
Optimization-Based Motion Planning

The idea is to mitigate the strong dependence on the initial guess and to reduce the
susceptibility for local minima by using the prediction of a neural network as a warm-
start for the optimization-based solvers. This learning-based initial guess should replace
the otherwise random multi-starts and speed up the local planning approach, especially
in unknown and challenging situations (see Fig. 3.2).
We discuss two methods for training such neural networks for motion planning and

inverse kinematics. The central idea is to use the respective objective functions Upath and
U ik. One can either use it to generate training data with a non-learning-based OMP
algorithm, or one can use an unsupervised regression approach, where the objective
function is directly used to update the network weights via backpropagation.

3.4.1 Environment Representation

If a network should produce collision-free predictions for arbitrary unseen environments,
it needs to “understand” the scene. Hence, a suitable encoding of the world is essential.
Two common environment representations in robotics and computer vision are occu-
pancy grids WO and point clouds WP. Both have their advantages and disadvantages.

56

3 Learning-Based Motion Planning

While occupancy grids can be processed like images in 2D, their memory inefficiency and
the high computational cost for the convolution operations become a burden in 3D. On
the other hand, point clouds are a denser representation. Still, they have no fixed size
and no inherent ordering, making it hard for a network to learn a permutation invariant
mapping.
Prokudin et al. [PLR19] introduced BPS to represent spatial information in computer

vision, which is especially suited for deep learning. Choosing a fixed set of basis points
once and measuring the distances relative to this set for all new environments does not
have the problem of varying permutations and lengths as point clouds have. It is also
far more efficient in terms of memory and computation than voxel grids, allowing fast
training in high-resolution 3D environments.
The BPS representation can be understood as a subsampled SDF. Formally, the BPS

is an arbitrary (see Fig. 3.9) but fixed set of points

B = [b1, . . . , bNb
], bi ∈ Rd. (3.25)

The feature vector WB passed to the network consists of the distances to the closest
point in the environment for all basis points. If the environment is defined by a point
cloud WP, this can be calculated by

WB = [min
xi∈WP

|b1 − xi|, . . . , min
xi∈WP

|bNb
− xi|]. (3.26)

Alternatively, if the environment is given by an occupancy grid or a distance field D like
we used for OMP in Section 3.3, one can directly look up the feature vector

WB = [D(bi), . . . , D(bNb
)]. (3.27)

With the second approach, it is possible to use signed distances. This directly adds a
notion of inside and outside to the representation of the world.
Fig. 3.8 visualizes the concept of BPS and shows their representation capabilities in

comparison to a simple voxel model. The top left image is the basis; this 64×64 = 4096
occupancy map should be encoded. On the left side, SDF and voxel images for different
resolutions are shown. On the right, a regular BPS with 16 × 16 = 256 points and
their respective distances to the closest obstacle in a high-resolution occupancy map is
shown. Blue areas describe positive distances to obstacles and are guaranteed free of
obstructions. Red regions show negative distances and are completely inside barriers.
We can draw no direct conclusion from the white areas, but they have to be marked as
obstacles to be conservative. The BPS representation for this regular grid is equivalent
to subsampling a high resolution 64 × 64 SDF. The bottom right image shows the
reconstruction of the BPS to the full image with the errors marked in orange. A patch
of the original grid is added to highlight the difference in resolution. The far more
conservative result of reducing the resolution of the occupancy grid by the same factor
is highlighted in red. This comparison demonstrates that the basis set preserves more
information than conservatively shrinking the occupancy grid by the same factor. A

57

3 Learning-Based Motion Planning

Figure 3.9: The three plots show different modes of generating the BPS. Each set con-
tains 256 points. Randomly choosing the set can lead to large unseen areas
in the workspace. Utilizing hexagonal close packing (hcp) ensures that the
distance between all points of the set is equal, thereby achieving a uniform
coverage of the workspace.

further advantage of the untruncated distances is that, even if there are no nearby data
points close to a basis point, they can nevertheless help represent a surface further away.
Those attributes make BPS a good choice for encoding the environment for motion
planning and IK networks, which are discussed in the following sections.

3.4.2 Robot Representation

The configuration space Q ⊆ RNDoF of a complex robot is vast and generally not sparse.
While there are configurations that the robot cannot reach because of joint limits or
self-collision, the majority of the space is feasible. The space becomes even larger when
not considering just a single configuration but a whole motion RNt×Q. This path space,
however, can be viewed as sparse, as consistent paths are not an arbitrary mess of entirely
different configurations. The constraints of timely ordering and a smooth variation of
the configurations along the motion reduce the space of actual paths. Nonetheless,
configuration space and path space are vast, and to facilitate effective learning, the
representation of those spaces for the network’s input and output is crucial.

Joint Configuration Encoding

When looking at the IK problem or collision avoidance, the network needs to understand
the mapping between configuration space and cartesian workspace. We use a singularity-
free representation for the robot’s joint configurations using 2D unit vectors instead of
the joint values in radians. In the plane, the unit vector is a natural representation of
an angle, which inherently corresponds to the directions vector in the workspace. This
modification is especially relevant if the joint limits are [−π,+π] or close to it. Moreover,
even in three-dimensional spaces and with stricter joint limits, this encoding choice
enables the network to more effectively capture the underlying problem. By utilizing

58

3 Learning-Based Motion Planning

Figure 3.10: The scheme shows two different variants to represent a path. Either use
the absolute configurations along the waypoints or the relative difference to
the straight connection between the start and goal.

this singularity-free representation, the network eliminates the necessity to internally
manage a switch for joint values nearing singularity points. We enforce this encoding
scheme by directly mapping the network inputs and outputs onto the unit circle.

Relative Path Encoding

The naive encoding of a path is just the array of waypoints, each a snapshot of the
current joint configuration. Expecting a neural network to learn and understand this
representation is challenging. While there are definitely similarities and common struc-
tures in different motions, they do not become obvious in this geometric representation.
As the path space is vast, but the subset of actual paths is much smaller, it is beneficial
to choose an encoding that more closely represents the structure of actual paths.
For that matter, a central concern is using invariances and common patterns of motion

planning. The idea is to use the first best guess, the direct connection in configuration
space between the start and goal, as the basis for the encoding. Instead of using the
absolute configuration for every waypoint, the distance to the respective waypoint on
the straight connection is used (see Fig. 3.10, blue). This representation is not absolute
and always needs a start and end configuration to which it is applied. The advantage
is that this path representation is invariant to many different setups. A zero vector as
encoding is always identical to the direct connection in absolute terms. Furthermore,
notions like the path is curved to the left persist across different pairs of start and goal.
Another benefit of this encoding scheme is that the neural network learns from a

reasonable starting point. At the beginning of the training, the network’s predictions
are just noise. The relative path encoding adds this noise to the direct connection
between the start and end points of the given motion task.

Symmetries of Motion Planning Data generation is costly, so one can use symmetries
in motion planning to efficiently use the information in each sample. If one has the
optimal path from A to B, one also has the solution from B to A. This assumption is no
longer valid if terms in objective function break the temporal symmetry. Furthermore,

59

3 Learning-Based Motion Planning

Figure 3.11: Network architecture to map from a given motion task (world, start, and
end configuration) to an optimal path. Blocks of tapered Fully Connected
Layers (gray) are combined like the DenseNet architecture [Jég+17] via
skip-connections and concatenations. See the bottom of Table 3.2 for the
number of network parameters used for the different robots.

many robots also have spatial symmetry axes. Often, it is possible to align the first joint
of the robot with one axis of the cartesian coordinate system of the environment. Doing
so allows us to rotate the world and this first joint simultaneously without changing the
optimality of the resulting trajectory in the new world. Chamzas et al. [CSK19] use
this spatial symmetry to store paths in their database more efficiently. While ideally, one
wants to integrate these symmetries directly in the data representations or the network
architecture, we also use them to augment and increase the dataset.

3.4.3 Supervised Learning

First, we look into supervised training for motion planning. The network should encode
the experience of successful paths by learning a mapping from a motion task, consisting
of a world and a start q1 and end configuration qNt , to the intermediate waypoints of an
optimal path Q∗ = [q2, ..., qNt−1]. Fig. 3.11 shows the network architecture we use.
Besides encoding the in- and output of the network (see Sections 3.4.1 and 3.4.2),

a crucial point for supervised learning is the dataset. The following section discusses
several insights into the generation and usage of such a dataset with and for OMP. Our
methods substantially increase the final prediction quality of our network and make
training more efficient. See Section 3.5.2 for experimental validation of these methods.

Dataset Adaption for Efficient Learning

The idea is to no longer rely on random multi-starts and speed up the planning time by
using a neural network to predict an initial guess for OMP. The network should encode
the experience of successful paths by learning a mapping from a motion task, consisting
of a world and a start q1 and end configuration qNt , to the intermediate waypoints
of an optimal path Q∗ = [q2, ..., qNt−1]. Fig. 3.11 shows the network architecture we
use. Besides encoding the in- and output of the network, a crucial point for supervised
learning is the dataset. The following section discusses several insights into generating
and using such a dataset with and for OMP. Our methods substantially increase the final

60

3 Learning-Based Motion Planning

Figure 3.12: The graphic shows three examples where even 100 random multistarts did
not converge to the optimal solution. The suboptimal regions are high-
lighted in yellow.

prediction quality of our network and make training more efficient. See Section 3.5.2 for
experimental validation of these methods.

Challenging Samples The training data distribution should represent the actual ap-
plication and focus on challenging examples. Suppose the dataset is too easy, and direct
linear connections from A to B drastically outweigh more complex trajectories. In that
case, training the network can quickly get stuck in a local minimum and predict only
straight lines, regardless of the given task. One possibility of generating a dataset with
more challenging motion problems is to consider only samples where OMP using the
direct connection as an initial guess does not converge to a feasible path.

Consistent Samples Besides finding challenging samples, the ambiguity of motion
planning (more than one feasible solution) can become a problem for trajectory regres-
sion. Even if we assume that we can resolve the ambiguity of the optimal path via
the objective for the shortness of the path, there will be “close calls” in the dataset,
that is, two paths with almost the same objective values but fundamentally different
geometries. Furthermore, the classical planner using a limited number of multi-starts
can only produce suboptimal labels (see Fig. 3.12), making it hard for the network to
learn consistent mapping. This suboptimality is especially problematic for challenging
tasks, where the classical planner often fails and only produces feasible paths in a small
fraction of the attempts.

Interplay between Network and Dataset

We propose to use the neural network Θ to correct and enhance its own training data
S = {(x, y)}. This approach is possible whenever synthetic data is used for training,
and one has an objective metric to measure the quality of a prediction. The assumption

61

3 Learning-Based Motion Planning

Figure 3.13: left : Comparison between 50 random samples and 50 samples in the hard
set after the training finished. right : The predictions of the twin heads
both satisfy the end-effector for a hard position and still show two distinct
modes.

is that the network can learn some aspects of the problem even on an imperfect dataset,
and its predictions will become better than those of random guessing.
When generating a dataset with and for OMP, we can use the objective Upath(Q) as

a universal quality metric. The idea of interweaving the network training closer with
the dataset generation and improvement is summarized in Fig. 3.14 and described by
Algorithm 1. In what follows, we give a detailed explanation of the different methods.

Clean First, the network can be used as guidance to double-check where the dataset is
inconsistent (see Fig. 3.12). If the label and the network’s prediction Qp are close, and
the respective objective Upath(Qp) is small, no action is necessary. However, if there is a
discrepancy between prediction and label, it is worthwhile to use more multi-starts with
the OMP to get a better label for the sample. If a prediction has a better objective than
the current label, we can replace it without adding any bias to the dataset. Doing so
will improve the labels and make the dataset more consistent. This makes it easier for
the network to find the underlying patterns.

Boost After some training, the network has learned to predict good paths for the rel-
atively simple samples, but the more challenging outliers are still not solved. Therefore,
we use boosting to select challenging samples with higher probability during training,
increasing the incentive to learn these samples. We steer this kind of curriculum again
by using Upath as a metric: the higher the difference between the predicted and actual
cost for a given sample, the more challenging it is. In our experiments, the challenging
tasks for the network correlated well with the relative path length and the number of
obstacles in the scene.

62

3 Learning-Based Motion Planning

The idea of boosting can also be applied to unsupervised training. In that case, the
loss function of the neural network and the total objective U ik(q) are identical. This
measure can directly be used to over-represent complex samples. We define a sample q
as hard if its cost U ik(q) is four times higher than the rolling mean.
The positive effect of boosting can be seen in Fig. 3.13 (left) for a 5DoF arm in 2D.

In the image, 50 random but feasible samples for the robot in the given environment
are drawn in red, and in blue, 50 samples that were in the hard set after the training
finished. The challenging samples are more extended and fill the narrow passages in
the world more completely than the random samples, which tend to cluster towards the
center of the workspace.

Extend Lastly, one can use the network to generate new samples. The idea is to use
the network’s performance on a new sample as a metric for information gain. To improve
the network, one wants specifically to add samples where the network performs poorly.
To decide this before spending resources to produce a new label using OMP, one can use
the objective of the prediction Upath(Qp). If it is small, the network can solve this task
already. However, if the objective is significant, the task is challenging for the network,
and we include it in the training set.

Figure 3.14: Scheme showing the connection between non-learning-based solver, dataset,
and neural. The colored arrows indicate the information flow for cleaning,
extending, and boosting the dataset with the guidance of the network.
Clean: use the solver to update labels in the solutions set;
Boost : overrepresent hard examples to make training more challenging;
Extend : generate new hard samples and add them to the problem set.
The detailed algorithm is described in Algorithm 1.

63

3 Learning-Based Motion Planning

Algorithm 1 Improvement of Network and Dateset.
For a visual description, refer to Fig. 3.14.

procedure main
create initial dataset S = {(xi, yi)}NS

i=1 with OMP
train net Θ on dataset S
while improvement on testset do

CleanDataset(S,Θ)
ExtendDataset(S,Θ, N = |S|/20)
BoostDataset(S,Θ, pperc = 0.8, pratio = 0.9)
train net Θ on dataset S

procedure CleanDataset(S, Θ) ▷ Clean
for (xi, yi) in S do

yp ← Θ(x)
y∗p ← OMP(x, yp)
if Upath(y∗p) ≤ Upath(y) then

S.replace(y ← y∗p)

procedure ExtendDataset(S, Θ, N) ▷ Extend
for k ← 1 to N do

xi ← sampleNewProblem()
if Vp < Upath(Θ(xi)) then

yi ← OMP(xi)
S.append((xi, yi))

procedure BoostDataset(S, Θ, pperc, pratio) ▷ Boost
V ← [Upath(Θ(xi)) for (xi, yi) in S]
Vp ← percentile(W, pperc)
for (xi, yi) in S do

if (Upath(Θ(x)) < Vp and random(0, 1) < pratio) then
S.remove((xi, yi))

64

3 Learning-Based Motion Planning

Figure 3.15: The graphic shows the flow of information through the neural network for
IK. In the lower half, the detailed network structure for inverse kinematics
of Agile Justin (19DoF) is shown, with two heads and the unit vector
representation for the joint angles.

3.4.4 Unsupervised Learning

Alternatively, as the objective function (3.19) holds all the necessary information to
quantify a given configuration, it can be directly used as a loss function for training
a network. Pandy et al. [PLC21] introduced unsupervised regression networks for
robotic motion planning. We adapt the idea and discuss the extensions needed in the
context of IK.
For a given problem defined by a world xW and a frame xF, one can directly calculate

the gradients of (3.19) with respect to the network weights Θ by using the chain rule:

∂U ik

∂Θ
=

∂U ik

∂q

∂q

∂Θ
. (3.28)

Fig. 3.15 shows the information flow through the network. The IK problem is described
by a world xw, and a frame in the workspace xf and the network should predict a
collision-free joint configuration that satisfies the end-effector. The dotted line indicates
the backpropagation during unsupervised training, where the network weights Θ are
directly updated according to the gradient of the cost function U ik.
The huge advantage of this unsupervised approach is that no computationally expen-

sive generation of expert data is needed as in supervised learning. Here, different worlds
xW and target frames xF are sampled randomly, and via backpropagation the resulting
gradients can be directly computed. This makes it faster and more straightforward to
train.

65

3 Learning-Based Motion Planning

Figure 3.16: Feasibility map (right/blue) for the 2D arm with 5DoF for a specific en-
vironment. The maximal position error (center/green) and the maximal
orientation error (left/red) highlight which regions are challenging for the
network in more detail. The error maps show the maximal error over all
orientations for each 2D position in the image.

To analyze the IK problem in the whole workspace, we generated feasibility and er-
ror maps of the robots in the different scenes. Fig. 3.16 shows three maps: feasibility
(blue), maximal position error (green), and maximal orientation error (red) for a given
position in the workspace. The maps were generated by sampling the whole joint space
and collecting which Euclidian targets were reached. Then, the position and the orien-
tation error for each feasible target were computed. In general, the overall number of
feasible poses decreases towards the borders of the workspace. Depending on the robot’s
kinematics, not only the parts of the workspace with obstacles are unreachable, but
also areas behind obstacles. This distribution highlights again the benefit of boosting
(see Section 3.4.3) to counteract the underrepresentation of challenging samples close
to obstacles and the edge of the workspace. Those error maps can assess the network’s
performance over the whole workspace and are far more detailed than random test sets,
which are commonly used. The following sub-sections discuss the insights of this detailed
analysis, which gave rise to our network and learning architecture.

Mode Switches and Twin-Headed Networks

While the length cost Uq
l ensures, in general, that there is one optimal solution, there

are still different modes over the workspace, and the network must switch between those
modes to successfully predict optimal IK solutions for all possible targets. Fig. 3.17
visualizes the general concept of mode switches between a pair of modes to ensure an
optimal solution. Assuming there exist different modes of varying costs U ik across the
workspace and the network should make the optimal prediction at each position p, it
needs to switch between those modes. The transition regions are complex to represent

66

3 Learning-Based Motion Planning

Figure 3.17: The 1D scheme shows the necessity of mode switches over the workspace p
to get a globally optimal solution with respect to the cost function U .

Figure 3.18: comparison between a single-headed network on the left and a twin-headed
network on the right for the IK prediction of a 5DoF robot. The desired
end-effector frame follows a line on fixed orientation.

for a neural network and can lead to significant errors.
This behavior plus our solution is visualized in Fig. 3.18. For the 2D arm with 5DoF,

the transition regions can be seen in the heat map. This underlying red heat map
indicates the worst orientation error across all 2π possible (discretized with 2880) goal
orientations at each position. The distinct circular pattern (left) shows the transition
region between two modes, where the prediction of the single-headed network breaks
down. The specific position of these transition regions depends even on the initial
weights of the network, but each initialization has the same behavior. There are always
regions where the network needs to represent the switching between two modes. One
can see the prediction breakdown by gradually moving the target frame from outside the
ring (green) along a straight path to a position inside the ring (red). In the transition
region, the network switches modes and cannot produce valuable predictions.
By adding a second head to the network, which outputs a second prediction, one

67

3 Learning-Based Motion Planning

Figure 3.19: The color map shows which head scores better for the objective function
over the whole workspace: head one is red, and head two is blue. Visit the
website for the full animation.

can overcome this problem. Each head of the twin model also has its own transition
regions, but as those two areas do not intersect, one always has a valid and smooth
prediction for the configuration. It is essential to add that two heads are enough, even
for more complex settings with multiple modes. The two heads do not represent the
modes directly but only mask the transition region between pairs of modes.
We introduce an additional loss UH = ∥qa− qb∥ between the two heads of the network

to counteract mode collapse and gain a valuable second guess. Both heads are trained
simultaneously via backpropagation. Fig. 3.13 (right) highlights that maximizing the
difference in configuration space between those heads produces fundamentally different
solution modes. Besides allowing sharp switches between modes, this approach leads to
the simplest version of a generative model, with much more accessible training and no
need for network ensembles [Lem+21] to prevent mode collapse.
Fig. 3.19 visualizes the predictions of the two heads across the workspace. The goal

orientation of the end-effector is in the top left of each image of the series. As for the
error maps (Fig. 3.16), the heatmap shows the error over the whole workspace. Darker
colors represent more significant errors, and the color indicates which head scores better
in the objective function for the specific position. Head one is red, head two is blue, and
they perform differently over the workspace. Rotating the goal orientation changes this
pattern, especially the symmetries in the kinematics become apparent when following a
complete revolution. In addition, the predicted robot configurations are shown at two
positions to visualize the different modes.

68

https://aidx-lab.org/2023-humanoids-ik/

3 Learning-Based Motion Planning

Figure 3.20: Three examples of the networks’ capability to make global changes in the
prediction for slightly altered problems.

3.5 Experimental Evaluation

This section shows the results of the supervised and unsupervised learning methods for
multiple robots with different levels of complexity. To evaluate the networks, we use their
prediction as a warm-start for the optimization-based solvers described in Section 3.3
and compare convergence and feasibility rates for unseen test sets. We analyze the
proposed methods’ influence on the quality of the network predictions and compare
them to random baselines. Furthermore, we show some real-world experiments on the
humanoid Agile Justin.

Qualitative Analysis

Motion Planning In motion planning, small changes in the problem often lead to fun-
damentally different solutions. Fig. 3.20 shows a qualitative analysis of the network
predictions for motion planning. The changes in the start configuration (left) and the
environment (middle, right) are highlighted in orange. The networks’ predictions af-
ter optimization for those new problems are shown in the bottom row, indicating the
networks can react sharply to small input changes. Our worlds and training were chal-
lenging enough that the networks react sharply to small changes in the input, predicting
completely different solutions to only slightly altered problems.

69

3 Learning-Based Motion Planning

Figure 3.21: Generation of random worlds using Simplex noise [Per01; Gus05]. By chang-
ing the resolution (top) and the cut-off threshold (bottom), the height maps
can create a wide range of diverse worlds for training and testing.

3.5.1 Challenging Datasets and Test Environments

We used different types of robots and setups to evaluate our methods. In 2D, we inves-
tigated a simple sphere robot with 2DoF and a serial arm with 4 or 5DoF to analyze
general behavior and obtain detailed visualizations. Furthermore, we used two real 3D
robots: the LWR III [Hir+02], a robotic arm with 7DoF, and humanoid robot DLR
Agile Justin [Bäu+14] with 19DoF distributed over an upper body and two arms.

Challenging Environments To generate diverse and challenging worlds, we used sim-
plex noise (see Fig. 3.21. This gradient noise is used in video games to create random
but naturally-looking levels. A typical example is a continuous height map. By chang-
ing the cut-off threshold and the resolution of this noise, we can vary the density and
form of the obstacles in the binary occupancy grid. To ensure that the environments are
not too densely packed with obstacles, at least 200/1000 random robot configurations q
must be feasible to include a world in the dataset. Examples of the worlds can be seen
in Figs. 3.1a, 3.5 and 3.22.
Table 3.1 compares how suited different environments are for training and testing

motion planning and inverse kinematics. We argue that our simplex worlds outperform
the austere block or sphere worlds. To validate this, we used an auto-encoder setting.
We generated 10000 training worlds for each distribution: block, sphere, and simplex.
Additionally, we generated 1000 unseen test worlds for all settings. The worlds we used
were 64× 64 pixels large, and we used 512 basis points to encode the worlds as input for
the neural networks. For the block worlds, the number of blocks was sampled uniformly

70

3 Learning-Based Motion Planning

Figure 3.22: Examples of random 3D worlds for our learning framework. Each map has
a size of 643 pixels and is the ground truth for collision avoidance and safe
planning. The worlds were generated using Simplex noise [Per01; Gus05].

Figure 3.23: Examples of training data of the robotic arm LWR III for supervised learn-
ing. Those collision-free paths were generated with an OMP solver using
extensive random multi-starts (see Section 3.3) with a focus on the global
optimality of the samples for a consistent training signal.

between 1 and 50, and the side lengths of each block were sampled between 1 pixel
and 30% of the whole workspace. For the sphere worlds, we used the same settings for
the number of spheres and their radii. We measure the performance of the networks
by looking at the reconstruction error. This measurement is done in image space by
mapping the BPS encoding to a full occupancy map, as shown in Fig. 3.8. We report
the average number of falsely classified pixels.
When contrasting the performance of an autoencoder trained on block worlds or sphere

worlds against an autoencoder trained on our simplex worlds, the latter is more gen-
eralizable. While the autoencoder trained on block or sphere worlds performs well for
a test set from the same distribution, generalization to other settings is poor. How-
ever, when training the autoencoder with simplex worlds, the ability to generalize to
out-of-distribution worlds is much better.

Motion Planning Dataset To generate the correct labels in the training data for the
motion planning networks we used the OMP approach described in Section 3.3.3, with
naive gradient descent and fixed step size. The paths consist of Nt = 20 waypoints, and
to make the dataset challenging, we only included hard tasks. We define a task as hard

71

3 Learning-Based Motion Planning

Table 3.1: Comparison between simplex worlds and block worlds for autoencoding. Re-
ported is the percentage of incorrectly predicted pixels.

10000 training worlds Tested on
1000 unseen test worlds block worlds sphere worlds simplex worlds

Trained on
block worlds 3.7% 11.2% 15.6%
sphere worlds 6.4% 3.9% 12.8%
simplex worlds 5.7% 4.3% 5.5%

if a straight line as an initial guess does not converge to a feasible solution. All other
paths were discarded as too easy. We used up to 100 multi-starts and always picked the
shortest feasible solutions as the correct label. The heuristic for generating the initial
guesses was to use one to three random points in the configuration space and connect
them linearly with the start and endpoint. See Table 3.2 for an overview of the robots
and the datasets.
Overall, we generated 10000 simplex environments for each robot and at least 10 (and

up to 1000) paths in each environment. 9000 of those worlds were used for the network’s
training, and the remaining unseen worlds were for testing. All the motion planning
results in Section 3.5 are based on this unseen test set. As a quality measure, we report
the feasibility rate ϕ, i.e., the quotient of the number of feasible paths and the size of the
test set. Generating those extensive datasets is time-consuming but can be parallelized
entirely. To evaluate the methods and the networks online, we measured all timings on
computers with Intel i9-9820X @ 3.30GHz with 32GB RAM. While all 16 cores are used
for training, the online prediction runs only on a single core.

3.5.2 Learning-Based Motion Planning

Network

The last lines of Table 3.2 show the network details in numbers, and Fig. 3.11 displays
the general architecture. All the networks were trained purely supervised with a mean
squared error between the predicted path Qp and the label Q as loss function. As the
encoding for the path, the deviation from the straight line is used. This representation
implies that even an untrained network producing only random noise around zero can
make meaningful predictions. For start and end, we use the normalized joint vectors q1
and qNt as input. As environment encoding, we use the BPS described in Section 3.4.1
with a hexagonal closed packing and only consider points inside the robots’ maximal
reach. See Fig. 3.25 for an analysis of the dependency of the prediction quality on the
size of the BPS.

72

3 Learning-Based Motion Planning

Table 3.2: Overview of the motion planning datasets and networks for the different
robots.

Sphere Bot Flat Arm LWR III Agile Justin

DoF 2 4 7 19
World size 10× 10m2 1.0× 1.0m2 1.2× 1.2× 1.2m3 3× 3× 3m3

Grid dimensions 64× 64 64× 64 64× 64× 64 64× 64× 64
Worlds 104 104 104 104

Paths 0.6× 106 6.5× 106 2.2× 106 3.7× 106

Avg. time p. core 0.1 s 0.8 s 3.1 s 8.4 s

Improvements 0.1× 106 0.3× 106 0.2× 106 0.3× 105

Extensions 0.5× 105 1.5× 105 3.0× 105 5.0× 105

Avg. Upath(Q) 1.589 1.7136 1.551 1.483
Avg. Feas. ϕ 67.3% 32.6% 54.5% 44.1%

Avg. time p. core 0.1 s 0.8 s 3.1 s 8.4 s

Net
In → # Out 516→ 39 520→ 72 2062→ 126 2086→ 342

|WB| 512 512 2048 2048
Nt 18 18 18 18

Parameters 3.4× 106 7.5× 106 2.4× 107 4.1× 107

Analysis of Dataset Adaptions and Training

Table 3.3 shows the influence of the methods for dataset adaption during training as
discussed in Section 3.5. As a metric, we use the feasibility rate ϕ of the predicted paths
after further iterations with the OMP as described in Section 3.3.3. First, we compare
the hard and the easy datasets. Because the easy dataset consists only of paths produced
from straight lines, the overall variance is too slight, and the network does not learn to
avoid the obstacles. This network is not able to solve the test set of hard examples.
Next, we introduced the different modes of data augmentation to increase the size of the
dataset. The temporal and spatial symmetries improve the feasibility rate ϕ without
additional computing costs. The number of cleanings describes how often the labels were
updated with the help of the neural network. Each iteration brings the labels closer to
the optimal solution and makes the dataset more consistent, leading to better results.
At this stage, the network performs well with a success rate of over 85%, but there are
still tasks the net cannot solve. We add the boosting technique to overrepresent more
challenging samples during training to increase the feasibility further. As the final step,
we use the trained network to generate more challenging samples. With this approach,
we achieved 100% feasibility on the hard unseen test set.

Comparison to Random Multi-Start

The capabilities of our method become apparent when we compare the network’s predic-
tion to the heuristic with random multi-starts used to create the dataset. In Fig. 3.24,

73

3 Learning-Based Motion Planning

Table 3.3: Influence of different dataset distributions, dataset extensions, and training
methods on the feasibility of predicted paths for Agile Justin.

Dataset Training Feasibility ϕ
Cleans Distribution Aug. Boost Network +OMP

0 easy no no 0.042 0.347
0 hard no no 0.126 0.653

0 hard axis no 0.133 0.691
0 hard time no 0.138 0.736
0 hard both no 0.143 0.772
0 hard both yes 0.171 0.859

1 hard both yes 0.196 0.893
2 hard both yes 0.217 0.925
3 hard both yes 0.223 0.941

3 hard + ext. both yes 0.283 1.00

the convergences to a feasible path of different initial guesses are displayed for the LWR
III and Agile Justin. Without any experience, the best one can do is try random multi-
starts and hope one converges. From the 100 multi-starts we used per task, only 50%
converge to a feasible solution after 50 iterations. Even the lucky initial guess, which
converged the fastest for each problem, gets outperformed by the network’s prediction.
The crucial difference is that our network does not depend on chance but can reliably
predict initial guesses that converge after a few iterations to a feasible solution.
The actual speed gain is even more prominent when looking at the distribution over

different motion tasks (see bottom of Fig. 3.24). There are problems for the LWR III
and Agile Justin where only 10% or less of all multi-starts converge to a feasible path.
If one wants to find a solution to such a problem with 90% confidence, one would need
more than log(1 − 0.1)/ log(1 − 0.9) > 20 multi-starts, making the initial guess of the
network effectively over 20 times faster.
On our test machine, a single iteration of gradient descent for one path of Agile

Justin takes 10ms on a single core. Using the network’s prediction as a warm-start and
stopping each sample after convergence leads to an average run time of 182(±29)ms
with a worst-case of 334ms.

3.5.3 Learning-Based Inverse Kinematics

Looking at the IK, we first demonstrate the use of the neural networks inside the collision-
free IK solver for a 2D robotic arm. In Fig. 3.7 (left), the two-stage approach using
many random multi-starts is shown (Section 3.3.3). One can clearly see the advantage
when comparing the prediction of a neural network (right) against random multi-starts.
The same two-stage procedure is used for the two network predictions on the right-hand

74

3 Learning-Based Motion Planning

Figure 3.24: Top: Average convergence to feasibility ϕ of OMP for different initial
guesses. The network prediction significantly outperforms the average and
even the best of 100 multi-starts. Bottom: Distribution of the average fea-
sibility ϕ of the random multi-starts after 50 OMP iterations.

side. One network is trained without the world as a dedicated input, and one uses the
world’s BPS encoding to predict collision-free IK solutions. First, one can see how close
the two predictions are to the desired end-effector. Furthermore, the prediction of the
world-aware network is already in the correct narrow passage between the obstacles.
Using this prediction as an initial guess eliminates the need for multi-starts in most
cases and leads to quicker convergence, as the optimizer only needs a few iterations for
a feasible solution.
Table 3.4 shows an ablation study for the learning and network architecture proposed

in Section 3.4.4. For the humanoid robot Agile Justin, the test set consisted of 100000
samples from unseen worlds. Because the network prediction is not directly used on the
robot but the converged result, we report the feasibility rate after 10 iterations of the
solver. The table shows that each architectural component improves the performance of
the network. In the extreme case where none of those methods are used, the feasibility
rate is only 25%, while the final performance is close to 100%. Notably, the boosting
does not improve the mean performance but significantly reduces the maximal error of
the network’s predictions. As this approach over-represents the complex samples with
a significant objective U ik, it is designed to improve those worst cases. This design
is crucial if one uses those network predictions as a warm-start for an optimization-
based solver in challenging scenes: Long searches with many multi-starts slow down the
numerical solver for those cases.
The results of comparing the supervised and unsupervised network against a randomly

sampled initial guess are summarized in Table 3.5. This evaluation was performed for
three robots: A 2D Arm with 5DoF, the LWR III with 7DoF, and Agile Justin with
19DoF (see Fig. 3.5). In 3D, we used a shelf environment like depicted in Fig. 3.1b.
Here, 10000 target frames were randomly sampled in the respective boxes of the shelf.

75

3 Learning-Based Motion Planning

Table 3.4: Ablation study of the IK network predictions for Agile Justin

Training w. Twin-Headed Unit Vector Feasibility
Boosting Network Output

Yes Yes Yes 0.986
Yes Yes No 0.871
Yes No Yes 0.695
Yes No No 0.596
No Yes Yes 0.781
No Yes No 0.741
No No Yes 0.569
No No No 0.248

Table 3.5: Feasibility and Convergence for the different sampling modes for the warm-
start of the IK Solver

Robots DoF Initial Guess Mulit-Starts [#] Feas. (1) [%] Iterations [#] Lenght Cost Uq
l [rad]

Flat Arm Random 13.27± 5.41 19.7 12.87± 3.78 4.19± 0.75
Random World 5 Supervised 3.64± 1.29 81.3 9.93± 3.67 3.48± 0.71

Unsupervised 3.35± 1.37 83.4 8.53± 3.29 3.41± 0.69

LWR III Random 17.57± 4.53 14.4 15.69± 2.89 3.36± 0.68
Shelf World 7 Supervised 2.97± 0.61 88.7 9.31± 3.78 2.91± 0.70

Unsupervised 3.06± 0.55 92.6 8.76± 4.01 2.85± 0.65

Agile Justin Random 24.52± 7.18 8.3 13.88± 3.93 6.56± 0.93
Shelf World 19 Supervised 4.41± 0.94 88.9 6.91± 3.66 4.72± 0.41

Unsupervised 4.29± 0.97 87.6 7.25± 3.61 4.10± 0.53

The overall orientation of the target frame was aligned with the shelf, and noise was
added to ensure feasible yet challenging samples. The shelf environment is closer to
a real-world setting and has notably different attributes than the random worlds the
networks were trained on.
Table 3.5 shows that the average feasibility rate of the initial guesses from the networks

outperforms the random baseline significantly for a single initial guess (denoted as (1)).
Furthermore, the average number of iterations to converge is also decreased. The overall
speed advantage can be seen directly from the difference in the necessary iterations. For
the humanoid robot Agile Justin (19 DoF), the computation time for a single iteration
is 0.8ms on our testing machine. This leads to an overall solve time of under 10ms
for the collision-free IK in unseen environments. The learned warm-starts outperform
the random multi-starts in solving time, and the length cost (3.4) is reduced. These
solutions are often more convenient and more accessible to integrate into larger motion
planning tasks than random solutions.
Besides the improvement of the learning-based approaches over the random multi-

start, it can also be seen that supervised and unsupervised training perform similarly
well. Overall, this gives an advantage to the unsupervised method, as it requires far less

76

3 Learning-Based Motion Planning

Figure 3.25: Influence of the size of BPS |WB| on the feasibility ϕ of the network predic-
tion after OMP. The |WB| on the x-axis is scaled by the world dimension.

time to train, and no prior data generation and cleaning is needed.

3.5.4 Generalization to Self-Acquired Voxel Models

Prokudin et al. [PLR19] demonstrated that the BPS with fully connected layers is supe-
rior to occupancy maps with CNNs or point clouds with a PointNet architecture, both
in terms of required network parameters and training performance. We can confirm
those findings for motion planning. The large memory requirements in 3D made train-
ing prohibitively slow and made it hard to iterate on network architecture or training
methods. Furthermore, looking towards the application on Agile Justin, the BPS can
readily be integrated with the high-resolution SDFs acquired from the robot’s depth
camera [WFB13].
Fig. 3.25 shows that only a fraction of the number of pixels is enough as size for the

basis point set to represent the simple worlds satisfactorily. Too few points cannot ade-
quately represent the obstacles for the network to make valuable predictions. However,
the required number of points is significantly smaller than the resolution of the under-
lying occupancy grid (64d). Increasing the input layer to 643 basis points in 3D was
not feasible. The BPS representation and the proposed training scheme on the worlds
from simplex noise were robust enough to even generalize to some first results on the
real robot (see Fig. 3.26 for motion planning and Fig. 3.27 for IK). Only trained on
those random worlds, the networks are able to make valuable predictions from the data
collected by Agile Justin’s depth camera [WFB13]. For motion planning, the network
predictions as warm-start for OMP could solve the unseen motion tasks that needed
multi-starts otherwise in under 200ms.
We also performed experiments to demonstrate the need for collision-free IK. Fig. 3.27

shows two table scenes; the robot should move the right end-effector to the same position
in both cases, first without obstacle and then with an additional obstruction. The
optimal solution to the IK for the simple scene does collide with the additional obstacle.
The whole arm is stuck in the box on the table, and using this solution as a warm-start
for our solver does not converge to a collision-free solution. However, using the neural
network’s prediction as an initial guess produces the correct collision-free solution shown
on the right.

77

3 Learning-Based Motion Planning

Figure 3.26: The motion of Agile Justin in two table scenes with boxes. The robot
applies a different strategy for obstacle avoidance after the top route is
blocked. The rendered images show the robot’s self-acquired high-resolution
voxel models [WFB13] of the scene, which are used as input for the neural
networks.

3.6 Summary

We successfully trained motion planning and IK networks using different learning tech-
niques in diverse and challenging settings. The network predictions come close to the
global optimum for previously unseen environments. Using these predictions as a warm-
start for optimization-based motion planning and IK massively outperforms random
multi-start. For the complex robot Agile Justin with 19DoF, motion planning takes
only 200ms and solving the IK 10ms on a single CPU core.
One key to success is the basis point set encoding for the environment borrowed

from computer vision, which we introduced to motion planning and scales well to high-
resolution 3D worlds. For the supervised training, we autogenerated a training dataset
of hard examples, i.e., situations for which the standard OMP struggles and for which
the trained network should later provide an educated initial guess. We also introduced a
scheme to further adapt the dataset during training by cleaning, boosting, and extending
the dataset based on a metric defined by the current neural network and the objective
function of the OMP. This approach leads to a challenging and consistent dataset on
which a network can be trained and improved efficiently. Furthermore, we detailedly
analyzed the IK problem with collision avoidance. The focus was on suitable ways to
encode the learning problem and how to deal with the necessary mode switches. Multiple
ablation studies demonstrated the relevance of those methods.
In the future, we want to combine motion planning and IK more thoroughly to tackle

manipulation and grasping tasks more efficiently. The goal is a network that no longer

78

3 Learning-Based Motion Planning

Figure 3.27: Difference between standard IK (left) and collision-free IK (right) for the
humanoid robot Agile Justin. The rendered images show the robot’s self-
acquired high-resolution voxel model [WFB13] of the scene.

requires a goal configuration; only the goal pose of the end-effector has to be provided.
We will also further investigate and increase the real-world capabilities of our method.
As creating a vast amount of real-world data is expensive, our goal is for our architecture
and the autogenerated dataset to allow for a robust transfer of the experience to real
scenes.

79

4 Conclusion

Application on DLR’s Agile Justin The importance of an accurately calibrated robot
model and fast and efficient motion planning in unknown environments can be seen for
the applications of Agile Justin in Tenhumberg et al. [Ten+24] and Fig. 1.1. This
video submission demonstrates the state-of-the-art capabilities of the humanoid robot.
Two different tasks are shown. The first is grasping of unknown objects [Win+22;
Hum+23]. Here, the accuracy of the entire task chain from the internal camera to
the hand is crucial for safe and stable grasps. Furthermore, the capability to compute
the collision-free IK solution for multiple grasp poses and plan efficiently toward them
becomes especially relevant for complex and cluttered scenes. The second task is building
a tower out of wooden cubes, which combines efficient motion planning and tactile in-
hand manipulation [SPB22; Pit+23] in order to rotate and place the lettered cubes
correctly. Again, an accurately calibrated model of the humanoid and the robotic hand is
crucial. Only then can this task be performed reliably. A fast motion and IK planner are
central to demonstrating these dextrous skills. The results of this work are meanwhile
an indispensable part of the daily work with the research robot and were crucial for
successful performances at multiple fairs and conferences (most recent CoRL at TUM,
November 2024).

Methodology Driven by the real application of this complex system and tackling actual
problems that need to be solved, this thesis demonstrated how to achieve fast and
accurate motion planning. Sound and efficient methods could be derived by thoroughly
analyzing the problems and understanding the application’s context and constraints. By
applying first principles and combining well-established methods with modern learning
methods, the achieved results could significantly improve upon the state of the art.
The first part of this thesis dealt with the efficient, self-contained, and task-oriented
calibration of complex mechatronic systems in order to achieve the necessary accuracy. It
demonstrated the successful calibration of the tree-like DLR Hand II using only contact
information and the calibration of the humanoid Agile Justin using its internal RGB
camera. The maximal error at the end-effector could be reduced from 6 cm to 8mm for
the humanoid and from 18mm to 4mm for the robotic hand. This achieved precision is
detrimental to utilizing efficient planning and learning methods for both systems.
The second part analyzed supervised and unsupervised learning techniques to speed up

optimization-based motion planning and inverse kinematics solvers via educated warm-
starts. It introduced a hybrid approach of a well-understood and safe optimizer combined
with the global understanding of environment and robot kinematics encoded in a neural
network. This combination allowed for the efficient use of experience. The robot no
longer needs to plan from scratch for each new request and no longer relies on excessive

80

4 Conclusion

multistarts for challenging situations. With its 19 degrees of freedom for Agile Justin,
the planning time in unseen environments could be reduced from multiple seconds to
200ms. Both improvements are significant steps towards more dexterity and autonomy
and are already an indispensable part of the current work on the research robot.

Outlook The capabilities of robots and the areas of their application are increasing.
Stemming from the industrial application with a focus on strength and repeatability, new
modalities are added. By combining and utilizing multiple sensor modes, from seeing
over touching and hearing, robots can build a highly accurate model of themselves and
of the objects they manipulate and interact with. Robots can achieve a high level of
dexterity when adding those sensing modalities to a mechatronic system with a precision
that is similar to or even surpasses the human body. The proposed calibration techniques
are a crucial step in this direction.
To create intelligent and dextrous robots, the learning techniques need to become far

more data-efficient and adapt better to unseen and challenging situations. The current
success of Large Languages Models can be mainly attributed to the vast amount of text
available for their training. When comparing those enormous volumes of information
to the tiny fraction a human can read and understand in a lifetime, it is apparent
how inefficient and superficial the current training techniques are using the provided
information. Nonetheless, even relying on those immense datasets and training efforts,
they cannot fully generalize to difficult and unseen situations.
So far, there is no such complete database for robotics at hand. Furthermore, as

the tasks become more challenging, and the time horizon of planning and the involved
degrees of freedom increase, the datasets required would need to grow exponentially.
Therefore, the learning techniques must be adapted to efficiently use available informa-
tion and a high degree of generalization in unseen situations. The hybrid approach in
this study provided a first step toward this goal. By encoding aspects of the problem
via neural networks and still maintaining all guarantees of classical non-learning-based
methods, the proposed approach utilized the inherent strength of the different techniques
and its modular structure can be used as a basis for future research.

81

Bibliography

[Aga+10] Sameer Agarwal, Noah Snavely, Steven M Seitz, and Richard Szeliski. “Bun-
dle Adjustment in the Large”. In: European Conference on Computer Vision
(ECCV). Springer. 2010

[AT05] V.R. de Angulo and C. Torras. “Speeding Up the Learning of Robot Kine-
matics Through Function Decomposition”. In: IEEE Transactions on Neu-
ral Networks (2005)

[AWI06] S.F.M. Assal, K. Watanabe, and K. Izumi. “Neural Network-Based Kine-
matic Inversion of Industrial Redundant Robots Using Cooperative Fuzzy
Hint for the Joint Limits Avoidance”. In: IEEE/ASME Transactions on
Mechatronics (2006)

[AZ19] Zainab Al-Qurashi and Brian Ziebart. “Hybrid Algorithm for Inverse Kine-
matics Using Deep Learning and Coordinate Transformation”. In: IEEE
International Conference on Robotic Computing (IRC). 2019

[BA15] Patrick Beeson and Barrett Ames. “TRAC-IK: An open-source library for
improved solving of generic inverse kinematics”. In: IEEE-RAS Interna-
tional Conference on Humanoid Robots (Humanoids). 2015

[Bäu+14] B. Bäuml, T. Hammer, R. Wagner, O. Birbach, T. Gumpert, F. Zhi, U.
Hillenbrand, S. Beer, W. Friedl, and J. Butterfass. “Agile Justin: An Up-
graded Member of DLR’s Family of Lightweight and Torque Controlled Hu-
manoids”. In: IEEE International Conference on Robotics and Automation
(ICRA). 2014

[Bax+20] John Baxter, Mohammad Yousefi, Satomi Sugaya, Marco Morales, and Ly-
dia Tapia. “Deep Prediction of Swept Volume Geometries: Robots and Reso-
lutions”. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2020

[BB14] Oliver Birbach and Berthold Bäuml. “Calibrating a Pair of Inertial Sen-
sors at Opposite Ends of an Imperfect Kinematic Chain”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2014

[Bel+07] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli E.and Klavins, and G. J. Pap-
pas. “Symbolic Planning and Control of Robot Motion [Grand Challenges
of Robotics]”. In: IEEE Robotics and Automation Magazine (2007)

[BFB15] Oliver Birbach, Udo Frese, and Berthold Bäuml. “Rapid calibration of a
multi-sensorial humanoid’s upper body: An automatic and self-contained
approach”. In: International Journal of Robotics Research (2015)

82

Bibliography

[BH91] D.J. Bennett and J.M. Hollerbach. “Autonomous calibration of single-loop
closed kinematic chains formed by manipulators with passive endpoint con-
straints”. In: IEEE Transactions on Robotics and Automation (1991)

[Bis06] Christopher Bishop. Pattern Recognition and Machine Learning. Springer,
2006

[BKC08] Dmitry Berenson, James Kuffner, and Howie Choset. “An Optimization
Approach to Planning for Mobile Manipulation”. In: IEEE International
Conference on Robotics and Automation (ICRA). 2008

[Boc+11] Botond Bocsi, Duy Nguyen-Tuong, Lehel Csato, Bernhard Scholkopf, and
Jan Peters. “Learning Inverse Kinematics with Structured Prediction”.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2011

[BOG16] Pierre Besset, Adel Olabi, and Olivier Gibaru. “Advanced calibration ap-
plied to a collaborative robot”. In: IEEE International Power Electronics
and Motion Control Conference (PEMC). 2016

[BQY19] Mayur J. Bency, Ahmed H. Qureshi, and Michael C. Yip. “Neural Path
Planning: Fixed Time, Near-Optimal Path Generation via Oracle Imita-
tion”. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2019

[CA90] J.L. Caenen and J.C. Angue. “Identification of geometric and nongeometric
parameters of robots”. In: IEEE International Conference on Robotics and
Automation (ICRA). 1990

[Car+13] Henry Carrillo, Oliver Birbach, Holger Täubig, Berthold Bäuml, Udo Frese,
and José A. Castellanos. “On Task-Oriented Criteria for Configurations
Selection in Robot Calibration”. In: IEEE International Conference on
Robotics and Automation (ICRA). 2013

[Chi+21] Hao-Tien Lewis Chiang, John EG Baxter, Satomi Sugaya, Mohammad R
Yousefi, Aleksandra Faust, and Lydia Tapia. “Fast deep swept volume esti-
mator”. In: The International Journal of Robotics Research (2021)

[CL16] Jie Chen and Henry Y. K. Lau. “Learning the Inverse Kinematics of Tendon-
driven Soft Manipulators with K-nearest Neighbors Regression and Gaus-
sian Mixture Regression”. In: International Conference on Control, Au-
tomation and Robotics (ICCAR). 2016, pp. 103–107

[CLS16] Jing Chen, Tianbo Liu, and Shaojie Shen. “Online Generation of Collision-
Free Trajectories for Quadrotor Flight in Unknown Cluttered Environ-
ments”. In: IEEE International Conference on Robotics and Automation
(ICRA). 2016

[CS17] Thomas Joseph Collinsm and Wei-Min Shen. “Particle Swarm Optimization
for high-DOF Inverse Kinematics”. In: IEEE International Conference on
Control, Automation and Robotics (ICCAR). 2017

83

Bibliography

[CSK19] Constantinos Chamzas, Anshumali Shrivastava, and Lydia E. Kavraki. “Us-
ing Local Experiences for Global Motion Planning”. In: IEEE International
Conference on Robotics and Automation (ICRA). 2019

[CT15] Adria Colome and Carme Torras. “Closed-Loop Inverse Kinematics for Re-
dundant Robots: Comparative Assessment and Two Enhancements”. In:
IEEE/ASME Transactions on Mechatronics (2015)

[Dan02] David Daney. “Optimal Measurement Configurations for Gough Platform
Calibration”. In: IEEE International Conference on Robotics and Automa-
tion (ICRA). 2002

[Den+20] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey
Hinton, and Andrea Tagliasacchi. “CvxNet: Learnable Convex Decompo-
sition”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2020

[DGD19] Jacket Demby’s, Yixiang Gao, and G. N. DeSouza. “A Study on Solving
the Inverse Kinematics of Serial Robots using Artificial Neural Network
and Fuzzy Neural Network”. In: IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE). 2019

[DP90] Morris R. Driels and Uday S. Pathre. “Significance of Observation Strategy
on the Design of Robot Calibration Experiments”. In: Journal of Robotic
Systems (1990)

[DPM05] David Daney, Yves Papegay, and Blaise Madeline. “Choosing Measurement
Poses for Robot Calibration with the Local Convergence Method and Tabu
Search”. In: The International Journal of Robotics Research (2005)

[EL09] Alexandre Eudes and Maxime Lhuillier. “Error Propagations for Local Bun-
dle Adjustment”. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2009, pp. 2411–2418

[Eud+10] Alexandre Eudes, Sylvie Naudet-Collette, Maxime Lhuillier, and Michel
Dhome. “Weighted Local Bundle Adjustment and Application to Odom-
etry and Visual Slam Fusion”. In: British Machine Vision Conference. 2010

[Fan+15] Cheng Fang, Alessio Rocchi, Enrico Mingo Hoffman, Nikos G. Tsagarakis,
and Darwin G. Caldwell. “Efficient Self-Collision Avoidance based on Focus
of Interest for Humanoid Robots”. In: IEEE-RAS International Conference
on Humanoid Robots (Humanoids). 2015

[FL17] Chelsea Finn and Sergey Levine. “Deep Visual Foresight for Planning Robot
Motion”. In: IEEE International Conference on Robotics and Automation
(ICRA). 2017

[FN11] Pietro Falco and Ciro Natale. “On the Stability of Closed-Loop Inverse
Kinematics Algorithms for Redundant Robots”. In: IEEE Transactions on
Robotics (T-RO) (2011)

84

Bibliography

[FSC21] Enrico Ferrentino, Federico Salvioli, and Pasquale Chiacchio. “Globally op-
timal redundancy resolution with dynamic programming for robot planning:
A ros implementation”. In: Robotics (2021)

[Gia+22] Matthew Giamou, Filip Maric, David M. Rosen, Valentin Peretroukhin,
Nicholas Roy, Ivan Petrovic, and Jonathan Kelly. “Convex Iteration for
Distance-Geometric Inverse Kinematics”. In: IEEE Robotics and Automa-
tion Letters (2022)

[GJ85] E. Gilbert and D. Johnson. “Distance Functions and Their Application to
Robot Path Planning in the Presence of Obstacles”. In: IEEE Journal on
Robotics and Automation (1985)

[GJK88] E.G. Gilbert, D.W. Johnson, and S.S. Keerthi. “A Fast Procedure for
Computing the Distance Between Complex Objects in Three-Dimensional
Space”. In: IEEE Journal on Robotics and Automation (1988)

[GM11] Luciano Selva Ginani and José Mauŕıcio S. T. Motta. “Theoretical and
Practical Aspects of Robot Calibration with Experimental Verification”.
In: Journal of the Brazilian Society of Mechanical Sciences and Engineering
(2011)

[GSB14] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Barfoot.
“Informed RRT*: Optimal sampling-based path planning focused via direct
sampling of an admissible ellipsoidal heuristic”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2014

[GSB15] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Barfoot.
“Batch Informed Trees (BIT*): Sampling-based optimal planning via the
heuristically guided search of implicit random geometric graphs”. In: IEEE
International Conference on Robotics and Automation (ICRA). 2015

[Gus05] Stefan Gustavson. Simplex Noise Demystified. 2005

[Hir+02] G. Hirzinger, N. Sporer, A. Albu-Schäffer, M. Hähnle, R. Krenn, A. Pas-
cucci, and M. Schedl. “DLR’s Torque-Controlled Light Weight Robot III
- are we Reaching the Technological Limits now?” In: IEEE International
Conference on Robotics and Automation (ICRA). 2002

[HLH24] Tinghe Hong, Weibing Li, and Kai Huang. “A reinforcement learning en-
hanced pseudo-inverse approach to self-collision avoidance of redundant
robots”. In: Frontiers in Neurorobotics (2024)

[HSB12] Uwe Hubert, Jorg Stuckler, and Sven Behnke. “Bayesian Calibration of
the Hand-Eye Kinematics of an Anthropomorphic Robot”. In: IEEE-RAS
International Conference on Humanoid Robots (Humanoids). 2012

[Hum+23] Matthias Humt, Dominik Winkelbauer, Ulrich Hillenbrand, and Berthold
Bäuml. “Combining Shape Completion and Grasp Prediction for Fast and
Versatile Grasping with a Multi-Fingered Hand”. In: IEEE-RAS Interna-
tional Conference on Humanoid Robots (Humanoids). 2023

85

Bibliography

[HW96] John M. Hollerbach and Charles W. Wampler. “The Calibration Index and
Taxonomy for Robot Kinematic Calibration Methods”. In: The Interna-
tional Journal of Robotics Research (1996)

[HXZ08] Chenhua Huang, Cunxi Xie, and Tie Zhang. “Determination of Optimal
Measurement Configurations for Robot Calibration Based on Observability
Measure”. In: IEEE International Conference on Information and Automa-
tion (ICIA). 2008

[IH97] M. Ikits and J.M. Hollerbach. “Kinematic calibration using a plane con-
straint”. In: IEEE International Conference on Robotics and Automation
(ICRA). 1997

[IHP18] Brian Ichter, James Harrison, and Marco Pavone. “Learning Sampling Dis-
tributions for Robot Motion Planning”. In: IEEE International Conference
on Robotics and Automation (ICRA). 2018

[Ila+17] Viorela Ila, Lukas Polok, Marek Solony, and Klemen Istenic. “Fast Incre-
mental Bundle Adjustment with Covariance Recovery”. In: International
Conference on 3D Vision (3DV). 2017

[J B01] J. Butterfaßand M. Grebenstein and H. Liu and G. Hirzinger. “DLR-Hand
II: Next Generation of a Dextrous Robot Hand”. In: IEEE International
Conference on Robotics and Automation (ICRA). 2001

[Jan+22] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. “Plan-
ning with Diffusion for Flexible Behavior Synthesis”. In: International Con-
ference on Machine Learning. PMLR, 2022

[JB15] Ahmed Joubair and Ilian A. Bonev. “Kinematic calibration of a six-axis
serial robot using distance and sphere constraints”. In: The International
Journal of Advanced Manufacturing Technology (2015)

[Jég+17] Simon Jégou, Michal Drozdzal, David Vázquez, Adriana Romero, and
Yoshua Bengio. “The One Hundred Layers Tiramisu: Fully Convolutional
DenseNets for Semantic Segmentation”. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2017

[Jia+20] Zhouxiang Jiang, Min Huang, Xiaoqi Tang, Bao Song, and Yixuan Guo.
“Observability index optimization of robot calibration based on multiple
identification spaces”. In: Autonomous Robots (2020)

[JT13] Nikolay Jetchev and Marc Toussaint. “Fast motion planning from expe-
rience: Trajectory prediction for speeding up movement generation”. In:
Autonomous Robots (2013)

[JT19] Tom Jurgenson and Aviv Tamar. “Harnessing Reinforcement Learning for
Neural Motion Planning”. In: Robotics: Science and Systems (2019)

86

Bibliography

[Kal+11] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor,
and Stefan Schaal. “STOMP: Stochastic trajectory optimization for motion
planning”. In: IEEE International Conference on Robotics and Automation
(ICRA). 2011

[Kar+11] Sertac Karaman, Matthew R. Walter, Alejandro Perez, Emilio Frazzoli,
and Seth Teller. “Anytime Motion Planning using the RRT*”. In: IEEE
International Conference on Robotics and Automation (ICRA). 2011

[Kav+96] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. “Probabilistic
Roadmaps for Path Planning in High-Dimensional Configuration Spaces”.
In: IEEE Transactions on Robotics and Automation (1996)

[KB02] Wisama Khalil and Sébastien Besnard. “Geometric Calibration of Robots
with Flexible Joints and Links”. In: Journal of Intelligent and Robotic Sys-
tems (2002)

[KB19] Kaveh Kamali and Ilian A. Bonev. “Optimal Experiment Design for Elasto-
Geometrical Calibration of Industrial Robots”. In: IEEE/ASME Transac-
tions on Mechatronics (2019)

[KL00] James J. Kuffner and Steven M. LaVall. “RRT-Connect: An Efficient Ap-
proach to Single-Query Path Planning”. In: IEEE International Conference
on Robotics and Automation (ICRA). 2000

[KL15] Jeong-Jung Kim and Ju-Jang Lee. “Trajectory Optimization With Particle
Swarm Optimization for Manipulator Motion Planning”. In: IEEE Trans-
actions on Industrial Informatics (2015)

[Kli+12] Alexandr Klimchik, Anatol Pashkevich, Yier Wu, Benoit Furet, and Stephane
Caro. Optimization of measurement configurations for geometrical calibra-
tion of industrial robot. Tech. rep. Ecole des Mines de Nantes, 2012

[Klo+11] Julian Klodmann, Rainer Konietschke, Alin Albu-Schaffer, and Gerhard
Hirzinger. “Static Calibration of the DLR Medical Robot MIRO, a Flexible
Lightweight Robot with Integrated Torque Sensors”. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). 2011

[KRS18] Daniel Kubus, Rania Rayyes, and Jochen J. Steil. “Learning Forward and
Inverse Kinematics Maps Efficiently”. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). 2018

[LA18] Peter Lehner and Alin Albu-Schäffer. “The Repetition Roadmap for Repet-
itive Constrained Motion Planning”. In: IEEE Robotics and Automation
Letters (2018)

[LaV06] Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006

[LB90] S. P. Ladany and D. Ben-Arieh. “Optimal Industrial Robot-Calibration Pol-
icy”. In: The International Journal of Advanced Manufacturing Technology
(1990)

87

Bibliography

[Lee+13] Sang-Mun Lee, Kyoung-Don Lee, Sang-Hyuek Jung, and Tae-Sung Noh.
“Kinematic Calibration System of Robot Hands using Vision Cameras”. In:
International Conference on Ubiquitous Robots and Ambient Intelligence
(URAI). Ieee, 2013

[Lee13] Bum-Joo Lee. “Geometrical Derivation of Differential Kinematics to Cali-
brate Model Parameters of Flexible Manipulator”. In: International Journal
of Advanced Robotic Systems (2013)

[Lem+20] Teguh Santoso Lembono, Antonio Paolillo, Emmanuel Pignat, and Sylvain
Calinon. “Memory of Motion for Warm-Starting Trajectory Optimization”.
In: IEEE Robotics and Automation Letters (2020)

[Lem+21] Teguh Santoso Lembono, Emmanuel Pignat, Julius Jankowski, and Syl-
vain Calinon. “Learning Constrained Distributions of Robot Configurations
With Generative Adversarial Network”. In: IEEE Robotics and Automation
Letters (2021)

[Lia+17] Shiqi Lian, Yinhe Han, Ying Wang, Yungang Bao, Hang Xiao, Xiaowei Li,
and Ninghui Sun. “Dadu: Accelerating Inverse Kinematics for high-DOF
robots”. In: ACM/EDAC/IEEE Design Automation Conference (DAC).
2017

[Liu+23] Baolin Liu, Gedong Jiang, Fei Zhao, and Xuesong Mei. “Collision-Free Mo-
tion Generation Based on Stochastic Optimization and Composite Signed
Distance Field Networks of Articulated Robot”. In: IEEE Robotics and Au-
tomation Letters (2023)

[LLL21] Zhibin Li, Shuai Li, and Xin Luo. “An Overview of Calibration Technology
of Industrial Robots”. In: IEEE/CAA Journal of Automatica Sinica (2021)

[LMT19] Jiachen Li, Hengbo Ma, and Masayoshi Tomizuka. “Conditional Genera-
tive Neural System for Probabilistic Trajectory Prediction”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2019

[LRA22] Peter Lehner, Máximo A. Roa, and Alin Albu-Schäffer. “Kinematic Transfer
Learning of Sampling Distributions for Manipulator Motion Planning”. In:
IEEE International Conference on Robotics and Automation (ICRA). 2022

[Luo+21] Guoyue Luo, Lai Zou, Ziling Wang, Chong Lv, Jing Ou, and Yun Huang. “A
novel kinematic parameters calibration method for industrial robot based
on Levenberg-Marquardt and Differential Evolution hybrid algorithm”. In:
Robotics and Computer-Integrated Manufacturing (2021)

[LW08] Qi Liu and Dongshu Wang. “Optimal Measurement Configurations for
Robot Calibration based on Modified Simulated Annealing Algorithm”. In:
World Congress on Intelligent Control and Automation. Ieee, 2008

[Ma96] Sang De Ma. “A self-calibration technique for active vision systems”. In:
IEEE Transactions on Robotics and Automation (1996)

88

Bibliography

[MD00] M.A. Meggiolaro and S. Dubowsky. “An analytical method to eliminate
the redundant parameters in robot calibration”. In: IEEE International
Conference on Robotics and Automation (ICRA). 2000

[Mit00] Toby J. Mitchell. “An Algorithm for the Construction of ”D-Optimal” Ex-
perimental Designs”. In: Technometrics (2000)

[MIV18] Wolfgang Merkt, Vladimir Ivan, and Sethu Vijayakumar. “Leveraging Pre-
computation with Problem Encoding for Warm-Starting Trajectory Opti-
mization in Complex Environments”. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). 2018

[MWB15] Daniel Maier, Stefan Wrobel, and Maren Bennewitz. “Whole-Body Self-
Calibration via Graph-Optimization and Automatic Configuration Selec-
tion”. In: IEEE International Conference on Robotics and Automation
(ICRA). 2015

[NH96] Ali Nahvi and J.M. Hollerbach. “The Noise Amplification Index for Optimal
Pose Selection in Robot Calibration”. In: IEEE International Conference on
Robotics and Automation (ICRA). 1996

[NLK19] Hoai-Nhan Nguyen, Phu-Nguyen Le, and Hee-Jun Kang. “A new calibration
method for enhancing robot position accuracy by combining a robot model–
based identification approach and an artificial neural network–based error
compensation technique”. In: Advances in Mechanical Engineering (2019)

[Ort+18] Andreas Orthey, Olivier Roussel, Olivier Stasse, and Michel Taix. “Motion
planning in Irreducible Path Spaces”. In: Robotics and Autonomous Systems
(2018)

[PD90] U. S. Pathre and M. R. Driels. “Simulation Experiments in Parameter Iden-
tification for Robot Calibration”. In: The International Journal of Advanced
Manufacturing Technology (1990)

[Per01] Ken Perlin. Chapter 2 Noise Hardware. 2001

[Pfe+17] Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland Siegwart, and Ce-
sar Cadena. “From Perception to Decision: A Data-driven Approach to
End-to-end Motion Planning for Autonomous Ground Robots”. In: IEEE
International Conference on Robotics and Automation (ICRA). 2017

[Pit+23] Johannes Pitz, Lennart Röstel, Leon Sievers, and Berthold Bäuml. “Dex-
trous Tactile In-Hand Manipulation Using a Modular Reinforcement Learn-
ing Architecture”. In: IEEE International Conference on Robotics and Au-
tomation (ICRA). 2023

[PK11] In-Won Park and Jong-Hwan Kim. “Estimating Entire Geometric Param-
eter Errors of Manipulator Arm Using Laser Module and Stationary Cam-
era”. In: Industrial Electronics Conference (IECON). 2011

89

Bibliography

[PKB14] Vijay Pradeep, Kurt Konolige, and Eric Berger. “Calibrating a Multi-arm
Multi-sensor Robot: A Bundle Adjustment Approach”. In: Experimental
Robotics ,Springer, 2014

[PLC21] Michal Pandy, Daniel Lenton, and Ronald Clark. “Unsupervised Path Re-
gression Networks”. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2021

[PLR19] Sergey Prokudin, Christoph Lassner, and Javier Romero. “Efficient Learn-
ing on Point Clouds with Basis Point Sets”. In: International Conference
on Computer Vision (ICCV). 2019

[PM14] Chonhyon Park and Dinesh Manocha. “Fast and Dynamically Stable Opti-
mization based Planning for High-DOF Human-like Robots”. In: IEEE-RAS
International Conference on Humanoid Robots (Humanoids). 2014

[PPM12] Chonhyon Park, Jia Pan, and Dinesh Manocha. “ITOMP: Incremental Tra-
jectory Optimization for Real-Time Replanning in Dynamic Environments”.
In: Int. Conf. on Automated Planning and Scheduling (ICAPS). 2012

[Qi+17] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. “PointNet:
Deep learning on point sets for 3D classification and segmentation”. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2017

[Qur+19] Ahmed H. Qureshi, Anthony Simeonov, Mayur J. Bency, and Michael C.
Yip. “Motion Planning Networks”. In: IEEE International Conference on
Robotics and Automation (ICRA). 2019

[Qur+21] Ahmed Hussain Qureshi, Yinglong Miao, Anthony Simeonov, and Michael
C. Yip. “Motion Planning Networks: Bridging the Gap between Learning-
Based and Classical Motion Planners”. In: IEEE Transactions on Robotics
(T-RO) (2021)

[RK92] E. Rimon and D.E. Koditschek. “Exact Robot Navigation Using Artificial
Potential Functions”. In: IEEE Transactions on Robotics and Automation
(1992)

[RMR87] Z. Roth, B. Mooring, and B. Ravani. “An Overview of Robot Calibration”.
In: IEEE Journal on Robotics and Automation (1987)

[Ron+14] Alessandro Roncone, Matej Hoffmann, Ugo Pattacini, and Giorgio Metta.
“Automatic kinematic chain calibration using artificial skin: Self-touch in
the iCub humanoid robot”. In: IEEE International Conference on Robotics
and Automation (ICRA). 2014

[RSG09] Matthias Rolf, Jochen J. Steil, and Michael Gienger. “Efficient exploration
and learning of whole body kinematics”. In: IEEE International Conference
on Development and Learning. 2009

90

Bibliography

[RSG10] Matthias Rolf, Jochen J. Steil, and Michael Gienger. “Goal Babbling Per-
mits Direct Learning of Inverse Kinematics”. In: IEEE Transactions on
Autonomous Mental Development (2010)

[RUG17] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. “OctNet: Learning
Deep 3D Representations at High Resolutions”. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017

[Rus+21] Lukas Rustler, Bohumila Potocna, Michal Polic, Karla Stepanova, and
Matej Hoffmann. “Spatial calibration of whole-body artificial skin on a hu-
manoid robot: comparing self-contact, 3D reconstruction, and CAD-based
calibration”. In: IEEE-RAS International Conference on Humanoid Robots
(Humanoids). 2021

[SAL15] Matteo Saveriano, Sang-ik An, and Dongheui Lee. “Incremental Kinesthetic
Teaching of End-Effector and Null-Space Motion Primitives”. In: IEEE In-
ternational Conference on Robotics and Automation (ICRA). 2015

[SB11] N. Sukavanam and R. Balasubramanian. “An Optimization Approach to
Solve the Inverse Kinematics of Redundant Manipulator”. In: International
Journal of Information And Systems Sciences (2011)

[Sch+14] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry
Bradlow, Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. “Mo-
tion Planning with Sequential Convex Optimization and Convex Collision
Checking”. In: International Journal of Robotics Research (2014)

[SGK09] Yunquan Sun, David J. Giblin, and Kazem Kazerounian. “Accurate robotic
belt grinding of workpieces with complex geometries using relative cali-
bration techniques”. In: Robotics and Computer-Integrated Manufacturing
(2009)

[SH08] Yu Sun and John M. Hollerbach. “Observability Index Selection for Robot
Calibration”. In: IEEE International Conference on Robotics and Automa-
tion (ICRA). 2008

[Sib+09] Dieter Sibley, Christopher Mei, Ian D Reid, and Paul Newman. “Adaptive
Relative Bundle Adjustment”. In: Robotics: Science and Systems (2009)

[SPB22] Leon Sievers, Johannes Pitz, and Berthold Bäuml. “Learning Purely Tactile
In-Hand Manipulation with a Torque-Controlled Hand”. In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA). 2022

[SPH19] Karla Stepanova, Tomas Pajdla, and Matej Hoffmann. “Robot Self-Calibration
Using Multiple Kinematic Chains—A Simulation Study on the iCub Hu-
manoid Robot”. In: IEEE Robotics and Automation Letters (2019)

91

Bibliography

[Ste+22] Karla Stepanova, Jakub Rozlivek, Frantisek Puciow, Pavel Krsek, Tomas
Pajdla, and Matej Hoffmann. “Automatic self-contained calibration of an in-
dustrial dual-arm robot with cameras using self-contact, planar constraints,
and self-observation”. In: Robotics and Computer-Integrated Manufacturing
(2022)

[Str+20] Robin Strudel, Ricardo Garcia, Justin Carpentier, Jean-Paul Laumond,
Ivan Laptev, and Cordelia Schmid. “Learning Obstacle Representations for
Neural Motion Planning”. In: Conference on Robot Learning (CoRL). 2020

[Sug11] Tomomichi Sugihara. “Solvability-Unconcerned Inverse Kinematics by the
Levenberg–Marquardt Method”. In: IEEE Transactions on Robotics (T-
RO) (2011)

[TBF11] Holger Täubig, Berthold Bäuml, and Udo Frese. “Real-time Swept Vol-
ume and Distance Computation for Self Collision Detection”. In: 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems.
2011, pp. 1585–1592

[TC20] Alessandro Tringali and Silvio Cocuzza. “Globally Optimal Inverse Kine-
matics Method for a Redundant Robot Manipulator with Linear and Non-
linear Constraints”. In: Robotics (2020)

[TGR18] Ning Tan, Xiaoyi Gu, and Hongliang Ren. “Simultaneous Robot-World,
Sensor-Tip, and Kinematics Calibration of an Underactuated Robotic Hand
With Soft Fingers”. In: IEEE Access (2018)

[Tou14] Marc Toussaint. Newton Methods for k-order Markov Constrained Motion
Problems. Github: MarcToussaint/KOMO. 2014

[Tri+00] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and AndrewW Fitzgib-
bon. “Bundle Adjustment - A Modern Synthesis”. In: International Work-
shop on Vision Algorithms - Theory and Practice. Springer. 2000

[Tru+22] Pavel Trutman, Mohab Safey El Din, Didier Henrion, and Tomas Pajdla.
“Globally Optimal Solution to Inverse Kinematics of 7DOF Serial Manipu-
lator”. In: IEEE Robotics and Automation Letters (2022)

[TS00] Guarav. Tevatia and Stefan Schaal. “Inverse Kinematics for Humanoid
Robots”. In: IEEE International Conference on Robotics and Automation
(ICRA). 2000

[TVY20] Tony Tohme, Kevin Vanslette, and Kamal Youcef-Toumi. “A Generalized
Bayesian Approach to Model Calibration”. In: Reliability Engineering and
System Safety (2020)

[VH08] Laurens Van der Maaten and Geoffrey Hinton. “Visualizing Data Using
t-SNE”. In: Journal of Machine Learning Research (2008)

[VW88] W.K. Veitschegger and C.-H. Wu. “Robot Calibration and Compensation”.
In: IEEE Journal on Robotics and Automation (1988)

92

Bibliography

[Wan+20] Jiankun Wang, Wenzheng Chi, Chenming Li, Chaoqun Wang, and Max
Q.-H. Meng. “Neural RRT*: Learning-Based Optimal Path Planning”. In:
IEEE Transactions on Automation Science and Engineering (2020)

[WFB13] Réne Wagner, Udo Frese, and Berthold Bäuml. “3D modeling, distance and
gradient computation for motion planning: A direct GPGPU approach”. In:
IEEE International Conference on Robotics and Automation (ICRA). 2013

[WFC19] Karl Van Wyk, Joe Falco, and Geraldine Cheok. “Efficiently Improving and
Quantifying Robot Accuracy In Situ”. In: IEEE Transactions on Automa-
tion Science and Engineering (2019)

[Win+22] Dominik Winkelbauer, Berthold Bäuml, Matthias Humt, Nils Thuerey, and
Rudolph Triebel. “A Two-stage Learning Architecture that Generates High-
Quality Grasps for a Multi-Fingered Hand”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2022

[Wu+15] Yier Wu, Alexandr Klimchik, Stéphane Caro, Benoit Furet, and Anatol
Pashkevich. “Geometric calibration of industrial robots using enhanced
partial pose measurements and design of experiments”. In: Robotics and
Computer-Integrated Manufacturing (2015)

[Xio+17] Gang Xiong, Ye Ding, LiMin Zhu, and Chun-Yi Su. “A Product-of-
Exponential-based Robot Calibration Method with Optimal Measurement
Configurationsptimal Measurement Configurations”. In: International Jour-
nal of Advanced Robotic Systems (2017)

[YCX18] Chengyi Yu, Xiaobo Chen, and Juntong Xi. “Determination of optimal
measurement configurations for self-calibrating a robotic visual inspection
system with multiple point constraints”. In: The International Journal of
Advanced Manufacturing Technology (2018)

[Zai+21] Yuval Zaidel, Albert Shalumov, Alex Volinski, Lazar Supic, and Elishai Ezra
Tsur. “Neuromorphic NEF-Based Inverse Kinematics and PID Control”. In:
Frontiers in Neurorobotics (2021)

[Zen+18] Rodrigo Zenha, Pedro Vicente, Lorenzo Jamone, and Alexandre Bernardino.
“Incremental Adaptation of a Robot Body Schema Based on Touch Events”.
In: IEEE International Conference on Development and Learning and Epi-
genetic Robotics (ICDL-EpiRob). 2018

[Zha+21] Liangliang Zhao, Zainan Jiang, Yongjun Sun, Jingdong Zhao, and Hong
Liu. “Collision-Free Kinematics for Hyper-Redundant Manipulators in Dy-
namic Scenes using Optimal Velocity Obstacles”. In: International Journal
of Advanced Robotic Systems (2021)

[ZKR10] Jian Zhou, Hee-Jun Kang, and Young-Shick Ro. “Comparison of the Ob-
servability Indices for Robot Calibration considering Joint Stiffness Param-
eters”. In: Advanced Intelligent Computing Theories and Applications. 2010

93

Bibliography

[ZLB21] Xiaojing Zhang, Alexander Liniger, and Francesco Borrelli. “Optimization-
Based Collision Avoidance”. In: IEEE Transactions on Control Systems
Technology (2021)

[ZNK14a] Jian Zhou, Hoai-Nhan Nguyen, and Hee-Jun Kang. “Selecting Optimal
Measurement Poses for Kinematic Calibration of Industrial Robots”. In:
Advances in Mechanical Engineering (2014)

[ZNK14b] Jian Zhou, Hoai-Nhan Nguyen, and Hee-Jun Kang. “Simultaneous Iden-
tification of Joint Compliance and Kinematic Parameters of Industrial
Robots”. In: International Journal of Precision Engineering and Manufac-
turing (2014)

[Zuc+13] Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Pivtoraiko, Matthew
Klingensmith, Christopher M Dellin, J Andrew Bagnell, and Siddhartha S
Srinivasa. “CHOMP: Covariant Hamiltonian Optimization for Motion Plan-
ning”. In: The International Journal of Robotics Research (2013)

[ZWH97] Hanqi Zhuang, Jie Wu, and Weizhen Huang. “Optimal Planning of Robot
Calibration Experiments by Genetic Algorithms”. In: Journal of Robotic
Systems (1997)

94

Publications of the Author

Core Publications

[1] Johannes Tenhumberg and Berthold Bäuml. “Calibration of an Elastic Humanoid
Upper Body and Efficient Compensation for Motion Planning”. In: IEEE-RAS
International Conference on Humanoid Robots (Humanoids). 2021.
doi: 10.1109/HUMANOIDS47582.2021.9555793.
eprint: https://ieeexplore.ieee.org/document/9555793/.
url: https://aidx-lab.org/2021-humanoids-elastic/.

Core Publication (1.0)
CRediT: J. Tenhumberg: Conceptualization, data curation, investigation, methodology,
software, visualization, writing – original draft & review & editing B. Bäuml: Conceptual-
ization, formal analysis, methodology, supervision, writing – review & editing

[2] Johannes Tenhumberg, Dominik Winkelbauer, Darius Burschka, and Berthold
Bäuml. “Self-Contained Calibration of an Elastic Humanoid Upper Body Using
Only a Head-Mounted RGB Camera”. In: IEEE-RAS International Conference
on Humanoid Robots (Humanoids). 2022.
doi: 10.1109/Humanoids53995.2022.10000184.
eprint: https://ieeexplore.ieee.org/document/10000184/.
url: https://aidx-lab.org/2022-humanoids-rgb/.

Core Publication (1.0)
CRediT: J. Tenhumberg: Conceptualization, data curation, investigation, methodology,
software, visualization, writing – original draft & review & editing D. Winkelbauer: Con-
ceptualization, data curation, methodology, software D. Burschka: Supervision B. Bäuml:
Conceptualization, methodology, software, supervision, writing – review & editing

[3] Johannes Tenhumberg, Leon Sievers, and Berthold Bäuml. “Self-Contained and
Automatic Calibration of a Multi-Fingered Hand Using Only Pairwise Contact
Measurements”. In: IEEE-RAS International Conference on Humanoid Robots
(Humanoids). 2023.
doi: 10.1109/Humanoids57100.2023.10375208.
eprint: https://ieeexplore.ieee.org/document/10375208/.
url: https://aidx-lab.org/2023-humanoids-contact/.
video: https://www.youtube.com/watch?v=dkG9xz1fhOU.

Core Publication (0.5)

95

https://doi.org/10.1109/HUMANOIDS47582.2021.9555793
https://ieeexplore.ieee.org/document/9555793/
https://aidx-lab.org/2021-humanoids-elastic/
https://doi.org/10.1109/Humanoids53995.2022.10000184
https://ieeexplore.ieee.org/document/10000184/
https://aidx-lab.org/2022-humanoids-rgb/
https://doi.org/10.1109/Humanoids57100.2023.10375208
https://ieeexplore.ieee.org/document/10375208/
https://aidx-lab.org/2023-humanoids-contact/
https://www.youtube.com/watch?v=dkG9xz1fhOU

Publications of the Author

CRediT: J. Tenhumberg: Conceptualization, data curation, investigation, methodology,
software, visualization, writing – original draft & review & editing L. Sievers: Conceptual-
ization, data curation, investigation, methodology, software, writing – review & editing B.
Bäuml: Conceptualization, methodology, supervision, writing – review & editing

[4] Johannes Tenhumberg, Darius Burschka, and Berthold Bäuml. “Speeding Up
Optimization-based Motion Planning through Deep Learning”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2022.
doi: 10.1109/IROS47612.2022.9981717.
eprint: https://ieeexplore.ieee.org/document/9981717/.
url: https://aidx-lab.org/2022-iros-planning/.
video: https://www.youtube.com/watch?v=fKe1_vUNCew.

Core Publication (1.0)
CRediT: J. Tenhumberg: Conceptualization, investigation, data curation, methodology,
software, visualization, writing – original draft & review & editing D. Burschka: Supervision
B. Bäuml: Conceptualization, methodology, supervision, writing – review & editing

[5] Johannes Tenhumberg, Arman Mielke, and Berthold Bäuml. “Efficient Learning
of Fast Inverse Kinematics with Collision Avoidance”. In: IEEE-RAS Interna-
tional Conference on Humanoid Robots (Humanoids). 2023.
doi: 10.1109/Humanoids57100.2023.10375143.
eprint: https://ieeexplore.ieee.org/document/10375143/.
url: https://aidx-lab.org/2023-humanoids-ik/.
video: https://www.youtube.com/watch?v=k96r7l2s384.

Core Publication (0.5)
CRediT: J. Tenhumberg: Conceptualization, investigation, methodology, software, visu-
alization, writing – original draft & review & editing A. Mielke: Conceptualization, data
curation, software, methodology, writing – review & editing B. Bäuml: Conceptualization,
methodology, software, supervision, writing – review & editing

Additional Publications

[Ten+24] Johannes Tenhumberg, Leon Sievers, Dominik Winkelbauer, Lennart
Röstel, Johannes Pitz, Matthias Humt, Ulrich Hillenbrand, Jörg But-
terfass, Werner Friedl, Thomas Gumpert, and Berthold Bäuml. “Intelligent
Dextrous Manipulation: Humanoid Agile Justin Meets Learning AI”. In:
ICRA IEEE International Conference on Robotics and Automation. 2024.
url: https://aidx-lab.org.
video: https://www.youtube.com/watch?v=CZBMXDM1_Tk
stand-alone video submission with accomanying one-page paper

[TBB24] Johannes Tenhumberg, Darius Burschka, and Berthold Bäuml. “Unified
Task-Oriented Robot Calibration”. In: IEEE Transactions on Robotics (T-
RO) (2024). submitted to IEEE Journal Transactions on Robotics
(T-RO) and currently under review (November 2024)

96

https://doi.org/10.1109/IROS47612.2022.9981717
https://ieeexplore.ieee.org/document/9981717/
https://aidx-lab.org/2022-iros-planning/
https://www.youtube.com/watch?v=fKe1_vUNCew
https://doi.org/10.1109/Humanoids57100.2023.10375143
https://ieeexplore.ieee.org/document/10375143/
https://aidx-lab.org/2023-humanoids-ik/
https://www.youtube.com/watch?v=k96r7l2s384
https://aidx-lab.org
https://www.youtube.com/watch?v=CZBMXDM1_Tk

Publications of the Author

Publication [1]
Calibration of an Elastic Humanoid Upper Body and
Efficient Compensation for Motion Planning
Summary
High absolute accuracy is an essential prerequisite for a humanoid robot to autonomously
and robustly perform manipulation tasks while avoiding obstacles. We present for the
first time a kinematic model for a humanoid upper body incorporating joint and transver-
sal elasticities. These elasticities lead to significant deformations due to the robot’s own
weight, and the resulting model is implicitly defined via a torque equilibrium. We suc-
cessfully calibrate this model for DLR’s humanoid Agile Justin, including all Denavit-
Hartenberg parameters and elasticities. The calibration is formulated as a combined
least-squares problem with priors and based on measurements of the end effector po-
sitions of both arms via an external tracking system. The absolute position error is
massively reduced from 21mm to 3.1mm on average in the whole workspace. Using this
complex and implicit kinematic model in motion planning is challenging. We show that
for optimization-based path planning, integrating the iterative solution of the implicit
model into the optimization loop leads to an elegant and highly efficient solution. For
mildly elastic robots like Agile Justin, there is no performance impact, and even for a
simulated highly flexible robot with 20 times higher elasticities, the runtime increases
by only 30%.

Contribution
The author of the dissertation contributed 90% to this paper. He designed the method-
ology, wrote the software tools to collect the measurements, and performed the full-body
calibration, including the lateral elasticities. In this context, he also carried out the ex-
perimental validation of the methods. Furthermore, he designed and implemented the
algorithm to efficiently compensate the implicit forward kinematics for OMP. Overall,
he wrote the original draft and created the graphs and visualizations. Berthold Bäuml
supervised the work, helped to derive the equations, and reviewed and edited the paper.

Version
The attached version of the paper is identical to the peer-reviewed, accepted, and pub-
lished version available under https://ieeexplore.ieee.org/document/9555793/
Additional information, animations, videos and other material can be found on the pa-
per website https://aidx-lab.org/2021-humanoids-elastic/.

@inproceedings{Tenhumberg2021elastic,
author = {Johannes Tenhumberg and Berthold Bäuml},
title = {Calibration of an Elastic Humanoid Upper Body and Efficient Compensation for Motion Planning},
booktitle = {IEEE-RAS International Conference on Humanoid Robots (Humanoids)},
year = {2021},
doi = {10.1109/HUMANOIDS47582.2021.9555793}}

97

https://ieeexplore.ieee.org/document/9555793/
https://aidx-lab.org/2021-humanoids-elastic/

Publications of the Author

Publication [2]
Self-Contained Calibration of an Elastic Humanoid
Upper Body Using Only a Head-Mounted RGB Camera
Summary
When a humanoid robot performs a manipulation task, it first makes a model of the
world using visual sensors and then plans the motion of its body in this model. For
this, precise calibration of the camera parameters and the kinematic tree is needed.
Besides the accuracy of the calibrated model, the calibration process should be fast and
self-contained, i.e., no external measurement equipment should be used. Therefore, we
extend our prior work on calibrating the elastic upper body of DLR’s Agile Justin by
now using only its internal head-mounted RGB camera. We use simple visual markers
at the ends of the kinematic chain and one in front of the robot, mounted on a pole,
to get measurements for the whole kinematic tree. To ensure that the task-relevant
cartesian error at the end-effectors is minimized, we introduce virtual noise to fit our
imperfect robot model so that the pixel error has a higher weight if the marker is further
away from the camera. This correction reduces the cartesian error by more than 20%,
resulting in a final accuracy of 3.9mm on average and 9.1mm in the worst case. This
way, we achieve the same precision as in our previous work, where an external cartesian
tracking system was used.

Contribution
The author of the dissertation contributed 70% to this paper. He extended the prior
work on calibration to be self-contained and task-oriented using the internal RGB cam-
era. He carried out the experiments on the robot and wrote the software for the calibra-
tion and its detailed evaluation. Furthermore, he wrote the original draft and created
the graphs and visualizations for this paper. Berthold Bäuml supervised the work and
formalized the concept of virtual noise. This general concept allowed a significant error
reduction in the relevant cartesian task space.

Version
The attached version of the paper is identical to the peer-reviewed, accepted, and pub-
lished version available under https://ieeexplore.ieee.org/document/10000184/
Additional information, animations, videos and other material can be found on the pa-
per website https://aidx-lab.org/2022-humanoids-rgb/.

@inproceedings{Tenhumberg2022rgb,
author = {Johannes Tenhumberg, Dominik Winkelbauer, Darius Burschka, and Berthold Bäuml},
title = {Self-Contained Calibration of an Elastic Humanoid Upper Body Using Only a Head-Mounted RGB
Camera},
booktitle = {IEEE-RAS International Conference on Humanoid Robots (Humanoids)},
year = {2022},
doi = {10.1109/Humanoids53995.2022.10000184}}

98

https://ieeexplore.ieee.org/document/10000184/
https://aidx-lab.org/2022-humanoids-rgb/

Publications of the Author

Publication [3]
Self-Contained and Automatic Calibration of a
Multi-Fingered Hand Using Only Pairwise Contact
Measurements
Summary
A self-contained calibration procedure that can be performed automatically without
additional external sensors or tools is a significant advantage, especially for complex
robotic systems. Here, we show that the kinematics of a multi-fingered robotic hand
can be precisely calibrated only by moving the tips of the fingers pairwise into contact.
The only prerequisite for this is sensitive contact detection, e.g., by torque-sensing in the
joints (as in our DLR-Hand II) or tactile skin. The measurement function for a given joint
configuration is the distance between the modeled fingertip geometries, but the actual
measurement is always zero. In an in-depth analysis, we prove that this contact-based
calibration determines all quantities needed for manipulating objects with the hand, i.e.,
the difference vectors of the fingertips, and that it is as sensitive as a calibration using
an external visual tracking system and markers. We describe the complete calibration
scheme, including the selection of optimal sample joint configurations and search motions
for the contacts despite the initial kinematic uncertainties. In a real-world calibration
experiment for the torque-controlled four-fingered DLR-Hand II, the maximal error of
17.7mm can be reduced to only 3.7mm.

Contribution
The author of the dissertation contributed 50% to this paper. He wrote the software for
the entire calibration process. He conceptualized and then carried out the experiments in
simulation to compare the different measurement functions and the influence of different
calibration sets on the final performance. In addition, he wrote the original draft and he
create the graphs and visualizations for this paper. Leon Sievers helped with the first
concept of the contact-based calibration and performed the experiments on the actual
hardware. His work included the contact detection with high sensitiviy. Berthold Bäuml
supervised the work and helped with revieweing and editing the paper.

Version
The attached version of the paper is identical to the peer-reviewed, accepted, and pub-
lished version available under https://ieeexplore.ieee.org/document/10375208/
Additional information, animations, videos and other material can be found on the pa-
per website https://aidx-lab.org/2023-humanoids-contact/.

@inproceedings{Tenhumberg2023contact,
author = {Johannes Tenhumberg, Leon Sievers, and Berthold Bäuml},
title = {Self-Contained and Automatic Calibration of a Multi-Fingered Hand Using Only Pairwise Contact
Measurements},
booktitle = {IEEE-RAS International Conference on Humanoid Robots (Humanoids)},
year = {2023},
doi = {10.1109/Humanoids57100.2023.10375208}}

99

https://ieeexplore.ieee.org/document/10375208/
https://aidx-lab.org/2023-humanoids-contact/

Publications of the Author

Publication [4]
Speeding Up Optimization-based Motion Planning
through Deep Learning
Summary
Planning collision-free motions for robots with many degrees of freedom is challenging
in environments with complex obstacle geometries. Recent work introduced the idea of
speeding up the planning by encoding prior experience of successful motion plans in a
neural network. However, this “neural motion planning” did not scale to complex robots
in unseen 3D environments as needed for real-world applications. Here, we introduce
“basis point set”, well-known in computer vision, to neural motion planning as a mod-
ern compact environment encoding enabling efficient supervised training networks that
generalize well over diverse 3D worlds. Combined with a new elaborate training scheme,
we reach a planning success rate of 100%. We use the network to predict an educated
initial guess for an optimization-based planner (OMP), which quickly converges to a
feasible solution, massively outperforming random multi-starts when tested on previ-
ously unseen environments. For the DLR humanoid Agile Justin with 19DoF and in
challenging obstacle environments, optimal paths can be generated in 200ms using only
a single CPU core. We also show a first successful real-world experiment based on a
high-resolution world model from an integrated 3D sensor.

Contribution
The author of the dissertation contributed 80% to this paper. He conceptualized and
wrote the software on which this paper is based. First he implemented an optimization-
basd motion planner for the 19DoF robot Agile Justin. The solver can handle passive
joints, self-collision, and collision with a hihg-resolution non-convex environment. On
top he build a pipeline to generate training data efficiently. Finally he performed the
experiments with different neural networks, to evaluate the whole method. Berthold
Bäuml first introduced the concept of speeding-up optimization-based planner with the
predictions of neural networks. Overall, he supervised the work and helped with re-
vieweing and editing the paper.

Version
The attached version of the paper is identical to the peer-reviewed, accepted, and pub-
lished version available under https://ieeexplore.ieee.org/document/9981717/
Additional information, animations, videos and other material can be found on the pa-
per website https://aidx-lab.org/2022-iros-planning/.

@inproceedings{Tenhumberg2022planning,
author = {Johannes Tenhumberg, Darius Burschka, and Berthold Bäuml},
title = {Speeding Up Optimization-based Motion Planning through Deep Learning},
booktitle = {IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
year = {2022},
doi = {10.1109/IROS47612.2022.9981717}}

100

https://ieeexplore.ieee.org/document/9981717/
https://aidx-lab.org/2022-iros-planning/

Publications of the Author

Publication [5]
Efficient Learning of Fast Inverse Kinematics with
Collision Avoidance
Summary
Fast inverse kinematics (IK) is a central component in robotic motion planning. For
complex robots, IK methods are often based on root search and non-linear optimization
algorithms. These algorithms can be massively sped up using a neural network to
predict a good initial guess, which can then be refined in a few numerical iterations.
Besides previous work on learning-based IK, we present a learning approach for the
fundamentally harder problem of IK with collision avoidance in diverse and previously
unseen environments. From a detailed analysis of the IK learning problem, we derive a
network and unsupervised learning architecture that removes the need for a sample data
generation step. Using the trained network’s prediction as an initial guess for a two-stage
Jacobian-based solver allows for fast and accurate computation of the collision-free IK.
For the humanoid robot, Agile Justin (19DoF), the collision-free IK is solved in less
than 10ms (on a single CPU core) and with an accuracy of 10−3m and 10−2 rad based
on a high-resolution world model generated from the robot’s integrated 3D sensor. Our
method massively outperforms a random multi-start baseline in a benchmark with the
19 DoF humanoid and challenging 3D environments. It requires ten times less training
time than a supervised training method while achieving comparable results.

Contribution
The author of the dissertation contributed 50% to this paper. He conceptualized the
underlying idea and methodology. He wrote the software for the collision-free IK solver
and the supervised training. Furthermore, he wrote the first draft of the paper and did
the further edites and improvements. In addition he created the visulizations. Arman
Mielke worked on the software related to the unsupervised training, and evaluted and
analysed the resluts thourougly. His detailed look into the network behaviour improve
the work significantly. Berthold Bäuml supervised the work and helped with revieweing
and editing the paper.

Version
The attached version of the paper is identical to the peer-reviewed, accepted, and pub-
lished version available under https://ieeexplore.ieee.org/document/10375143/
Additional information, animations, videos and other material can be found on the pa-
per website https://aidx-lab.org/2023-humanoids-ik/.

@inproceedings{Tenhumberg2023ik,
author = {Johannes Tenhumberg, Arman Mielke, and Berthold Bäuml},
title = {Efficient Learning of Fast Inverse Kinematics with Collision Avoidance},
booktitle = {IEEE-RAS International Conference on Humanoid Robots (Humanoids)},
year = {2023},
doi = {10.1109/Humanoids57100.2023.10375143}}

101

https://ieeexplore.ieee.org/document/10375143/
https://aidx-lab.org/2023-humanoids-ik/

Appendix: Full Text of Publications

This appendix provides the full text of all the core publications on which the cumulative
dissertation is based and their respective copyright notes, which state information for
reprinting the material.
All publications can be found online using the ORCID iD1 of the author of the dis-

sertation ORCID: 0000-0002-5090-1259.
In the bibliography of the author, the link to the published version is provided for

each publication, and, if applicable, a link to a paper website with additional material
is also given. Additionally, the contributions of all authors are stated using the roles
defined by CRediT2 in the bibliography of the author. Finally, that section provides
a detailed description of the author’s contributions to the publications on one page for
each publication.

1Open Researcher and Contributor ID, https://orcid.org
2Contributor Roles Taxonomy, http://credit.niso.org

102

https://orcid.org
http://credit.niso.org

Appendix

Copyright

©2021 IEEE. Reprinted with permission.
In reference to IEEE copyrighted material, which is used with permission in this cum-
mulativ thesis, the IEEE does not endorse any of TU Munich’s products or services.
Internal or personal use of this material is permitted.
If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution,
please go to https://www.ieee.org/publications/rights/rights-link.html to
learn how to obtain a license from RightsLink.

103

https://www.ieee.org/publications/rights/rights-link.html

Calibration of an Elastic Humanoid Upper Body and Efficient
Compensation for Motion Planning

Johannes Tenhumberg and Berthold Bäuml

Abstract— High absolute accuracy is an essential prerequisite
for a humanoid robot to autonomously and robustly perform
manipulation tasks while avoiding obstacles. We present for
the first time a kinematic model for a humanoid upper
body incorporating joint and transversal elasticities. These
elasticities lead to significant deformations due to the robot’s
own weight, and the resulting model is implicitly defined via
a torque equilibrium. We successfully calibrate this model for
DLR’s humanoid Agile Justin, including all Denavit-Hartenberg
parameters and elasticities. The calibration is formulated as
a combined least-squares problem with priors and based on
measurements of the end effector positions of both arms via
an external tracking system. The absolute position error is
massively reduced from 21 mm to 3.1 mm on average in the
whole workspace. Using this complex and implicit kinematic
model in motion planning is challenging. We show that for
optimization-based path planning, integrating the iterative
solution of the implicit model into the optimization loop leads
to an elegant and highly efficient solution. For mildly elastic
robots like Agile Justin, there is no performance impact, and
even for a simulated highly flexible robot with 20 times higher
elasticities, the runtime increases by only 30%.

I. INTRODUCTION

A prerequisite for a humanoid robot to autonomously
and robustly perform tasks in the real world is an accurate
kinematic model of itself. For grasping, the robot needs
to precisely position its tool center point (TCP) relative to
objects, and when planning collision-free motions in self-
acquired 3D models of the environment [1] the extension of
the whole body has to be predicted correctly.

Humanoid robots are complex mechatronical systems built
from lightweight components, which often leads to a signif-
icant deviation from a straightforward, so-called, geometric
kinematics and make it necessary to model non-geometric
effects like elasticities. For our advanced humanoid robot
DLR Agile Justin [2], e.g., the deviation from the geometric
kinematics leads to a mean error of 21 mm and a worst-case
error as large as 61 mm in the whole workspace rendering
robust autonomous action almost impossible.

In this paper, we present a kinematic model incorporating
joint elasticities and transversal elasticities – to our knowl-
edge for the first time for a complete humanoid upper body.
We provide a clear and concise derivation of the kinematic
model from the torque equilibrium, explicitly state the result-
ing exact implicit equation, and show how it can be solved

The authors are with the Institute of Robotics and Mechatronics, German
Aerospace Center (DLR), Münchenerstr. 20, Wessling, 82234, Germany
{johannes.tenhumberg, berthold.baeuml}@dlr.de

This work was partly funded by the Bavarian Ministry of Economic
Affairs, Regional Development and Energy, within the projects SMiLE
(LABAY97) and SMiLE2gether (LABAY102).

Fig. 1. Kinematic tree structure of the humanoid Agile Justin, showing its
19 degrees of freedom (red) and the mass model used for calibration (blue).

iteratively. We successfully calibrate all Denavit–Hartenberg
(DH) parameters and elasticities of this model for the
humanoid Agile Justin and discuss contributions of the
components of the kinematic model to the error reduction.
Finally, we present our elegant approach to efficiently use the
complex and implicit model in optimization-based motion
planning with almost no performance impact.

II. RELATED WORK

Roth et al. [3] provide an early overview on robot calibra-
tion, where they describe four critical aspects: the calibration
model, the dataset, the identification of the model’s param-
eters, and the compensation, i.e., how to use the model in
a robotic task. They also describe three different levels of
calibration. The first level is only finding the joint offsets.
The second is identifying all the robot’s geometric param-
eters. And the third level is the non-geometric calibration,
including joint elasticities and gear backlash.

The first two calibration levels have been successfully
applied to various robot arms [4, 5, 6]. In all these works,
the focus is on algorithmic differences, what sets of DH
parameters to use, and the comparison of the speed for
calibration, but they ignore the speed of compensation.

Besides robotic arms, also more complex humanoid robots
have been calibrated. Maier et al. [7] calibrate the joint
offsets for the humanoid robot Nao and Stepanova et al.
[8] all the DH parameters for the iCub robot. They also
investigate how to combine different internal measurement
chains to get a full-body calibration.

Nevertheless, there are cases for which a purely geometric
model of the robot is not sufficient. A common source of
non-geometric errors is the elasticities in the joints. If the
robot is equipped with joint torque sensors, it is convenient
to use their measurements in the kinematic model as done in
Klodmann et al. [9] for the MIRO robot arm and by Besset
et al. [10] for an LWR arm. But as the actual sensor readings
are needed, this approach is only feasible for control but
not for motion planning. Also, joint torque sensors can not
measure any transversal effects.

A different approach for handling elasticities requires
identifying a mass model of the robot and computing the
torques at their static equilibrium for each pose. Caenen
and Angue [11] showed how to incorporate torques into
the DH-formalism by adding torque-dependent offsets to
the rotational DH parameters. However, they completely
neglected to find the torque equilibrium. Others [12, 13, 14]
included an iterative search to find the equilibrium, but they
only dealt with the joint elasticities and did not include
transversal elasticities. Furthermore, they neglected the prob-
lem of efficient compensation of such an iterative model.

In the case of our elastic humanoid Agile Justin [2], an
efficient compensation of the non-geometric model is crucial
as we want to use it in an optimization-based path planner
[1]. In previous work, we already automatically calibrated the
multi-sensorial head [15, 16] and the IMUs in the head and
the base [17]. Instead, in this paper, we provide an accurate
calibration and efficient compensation for Agile Justin’s full
kinematic as needed for whole-body motion planning.

III. ROBOT MODEL

A. Geometric Model

The forward kinematics of a robot maps from the con-
figuration space of generalized joint angles to the robots’
physical pose in the cartesian workspace. This function is
central to robotic path planning. E.g., grasping an object and
checking for obstacle or self-collision all strongly depend
on an accurate model of the robot’s kinematics. A widely
used representation of this kinematic model is formulated
with the DH parameters. In this formulation, four values
ρi = [di,ri,αi,θi] describe the connection between two con-
secutive frames of the robot:

i−1Ti = Rotx(αi) ·Transx(ri) ·Rotz(θi) ·Transz(di) (1)

The joints qi are treated as offsets to θi or di in (2) depending
on the type of joint. This minimal representation with two
translational and two rotational parameters is enough to de-
scribe an arbitrary robot. However, a limit of this formulation
shows up for parallel axes (see joints 1 to 3 in Fig. 1). In
this case, it is impossible to represent a small variation at the
next link with a small variation of the DH parameters. As
[11] showed, a solution is to use an additional parameter β
representing a rotation around the y-axis, leading to modified
DH parameters ρi = [di,ri,αi,βi,θi]:

i−1Ti = Roty(βi) ·Rotx(αi) ·Transx(ri)·
Rotz(θi) ·Transz(di) (2)

The frame of the TCP (i = M) relative to the robot’s base
(i = 0) is calculated by appling the transformations in series:

0TM = 0T1 · 1T2 · . . . ·M−1TM (3)

For more complex robots with a kinematic tree structure with
multiple TCPs Mi, an equation like (3) holds for each branch.
We understand the forward kinematics f to map from the
robot configuration q not only to the position of the end
effector(s) but to all frames of the robot.

F = [0T1,
0T2, . . . ,

0TN] = f (q,ρ) (4)

B. Non-geometric Model

However, only considering the geometric model falls short
of describing the real robot. This paper focuses on torques
as the primary source of non-geometric effects. In general,
an acting torque will bend the robot and produce a slightly
different position. As the DH parameters can describe an
arbitrary robot, it is convenient to integrate the non-geometric
effects into this formalism. Caenen and Angue [11] showed
this idea by explicitly expressing the influence of torques
onto the DH parameters. The simplest possibility is to add a
torque-dependent linear to the geometric DH parameters ρ0:

ρ = ρ(ρ0,κ,τ) = ρ0 +κ τ (5)

Note, that the effects of forces on the link lengths are
neglected and the matrix κ = [0,0,κα ,κβ ,κθ] describes only
compliance around the respective axes, corresponding to the
rotational DH parameters [α,β ,θ] and the acting torques τ =
[τx,τy,τz]. As a consequence, also the forward kinematics
now depends via the DH parameters ρ on the torques τ and
the elasticity parameters κ:

F = f (q,ρ(ρ0,κ,τ)) (6)

In the regime of no external forces and reasonably slow,
quasi-static motions, the torques originate only from the
robot’s weight and its specific distribution. For a frame, the
pair ν j = [m j,w j] describes the mass m j and its position
w j relative to this frame (i.e., 0w j =

0Tjw j). The torques
produced by this mass due to the gravity vector g around
the respective coordinate axes of another frame i with origin
0 pi can be calculated [11] by1:

τx
i j = ((0Tj w j− 0 pi−1)×m jg) · 0ex

i−1

τy
i j = ((0Tj w j− 0 pi−1)×m jg) · 0ey

i−1 (7)

τz
i j = ((0Tj w j− 0 pi)×m jg) · 0ez

i

To calculate the full torque τi acting on a link i, the
contributions from all masses that act on the respective link
have to be summed up, i.e., the torques from all masses
which are higher up in the robot’s kinematic tree.

1Those torques act on the rotational axes parameterized by αi, βi, and
θi, which are described in (2). Because they make up a frame by sequential
stacking, they do not all share the same frame of reference.

The torques τ = τ(F,ν) now depend on the weight dis-
tribution ν = [ν1,ν2, . . .] of the robot and therefore on the
frames F which are depending on the DH parameters ρ:

ρ = ρ(ρ0,κ,τ(F(q,ρ),ν)). (8)

This implicit equation for the DH parameters defines the
equilibrium between the torques due to gravity and the
torques due to flexion of the robot. We define the solution
to this equation as the non-geometric DH parameters

ρ∗ = ρ∗(q,ρ0,κ,ν). (9)

One possibility to solve (8) is by the following iteration:

ρn = (1−λ)ρn−1 + λρ(ρ0,κ,τ(F(q,ρn−1),ν)) (10)
ρ∞ = ρ∗ (11)

Choosing an appropriate λ ∈ [0,1] for the weighted sum
ensures the convergence of the iteration even for very soft
(or strongly non-linear) robots2. A suitable choice for the
start of the iteration are the geometric DH parameters ρ0
which can be interpreted as a robot in zero gravity or a robot
with infinite stiffness. Finally, the non-geometric forward
kinematics is then given by

F∗ = f ∗(q,ρ0,κ,ν) := f (q,ρ∗(q,ρ0,κ,ν)). (12)

IV. CALIBRATION

A. Measurement Model

We use an external camera system from Vicon, consisting
of six 16Mpx cameras mounted on the ceiling and designed
to track retro-reflective markers with high accuracy. We
fixated two such markers on the robot’s hands, the last link
of the respective kinematic chains (see Fig. 2). To use the
markers’ positions y for calibrating the forward kinematics f ,
additional information is necessary. First, we need the robot’s
base relative to the camera system’s world frame cT0. Second,
the markers’ position on the left and right end effector pr and
pl must be known. It is not always possible to determine
those frames beforehand; therefore, they become part of the
calibration problem. Our measurement function h consists of
the forward kinematics and the additional frames at the ends
of the kinematic chain to close the measurement loop:

y = h(q,Θ) = cT0 · f ∗(q,ρ0,κ,ν)r,l · [pr, pl] (13)

The calibration parameters Θ= [ρ0,κ,ν ,c] are a combination
of the DH parameters ρ , the compliances κ , the masses ν ,
and the parameters c = [pc,oc, pr, pl] for the camera base-
frame and marker positions to map the forward kinematics
to the measurements. The camera frame cT0 is here defined
by its position pc and its orientation oc.

2The convergence can be shown by interpreting the DH parameters as
generalized coordinates and the update rule as the discretized integration
over time of an damped dynamical system (the robot moving due to gravity).

Fig. 2. The measurement setup with cameras tracking markers on the end
effectors; showcasing the problem of occlusion and suitable orientation of
the marker for a given robot configuration.

B. Identification

The parameters Θ of the measurement function h can be
identified using a dataset D = {(q(n),y(n))}n=1...N of pairs of
the robot’s configuration q(n) and the corresponding marker
positions y(n). We formulate the identification as a single
combined least-squares problem based on all measurements
and all markers to minimize the task space error. To solve for
the optimal parameters Θ∗, we use the maximum a posteriori
(MAP) approach:

min
Θ

[
N

∑
n

1
σ2

m
|y(n)−h(q(n),Θ)|2 +(Θ−Θp)

T Λ−1
p (Θ−Θp)

]

This approach uses a prior Gaussian distribution with mean
Θp and a diagonal covariance matrix Λp = diagσ2

p , where
the vector σp describes the uncertainty of the different
calibration parameters. For the measurement noise, we use
the usual assumption of a Gaussian distribution with zero
mean and standard deviation σm. The prior acts as regular-
ization and guarantees the existence of a minimum, even in
the presence of redundancies in the measurement/kinematic
model. Setting the prior is not critical, but it should be set
conservatively to plausible values. Because of the highly
nonlinear measurement function, it might be necessary to use
multistart for the initial guess to find the global minimum.

C. Configuration Selection and Efficient Sample Collection

We selected the measurement poses randomly by sampling
from the configuration space to ensure good overall accuracy
and not only close to some standard configurations. Never-
theless, the poses must be feasible for our experimental setup.
Besides avoiding self-collision while measuring, the markers
imposed additional constraints, as they must be well visible
to the cameras. We used rejection sampling to ensure that at
least four of the six cameras had a clear view of one marker.
We checked for occlusion with simple ray tracing, a straight
line from each camera to the marker’s position. A sphere
model of the robot, which we also use for collision checking,
was used to test if the robot blocks any ray. Combining all
those constraints, only 1/10000 configurations were feasible.

After determining a set of feasible configurations in sim-
ulation, we now need to measure those poses. The robot has

Fig. 3. Flowchart of the optimization loop in light gray. Dark gray shows
the additional loop for the static torque equilibrium. As the outer loop
converges, no additional passes through the inner torque loop are necessary.

to move to each configuration so that the camera system
can collect the corresponding marker positions. One crucial
concern regarding experiments with robots is always the time
involved. To perform short and collision-free paths from pose
to pose, we use an optimization-based path planner; the same
planner we want to make more accurate through calibration,
but with extended safety margins for the nominal kinematic.

To reduce the time further, we ordered the randomly
selected poses to minimize the distance between them. By
solving a traveling salesman problem on batches of 100
samples, we could reduce the time by a factor of two. Now
the average time to collect one sample is ten seconds. From
this, nine seconds fall on the robot performing the trajectory,
and one second is added as a pause for the measurement.

V. COMPENSATION

The calibration goal is to find a set of parameters Θ which
describes the robot as accurately as possible. Nevertheless,
also the speed and ease of use of the calibration model, e.g.
in motion planning, is crucial. Incorporating the new set
of DH parameters ρ is straightforward and works without
any changes or additional costs as they replace the old DH
parameters. The same holds for masses m and compliances
κ . However, to determine the elastic effects, one must find
the static equilibrium between acting torques and elasticities
described in (8). While it might be feasible for calibration
(offline procedure) to use the iterative algorithm (10), it is
more prohibitive for compensation (online). One should care-
fully evaluate this trade-off between accuracy and simplicity
when choosing a calibration model for a robot.

Knowing that we will use the forward kinematics mostly
in the framework of an optimization-based path planner has
further implications. Such a planner works on paths in con-
figuration space Q = [q1,q2, ...,qn] and performs iterations to
get from an initial path Q0 to a converged path Q∗. For each

Fig. 4. Simulated convergence towards the static torque equilibrium for
robots of different stiffness. For iteration 0 the elastic effect is ignored. The
bands indicate the standard deviation for 1000 different joint configurations.

step, the optimizer considers the objective function H(Qi)
and updates the path using the gradient information. The
nested structure of the forward kinematics

f ∗(q) = f (q,ρ(f (q,ρ(f (...)))) (14)

leads to highly non-linear gradients, making the model more
difficult to use. As a solution to this, we separate the
torque equilibrium search in a separate loop, as shown in
Fig. 3. After determining the acting torques accurately and
updating the DH parameters accordingly, we assume these
as constant for the gradient calculation ∂F/∂q. This allows
us to use the pure geometric forward kinematics, implicitly
assuming ∂ρ/∂q = 0. Although we completely omit the
torque iterations for the gradients, this approximation does
not hinder convergence in our tests.

The second important aspect visualized in Fig. 3 is
the combination of the optimization loop and the torque
equilibrium loop. Even if the updates of the configurations
are large at the beginning of the optimization, when the
planner converges, the pose updates get small. If those
updates are significantly smaller than the offset produced by
a torque update, it is unnecessary to search for a new static
equilibrium iteratively. In other words, it is sufficient to reuse
the already computed frames, and calculate the acting torques
and update the DH parameters only once, while nevertheless
solving the forward kinematics f ∗ exactly. The outer loop of
the converging optimizer makes it unnecessary to perform
inner iterations when searching the torque equilibrium.

VI. EXPERIMENTAL EVALUATION

A. Calibration

We collected Nall = 500 samples with the procedure de-
scribed in Section IV-C and split them into a calibration set
with N = 300 and a test set with Ntest = 200 samples. This
data, as well as an overview of the nominal and the calibrated
parameters, are provided online3.

In what follows, we calibrate the parameters Θ= [ρ0,κ,c],
i.e., not ν (the mass m and the center of mass w) because

3https://dlr-alr.github.io/dlr-elastic-calibration

TABLE I
CALIBRATION RESULTS: RESIDUAL TCP ERRORS [MILLIMETERS].

Frames DH parameter Compliance
c ...+θ ...+d, r, α , (β) ...+κθ ...+κα , (κβ)

µ 21.33 18.18 10.5 5.64 3.12
σ 9.71 7.8 5.74 2.57 1.71

max 63.41 45.9 36.37 12.83 8.23
︸ ︷︷ ︸ ︸ ︷︷ ︸

before calibration full calibration

Fig. 5. Histogram of the residual error at the end effectors before and after
calibration, highlighting the need for non-geometric modeling of Justin. The
circles on the x-axis mark the mean µ of the error (see also Table I).

they could be adopted from the CAD-files of the robot. In
a test, we found that adding ν to the calibration parameters
did not improve the residual error but significantly increased
the runtime of the optimization algorithm. The priors used
for the following calibrations were chosen based on previous
experiments with the robot, with uncertainty σp in lengths
of 0.1 m, angles of 0.2 rad, and elasticities of 0.1 rad/kNm.

In all experiments, we used multi start for the optimization
with initial guesses Θ0 randomly sampled from the prior
distribution. All optimization runs converged to the same
optimum, showing the stability of our calibration approach.

As the first step, the additional frames parametrized by
c must be determined to close the measurement loop. Only
calibrating those frames gives the accuracy of the nominal
kinematics before calibration, with a mean residual error of
20 mm - averaged over the 200 test poses and both arms.
In the worst cases, the error was larger than 60 mm. After
calibration, the mean residual error of the full model is
reduced to 3.1 mm and the maximum error to 8.2 mm. Those
two cases are reported in Table I in the left- and rightmost
columns and a detailed distribution of the errors is shown
in Fig. 5. Here the result of a pure geometric calibration
without elasticities is also shown, which highlights the need
for a non-geometric calibration model for this robot.

We conducted further experiments to evaluate the signif-
icance of the different model parameters. Table I reports
the residual error when making the model more expressive
by adding more parameters step by step, starting with the
uncalibrated model (leftmost column) up to the full model
(rightmost column). The order in which we added the dif-
ferent types of parameters (always for all joints at once)
followed ”standard practice” with joint offsets as first and
transversal elasticities as the last addition.

TABLE II
”LEAVE-ONE-OUT ANALYSIS”: RESIDUAL TCP ERRORS [MILLIMETERS].

full −κθ −α −θ −κα −r −d
µ 3.12 9.09 6.48 6.35 4.85 4.33 3.46
σ 1.71 4.23 2.93 3.16 2.28 2.03 1.73

max 8.23 24.59 17.25 18.89 13.37 11.09 8.97

Fig. 6. Test error over the calibration set size N. The bands show the
standard deviation over 1000 different calibration sets of a given size.

That this ”standard ordering” does not represent the actual
influence of the parameters on the residual error can be seen
in Table II. Here, starting from the full model (rightmost
column), only a specific parameter type was left out one
at a time. From this, it can be seen how crucial joint and
transversal elasticities are for modeling Justin’s kinematics.
One reason for the joint elasticities being that prominent is
that we not only model the mechanical elasticity of a joint
but also the elasticity of the joint position controller 4.

Fig. 6 shows how the test error decreases when more
samples N are used for calibrating the full model. Further-
more, one can see the influence of which robot configurations
(joint angles) are in a set. The light bands show the standard
deviation when selecting 1000 different sets of a given size.
While there is still some minor improvement beyond N = 100
samples, the main effect of the calibration happens with as
little as N = 50 samples (those could be collected in less than
ten minutes). This information is especially beneficial for
recalibrating the robot with a subset of the parameters in the
future. A smaller calibration model corresponds to a smaller
set necessary for calibration, making the effect of selecting
an optimal set of configurations [15] more significant.

B. Compensation

Fig. 4 visualizes the non-geometric effects in more detail
by showing the convergence towards a static equilibrium
for solving the kinematics via iteration according to (10).
We show results for the real and virtual versions of Agile
Justin with lower and higher elasticities. For the real robot,
the difference after just one iteration is already considerably
below our calibration accuracy. But if the robot is softer
or the accuracy requirements are stricter, one needs more
iterations to converge to the equilibrium configuration.

In addition, we tested the algorithm described in Fig. 3 on
these versions of Agile Justin. While for the real or stiffer

4We use a relatively simple joint position controller as it is robust (e.g.,
it does not rely on the torque sensors, which are notoriously drifting and
hard to maintain). However, it results in an additional joint-level elasticity.

versions no additional iterations were necessary to converge
to the grasping poses, the procedure also works for soft
robots with stiffnesses in the range of ∼ 100N/rad. In this
case, the number of iterations increased by 30%. In all cases,
the wall clock time for one loop of the optimizer increases
by only one percent. Because no additional calculation of
the forward kinematics is necessary, and one pass through
the torque loop is enough.

VII. CONCLUSIONS

In this paper – to our knowledge for the first time
– a calibration model including all DH parameters, joint
and transversal elasticities was formulated and successfully
calibrated for a humanoid robot.

For DLR’s Agile Justin, the average error could be sig-
nificantly reduced from prohibitively large 21 mm to 3.1 mm
in the whole workspace. We provided a clear and concise
derivation of the implicit kinematic model with elasticities
from a torque equilibrium. We showed that this complex
implicit model can be used in optimization-based motion
planning without any performance impact (for mildly elastic
robots like Agile Justin). And even for a simulated soft robot
with 20 times higher elasticities, the slowdown was only
30%. We achieved this by tightly integrating the iterative
solver for the implicit kinematic model into the optimization
planner loop of the planner. Finally, we provided an in-depth
discussion of the influence of the individual components of
the model on the residual position error.

In the future, we want to make the calibration completely
automatic and self-contained by replacing the use of an
external tracking system by using the robot’s head-mounted
cameras, so combining this work with our previous work on
automatic camera calibration [16].

REFERENCES

[1] R. Wagner, U. Frese, and B. Bauml, “3D modeling,
distance and gradient computation for motion planning:
A direct GPGPU approach,” in 2013 IEEE International
Conference on Robotics and Automation, no. Iii. IEEE,
5 2013, pp. 3586–3592.

[2] B. Bauml et al., “Agile Justin: An upgraded member
of DLR’s family of lightweight and torque controlled
humanoids,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 5 2014, pp.
2562–2563.

[3] Z. Roth, B. Mooring, and B. Ravani, “An overview
of robot calibration,” IEEE Journal on Robotics and
Automation, vol. 3, no. 5, pp. 377–385, 10 1987.

[4] U. S. Pathre and M. R. Driels, “Simulation experiments
in parameter identification for robot calibration,” The
International Journal of Advanced Manufacturing Tech-
nology, vol. 5, no. 1, pp. 13–33, 2 1990.

[5] L. S. Ginani and J. M. S. T. Motta, “Theoretical and
practical aspects of robot calibration with experimental
verification,” Journal of the Brazilian Society of Me-
chanical Sciences and Engineering, vol. 33, no. 1, pp.
15–21, 3 2011.

[6] I. W. Park and J. H. Kim, “Estimating entire geometric
parameter errors of manipulator arm using laser module
and stationary camera,” IECON Proceedings (Industrial
Electronics Conference), pp. 129–134, 2011.

[7] D. Maier, S. Wrobel, and M. Bennewitz, “Whole-body
self-calibration via graph-optimization and automatic
configuration selection,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), vol.
2015-June, no. June. IEEE, 5 2015, pp. 5662–5668.

[8] K. Stepanova, T. Pajdla, and M. Hoffmann, “Robot
Self-Calibration Using Multiple Kinematic Chains-A
Simulation Study on the iCub Humanoid Robot,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp.
1900–1907, 2019.

[9] J. Klodmann, R. Konietschke, A. Albu-Schaffer, and
G. Hirzinger, “Static calibration of the DLR medical
robot MIRO, a flexible lightweight robot with integrated
torque sensors,” in 2011 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. IEEE, 9
2011, pp. 3708–3715.

[10] P. Besset, A. Olabi, and O. Gibaru, “Advanced calibra-
tion applied to a collaborative robot,” in 2016 IEEE
International Power Electronics and Motion Control
Conference (PEMC). IEEE, 9 2016, pp. 662–667.

[11] J. Caenen and J. Angue, “Identification of geometric
and nongeometric parameters of robots,” in Proceed-
ings., IEEE International Conference on Robotics and
Automation. IEEE Comput. Soc. Press, 1990, pp.
1032–1037.

[12] W. Khalil and S. Besnard, “Geometric calibration of
robots with flexible joints and links,” Journal of Intel-
ligent and Robotic Systems: Theory and Applications,
vol. 34, no. 4, pp. 357–379, 2002.

[13] B.-J. Lee, “Geometrical Derivation of Differential Kine-
matics to Calibrate Model Parameters of Flexible Ma-
nipulator,” International Journal of Advanced Robotic
Systems, vol. 10, no. 2, p. 106, 2 2013.

[14] J. Zhou, H.-N. Nguyen, and H.-J. Kang, “Simultane-
ous identification of joint compliance and kinematic
parameters of industrial robots,” International Journal
of Precision Engineering and Manufacturing, vol. 15,
no. 11, pp. 2257–2264, 11 2014.

[15] H. Carrillo et al., “On task-oriented criteria for config-
urations selection in robot calibration,” in 2013 IEEE
International Conference on Robotics and Automation.
IEEE, 5 2013, pp. 3653–3659.

[16] O. Birbach, U. Frese, and B. Bäuml, “Rapid calibra-
tion of a multi-sensorial humanoid’s upper body: An
automatic and self-contained approach,” International
Journal of Robotics Research, vol. 34, no. 4-5, pp. 420–
436, 2015.

[17] O. Birbach and B. Bauml, “Calibrating a pair of inertial
sensors at opposite ends of an imperfect kinematic
chain,” in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, no. Iros. IEEE, 9 2014,
pp. 422–428.

Appendix

Copyright

©2022 IEEE. Reprinted with permission.
In reference to IEEE copyrighted material, which is used with permission in this cum-
mulativ thesis, the IEEE does not endorse any of TU Munich’s products or services.
Internal or personal use of this material is permitted.
If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution,
please go to https://www.ieee.org/publications/rights/rights-link.html to
learn how to obtain a license from RightsLink.

110

https://www.ieee.org/publications/rights/rights-link.html

Self-Contained Calibration of an Elastic Humanoid Upper Body
Using Only a Head-Mounted RGB Camera

Johannes Tenhumberg1,2 Dominik Winkelbauer1 Darius Burschka3 Berthold Bäuml1,2

Abstract— When a humanoid robot performs a manipulation
task, it first makes a model of the world using its visual sensors
and then plans the motion of its body in this model. For this,
precise calibration of the camera parameters and the kinematic
tree is needed. Besides the accuracy of the calibrated model,
the calibration process should be fast and self-contained, i.e., no
external measurement equipment should be used. Therefore, we
extend our prior work on calibrating the elastic upper body of
DLR’s Agile Justin by now using only its internal head-mounted
RGB camera. We use simple visual markers at the ends of the
kinematic chain and one in front of the robot, mounted on
a pole, to get measurements for the whole kinematic tree. To
ensure that the task-relevant cartesian error at the end-effectors
is minimized, we introduce virtual noise to fit our imperfect
robot model so that the pixel error has a higher weight if
the marker is further away from the camera. This correction
reduces the cartesian error by more than 20 %, resulting in a
final accuracy of 3.9 mm on average and 9.1 mm in the worst
case. This way, we achieve the same precision as in our previous
work [1], where an external cartesian tracking system was used.

I. INTRODUCTION

When the humanoid robot Agile Justin performs a task, it
first uses its internal camera to make a model of the world,
including the poses of objects. It then plans how to move its
body in this world model to reach an object without obstacle
collison or self-collisions. The success of this look-and-move
approach depends highly on the calibration of its cameras
and the whole kinematic tree. In the case of Agile Justin,
the deviation from the nominal geometric kinematics is as
large as 61 mm. This significant error makes it necessary to
add safety margins for the collisions, and robust and precise
manipulation is almost impossible.

In our previous paper [1], we derived a model with
elasticities for the humanoid and showed how to use it
efficiently inside an optimization-based planner. The calibra-
tion of the model was based on the cartesian measurements
of an external tracking system where tracking targets were
mounted on the two end effectors. Using an external tracking
system poses two main problems. First, calibration is only
possible when in the lab. Second, the internal camera is
not incorporated in the calibration, although it is used when
performing manipulation tasks, limiting the accuracy.

In this paper, we show that the elastic model of a humanoid
robot can be calibrated using only its head-mounted RGB

1DLR Institute of Robotics & Mechatronics, Germany; 2Deggendorf In-
stitute of Technology, Germany; 3Technical University of Munich, Germany

Contact: johannes.tenhumberg@dlr.de
This work was partly funded by the Bavarian Ministry of Economic

Affairs, Regional Development and Energy, within the projects SMiLE
(LABAY97) and SMiLE2gether (LABAY102).

Fig. 1. DLRs’s Agile Justin [2] collecting measurements using its head-
mounted RGB camera for the calibration of its elastic forward kinematics as
well as the camera’s intrinsic and extrinsic parameters. Only simple markers
on both hands as well as the depicted marker mounted on a pole are used. As
described in Section V, we select filtered random configurations to identify
the robot in its whole work space.

camera and simple markers on the two end effectors and
one in front of the robot. The main contributions are:

• We perform a self-contained robot calibration using
only the head-mounted 640× 480 RGB camera, i.e.,
without any external measurement equipment.

• The complete kinematic tree, including the torso, left
and right arms, the neck, and the camera, are calibrated.
The model has 129 free parameters, including the DH
parameters, joint and lateral elasticities, and the extrin-
sic and intrinsic parameters of the camera.

• We show that directly minimizing the error between
measured and reprojected pixel coordinates of the mark-
ers results in non-optimal cartesian precision (which is
relevant for performing tasks) when dealing with imper-
fect models, as in the case of our complex humanoid
robot. Therefore, we introduce a virtual noise term to
compensate for the mapping between the image and
cartesian space. This correction reduces the cartesian
error at the end effectors by 20 %.

• We validate the calibration results on the real robot. For
this evaluation, we use an external tracking system. The
final cartesian error at the end effectors is 3.9 mm on

Fig. 2. Sketch of the calibration setup. The robot collects images of
markers on both of its hands and a pole in front of it. The blue chains show
how forward kinematics plus camera projection close the measurement loop.
Even if the arms are not directly involved in the pole measurements, their
mass distribution in different positions influences the torso elasticities.

average and 9.2 mm in the worst case.
• The procedure of collecting measurements with the

robot’s internal RGB camera and performing the cal-
ibration takes under 30 minutes. Required for the speed
is a method to select the poses accounting for a clear
view of the markers while allowing for a wide variety
of joint configurations.

• The dataset, as well as a Python package to calibrate a
general elastic robot, are provided1. The tool allows a
combination of non-geometric forward kinematics with
different custom measurement functions.

II. RELATED WORK

An accurate forward kinematics is relevant for most
robotic applications; therefore, there are a lot of examples
of successful calibrations. Most of the time, the robotic
arm’s geometric model is calibrated with an external tracking
system [3, 4, 5, 6]. For an overview of the calibration and
compensation of elastic robots, we refer to the related work
in the preceding paper [1].

However, the calibration model must not only be ex-
pressive enough to match the real robot well. Another
important aspect is a fast and easy calibration process to
make it broadly applicable and easy to repeat if necessary.
Ideally, the robot uses its internal sensors to calibrate itself.
This choice also ensures that precisely the same chain is
calibrated the robot uses to perform its task. Sang De Ma
[7] introduced a self-calibration technique for active vision
systems. Hubert et al. [8] added a bayesian approach and
performed hand-eye calibration of an anthropomorphic robot
using a checkerboard marker.

Maier et al. [9] calibrated the joint offsets for the hu-
manoid robot Nao by following four checkerboard markers
on both of its hands and feet with its RGB camera. Finally,
Stepanova et al. [10] used a combination of visual and tactile
self-observing to calibrate all the DH parameters for the iCub
robot. However, they did this only in simulation.

While using a single camera for calibration is convenient,
minimizing the error in image space is not the same as

1You can find the dataset, videos of the measurements, additional details
to the methods, and the code to calibrate an arbitrary elastic robot at
https://dlr-alr.github.io/2022-humanoids-calibration.

Fig. 3. DLR’s Agile Justin collects measurements to calibrate its non-
geometric forward kinematics. The images are from the robot’s internal
RGB camera with a resolution of 640×480, showing examples for the left
arm, the right arm, and the pole. The markers’ distances to the camera vary
between measurements from 0.2 m up to 1.5m. Without a correction (red),
the pixel error is uniformly distributed over the distances, leading to more
significant cartesian errors for detections further away from the camera as
they correspond to a larger area. The correction (blue) counteracts this and
improves the cartesian accuracy by 20 %.

minimizing the relevant error in the cartesian task space.
Reprojection terms have been used for calibration with RGB-
D cameras [11, 12]. But they did not introduce virtual noise
to account for an imperfect robot model and did not use it
to transform the error in the image space to the task-relevant
cartesian space. They only assumed a real noise for the joints,
which can often be measured quite accurately and does not
need to be handled as unknown noise.

We have already tackled the problem calibration for the
humanoid Agile Justin [2]. Because this complex mecha-
tronic system is built from lightweight components, it is
especially susceptible to torque-dependent elasticity effects.
Furthermore, its autonomous motion has strict accuracy
requirements for its sensors and its forward kinematics. In
previous work, the multi-sensorial head [13], the IMUs in
the head and base [14], and the eye-hand chain [15] were
calibrated. While using the internal sensors, they ignored the
torso for calibration, even as this chain has a significant error.

In the preceding paper, we described the non-geometrical
model of the humanoid Agile Justin and showed how to
calibrate it with an external camera system [1]. Furthermore,
we introduced an efficient technique to compensate for the
implicit model, which was crucial as we wanted to use it in
an optimization-based path planner [16].

The main drawback of this previous work was the de-
pendence on the external tracking system. This dependence
not only limits the general applicability of the approach.
Using the external system, we do not calibrate the relevant
chain between the robot camera and body, which is pertinent
to perform tasks autonomously. Instead, this consecutive
paper provides a fast and accurate auto-calibration for Agile
Justin’s entire kinematic chain. Relying only on the mea-
surements collected by its internal RGB camera, we calibrate
exactly the chain needed for whole-body motion planning.

III. ROBOT MODEL

A. Forward Kinematics

We use the same elastic forward kinematics as in [1] to
model the robot. To describe how the robots physical pose
F in the cartesian workspace changes with joint angles q in
the configuration space we us the DH formalism with the
geometric parameter ρ. The forward kinematics f maps not
only to the position of the end effector(s) but to all frames
of the robot.

F = [0T1,
0T2, . . . ,

0TN] = f(q, ρ) (1)

Following Caenen and Angue [17] we integrate the non-
geometric effects from elasticities κ by explicitly expressing
the influence of torques τ onto the DH parameters.

ρ = ρ(ρ0, κ, τ) = ρ0 + κ τ (2)

The non-geometric forward kinematics is then given by

F = f(q,Θf) = f(q, ρ∗(q, ρ0, κ, ν︸ ︷︷ ︸
Θf

)).

where ρ∗ describes the solution of the non-geometric DH-
parameters in torque equilibrium, resulting from the robots
mass distribution ν in configuration q. For more details on
the derivation of those equations, as well as an algorithm
to compensate and use this implicit model efficiently see
Tenhumberg and Bäuml [1].

B. Camera Model

The forward kinematics describes the cartesian position
of the different body parts. If one wants to use a camera
to measure those positions, one needs a model to project
from the cartesian into the image space U : R3 → R2. Here
we use the classical pinhole model with radial distortion to
project a 3D point of the marker x into 2D pixel coordinates
u [15]. First, the detected point x must be transformed into
the camera frame 0TC. After this, the 3D point is projected
along the z-axis of the camera frame with P (x) and radial
distortion D(u, ξC) is added. The pixel coordinates of the
image u are then calculated as an offset from the cameras
center point cC scaled with the focal length fC:

U(0xM, 0TC,ΘC) = cC + fC ·D(P (CT0
0xM), ξC), (3)

with P (x) =

(
xx

xz
,
xy

xz

)T

; D(u, ξC) =
u

1 + ξC|u|2
(4)

Besides the position of marker 0xM = 0Ti
ixM and frame of

the camera 0TC = 0Tj
jTC relative to the forward kinematics

F , the intrinsic parameters of the camera are also part of the
calibration. Those additional parameters are combined and
denoted as ΘC = [ixM, jTC, cC, fC, ξC].

IV. CALIBRATION PROBLEM

The goal of calibration is to find the set of parameters
Θ = [Θf ,ΘC] which best fit the kinematic model and the
camera model defined in the last section.

A. Maximum a Posteriori Estimation
As usual, we formulate the calibration as a probabilistic

estimation problem [18]. In Fig. 4 on the left, the proba-
bilistic model is depicted using the functions introduced in
Section III to connect the input joint angles q with the pixel
coordinates of the markers u depending on the parameters Θ.
The goal is to find the maximum of the posterior distribution
p(Θ|S) given the measurements S = {(u(n), q(n))}N . For
simplicity of notation, in what follows, we do not discern
between the three different markers but assume that S
includes all measurements.

As Fig. 4 shows, the stochastic variable of a markers pixel
coordinates u can be expressed as a function (the so-called
measurement function h) of the two input nodes q and Θ

h(q,Θ) = U(f(q,Θf)i
ixM , f(q,Θf)j

jTC , ΘC)

u = h(q,Θ) + ηu, ηu ∼ N(0, Cu), Cu = σ2
uI.

When the data is collected with the camera, there is real
measurement noise on the pixels. We model this as gaus-
sian noise ηu with zero mean diagonal variance σu. The
maximum a posteriori (MAP) problem assuming a diagonal
Gaussian prior p(Θ) then results in a non-linear least squares
problem

min
Θ

∑

n

log p(u(n)|q(n),Θ) + log p(Θ) =

= min
Θ

∑

n

(∆u(n))TC−1
m ∆u(n) +∆ΘTC−1

p ∆Θ, (5)

with ∆u(n) = u(n) − h(q(n),Θ), Cm = Cu, (6)

and ∆Θ = Θ−Θp, Cp = diag σ2
p.

In Section VI we report the results of solving this opti-
mization problem.

B. Virtual Cartesian Noise
The MAP approach in (5) minimizes the difference be-

tween the measured marker and the reprojection of the
marker in pixel coordinates. This method usually gives
reasonable estimates for the parameters Θ if the final pixel
error gets very small, i.e., when the measurement model can
fit the real robot well. But when fitting an imperfect model,
i.e., a model which can not wholly reproduce all aspects
of the real robot, the vanilla MAP approach still would
minimize the overall pixel error by equally distributing the
error between all measurements in (5). Intuitively, this is not
what we expect from a good fit: we want a fit that minimizes
the error in cartesian space. A camera measures angles. This
means a pixel further away corresponds to a larger area in
physical space than a pixel closer to the camera. Therefore
a pixel error for a marker far from the camera should count
more than a pixel error close to the camera.

To achieve this in a methodological sound way, we in-
troduce an additional node in the graphical probabilistic
model (Fig. 4, right graph). This addition explicitly models
the (actually deterministic) imperfection as additional virtual
noise in the marker’s 3D position.

0x̃M = 0xM + ηx̃, ηx̃ = N(0, Cx̃), Cx̃ = σ2
x̃I.

Fig. 4. The probabilistic graph of the calibration problem includes the
camera and robot model from Section III. It describes how the markers
pixel coordinates u are computed from the joint configuration q and the
model parameters Θ for each of the N samples. Left (w/o red parts): In the
original mapping, the real pixel measurement noise ηu is the only source
of stochasticity. Right: An additional virtual cartesian noise node is added
to compensate for the imperfect (actually deterministic) kinematic model.
Left (with red parts): As shown in Section IV-B, the virtual noise can be
incorporated into the original model, resulting in an effective pixel noise
with a σ̃u depending on the distance of the marker to the camera (∝ 1/z2).

It is important to note that the noise is added in base
coordinates as we want the model error to be distributed
equally in the world (and not, e.g., relative to some moving
frame of the robot). The pixel coordinates of this noisy
marker position now depend on this additional noise term

u = U(0xM + ηx̃,
0TC,ΘC) + ηu.

By marginalizing over the new variable 0x̃M, we get the
effect of the additional virtual noise on the distribution of
the pixel coordinates explicitly

p(u|0xM, 0TC,Θ) =

∫
p(u|0x̃M, 0TC,Θ)p(0x̃M|0xM)d0x̃M.

Due to non-linearities in U , the resulting distribution is non-
Gaussian. However, we can approximate it with a Gaussian
distribution by linearizing U for the noise and using Gaussian
arithmetic. This results in almost the same form as before ex-
cept for a new effective covariance C̃u = C̃u(

0xM, 0TC,Θ)
which now also depends on the marker’s coordinates.

u ≈ U(0xM, 0TC,ΘC) + η̃u, η̃u ∼ N(0, C̃u),

C̃u(
0xM, 0TC,Θ) = Cu + JUCx̃J

T
U ,

JU (
0xM, 0TC,Θ) =

∂U(x, 0TC,ΘC))

∂x

∣∣∣
x=0xM

Assuming that the camera distortion can be neglected for
calculating the effective noise distribution, we finally get

C̃u ≈ σ2
uI + σ2

x̃

(
fC
xz

)2

1 +

x2
x

x2
z

xxxy

x2
z

xxxy

x2
z

1 +
x2
y

x2
z


 , (7)

Fig. 5. The different marker positions in the image for the left arm, the
pole on the floor and the right arm. We move the pan-tilt joints of the robot’s
neck to get a good coverage of the image over all markers.

Fig. 6. The different distributions in configuration space of the right
arm with 7 joints. In red are the taught poses [19, 13, 15]. In blue are the
configurations resulting from the rejection sampling approach described in
Section V leading to a broader distribution. The joint limits are black.

where x = CxM = 0T−1
C (0xM).

The resulting MAP problem looks exactly the same as the
original one (5), except that the weighting of the individual
measurement errors is changed to Cm = C̃u(

0xM, 0TC,Θ).
Looking at (7), this result means that markers further away
are more critical and scaled with z2 – just as we intuitively
expected.

V. EFFICIENT SAMPLE COLLECTION

One goal of selecting measurement poses is to cover the
whole configuration space. Sampling uniformly in the con-
figuration space ensures that the calibrated model works well
even if the robot moves autonomously and uses its full range
of motion far away from taught standard configurations.

Nevertheless, the configurations must be feasible for the
measurement setup. When the robot uses its camera to collect
measurements of the markers, it imposes strict constraints.
The markers must be in the camera’s field of view, must
not be occluded by the robot’s own body, and must face
toward the camera. We check for occlusion with simple ray
tracing and a sphere model of the robot by drawing a straight
line from the camera to the marker and ensuring it does not
collide with any of the spheres. Checking if the camera and
the marker face each other can be done by simply calculating
the scalar product between their relative position and viewing
direction. Furthermore, we want to ensure that only a single
marker is visible to the robot at any configuration. In the case
of Agile Justin, we needed over 10 million configurations to
find 100 feasible measurement configurations for a marker.

As all those calculations happen before the calibration,

Fig. 7. We also collect measurements using the Vicon tracking system
described in [1] to evaluate our approach in the cartesian space. This external
tracking system consists of six cameras mounted on the ceiling and directly
tracks the cartesian position of retro-reflective markers with high accuracy.

one must account for uncertainties with larger thresholds
and safety margins. Fig. 6 shows that this general rejection
sampling approach (blue) is better suited to get an even
distribution over the configuration space. In contrast, in red
are the taught poses used in prior works. This comparison
shows that even for experts, it is hard to choose unbiased
configurations for a complex humanoid.

We collect multiple measurements per robot configuration
to speed up the calibration procedure. In the case of Agile
Justin, the camera is mounted on a pan-tilt joint, allowing us
to adjust the marker’s position in the image easily. Assuming
that in the initial configuration, the marker is roughly in the
center of the camera’s field of view, we move the camera to
collect four additional measurements where the tag is in one
of the corners of the image each time.

Fig. 5 shows the marker positions in the image when
adjusting the head to collect multiple measurements per
configuration. The main reason for only moving the head
while keeping the rest of the body fixed is to increase
the number of samples quickly. Furthermore, good image
coverage makes calibrating the camera intrinsics easier. To
ensure that, we used neck joints to move the projection of
the marker toward the corners while keeping a safety margin
to the image center and borders.

As in Tenhumberg and Bäuml [1], we solve a traveling
salesman problem to order the configurations we want to
measure and reduce the time for calibration. Furthermore, we
use an optimization-based path planner to perform short and
collision-free paths between the measurement configurations.

VI. EXPERIMENTAL EVALUATION

With this approach, we collected measurements for 50
configurations per marker, with five head positions each,

Fig. 8. Absolute cartesian error of the left and right arm after the full
calibration. The relative error between those two is significantly smaller,
indicating that the main part of the remaining error comes from the torso.

Fig. 9. Distribution of the errors in image space for the three markers at the
pole, the left, and the right wrist. Calibrating only the geometric parameters
(center) does not explain the elasticities in the torso seen in the pole marker.
The entire calibration (left) with geometric and non-geometric parameters
distributes the remaining errors uniformly over the three markers.

resulting in 50× 5× 3 = 750 samples for the three markers.
We split the set (equally for each marker) into 500 samples
for calibration and 250 samples for evaluation. The virtual
noise is set to σx̃ = 1 cm and the pixel noise to σu = 0.2
(sub-pixel detection accuracy). It takes roughly 8 minutes to
collect the measurements for the markers on the hands and an
additional 13 minutes to make the measurements for the pole.
The latter takes more time as the joint configurations are
further apart in this setting, as the whole body is involved and
not only one arm. Together with performing the calibration
itself (3 minutes), the whole procedure takes 32 minutes.
For comparison, the procedure with the external tracking
system takes 25 minutes, which is a little faster as no separate
configurations for each marker are necessary. However, there
is an additional overhead for the setup of the tracking system.

For comparison, we also used the external cartesian track-
ing system to perform a new calibration using the method
from Tenhumberg and Bäuml [1]. For this, we recorded
recorded 100 different configurations (see Fig. 7). We also
use this cartesian tracking data to evaluate the calibration
based only on the head-mounted camera. For this, the posi-
tion of the reflective targets and the tracking systems frame
relative to the robot are recalibrated.

Fig. 9 shows the error in image space for the markers on
the left and right arm and the pole for different calibration
models. On the right-most image is the nominal forward
kinematics, and in the center is the geometric model with
the DH parameters. The left image shows the full calibra-
tion, including joint and lateral elasticities and the camera
intrinsics. One can see that the torso chain is responsible
for significant non-geometric errors due to the large acting

TABLE I
ERROR IN THE IMAGE AND THE CARTESIAN SPACE FOR DIFFERENT

CALIBRATION MODELS WITH AND W/O VIRTUAL NOISE (VN), WITH AND

W/O INTRINSIC CAMERA PARAMETERS (ΘC) AND USING ONLY THE

CAMERA (IMAGE) OR TRACKING SYSTEM (POINTS).

Calibrate Image Error [px] Cartesian Error [mm]
on ΘC VN µ σ max µ σ max

Images no no 1.05 0.59 3.76 4.77 2.29 11.75
Images yes no 0.97 0.53 3.44 4.65 2.27 11.58
Images no yes 1.21 0.70 4.13 4.11 1.87 9.34
Images yes yes 1.15 0.62 3.97 3.94 1.83 9.16
Points - - - - - 3.12 1.71 8.23

torques and its mechanical design with ropes. In Fig. 8 we
further analyzed the influence of the different body parts.
The absolute cartesian errors of the right and left arm are
red and blue, respectively. Here the torso chain is part of the
measurements; therefore, its error is included. However, the
torso is excluded if we look at the distance between the left
and right target and compare it against the measured length.
This reduced error in the relative arm positions indicates that
the remaining error mainly comes from the torso chain.

The results also emphasize the need for our virtual noise
term to cope with the imperfect model of the robot. Even
the elastic robot model does not capture all the relevant
effects, and a significant error remains. That the virtual
noise helps to distribute the error evenly in the task-relevant
cartesian space can be seen in Table I. While the pixel
error increases slightly, the mean and maximal cartesian error
gets smaller by over 20 % when correcting for the mapping
between the image and task space. Furthermore, we show
that it is possible to include the camera intrinsics ΘC in
the calibration, further improving the accuracy. The mean
final error at the end effectors is 3.9 mm on average and
9.2 mm in the worst case. These results are comparable to a
calibration using the cartesian measurements of an external
tracking system, which is reported in the last row.

VII. CONCLUSION

The main advantage over the previous work from Ten-
humberg and Bäuml [1] is that the new approach does not
rely on an external camera system and calibrates the same
chain used when performing manipulation tasks. However,
to achieve comparable accuracy in the cartesian task space,
it is not enough to minimize the pixel error in the image
of the single RGB camera. We correct this mapping by
introducing virtual cartesian noise. This way, it is ensured
that the remaining error of our imperfect model is minimized
in the task-relevant cartesian space and not the pixel space.
We show that this simple, self-contained approach leads to a
similar good precision as using an external tracking system,
reducing the error to 3.9 mm on average.

In the future, we want to reduce the number of samples
needed by optimizing the used kinematic configurations –
similarly to the work of Carrillo et al. [13], but for an
elastic robot model and based on the here presented generic
configuration generation scheme. We also want to improve
the kinematic model by introducing an additional non-linear

term for the torso chain, as we found here that this sub-chain
is the primary source of the remaining error.

REFERENCES
[1] J. Tenhumberg and B. Bäuml, “Calibration of an Elastic Humanoid

Upper Body and Efficient Compensation for Motion Planning,” in
IEEE-RAS International Conference on Humanoid Robots, vol. 2021-
July, 2021.

[2] B. Bäuml et al., “Agile Justin: An upgraded member of DLR’s family
of lightweight and torque controlled humanoids,” in Proceedings -
IEEE International Conference on Robotics and Automation. IEEE,
5 2014, pp. 2562–2563.

[3] L. S. Ginani and J. M. S. T. Motta, “Theoretical and practical aspects
of robot calibration with experimental verification,” Journal of the
Brazilian Society of Mechanical Sciences and Engineering, vol. 33,
no. 1, pp. 15–21, 3 2011.

[4] I. W. Park and J. H. Kim, “Estimating entire geometric parameter
errors of manipulator arm using laser module and stationary camera,”
IECON Proceedings (Industrial Electronics Conference), pp. 129–134,
2011.

[5] G. Xiong, Y. Ding, L. M. Zhu, and C. Y. Su, “A product-of-
exponential-based robot calibration method with optimal measurement
configurations,” International Journal of Advanced Robotic Systems,
vol. 14, no. 6, pp. 1–12, 2017.

[6] K. Van Wyk, J. Falco, and G. Cheok, “Efficiently Improving and
Quantifying Robot Accuracy In Situ,” arXiv, 8 2019.

[7] Sang De Ma, “A self-calibration technique for active vision systems,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 1, pp.
114–120, 1996.

[8] U. Hubert, J. Stuckler, and S. Behnke, “Bayesian calibration of the
hand-eye kinematics of an anthropomorphic robot,” in 2012 12th
IEEE-RAS International Conference on Humanoid Robots (Humanoids
2012). IEEE, 11 2012, pp. 618–624.

[9] D. Maier, S. Wrobel, and M. Bennewitz, “Whole-body self-calibration
via graph-optimization and automatic configuration selection,” in 2015
IEEE International Conference on Robotics and Automation (ICRA),
vol. 2015-June, no. June. IEEE, 5 2015, pp. 5662–5668.

[10] K. Stepanova, T. Pajdla, and M. Hoffmann, “Robot Self-Calibration
Using Multiple Kinematic Chains-A Simulation Study on the iCub
Humanoid Robot,” IEEE Robotics and Automation Letters, vol. 4,
no. 2, pp. 1900–1907, 4 2019.

[11] V. Pradeep, K. Konolige, and E. Berger, “Calibrating a Multi-arm
Multi-sensor Robot: A Bundle Adjustment Approach,” in Springer
Tracts in Advanced Robotics, 2014, vol. 79, pp. 211–225.

[12] M. Ferguson and N. Arora, “Robust and Efficient Calibration of
Mobile Manipulators,” Fetch Robotics, Tech. Rep., 2015.

[13] H. Carrillo et al., “On task-oriented criteria for configurations selection
in robot calibration,” in Proceedings - IEEE International Conference
on Robotics and Automation. IEEE, 5 2013, pp. 3653–3659.

[14] O. Birbach and B. Bauml, “Calibrating a pair of inertial sensors at
opposite ends of an imperfect kinematic chain,” in 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, no. Iros.
IEEE, 9 2014, pp. 422–428.

[15] O. Birbach, U. Frese, and B. Bäuml, “Rapid calibration of a multi-
sensorial humanoid’s upper body: An automatic and self-contained
approach,” International Journal of Robotics Research, vol. 34, no.
4-5, pp. 420–436, 2015.

[16] R. Wagner, U. Frese, and B. Bauml, “3D modeling, distance and gra-
dient computation for motion planning: A direct GPGPU approach,”
in 2013 IEEE International Conference on Robotics and Automation,
no. Iii. IEEE, 5 2013, pp. 3586–3592.

[17] J. Caenen and J. Angue, “Identification of geometric and nongeometric
parameters of robots,” in Proceedings., IEEE International Conference
on Robotics and Automation. IEEE Comput. Soc. Press, 1990, pp.
1032–1037.

[18] C. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer, 2007.

[19] O. Birbach et al., “Automatic and self-contained calibration of a
multi-sensorial humanoid’s upper body,” in 2012 IEEE International
Conference on Robotics and Automation. IEEE, 5 2012, pp. 3103–
3108.

Appendix

Copyright

©2023 IEEE. Reprinted with permission.
In reference to IEEE copyrighted material, which is used with permission in this cum-
mulativ thesis, the IEEE does not endorse any of TU Munich’s products or services.
Internal or personal use of this material is permitted.
If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution,
please go to https://www.ieee.org/publications/rights/rights-link.html to
learn how to obtain a license from RightsLink.

117

https://www.ieee.org/publications/rights/rights-link.html

Self-Contained and Automatic Calibration of a Multi-Fingered Hand
Using Only Pairwise Contact Measurements

Johannes Tenhumberg∗1,2,3 Leon Sievers∗1,2,3 Berthold Bäuml1,2

Abstract— A self-contained calibration procedure that can be
performed automatically without additional external sensors or
tools is a significant advantage, especially for complex robotic
systems. Here, we show that the kinematics of a multi-fingered
robotic hand can be precisely calibrated only by moving the tips
of the fingers pairwise into contact. The only prerequisite for
this is sensitive contact detection, e.g., by torque-sensing in the
joints (as in our DLR-Hand II) or tactile skin. The measurement
function for a given joint configuration is the distance between
the modeled fingertip geometries, but the actual measurement
is always zero. In an in-depth analysis, we prove that this
contact-based calibration determines all quantities needed for
manipulating objects with the hand, i.e., the difference vectors
of the fingertips, and that it is as sensitive as a calibration using
an external visual tracking system and markers. We describe
the complete calibration scheme, including the selection of
optimal sample joint configurations and search motions for the
contacts despite the initial kinematic uncertainties. In a real-
world calibration experiment for the torque-controlled four-
fingered DLR-Hand II, the maximal error of 17.7 mm can be
reduced to only 3.7 mm.
Web: https://dlr-alr.github.io/2023-humanoids-contact/

I. INTRODUCTION

Autonomous robots that robustly perform dextrous ma-
nipulation tasks in the real world generally require precise
models of the system’s kinematics. Regarding multi-fingered
robotic hands, one crucial class is planning algorithms for
finding an optimal grasp for a given 3D model of an
object [1, 2]. This task depends on the precise placement of
the fingers on the object’s surface. Another class is methods
for dextrous in-hand manipulation. Here, only recent modern
deep reinforcement learning algorithms trained in simulation
have enabled dexterity close to human performance. Primar-
ily when performed in a purely tactile setting [3, 4, 5],
i.e., without cameras, where only joint angles (and tactile
measurements, e.g., via torque-sensing) are used, robust zero-
shot sim2real transfer requires a precise kinematics model
with a maximal error of a few millimeters.

It is desirable to have a quick calibration procedure that
runs entirely automatically and is self-contained, i.e., it does
not need any additional external sensors or tools to obtain a
precise kinematic model.

A. Related Work

A classical and often-used approach for calibrating kine-
matic chains and trees is visual tracking of the end-

∗ First two authors contributed equally.
1DLR Institute of Robotics & Mechatronics, Germany
2Deggendorf Institute of Technology, Germany
3Technical University of Munich, Germany
Contact: johannes.tenhumberg@dlr.de, leon.sievers@dlr.de

Fig. 1. DLR-Hand II [6] with thumb and index finger in contact for different
poses. The kinematic tree of the whole hand is indicated in orange, and the
three active joints plus the fourth passive joint are drawn together with the
dimensions of the fingers. The other two fingers are far extended to allow
for a large shared workspace of the current pair. For the whole calibration,
all six finger pairs are measured and calibrated jointly.

effector(s). For a robotic hand, this visual approach with an
external tracking system was demonstrated by Lee et al. [7].
However, adding visual markers to the many end-effectors is
pretty cumbersome, especially as more than one marker is
usually required per fingertip due to the mutual occlusions of
the many fingers in the small workspace of a hand. Using an
electromagnetic tracking system to measure the position and
orientation of the fingertips [8] is less prone to occlusions.
However, the requirement for additional hardware hinders
the ease of use of such an approach.

Another calibration procedure that avoids the need for a
tracking system uses geometric constraints on the kinematic
chain. An early work constrained the motion of an end-
effector on a plane to calibrate a robotic arm [9]. Since then,
there have been examples of using mechanical fixtures [10],
relative calibration techniques [11], and precise reference
plates [12] to calibrate a robotic arm without a vision
system. Bennett and Hollerbach [13] applied these ideas to a
robotic hand and calibrated the multi-finger Utah-MIT hand
by rigidly connecting two fingertips with a plate, resulting
in a closed-loop kinematic chain. A downside of all those
approaches is that the mounting procedure can damage the
fingers and takes time, especially if it needs to be repeated
for each finger pair.

A particular case of the relative geometric calibration

techniques does not require mechanical fixtures to enforce
the constraints but relies on self-contact. The humanoid
robot iCub was intensely used for such studies. First in
simulation [14] and then on the actual hardware together with
other sensing modes [15]. Roncone et al. [16] calibrated the
full DH parameters of the iCub robot using self-touch with a
tactile skin with 4200 sensing points. Besides identifying the
parameters of a given kinematic chain, self-contact can also
be used to incrementally update the kinematic scheme [17]
or identify the layout of an artificial tactile skin [18].

B. Contributions

In prior work, an external camera system was first used to
calibrate an elastic kinematic model of the humanoid Agile
Justin [19]. Then, this approach became more accessible by
using the robot’s internal RGB camera to calibrate the com-
plete kinematic tree [20]. This paper extends the calibration
to the DLR-Hand II [6, 21] (see Fig. 1) of the robot and
introduces a contact-based approach that does not rely on
anything other than the kinematic tree structure itself. The
main contributions of this work are:

• We show, to our knowledge for the first time, that the
kinematics of a multi-fingered hand can be calibrated
using only contact measurements of (all) finger pairs,
i.e., without any external tools like cameras or markers.

• An in-depth theoretical analysis of the calibration prob-
lem with redundant parameters, including proof that
the quantities relevant for manipulation tasks, i.e., the
difference vectors between the fingertips, are entirely
determined by our contact measurement scheme.

• A comparison of calibration by contact measurements
with calibration using a visual tracking system (theoret-
ical analysis and simulation experiments).

• A complete scheme for executing a contact-based cal-
ibration for a general multi-fingered hand, including
optimal selection of finger configurations and planning
of search motions to deal with the initial uncertainties
in the kinematics.

• Real-world experiments with the contact calibration of
the DLR-Hand II resulting in a reduction of the maximal
error from 17.7mm for the nominal kinematic to only
3.7mm for the full DH parameters calibration.

II. ROBOT MODEL

The forward kinematics of a robot maps from the con-
figuration space of generalized joint angles to the robots’
physical pose in the cartesian workspace. Both for robotic
arms and hands, an accurate model of the robot’s kinematics
is essential for precise and collision-free motions. A well-
fitted model is also required to perform challenging grasping
and manipulation tasks.

DH parameters are widely used to describe this kine-
matic model of the robot. In this formulation, four values
ρi = [di, ri, αi, θi] describe the connection between two
consecutive frames of the robot:

i−1Ti = Rotx(αi) · Transx(ri) · Rotz(θi) · Transz(di) (1)

Fig. 2. The scheme shows the actual contact measurement on the hardware
(black) and the same joint configuration applied to the robot model (gray).
The fingers are in penetration for the current set of calibration parameters.
This error (red) should be minimized over the calibration process.

The joints qi are treated as offsets to θi or di in (1) depending
on the type of joint. This minimal representation with two
translational and two rotational parameters is enough to
describe an arbitrary robot.

The frame of the end-effector (i = E) relative to the
robot’s base (i = 0) is calculated by applying the trans-
formations in series:

0TE = 0T1 · 1T2 · . . . · E−1TE (2)

For robots with a kinematic tree structure with multiple
end-effectors Ek, k = 1 . . . NE, equation (2) holds for each
branch. The forward kinematics maps from joint configura-
tions q ∈ Q to all the NF frames of the robot

f(q, ρ) = F = [0T1,
0T2, . . . ,

0TNF
]. (3)

Each frame Fi describes a full 6D pose (Fi,x, Fi,r) ∈ R3 ×
SO(3).

III. CALIBRATION FOR IN-HAND MANIPULATION

A. Identification

The goal of the calibration is to identify this kinematic
model. In our case, the central parameters of the forward
model are the DH parameters ρ. Nevertheless, in general,
there can be additional parameters that have to be estimated
jointly with the kinematic parameters. Examples are camera
intrinsics or additional frames to close the measurement loop.
We denote the combination of all calibration parameters
Θ. These parameters of the measurement function h can
be identified using a dataset D = {(q(n), y(n))}n=1...N of
corresponding pairs between the robot’s configuration q(n)

and the measurement y(n). We formulate the identification
as a single combined least-squares problem based on all
measurements and all body parts to minimize the error ϵ =
y − h(q,Θ) between measurements and model predictions.
To find the optimal parameters Θ∗, we use the maximum a
posteriori (MAP) approach:

min
Θ

[
N∑

n

1

σ2
m

∥∥∥y(n) − h(q(n),Θ)
∥∥∥
2

+∆ΘTΛ−1
p ∆Θ

]

with ∆Θ = Θ−Θp

This approach employs a Gaussian distribution beforehand,
characterized by a mean Θp and a diagonal covariance
matrix Λp = diag σ2

p. The uncertainty of the calibration
parameters is modeled via σp. Furthermore, we assume
the usual Gaussian distribution with a mean of zero and
a standard deviation of σm for the measurement noise. By

Fig. 3. The scheme shows the three measurement functions discussed in
Section III. Top (Section III-B): The task measurement function ht measures
the relative positions of the end-effectors. Middle (Section III-D): The
contact measurement function hc measures the scalar distance between two
end-effectors. Bottom (Section III-C): The cartesian measurement function
hv uses an external tracking system to measure the absolute position of the
end-effectors.

incorporating the prior, this method is regularized, ensuring
a minimum exists, even if there are redundancies in the
measurement or kinematic model.

B. Task Measurement Function

We aim to calibrate this kinematic model of the hand
for dextrous in-hand manipulation. To move the fingers in
a controlled manner, as demonstrated by Pitz et al. [4] with
the cube, an accurate model for the relative positions of the
fingertips to each other is necessary. To relate closely to this
task, we chose our desired measurement function to measure
the relative positions directly. The calibration process should
then minimize the error of this function.

For NE fingers, NE− 1 distance vectors define the whole
set. One can choose one fingertip E1 as the basis and
compute the positions relative to it for the remaining fingers

yk = hk
t (q, ρ) = f(q, ρ)Ek,x − f(q, ρ)E1,x (4)

One can then concatenate the measurements for
the pairs to get the combined measurements
ht = [h2

t , . . . , h
NE
t], hk

t ∈ R3. This results in 3 · (NE − 1)
data points per robot pose for the three spatial directions
and NE end-effectors.

Note that (4) is our theoretically desired measurement
function, which measures all the information we care about
for precise in-hand manipulation. For example, we can
not detect a translational offset of all end-effectors like a
cartesian tracking system could. However, such a shift does
not change the fingers’ relative behavior and is irrelevant to
our task.

Task Test Set: Besides the task measurement function, the
test set is central to evaluating the calibration quality. We
want a high accuracy across the whole cartesian workspace.
Therefore, the test set for evaluating all our experiments
should be uniformly distributed in the cartesian workspace.
We sample random joint configurations for each finger and
map them to the end-effector positions via the forward
kinematics f . In the cartesian workspace, we create a fine

Fig. 4. The graphic shows the contact calibration approach for a four-
fingered hand. For pairwise contact, two fingers always need to move out of
the shared workspace of the current finger pair to ensure that self-collisions
are avoided and the available configuration space for contact detection is
well used.

grid and draw one of the grid cells uniformly, and in the
second step, we draw one joint configuration that lies in
this grid cell. This sampling strategy ensures a uniform
distribution over the workspace, which does not hold for
configurations sampled randomly in the configuration space.

After defining a suitable measurement function and test
set for our task, we discuss the actual measurement methods
that can be applied to the hardware. First, an external
camera system that tracks the cartesian position of visual
markers followed by our pairwise contact measurements.
Note that there are also additional considerations, especially
the independence of particular infrastructure and the low
complexity of the measurement setup, speaking in favor of
contact-based measurements.

C. Cartesian Measurement Function

One option to perform the actual measurements is to
mount visual markers on the kinematic tree and use an
external tracking system to collect cartesian measurements
of these markers. Assuming that the markers are fixed
at position mEk

relative to end-effector Ek, the cartesian
measurement function

yk = hv(q,Θ)k = cT0 · f(q,Θ)Ek
·mEk

(5)

describes how a marker moves dependent on the joint
configuration q and the calibration parameters Θ. Suppose
one wants to calibrate the forward kinematics jointly for
multiple end-effectors. In that case, one can combine the
measurements for each of the NE markers to a combined
measurement function hv = [h1

v, . . . , h
NE
v], hk

v ∈ R3. While,
in general, the measurements with an external camera can be
made without constraining the robot directly, one still needs
to account for self-collision and a clear view of the markers.
These additional constraints reduce the possible space in
which measurements can be collected.

D. Contact Measurement Function

Another option to perform the actual measurement is
to use contact information. We describe this procedure in
more detail in Section V. In general, the corresponding

Fig. 5. This figure shows the ordered eigenvalues for different measurement
setups to analyze the sensitivity. The evaluation was done with the nominal
kinematic of the DLR-Hand II; for a more generic hand, see the right plot.
The task measurement function ht is blue, and our contact measurement
function hc is red. Furthermore, we show three modes. For the one where all
the pairs are calibrated simultaneously (⬢), the kernels of both measurement
functions have the same size. The same is true for the calibration with three
fingers (▲) However, the kernel sizes differ when just a single pair (•) is
considered. The light gray vertical lines indicate the maximal number of
parameters for each mode.

measurement function measures the distance between parts
of the robot. One needs the exact geometry of the two
bodies to compute the distance du between a pair of bodies
u = (Ek, El) on the kinematic tree. The distance is only
dependent on the relative position and orientation of the
bodies

du = du(EkTEl
) = du(f(q, ρ)−1

Ek
· f(q, ρ)El

) = du(q, ρ).
(6)

This relative frame EkTEl
is directly computable from the

forward kinematics f(q, ρ).
If the bodies at Ek and El have simple geometric forms,

one can directly compute the distance dm. In the case of
the DLR-Hand II, the fingertips are perfect capsules in the
contact area and, therefore, straightforward to compute. The
more general case is that the geometries are given as arbitrary
meshes. In this case, one has to use, for example, algorithms
like GJK to compute the distance.

The contact measurement function for the pair u can now
be written as

yu = hc(q,Θ)u = du(f(q, ρ)). (7)

This function can only measure the scalar distance between
two body pairs. With NE end-effectors on the kinematic tree,
there are in total NU =

(
NE

2

)
pairs. The combined measure-

ment function is in this case hc = [h1
c , . . . , h

NU
c], hk

c ∈ R
The contact measurement adds hard constraints to the

data collection (see Section V-A). As only configurations in
contact can be measured, the available configuration space is
drastically reduced. Therefore, the remaining subspace can
be quite different from the cartesian task test set described
in Section III-B. The following section discusses how those
different measurement functions relate and how many param-
eters they can identify. Furthermore, we discuss the influence
of the different calibration and test sets on the sensitivity.

Fig. 6. The plot is structured equivalently to Fig. 5 but for a more generic
hand kinematic without parallel axes or mounting frames. Here, in theory,
all 64 parameters for the entire hand (⬢) can be identified. However, when
only two fingers are considered (•), the contact measurement function hc

is still less sensitive than the task measurement function ht. This speaks in
favor of a holistic calibration of the whole kinematic tree.

IV. PROBLEM ANALYSIS

A. Sensitivity Analysis

A single contact measurement (7) measures less infor-
mation than a cartesian tracking system (5). The tracking
system can measure the absolute position of the markers in
the workspace. The contact can only measure the relative
distance between two parts of the kinematic chain. In other
words, the contact can measure the joint angles where the
distance between the two bodies is zero.

The question is whether this reduced information in the
measurement function leads to non-identifiable parameters.
We can answer this question directly by looking at the
jacobians of the different measurement functions

Js =
∂h(qs,Θ)

∂Θ

∣∣∣
Θ0

. (8)

Assuming that each measurement is d-dimensional, con-
catenating those matrices for each measurement leads to
the combined jacobian J = [J1, . . . , JND] with dimensions
(ND · d) × NΘ. We can investigate which parameters are
identifiable by the measurement function h by looking at
the nullspace of JTJ. The size of the nullspace marks how
many of the model parameters Θ can not be identified.
Furthermore, from the eigenvectors corresponding to the
eigenvalues close to zero, one can identify the parameters
(or sets of parameters) which can not be measured.

When one deals with two distinct measurement functions,
as we described with the desired task ht and our actual
contact measurement function hc, the necessary condition
is that

kernel(JT
c Jc) ⊆ kernel(JT

t Jt). (9)

If this condition is satisfied, one can identify all the relevant
parameters to the task, defined by ht. Note that this is less
strict than demanding that both kernels are zero and applies
in general to distinct measurement functions for calibration
and evaluation. We allow for unidentifiable parameters if they
do not influence our desired measurement function.

B. Optimal Experimental Design

Following Carrillo et al. [22], we use task D-optimality to
select appropriate samples for measuring. However, we have

two key differences in our setup. First, we have a theoretical
desired task measurement function ht and an actual measure-
ment function hc we can apply on the hardware. Ultimately,
we want a good fit for the desired measurement function.
Second, the contact measurement reduces the configuration
space quite drastically. Still, we want a good fit and high
accuracy across the whole workspace. Therefore we also
have two sets here. The desired test set is uniformly sampled
across the whole cartesian test set and one actual test set,
which can be measured via contact detection. We generalize
the optimality framework to account for those mismatches
between measurement functions and distributions. Carrillo
et al. [22] showed that the central equation decouples and
the task D-optimality can efficiently be computed with

OD =
1

l
det

(
(cov(Θ)

ND̄∑

s=1

Js
t
TJs

t

)
. (10)

The mean over JT
i Ji is constant for a given test set of

size ND̄ and a desired task measurement function ht. The
covariance over the calibration measurements can be esti-
mated using the actual chosen measurement function and
the specific calibration set. Let S = {si}ND

i=1 be a subset
of a larger calibration set and Jc = [Js1

c , . . . , J
sND
c] the

combined jacobians corresponding to those measurements.
Then the covariance is given by

cov(Θ) = JT
c diag(σ2

m)Jc + diag(σ2
p). (11)

and transforms the uncertainty in the measurements σm and
the priors σp into an uncertainty in the parameters.

(10) lets us compute how well different calibration sets
are suited to minimize the error of the desired measurement
function over a desired test set. This criterion can be used to
choose a good set of suitable poses for measuring. Besides
reducing the overall size of the necessary calibration set,
this selection criterion also counteracts the mismatch in the
measurement functions and the calibration and test sets. We
report the results of the sensitivity analysis and the optimal
selection criterion in Section VI-B.

V. CONTACT MEASUREMENT PROCEDURE

A. Sample Generation

Our approach is to collect pairwise contact measurements
for the tree structure of the hand. A key difference for
contact-based calibration is that one does not know the exact
joint configuration, which will be measured beforehand.
Generally, the measurement process collects pairs (q, y) to
calibrate a function g(q, θ) = y. For vision-based measure-
ments, one collects the cartesian position yi for selected
joints qi. On the other hand, for contact-based measurements,
the yi is known a priori; the contact is, by definition, yi = 0.
The contact measurement delivers the exact configuration qi,
which leads to contact.

Therefore, contact measurement must also include a search
to find the exact configuration in which the contact happens.
We tackle this problem by generating for each measurement
point a trajectory along which contact will probably happen.

Fig. 7. Red: L2 norm of ∆τ . ∆τ denotes the difference between the
torque signal measured by the passive finger before the approach started,
τ0, and the currently measured torque. Blue: L2 norm of ∆q. ∆q denotes
the difference between the position signal measured by the passive finger
before the approach started and the currently measured position. The contact
is detected when the torque threshold τt = 0.1Nm is exceeded. Note how
the passive finger’s joint angles can change after the active finger starts to
drive causing vibrations in the system. The torque sensors only measure
noise until the contact occurs.

We define this path by its endpoints. The start configuration
is far from contact with the nominal robot model, and the
end configuration is deep in penetration. Between those
endpoints, we then detect contact for the specific finger pair.

Our approach to generating these search trajectories for
the contact measurements consists of multiple steps. The
first step is to find the volume in the workspace which both
end-effectors can reach. We save a large (n=100000) set of
configurations that fall in this intersection for both fingers.
The next step is to randomly choose one configuration for
finger A and check for which configurations of finger B the
tips collide. The threshold for collision one chooses here
strongly depends on the robot model’s initial uncertainty.
Continuing from this pair of configurations, we choose which
finger should be static and which should move into contact.
For the moving finger, we then sample an additional random
configuration as the start point of the measurement drive.

We repeat this procedure for all six finger pairs. For each
pair, the rest of the kinematic structure should move as far
away as possible from the combined workspace of the current
end-effector pair (see Fig. 4). The goal is to obstruct the
measurements as little as possible and allow for diverse joint
configurations in this constrained setting.

One additional problem is the small form factor of a
robotic hand, especially compared to the errors of the un-
calibrated system. For a robotic arm with a total reach of
one meter, an error of a few centimeters does not change the
measurement setup. However, in our case, the DLR-Hand II
with its four fingers, the ratio between error in the forward
kinematics and the robot’s actual size is much larger. We
measured uncalibrated errors up to 17.7mm. That equals
roughly 10% of the workspace and is also about the fingertip
size. The consequence is that even if, in simulation for the
nominal kinematic, the two fingers touch close to the center,
it is still possible that the measurement fails on the hardware.
Therefore one needs to account for this high uncertainty
while generating samples and safe trajectories to collect those
samples. Furthermore, robust contact detection is crucial for
reliable measurements on the actual hardware.

Fig. 8. Convergence of mean and maximal cartesian error ϵv on the uniform
cartesian test set for different calibration sets for the contact measurement
function hc. Randomly chosen sets (red) converge slower than the sets
designed according to task D-optimality (10). The greedy strategy is green,
and the detmax[23] strategy is blue. The distribution mismatch between
calibration and test set can explain why the gap between random and
selected samples remains significant even for larger calibration sets.

B. Contact Detection

It is essential to detect the precise joint angles in which the
contact force between the fingertips is as small as possible.
The DLR-Hand II is equipped with an output side torque
sensor for each of the twelve active degrees of freedom.
Before the passive finger gets approached, the offset, τ0, is
set to the measured torque, τm(t). When the active finger
moves and the change in torque is larger than the threshold
τt, a contact is detected (see Fig. 7).

VI. EXPERIMENTS

As the model of the forward kinematics for the
DLR-Hand II, we include all four DH parameters per joint,
resulting in NΘ = NDoF × 4 calibration parameters. The
hand has four fingers. Each finger has three active and one
passive joint. This results in 16(= 4 × 4) DH parameters
per finger and 64(= 4× 16) parameters for the whole hand.
Furthermore, each finger has three parallel joints, and the ring
and middle finger are mounted with the same orientation.

A. Sensitivity Analysis

To answer the question of whether our contact measure-
ment function hc can identify all the parameters relevant
for the task measurement function ht, we compute the
nullspace of JTJ as described in Section IV-A. We evaluate
the respective Jacobians Jc and Jt for the nominal robot
kinematic. For the actual measurement function hc, we
use 100 configurations per pair, which were generated as
described in Section V-A. For the task measurement function
ht, we use 100 configurations per finger drawn from the
cartesian test set.

Fig. 5 shows the results of this analysis for the
DLR-Hand II. The task measurement function ht is drawn
in blue, and our contact measurement function hc is in red.
All the pairs are calibrated simultaneously for the rightmost
mode (⬢). Both measurement functions have 56 eigenvalues
larger than 1 · 10−6. Analyzing the eigenvectors confirms
that the kernel of our contact measurement function hc is
wholly included in the task measurement function ht kernel.
Therefore, we can identify all parameters relevant to the task.
The parallel axis of the fingers can explain the 8(= 2 × 4)

Fig. 9. The plot is designed equivalently to Fig. 8, but for the cartesian
measurement function hv. The overall convergence of the error ϵv is quicker
because the absolute cartesian position yields more information per sample.
Furthermore, the difference between the random approach and the dedicated
selection criteria is smaller in this setting. One reason is that the calibration
set for the external tracking system is closer to the task test set.

unidentifiable parameters. Each finger has 3 parallel axes
along which a shift can be adjusted without influencing the
end-effector, resulting in an increased size of nullspace by 2
per finger and 14 identifiable parameters per finger.

The leftmost mode (•) shows the calibration of just a
single pair. Considering the calibration of one pair, from the
32(= 2×16) total parameters, 28(= 2×14) should be identi-
fiable. However, the critical insight is that measuring between
two chains yields less information than measuring between
three or more chains. This holds for the actual scalar distance
measurement (red / hc), where 26 parameters are identifiable,
and the task measurement of the relative positions (blue / ht),
where one can identify 27 parameters. However, one can
measure even less with the scalar distance function when
restricting the measurements to a single pair. An intuition
is that two end-effectors can move on a sphere around each
other without changing the scalar distance between them.
Therefore, in this case, one can not identify all the parameters
relevant to the task by pure contact measurements.

This invariance generally resolves when adding a third
chain (▲) to the picture, favoring a holistic calibration of the
full kinematic tree. Fig. 5 shows the same analysis but for a
generic four-fingered hand without parallel axes or mounting
frames. In theory, all parameters can be identified for the
entire hand. However, in praxis, eigenvalues below 10−6 still
indicate poor sensitivity.

B. Optimal Experimental Design

We conducted an extensive simulation study to verify
our analysis in Section IV. We use the DH formalism to
parametrize the forward kinematics as described in Section II
and apply noise on the nominal DH parameters to obtain new
robot models. For the rotational DH parameters α and θ we
applied sampled uniformly ± 5◦ and for the translational
parameters DH d and r we used uniform noise ± 5mm.

In this fashion, we created 100 different kinematics to
ensure a broad distribution of models. Next, we simulated
the data collection step and collected measurements for the
actual contact measurement function hc, the actual cartesian
measurement function hv, and the task measurement function
ht. On average, the models deviated 21mm from the nominal
kinematic on the uniform cartesian test set.

TABLE I
CALIBRATION RESULTS IN MM

Actual Meas. Fun. Task Meas. Fun.
mean std max mean

nominal 6.07 3.90 17.70 8.01
calibrated

joint offsets 1.04 0.82 5.13 1.36

calibrated
full DH 0.72 0.58 3.69 0.89

Fig. 10. Comparison of contact error ϵc distribution for the different
calibration models. The calibration with all DH parameters can reduce the
maximal error to 3.7mm(see also Table I).

Fig. 8 show the results of the optimal sample selection
introduced in Section IV-B. The error on the cartesian test set
is drawn over the calibration set size for different selection
strategies. Randomly chosen sets (red) converge slower than
the sets designed according to task D-optimality (10). We
compare a greedy strategy (green), which at each step adds
the sample si, which improves the task D-optimality most
against the DETMAX algorithm [23] (blue). This procedure
tries to swap samples in an existing calibration set to improve
the task D-optimality. Both selection strategies outperform
the random approach, significantly reducing the mean error
to 0.1mm with a set of 300 measurements.

The distribution of configurations for the contact measure-
ments differs from the uniform distribution in the cartesian
workspace on which we evaluate the calibrations. This dis-
tribution mismatch can explain why the gap between random
and selected samples remains significant even for larger
calibration sets. Our approach using the task D-optimality
as a selection criterion does account for this shift directly
and improves the contact calibration with its strict constraint
for data generation significantly.

Fig. 9 shows the same analysis but for the cartesian
measurement function hv with an external tracking system.
The overall convergence is quicker because the absolute
cartesian position yields more information per sample. Fur-
thermore, the difference between the random approach and
the dedicated selection criteria is smaller in this setting. One
reason is that the calibration set for the external tracking
system is closer to the task test set. While proving overall
that the selection over task D-optimality is suited to select
good calibration sets, those results show that this approach
is particularly viable when there is a substantial mismatch
between the task measurement function and its test set
versus the actual measurement function and its corresponding
calibration set.

Fig. 11. This plot analyses the contact errors ϵc of the individual fingers and
pairs before and after the calibration. Each finger has an individual marker
defined by a color and an orientation. A measurement of a specific pair is
then an overlay of those two finger markers. The x-axis shows the signed
distance error before and the y-axis after the calibration, giving detailed
insight into the error distribution of the hand.

C. Calibration of the real DLR-Hand II

Following our methodology described in Section IV and
Section V-A, we calibrated the DLR-Hand II via pairwise
contact measurements. Overall, we collected 300 samples
to ensure we have a large enough set for calibration and
evaluation. The training-test split was 80/20, and we used
cross-validation to get the distribution over the whole dataset.
Our findings revealed that 150 samples are sufficient for an
accurate calibration. Collecting that data takes 9 minutes,
making this automatic calibration procedure easy and quick
to use.

The uncalibrated nominal forwards kinematic has a mean
error of 6mm over all 300 samples and a maximal error
of up to 17.7mm for the scalar distance measurement.
The full error distribution over the signed distance function
is shown in red in Fig. 10. Light blue is the calibrated
model using only the joint offsets as calibration parameters,
reducing the maximal error to 5.1mm. The entire calibration
model, including all DH parameters, is dark blue. This model
reduces the maximal error further to 3.7mm.

Fig. 11 analyses the errors of the individual fingers before
and after the calibration. Each finger has an individual
marker, and a measurement of a specific pair overlaps those
two finger markers. The x-axis shows the signed distance
error before and the y-axis after the calibration. Besides the
significant overall error reduction, one can see that different
finger pairs have other error distributions before and after the
calibration. For example, the pair fore-ring is often slightly
apart for the nominal model, while the thumb-ring pair is
often in deep penetration.

Table I shows the detailed results of the different models.
Additionally, the errors in the task space are given. After
calibration, one can use (11) to transform the resulting
calibration errors of the contact measurement function hc

into the errors of the task measurement function ht. Starting
from the calibration errors σm one can first apply Jc to map
to the uncertainties of the calibration parameters covΘ and

Fig. 12. The DLR-Hand II in a finger contact pose from the testset a)
with the measured joint angles q mirrored to a nominal b) and a calibrated
c) model. The model’s error is visibly reduced from a distance of 8.3mm
to a penetration of 1mm, allowing dextrous in-hand manipulation.

then apply in a second step Jt to map to the task space. This
results in a reduction of the mean error in the task space form
8mm for the uncalibrated model to 0.9mm after calibration.

Finally, Fig. 12 shows the improvement through our cali-
bration procedure on the real DLR-Hand II. When mirroring
a joint configuration q, which is in contact, onto the nominal
and the calibrated robot model, one can see the sizeable
uncalibrated error and the good fit after the calibration,
enabling dextrous grasping and in-hand manipulation.

VII. CONCLUSIONS AND FUTURE WORK

Using a pairwise contact measurement approach, we cal-
ibrated the complex robotic DLR-Hand II with 12 active
and 4 passive joints. This calibration approach has minimal
requirements on the robotic hardware and needs no additional
tools, making it easy to apply in different setups. One only
needs a method to contact contacts (e.g., torque sensors in
our case) and a mathematical model to describe the distance
between the body pairs.

From an uncalibrated distance error of up to 17.7mm
(roughly equivalent to 10% of the overall size of the
workspace), we could reduce maximal error to 3.7mm and
the average error to 0.7mm. Looking at the desired task
measurement function relevant to dextrous in-hand manip-
ulation, we made a sensitivity analysis to confirm that the
scalar distance information between individual finger pairs is
enough to identify all relevant DH parameters. Furthermore,
we showed that performing a joint calibration of multiple
finger pairs yields more information than looking at just
a single pair. We used task D-optimality to counteract the
mismatch between our desired task measurement function
and its corresponding cartesian test set versus the less infor-
mative, more constrained contact measurement approach. An
exhaustive simulation study verifies this selection approach’s
effectiveness in balancing the calibration and the desired
task.

In future work, we want to extend the calibration approach
to the robot structure’s elasticities, especially in the drivetrain
and the fingertips. For this, forces are applied via the torque-
controlled joints while in contact.

REFERENCES
[1] D. Winkelbauer et al., “A Two-stage Learning Architecture that Generates High-

Quality Grasps for a Multi-Fingered Hand,” in International Conference on
Intelligent Robots and Systems, 2022.

[2] ——, “A two-stage learning architecture that generates high-quality grasps for a
multi-fingered hand,” in Proc. Int. Conf. Intelligent Robots and Systems, 2022.

[3] L. Sievers, J. Pitz, and B. Bäuml, “Learning Purely Tactile In-Hand Manipulation
with a Torque-Controlled Hand,” in International Conference on Robotics and
Automation, 2022.

[4] J. Pitz, L. Röstel, L. Sievers, and B. Bäuml, “Dextrous Tactile In-Hand Manipu-
lation Using a Modular Reinforcement Learning Architecture,” in International
Conference on Robotics and Automation, 2023.

[5] L. Röstel, J. Pitz, L. Sievers, and B. Bäuml, “Estimator-coupled reinforcement
learning for robust purely tactile in-hand manipulation,” in Proc. IEEE-RAS
International Conference on Humanoid Robots, 2023.

[6] J. Butterfaß, M. Grebenstein, H. Liu, and G. Hirzinger, “DLR-Hand II: Next
generation of a dextrous robot hand,” in International Conference on Robotics
and Automation, 2001.

[7] S.-M. Lee, K.-D. Lee, S.-H. Jung, and T.-S. Noh, “Kinematic Calibration
System of Robot Hands Using Vision Cameras,” in International Conference
on Ubiquitous Robots and Ambient Intelligence, 2013.

[8] N. Tan, X. Gu, and H. Ren, “Simultaneous Robot-World, Sensor-Tip, and
Kinematics Calibration of an Underactuated Robotic Hand With Soft Fingers,”
IEEE Access, 2018.

[9] M. Ikits and J. Hollerbach, “Kinematic calibration using a plane constraint,” in
International Conference on Robotics and Automation, 1997.

[10] M. Meggiolaro, G. Scriffignano, and S. Dubowsky, “Manipulator Calibration
Using A Single Endpoint Contact Constraint,” in ASME International Design
Engineering Technical Conferences and Computers and Information in Engi-
neering Conference, 2000.

[11] Y. Sun, D. J. Giblin, and K. Kazerounian, “Accurate Robotic Belt Grinding of
Workpieces with Complex Geometries using Relative Calibration Techniques,”
Robotics and Computer-Integrated Manufacturing, 2009.

[12] A. Joubair and I. A. Bonev, “Kinematic Calibration of a Six-Axis Serial Robot
Using Distance and Sphere Constraints,” The International Journal of Advanced
Manufacturing Technology, 2015.

[13] D. J. Bennett and J. M. Hollerbach, “Closed-loop Kinematic Calibration of the
Utah-MIT Hand,” Experimental Robotics I, 1990.

[14] K. Stepanova, T. Pajdla, and M. Hoffmann, “Robot Self-Calibration Using
Multiple Kinematic Chains—A Simulation Study on the iCub Humanoid Robot,”
IEEE Robotics and Automation Letters, 2019.

[15] K. Stepanova et al., “Automatic Self-Contained Calibration of an Industrial Dual-
Arm Robot with Cameras Using Self-Contact, Planar Constraints, and Self-
Observation,” Robotics and Computer-Integrated Manufacturing, 2022.

[16] A. Roncone, M. Hoffmann, U. Pattacini, and G. Metta, “Automatic Kinematic
Chain Calibration Using Artificial Skin: Self-touch in the iCub Humanoid Robot,”
in International Conference on Robotics and Automation, 2014.

[17] R. Zenha, P. Vicente, L. Jamone, and A. Bernardino, “Incremental Adaptation
of a Robot Body Schema Based on Touch Events,” in International Conference
on Development and Learning and Epigenetic Robotics, 2018.

[18] L. Rustler et al., “Spatial Calibration of Whole-Body Artificial Skin on a
Humanoid Robot: Comparing Self-Contact, 3D Reconstruction, and CAD-Based
Calibration,” in International Conference on Humanoid Robots, 2021.

[19] J. Tenhumberg and B. Bäuml, “Calibration of an Elastic Humanoid Upper Body
and Efficient Compensation for Motion Planning,” in International Conference
on Humanoid Robots, 2021.

[20] J. Tenhumberg, D. Winkelbauer, D. Burschka, and B. Bäuml, “Self-Contained
Calibration of an Elastic Humanoid Upper Body Using Only a Head-Mounted
RGB Camera,” in International Conference on Humanoid Robots, 2022.

[21] Haiying Hu et al., “Calibrating Human Hand for Teleoperating the HIT/DLR
hand,” in International Conference on Robotics and Automation, 2004.

[22] H. Carrillo et al., “On task-oriented criteria for configurations selection in robot
calibration,” in International Conference on Robotics and Automation, 2013.

[23] T. J. Mitchell, “An Algorithm for the Construction of ”D-Optimal” Experimental
Designs,” Technometrics, 2000.

Appendix

Copyright

©2022 IEEE. Reprinted with permission.
In reference to IEEE copyrighted material, which is used with permission in this cum-
mulativ thesis, the IEEE does not endorse any of TU Munich’s products or services.
Internal or personal use of this material is permitted.
If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution,
please go to https://www.ieee.org/publications/rights/rights-link.html to
learn how to obtain a license from RightsLink.

126

https://www.ieee.org/publications/rights/rights-link.html

Speeding Up Optimization-based Motion Planning
through Deep Learning

Johannes Tenhumberg1,2, Darius Burschka3 and Berthold Bäuml1,2

Abstract— Planning collision-free motions for robots with
many degrees of freedom is challenging in environments with
complex obstacle geometries. Recent work introduced the idea
of speeding up the planning by encoding prior experience of
successful motion plans in a neural network. However, this
“neural motion planning” did not scale to complex robots
in unseen 3D environments as needed for real-world appli-
cations. Here, we introduce “basis point set”, well-known in
computer vision, to neural motion planning as a modern
compact environment encoding enabling efficient supervised
training networks that generalize well over diverse 3D worlds.
Combined with a new elaborate training scheme, we reach a
planning success rate of 100 %. We use the network to predict
an educated initial guess for an optimization-based planner
(OMP), which quickly converges to a feasible solution, massively
outperforming random multi-starts when tested on previously
unseen environments. For the DLR humanoid Agile Justin with
19 DoF and in challenging obstacle environments, optimal paths
can be generated in 200 ms using only a single CPU core. We
also show a first successful real-world experiment based on a
high-resolution world model from an integrated 3D sensor.

I. INTRODUCTION

At the core, robotic motion planning is about getting from
the start joint configuration to a goal configuration while
avoiding obstacles in the environment and self-collision
along the path. Solving a motion task fast and efficiently does
not only mean that the robot spends less time contemplating
and more time moving. If a solver can find a feasible solution
in a fraction of a second, there opens up the door for
more reactive planning and integrating the global planner
more tightly into the sensor/vision-action loop. Furthermore,
we can tackle more high-level tasks with multiple smaller
motion problems if each substep can be solved efficiently.

An interesting approach for speeding up motion plan-
ning is not to solve each planning problem anew but to
use experience from having solved related motion tasks
before. Important for the applicability of such experience-
based planners to real-world problems is that they not only
allow for arbitrary start and goal configurations but also for
arbitrary environment geometries as an input. So, “related
tasks” only means that the robot geometry is the same.

This paper presents a deep learning enhancement for an
optimization-based planner that allows robot motion plan-
ning in high-resolution environments with complex obstacle
geometries. For the DLR’s humanoid robot Agile Justin [1]
with 19 DoF, feasible trajectories can be computed in only
200 ms on a single CPU core (see Fig. 1).

1DLR Institute of Robotics & Mechatronics, Germany; 2Deggendorf In-
stitute of Technology, Germany; 3Technical University of Munich, Germany

Contact: johannes.tenhumberg@dlr.de
Supported by the Bavarian Ministry of Economics, project SMiLE2gether.

Fig. 1. DLR’s Agile Justin [1] in a challenging obstacle environment,
we generate with simplex noise for training and testing. The sphere model
of the 19 DoF humanoid is shown as red wireframes. For videos of the
motions, visit https://dlr-alr.github.io/2022-iros-planning.

A. Related Work

Two popular but fundamentally different approaches to
solving a motion task in robotics are sampling-based plan-
ners (SMP) and optimization-based motion planners (OMP).
SMP [2] use randomness at their core and can guarantee to
globally find a feasible, i.e., collision-free, path (if there is
any). Examples are rapidly exploring random trees (RRT)
and their extensions, which explore the configuration space
iteratively and build a graph of possible configurations until
a branch finds the goal. As the search space grows expo-
nentially with the robots’ degrees of freedom (DoF), vanilla
variants of SMP don’t scale well to complex robots.

In OMP, the motion task is formulated as an optimization
problem [3, 4, 5] and gradient-based techniques are used for
non-convex optimization to find a solution. The computa-
tional complexity of those methods can, in principle, scale
linearly with the DoF1 and converge quickly to a smooth
trajectory. However, they only find a local minimum and
strongly depend on the initial guess.

For non-trivial robot kinematics and environments, the
objective function usually has many local minima. Therefore,
a multi-start approach is needed to find a feasible global
solution, massively slowing down OMP in complex scenar-
ios. STOMP [4] and CHOMP [3] try to mitigate the strong

1Think of gradient descent where for each iteration only the computation
of the gradient and its addition to the current joint angels are performed –
both operations linear in the DoF when using, e.g., automatic differentiation.

dependency on an initial guess by introducing stochasticity to
the optimization. TrajOpt [5] uses convex hulls to represent
the robot and its environment and increases the attraction
basin for each optimum. But still, OMP needs multi-starts to
find a feasible global solution.

OMP can be sped up by using experience from previously
solved motions tasks by providing an educated initial guess.
Jetchev and Toussaint [6] first proposed to save a database of
feasible trajectories and look up a reasonable first guess for
a new problem. Merkt et al. [7] improved the idea through
more efficient database storage and tested it on a humanoid
robot. But for both methods, only results for fixed or only
slightly varying environments are shown.

Instead of databases, neural networks are often used to
encode the experience. The expectation is that they are more
memory efficient, encode various solutions implicitly, learn
a general understanding of feasible trajectories, and produce
useful predictions in unseen settings. Qureshi et al. [8, 9]
coined the term Motion Planning Network (MPNet) and then
improved on the idea. They used an RRT planner to collect
feasible trajectories in 2D and 3D worlds and encode the
environment with point clouds. Their method works on the
Baxter robot over ten known table scenes with 1000 paths per
scene. Strudel et al. [10] showed that they could outperform
these results by employing the PointNet [11] architecture to
encode the point clouds of the environments. They achieved
good results in 3D with a sphere and a rigid S-shape with
three translational and rotational DoFs but did not consider
a robotic application. Bency et al. [12] and Lembono et al.
[13] applied variations of the idea successfully to the two
humanoids, Baxter and PR2. However, they only used a
single fixed environment without generalization to different
worlds. Lehner and Albu-Schäffer [14] trained a Gaussian
mixture model to steer the search in a probabilistic roadmap.
The approach was demonstrated on a real 7 DoF robot but
equally only for one fixed world.

Also, other learning methods have been applied to this
problem. For example, Jurgenson and Tamar [15] used
reinforcement learning with convolution layers to process
the occupancy map of the world for 2D serial robots. They
invoke a classical planner only for cases where random
exploration fails to find a feasible solution, so they implicitly
use this expert knowledge to guide the training. Pandy
et al. [16] introduces a different approach, where the dataset
generation is skipped entirely, and the network is directly
trained using the objective function of the planning problem
as the training loss, i.e., no supervision is used. However,
they only use geometric primitives to represent environments
with few obstacles, limiting the flexibility.

For a more detailed overview of the literature, also refer
to Surovik et al. [17]. They introduce the term “data-driven
trajectory initialization” (DDTI) to generalize the ideas of
“trajectory prediction” or “memory of motion”. To our best
knowledge, up to now, there is no experienced-based method
for speeding up motion planning that can predict feasible
paths for a complex robot in a large set of challenging and
previously unseen 3D words.

Fig. 2. Three different robots in random 2D and 3D environments,
generated with simplex noise. A motion problem is described by the world
(hatched), the start configuration (blue), and the goal configuration (red).
The solution, the shortest feasible path from start to goal, is drawn in gray.
See Table I for an overview of the different robots and worlds in numbers.

B. Contributions

We propose a neural network that encodes the experience
of optimal trajectories over various tasks and worlds. We
train the network supervised to predict the correct path for
a given motion problem consisting of a world (obstacle
environment) and start and end configurations. We then
use the prediction of the network to warm-start an OMP,
which ensures feasibility and smoothes the path. Our main
contributions are:
• Introducing substeps into CHOMP[3] to explicitly cal-

culate the swept volume to facilitate that no collisions
are missed between discrete waypoints.

• The introduction of the basis point sets (BPS), described
by Prokudin et al. [18], into learning-based motion
planning. This memory- and computational-efficient en-
coding enables training and generalization for complex
robots in challenging environments.

• Building new demanding datasets of motion tasks and
optimal solution paths (via OMP) for training and test-
ing. The dataset includes autogenerated random worlds
with configurable complexity.

• A training scheme, where we combine the network and
the objective function as a metric to efficiently clean,
extend and boost an initial dataset.

• Extensive experiments in simulation for different robots
ranging from a simple 2D sphere bot up to the 19
DoF humanoid Agile Justin in 3D. For Agile Justin,
we also report a first real-world experiment, showing
that Sim2Real transfer is working.

II. CHOMP-LIKE MOTION PLANNING

For generating the training samples for our network as well
as for online post-processing, we use OMP. Ultimately, the
neural network should do the primary workload in solving a
motion task. Therefore the runtime efficiency of the OMP is
not of utmost importance. We implemented an OMP similar
to CHOMP [3], where the robot is modeled as spheres and
the environment by a signed distance field (SDF). A signif-
icant extension to CHOMP is that we introduce additional
substeps interpolating between the time steps. This way, the
swept volume can be computed to any arbitrary accuracy,
i.e., guaranteeing to miss no obstacle, without increasing the
number of optimization variables (see Fig. 3).

Fig. 3. Substeps qt,u between two discrete waypoints qt and qt+1 to
explicitly calculate the swept volume of the path in higher resolution.

OMP formulates the motion task of getting from point A
to point B as an optimization problem with the desired path
as the optimum. The path Q consists of a discrete set of
waypoints of joint configurations

Q = [q1, . . . , qNt
], qt ∈ RNq , (1)

and the task is encoded by an objective function U(Q)
measuring the quality of a given path. While, in general,
the specific objective can be chosen freely, the two usually
used terms to get a collision-free and short path are

U(Q) = UC(Q) + λUL(Q). (2)

The length cost UL is given by

UL(Q) =
Nt − 1

|qNt
− q1|2

Nt−1∑

t=1

|qt+1 − qt|2, (3)

which favors short and smooth trajectories. It is often con-
venient to scale the length cost by the minimal possible path
length, the direct connection |qNt − q1|2. Then, the shortest
possible path always has a cost of one.

To calculate the collision cost between the robot and
the environment, we need a model for both. The forward
kinematics F = f(q) maps from joint configurations to the
link frames Fi and each link’s geometry is described by a set
of spheres Si = {xik, rik}Nsi

k=1 with centers and radii. The
world is represented by a SDF D(x) which gives the distance
to the closest obstacle for each point x in the workspace. The
collision cost is then given by the sum of all the collisions
of the different body parts along the path

UC(Q) =

Nt,Nu∑

t,u

Nf∑

i=1

Nsi∑

k=1

c
(
D
(
Fi(qt,u) · xik

)
− rik

)
, (4)

qt,u = qt +
u

Nu
(qt+1 − qt). (5)

In extension to the original CHOMP algorithm [3], we
subdivide the path between two waypoints into substeps qt,u
via linear interpolation (see Fig. 3). This way, a collision-free
path can be guaranteed, when the number of substeps Nu is
adjusted to the step length and the voxel size of the SDF.
So, the swept volume of each sphere is explicitly computed
instead of the implict computation CHOMP performs via
a projection of the cartesian velocity vector of the moving
spheres.

Fig. 4. Network architecture to map from a given motion task (world,
start and end configuration) to an optimal path. Blocks of tapered Fully
Connected Layers (gray) are combined like the DenseNet architecture [19]
via skip-connections and concatenations. See the bottom of Table I for the
number of network parameters used for the different robots.

The smooth clipping function only considers the parts
which are in collision by setting positive distances to 0. Thus,
a collision-free path has a collision cost of 0.

c(d) =




−d+ ε

2 , if d < 0
1
2ε (d− ε)2 , if 0 ≤ d ≤ ε
0 , if ε < d

(6)

In addition to collisions with the world, complex robots must
also account for self-collision. Again, the cost sums up all
the penetrations between the different body pairs

Us(Q) =
∑Nt,Nu

t,u

∑Nf ,Nf

j>i

∑Nsi,Nsj

k,l

c
(∣∣Fi(qt,u) · xik − Fj(qt,u) · xjl

∣∣− rik − rjl
)
.
(7)

Here again, we use substeps to guarantee collision-free paths
via explicitly checking the swept volume. To our knowledge,
no other OMP-based planner is doing this.

With this formulation, the optimal path and solution to the
motion task is the one with the lowest objective

Q∗ = argmin
Q

U(Q). (8)

We use gradient descent for iteratively finding a minimum
of the objective function, starting with the initial guess Q0,

Qi+1 = Qi − α
∂U(Qi)

∂Qi
. (9)

We use vanilla gradient descent as efficiency in the OMP
part is not the primary concern of our method and it allows
for easy adaption and parameterization (only α)

III. DATASET ADAPTION FOR EFFICIENT LEARNING

The idea is to no longer rely on random multi-starts and
speed up the planning time by using a neural network to
predict an initial guess for OMP. The network should encode
the experience of successful paths by learning a mapping
from a motion task, consisting of a world and a start q1 and
end configuration qNt , to the intermediate waypoints of an
optimal path Q∗ = [q2, ..., qNt−1]. Fig. 4 shows the network
architecture we use. Besides encoding the in- and output
of the network, a crucial point for supervised learning is
the dataset. The following section discusses several insights
into the generation and usage of such a dataset with and for
OMP. Our methods substantially increase the final prediction
quality of our network and make training more efficient. See
Section VI-A for experimental validation of these methods.

Fig. 5. Scheme showing the connection between non-learning-based solver,
dataset, and neural network. The colored arrows indicate the information
flow for cleaning, extending, and boosting the dataset with the guidance of
the network. Cleaning: use the solver to update labels in the solutions set;
Boost: overrepresent existing hard examples in training; Extend: generate
new hard examples for the network and add them to the problem set.

A. Challenging Samples

The training data distribution should represent the actual
application and focus on challenging examples. Suppose the
dataset is too easy, and direct linear connections from A
to B drastically outweigh more complex trajectories. In that
case, training the network can quickly get stuck in a local
minimum and predict only straight lines, regardless of the
given task. One possibility of generating a dataset with more
challenging motion problems is to consider only samples
where OMP using the direct connection as an initial guess
does not converge to a feasible path.

B. Consistent Samples

Besides finding challenging samples, the ambiguity of mo-
tion planning (more than one feasible solution) can become
a problem for trajectory regression. Even if we assume that
we can resolve the ambiguity of the optimal path via the
objective for the shortness of the path, there will be “close
calls” in the dataset (almost the same objective values but
fundamentally different paths). Furthermore, the classical
planner using a limited number of multi-starts can only
produce suboptimal labels, making it hard for the network
to learn consistent mapping. This is especially true for
challenging tasks where the classical planner often fails and
only produces feasible paths in a small fraction of the tries.

C. Symmetries of Motion Planning

Data generation is costly, so one can use symmetries in
motion planning to efficiently use the information in each
sample. If one has the optimal path from A to B, one also has
the solution from B to A. This assumption is no longer valid
if terms in objective function break the temporal symmetry.
Furthermore, many robots also have spatial symmetry axes.
Often, it is possible to align the first joint of the robot
with one axis of the cartesian coordinate system of the
environment. Doing so allows us to rotate the world and this
first joint simultaneously without changing the optimality of
the resulting trajectory in the new world. Chamzas et al. [20]
use this spatial symmetry to store paths in their database
more efficiently. While ideally, one wants to integrate these

Algorithm 1 Improvement of network and dateset
procedure MAIN

create initial dataset G = {(xi, yi)}NG
i=1 with OMP

train net Θ on dataset G
while improvement on testset do

CleanDataset(G,Θ)
ExtendDataset(G,Θ, N = |G|/20)
BoostDataset(G,Θ, pperc = 0.8, pratio = 0.9)
train net Θ on dataset G

procedure CLEANDATASET(G, Θ) . Clean
for (xi, yi) in G do

yp ← Θ(x)
y∗p ← OMP(x, yp)
if U(y∗p) ≤ U(y) then

G.replace(y ← y∗p)

procedure EXTENDDATASET(G, Θ, N) . Extend
for k ← 1 to N do

xi ← sampleNewProblem()
if Vp < U(Θ(xi)) then

yi ← OMP(xi)
G.append((xi, yi))

procedure BOOSTDATASET(G, Θ, pperc, pratio) . Boost
V ← [U(Θ(xi)) for (xi, yi) in G]
Vp ← percentile(W,pperc)
for (xi, yi) in G do

if (U(Θ(x)) < Vp and random(0, 1) < pratio) then
G.remove((xi, yi))

symmetries directly in the data representations or the network
architecture, we used them to augment and increase the
dataset.

D. Interplay between Network and Dataset

We propose to use the neural network Θ to correct and
enhance its own training data G = {(x, y)}. This approach is
possible whenever synthetic data is used for training, and one
has an objective metric to measure the quality of a prediction.
The assumption is that the network can learn some aspects of
the problem even on an imperfect dataset and its predictions
become better than random guessing.

When generating a dataset with and for OMP, we can
use the objective U(Q) as a universal quality metric. The
idea of interweaving the network training closer with the
dataset generation and improvement is summarized in Fig. 5
and described by Algorithm 1. In what follows, we give a
detailed explanation of the different methods.

1) Clean: First, the network can be used as guidance to
double-check where the dataset is inconsistent. If the label
and the network’s prediction Qp are close, and the respective
objective U(Qp) is small, no action is necessary. However,
if there is a discrepancy between prediction and label, it is
worthwhile to use more multi-starts with the OMP to get
a better label for the sample. If a prediction has a better
objective than the current label, we can replace it without
adding any bias to the dataset. Doing so will improve the

Fig. 6. Visualization of the representation capabilities of basis point sets.
On the left, a regular BPS with 16× 16 = 256 points and their respective
distances to the closest obstacle in an occupancy map with 64×64 = 4096
pixels is shown. Blue areas describe positive distances to obstacles and are
guaranteed free of obstructions. Red regions show negative distances and
are completely inside barriers. We can draw no direct conclusion from the
white areas, but they have to be marked as obstacles to be conservative.
The BPS representation for this regular grid is equivalent to subsampling
a high resolution 64 × 64 SDF. The right image shows the reconstruction
of the BPS to the full image with the errors marked in orange. A patch of
the original grid is added to highlight the difference in resolution. The far
more conservative result of reducing the resolution of the occupancy grid
by the same factor is highlighted in red. This comparison demonstrates that
the basis set preserves more information than conservatively shrinking the
occupancy grid by the same factor. A further advantage of the untruncated
distances is that even if there are no nearby data points close for a basis
point, it can nevertheless help in representing a surface further away.

labels and make the dataset more consistent. This makes it
easier for the network to find the underlying patterns.

2) Boost: After some training, the network has learned
to predict good paths for the relatively simple samples, but
the more challenging outliers are still not solved. Therefore,
we use boosting to select challenging samples with higher
probability during training, increasing the incentive to learn
these samples. We steer this kind of curriculum again by
using U as a metric: the higher the difference between the
predicted and actual cost for a given sample is, the more
challenging it is. In our experiments, the challenging tasks
for the network correlated well with the relative path length
and the number of obstacles in the scene.

3) Extend: Lastly, one can use the network to generate
new samples. The idea is to use the network’s performance
on a new sample as a metric for information gain. To improve
the network, one wants specifically to add samples where
the network performs poorly. To decide this before spending
resources to produce a new label using OMP, one can use
the objective of the prediction U(Qp). If it is small, the
network can solve this task already. However, if the objective
is significant, the task is challenging for the network, and we
include it in the training set.

IV. BASIS POINT SET AS EFFICIENT WORLD ENCODING

If a network should speed up the OMP approach with
a valuable warm-start, it needs to “understand” the robot
motion in arbitrary unseen environments. Hence, a suitable
encoding of the world is essential.

Two central environment representations in robotics and
computer vision are occupancy grids WO and point clouds

Fig. 7. Influence of the size of BPS |WB| on the feasibility φ of the
network prediction after OMP. The |WB| on the x-axis is scaled by the world
dimension. Too few points can’t represent the obstacles in enough detail
for the network to make useful predictions. However, the required number
of points is significantly smaller than the resolution of the underlying
occupancy grid (64d). It was not feasible to increase the input layer to
643 basis points in 3D.

WP. Both have their advantages and disadvantages. While
occupancy grids can be processed like images in 2D, their
memory inefficiency and the high computational cost for the
convolution operations become a burden in 3D. On the other
hand, point clouds are a denser representation. Still, they
have no fixed size and no inherent ordering, making it hard
for a network to learn a permutation invariant mapping.

Prokudin et al. [18] recently introduced a new idea to
represent spatial information in computer vision, which is
especially suited for deep learning. Choosing a fixed set of
basis points once and measuring the distances relative to this
set for all new environments does not have the problem of
varying permutations and lengths as point clouds have. It is
also far more efficient in terms of memory and computation
than voxel grids, allowing fast training in high-resolution 3D
environments.

Formally, the BPS is an arbitrary but fixed set of points

B = [b1, . . . , bNb
], bi ∈ Rd. (10)

The feature vector WB passed to the network consists of the
distances to the closest point in the environment for all basis
points. If the environment is defined by a point cloud WP

this can be calculated by

WB = [min
xi∈WP

|b1 − xi|, . . . , min
xi∈WP

|bNb
− xi|]. (11)

Alternatively, if the environment is given by an occupancy
grid or a distance field D like we used for OMP in Section II,
one can directly look up the feature vector

WB = [D(bi), . . . , D(bNb
)]. (12)

With the second approach, it is possible to use signed
distances. This adds directly a notion of inside and outside
to the representation of the world.

Before using this representation to train a neural network,
in Fig. 6 we analyze its properties with regard to efficiency
and safety in a setting without learning.

Although an occupancy grid directly represents the carte-
sian workspace, the mapping to a robot’s configuration space
can be complex. But the planning network has to understand
this mapping to connect movements in joint space with its
implications in the world to be able to plan collision-free
paths. In Section VI, we show in experiments that the basis

Fig. 8. Three examples of the networks’ prediction for only slightly altered
problems. The changes in the start configuration (left) and the environment
(middle, right) are highlighted in orange. The networks’ predictions after
optimization for those new problems are shown in the bottom row, indicating
they can react sharply to small input changes. For easier visibility in 3D,
we refer to animations for the other robots on the website

point set enables to learn that connection for complex robot
kinematics and diverse environments.

V. EXPERIMENTAL SETUP

A. Dataset

We constructed extensive datasets for different robots (see
Figs. 1, 2 and 8) to validate our methods. For 2D, we
investigated a simple sphere robot with 2 DoF and a serial
arm with 4 DoF. Furthermore, we used two real 3D robots:
the LWR III [21], a robotic arm with 7 DoF, and humanoid
robot DLR Agile Justin [1] with 19 DoF distributed over an
upper body and two arms.

To generate diverse and challenging worlds, we used
simplex noise [22]. This gradient noise is used in video
games to create random but naturally-looking levels. A
typical example is a continuous height map. By changing
the cut-off threshold and the resolution of this noise, we
can vary the density and form of the obstacles in the binary
occupancy grid. To ensure that the environments are not too
densely packed with obstacles, at least 200/1000 random
robot configurations q must be feasible to include a world in
the dataset. Examples can be seen in Figs. 1 and 2.

To generate the labels for the samples, we used the OMP
approach described in Section II, with naive gradient descent
and fixed step size. The paths consist of Nt = 20 waypoints,
and to make the dataset challenging, we only included hard
tasks that were not solvable starting from a straight line as
initial guess. All other paths were discarded as too easy. We
used up to 100 multi-starts and always picked the shortest
feasible solutions as the correct label. The heuristic for
generating the initial guesses was to use 1 to 3 random
points in the configuration space and connect them linearly
with the start and endpoint. See Table I for an overview of
the robots and the datasets2. The table also shows initially

2All datasets plus additional information on their generation and use in
training are provided at https://dlr-alr.github.io/2022-iros-planning.

TABLE I
OVERVIEW OF THE DATASETS AND NETS FOR THE DIFFERENT ROBOTS.

Sphere Bot Flat Arm LWR III Agile Justin

DoF 2 4 7 19
World size 10× 10m2 1.0× 1.0m2 1.2× 1.2× 1.2m3 3× 3× 3m3

Grid dimensions 64× 64 64× 64 64× 64× 64 64× 64× 64
Worlds 104 104 104 104

Paths 0.6× 106 6.5× 106 2.2× 106 3.7× 106

Avg. time p. core 0.1 s 0.8 s 3.1 s 8.4 s

Improvements 0.1× 106 0.3× 106 0.2× 106 0.3× 105

Extensions 0.5× 105 1.5× 105 3.0× 105 5.0× 105

Avg. UL(Q) 1.589 1.7136 1.551 1.483
Avg. Feas. φ 67.3 % 32.6 % 54.5 % 44.1 %

Avg. time p. core 0.1 s 0.8 s 3.1 s 8.4 s

Net
In → # Out 516→ 39 520→ 72 2062→ 126 2086→ 342
|WB| 512 512 2048 2048
Nt 18 18 18 18

Parameters 3.4× 106 7.5× 106 2.4× 107 4.1× 107

mislabeled paths and paths specifically included to challenge
the network.

B. Network

The last lines of Table I show the network details in
numbers and Fig. 4 displays the general architecture. All
the networks were trained purely supervised with a mean
squared error between the predicted path Qp and the label Q
as loss function. As the encoding for the path, the deviation
from the straight line is used. This representation implies
that even an untrained network producing only random noise
around zero can make meaningful predictions. For start and
end, we use the normalized joint vectors q1 and qNt

as
input. As environment encoding, we use the BPS described
in Section IV with a hexagonal closed packing and only
consider points inside the robots’ maximal reach. See Fig. 7
for an analysis of the dependency of the prediction quality
on the size of the BPS.

VI. EVALUATION RESULTS

From the 10000 environments we generated for each robot,
we used 9000 for the network’s training and the remaining
unseen worlds for testing. All the results in Section VI are
based on this unseen test set with 10000 hard motion tasks.
As a quality measure we report the feasibility rate φ, i.e.,
the quotient of the number of feasible paths and the size of
the test set.

A. Dataset Adaption

Table II shows the influence of the methods for dataset
adaption during training as discussed in Section III. As met-
ric we use the feasibility rate φ of the predicted paths after
further iterations with the OMP as described in Section II.
First, we compare the hard and the easy dataset. Because the
easy dataset consists only of paths produced from straight
lines, the overall variance is too slight, and the network does
not learn to avoid the obstacles. This network is not able
to solve the test set of hard examples. Next, we introduced
the different modes of data augmentation to increase the size
of the dataset. The temporal and spatial symmetries improve
the feasibility rate φ without additional computing costs. The

Fig. 9. Top: Average convergence to feasibility φ of OMP for different
initial guesses. The prediction of the network outperforms the average and
even the best out of 100 multi-starts significantly. Bottom: Distribution of
the average feasibility φ of the random multi-starts after 50 OMP iterations.

number of cleanings describes how often the labels were
updated with the help of the neural network. Each iteration
brings the labels closer to the optimal solution and makes
the dataset more consistent, leading to better results. At this
stage, the network performs already well with a success rate
of over 85 %, but there are still tasks the net can not solve. We
add the boosting technique to overrepresent more challenging
samples during training to increase the feasibility further. As
the final step, we use the trained network to generate more
challenging samples. With this approach, we achieved 100 %
feasibility on the hard unseen test set.

B. Comparison to Random Multi-start

The capabilities of our method become apparent when we
compare the prediction of the network to the heuristic with
random multi-starts used to create the dataset. In Fig. 9 the
convergences to a feasible path of different initial guesses
are displayed for the LWR III and Agile Justin. Without any
experience, the best one can do, is to try random multi-starts
and hope one of them converges. From the 100 multi-starts
we used per task, only 50 % converge to a feasible solution
after 50 iterations. Even the lucky initial guess, which
converged the fastest for each problem, gets outperformed
by the network’s prediction. The crucial difference is that
our network does not depend on chance but can reliable
predict initial guesses that converge after a few iterations
to a feasible solution.

The actual speed gain is even more prominent when
looking at the distribution over different motion tasks (see
bottom of Fig. 9). There are problems for the LWR III
and Agile Justin where only 10 % or less of all multi-starts
converge to a feasible path. If one wants to find a solution to
such a problem with 90 % confidence, one would need more
than log(1−0.1)/ log(1−0.9) > 20 multi-starts, making the
initial guess of the network effectively over 20 times faster.

On our test machine (Intel i9-9820X @ 3.30 GHz, 32 Gb
RAM), a single iteration of gradient descent for one path
of Agile Justin takes 10 ms on a single core. Using the
network’s prediction as a warm-start and stopping each

TABLE II
ANALYSIS OF DIFFERENT DATASET DISTRIBUTIONS AND EXTENSIONS &

TRAINING METHODS FOR AGILE JUSTIN.

Dataset Training Feasibility φ
Cleans Distribution Aug. Boost Network +OMP

0 easy no no 0.042 0.347
0 hard no no 0.126 0.653

0 hard axis no 0.133 0.691
0 hard time no 0.138 0.736
0 hard both no 0.143 0.772
0 hard both yes 0.171 0.859

1 hard both yes 0.196 0.893
2 hard both yes 0.217 0.925
3 hard both yes 0.223 0.941

3 hard + ext. both yes 0.283 1.00

sample after convergence leads to an average run time of
182(±29) ms with a worst-case of 334 ms.

C. World Encoding

Prokudin et al. [18] demonstrated that the BPS with fully
connected layers is superior to occupancy maps with CNNs
or point clouds with a PointNet architecture, both in terms
of required network parameters and training performance.
We can confirm those findings for motion planning. The
large memory requirements in 3D made training prohibitively
slow and hard to iterate on network architecture or training
methods. Furthermore, looking towards the application on
Agile Justin, the BPS can readily be integrated with the high-
resolution SDFs acquired from the robot’s depth camera [23].

The BPS representation and the proposed training scheme
on the worlds from simplex noise were robust enough to even
generalize to some first results on a real robot (see Fig. 10).
Only trained on those random worlds, the network was able
to make valuable predictions from the data collected by Agile
Justin’s depth camera [23]. The predictions as warm-start
for OMP could solve the unseen motion tasks which needed
multi-starts otherwise in under 200 ms.

Learning-based motion planning for such a complex robot
was not tackled before in unseen environments, so we
only compare it against simpler problems. MPNetPath, for
example, takes 0.59 s to plan for the 7 DoF Baxter arm in

Fig. 10. Agile Justin in two table scenes with boxes. The robot applies a
different strategy for obstacle avoidance after the top route is blocked. The
rendered voxel model on the right shows the input for the neural network.

a known table scene [9]. Non-learning-based methods like
CHOMP take multiple seconds for similar scenes [5].

Fig. 8 shows a qualitative analysis of the network pre-
dictions. In motion planning, small changes in the problem
often lead to fundamentally different solutions. Our worlds
and training were challenging enough that the networks react
sharply to small changes in the input, predicting completely
different solutions to only slightly altered problems.

VII. CONCLUSIONS

We successfully trained motion planning networks using
supervised learning on diverse and challenging datasets that
predict paths close to the global optimum for previously un-
seen environments. Using this prediction as a warm-start for
optimization-based motion planning massively outperforms
random multi-start. For the complex robot Agile Justin with
19 DoF, planning takes only 200 ms on a single CPU core.
This shows for the first time that learning-based motion
planning works in previously unseen environments for such
a complex robot.

One key to success is the basis point set encoding for
the environment borrowed from computer vision which we
introduced to motion planning and scales well to high-
resolution 3D worlds. In addition, we autogenerate a training
dataset of hard examples, i.e., situations for which the vanilla
OMP struggles and for which the trained network should
later provide an educated initial guess. We also introduced
a scheme to further adapt the dataset during training by
cleaning, boosting, and extending the dataset based on a
metric defined by the (current) neural network and the
objective function of the OMP. This approach leads to a
challenging and consistent dataset on which a network can
efficiently be trained and improved.

In the future, we extend the planning problem towards
manipulation and grasping by incorporating the inverse kine-
matics so that no longer a goal configuration but only the goal
pose of the end-effector has to be provided. We will also
further investigate and increase the real-world capabilities
of our method. As it is expensive to create a vast amount
of real-world data, the goal is that our architecture and
the autogenerated dataset allow for a robust transfer of the
experience to real scenes.

REFERENCES

[1] B. Bäuml et al., “Agile justin: An upgraded member of DLR’s
family of lightweight and torque controlled humanoids,” in Proc. IEEE
International Conference on Robotics and Automation, 2014.

[2] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[3] M. Zucker et al., “CHOMP: Covariant Hamiltonian optimization for
motion planning,” The International Journal of Robotics Research,
vol. 32, no. 9-10, pp. 1164–1193, 8 2013.

[4] M. Kalakrishnan et al., “STOMP: Stochastic trajectory optimization
for motion planning,” Proceedings - IEEE International Conference
on Robotics and Automation, pp. 4569–4574, 2011.

[5] J. Schulman et al., “Motion planning with sequential convex optimiza-
tion and convex collision checking,” International Journal of Robotics
Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[6] N. Jetchev and M. Toussaint, “Fast motion planning from experi-
ence: Trajectory prediction for speeding up movement generation,”
Autonomous Robots, vol. 34, no. 1-2, pp. 111–127, 2013.

[7] W. Merkt, V. Ivan, and S. Vijayakumar, “Leveraging Precomputation
with Problem Encoding for Warm-Starting Trajectory Optimization in
Complex Environments,” in International Conference on Intelligent
Robots and Systems (IROS), 10 2018, pp. 5877–5884.

[8] A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip, “Motion
Planning Networks,” in International Conference on Robotics and
Automation (ICRA), vol. 2019-May, 2019, pp. 2118–2124.

[9] A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip, “Motion
Planning Networks: Bridging the Gap between Learning-Based and
Classical Motion Planners,” IEEE Transactions on Robotics, vol. 37,
pp. 48–66, 2021.

[10] R. Strudel et al., “Learning Obstacle Representations for Neural
Motion Planning,” in Conference on Robot Learning (CoRL), 2020.

[11] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning
on point sets for 3D classification and segmentation,” Proceedings -
30th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, vol. 2017-Janua, pp. 77–85, 2017.

[12] M. J. Bency, A. H. Qureshi, and M. C. Yip, “Neural Path Planning:
Fixed Time, Near-Optimal Path Generation via Oracle Imitation,” in
International Conference on Intelligent Robots and Systems (IROS),
2019.

[13] T. S. Lembono, A. Paolillo, E. Pignat, and S. Calinon, “Memory of
Motion for Warm-Starting Trajectory Optimization,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 2594–2601, 2020.

[14] P. Lehner and A. Albu-Schäffer, “The repetition roadmap for repetitive
constrained motion planning,” IEEE Robotics and Automation Letters,
vol. 3, no. 4, pp. 3884–3891, 2018.

[15] T. Jurgenson and A. Tamar, “Harnessing Reinforcement Learning
for Neural Motion Planning,” in Robotics: Science and Systems XV.
Robotics: Science and Systems Foundation, 6 2019, pp. 1–13.

[16] M. Pandy, D. Lenton, and R. Clark, “Unsupervised Path Regression
Networks,” in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 9 2021, pp. 1413–1420.

[17] D. Surovik et al., “Learning an Expert Skill-Space for Replanning
Dynamic Quadruped Locomotion over Obstacles,” in Conference on
Robot Learning, 2020.

[18] S. Prokudin, C. Lassner, and J. Romero, “Efficient Learning on
Point Clouds with Basis Point Sets,” in International Conference on
Computer Vision (ICCV), 8 2019, pp. 4332–4341.

[19] S. Jégou et al., “The one hundred layers tiramisu: Fully convolutional
densenets for semantic segmentation,” CoRR, vol. abs/1611.09326,
2016.

[20] C. Chamzas, A. Shrivastava, and L. E. Kavraki, “Using Local Expe-
riences for Global Motion Planning,” in International Conference on
Robotics and Automation (ICRA), vol. 2019-May. IEEE, 5 2019, pp.
8606–8612.

[21] G. Hirzinger et al., “DLR’s torque-controlled light weight robot III
- are we reaching the technological limits now?” in Proc. IEEE
International Conference on Robotics and Automation, 2002, pp.
1710–1716.

[22] S. Gustavson, “Simplex noise demystified,” Linkoeping University,
Sweden, Tech. Rep., 2005.

[23] R. Wagner, U. Frese, and B. Bäuml, “3D modeling, distance and gra-
dient computation for motion planning: A direct GPGPU approach,”
in 2013 IEEE International Conference on Robotics and Automation,
2013.

Appendix

Copyright

©2023 IEEE. Reprinted with permission.
In reference to IEEE copyrighted material, which is used with permission in this cum-
mulativ thesis, the IEEE does not endorse any of TU Munich’s products or services.
Internal or personal use of this material is permitted.
If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution,
please go to https://www.ieee.org/publications/rights/rights-link.html to
learn how to obtain a license from RightsLink.

135

https://www.ieee.org/publications/rights/rights-link.html

Efficient Learning of Fast Inverse Kinematics with Collision Avoidance

Johannes Tenhumberg1,2,3 Arman Mielke1,3 Berthold Bäuml1,2

Abstract— Fast inverse kinematics (IK) is a central compo-
nent in robotic motion planning. For complex robots, IK meth-
ods are often based on root search and non-linear optimization
algorithms. These algorithms can be massively sped up using a
neural network to predict a good initial guess, which can then
be refined in a few numerical iterations. Besides previous work
on learning-based IK, we present a learning approach for the
fundamentally harder problem of IK with collision avoidance
in diverse and previously unseen environments. From a detailed
analysis of the IK learning problem, we derive a network and
unsupervised learning architecture that removes the need for
a sample data generation step. Using the trained network’s
prediction as an initial guess for a two-stage Jacobian-based
solver allows for fast and accurate computation of the collision-
free IK. For the humanoid robot, Agile Justin (19 DoF), the
collision-free IK is solved in less than 10ms (on a single CPU
core) and with an accuracy of 1×10−3 m and 1×10−2 rad based
on a high-resolution world model generated from the robot’s
integrated 3D sensor. Our method massively outperforms a
random multi-start baseline in a benchmark with the 19 DoF
humanoid and challenging 3D environments. It requires ten
times less training time than a supervised training method while
achieving comparable results.
(https://dlr-alr.github.io/2023-humanoids-ik/)

I. INTRODUCTION

A solution to inverse kinematics (IK) while avoiding
collisions is fundamental for getting joint configurations
in the most common robotic tasks, such as picking and
placing objects. Still, it can also be used in the context of
motion planning: For example, positioning a cup upright on
a cluttered table requires motions with cartesian constraints
at the end-effector. This joint problem of solving the IK
and getting a collision-free trajectory is challenging, so it
is often divided into two sub-problems [1]. First, the IK is
solved to find the final configuration for grasping the object,
then the trajectory from the initial configuration to the goal
configuration is planned. Similarly, some problems require a
path in which the frame of the end-effector is constrained at
some intermediate steps. Solving the IK problems along the
path and initializing the motion planner with the solutions
can benefit these problems. Therefore, quickly computing
a collision-free IK is crucial for real-time grasping and
manipulation tasks.

In this paper, we deal with the problem of speeding up the
IK with collision avoidance via learning for complex robots
like DLR’s humanoid robot Agile Justin with 19 degrees
of freedom (DoF) as depicted in Fig. 1. As we will show,

1DLR Institute of Robotics & Mechatronics, Germany; 2Deggendorf In-
stitute of Technology, Germany; 3Technical University of Munich, Germany

This work was partly funded by the Bavarian Ministry of Economic Af-
fairs, Regional Development and Energy, within the projects SMiLE2gether
(LABAY102).

Fig. 1. DLR’s Agile Justin [3] in a shelf environment. The frames for
the IK problem were sampled randomly in the respective boxes of the shelf
(left). On the right, the previous solution was blocked and made infeasible
by placing an additional obstacle in the workspace, leading to a different
collision-free solution. Details about the training datasets, networks, and
videos can be found on the paper’s website.

learning the inherently ambiguous inverse mapping from a
frame of a robot’s TCP (tool center point) to its joint config-
uration poses several challenges (other than, e.g., in speeding
up motion planning in configuration space [2]). Learning an
IK solution gets esp. hard when incorporating self-collision
avoidance and avoiding collisions with obstacles in arbitrary
environments (see Fig. 1, right).

This paper presents and compares two learning-based
approaches to the IK problem: a supervised learning ap-
proach that relies on a separate data generation step and an
unsupervised approach that does not need time-consuming
data generation.

A. Related Work

There are many non-learning-based methods to solve the
IK problem. They are often based on the Inverse Jacobian
method [4, 5, 6]. A popular algorithm is TRAC-IK [7],
combining a Newton-based algorithm with a Sequential
Quadratic Programming (SQP) method. Running both meth-
ods in parallel and terminating if one succeeds improves
speed and robustness.

Other optimization methods have been applied to the IK
problem, too. Collinsm and Shen [8] use Particle Swarm
Optimization (PSO) for snake-like robots with many degrees
of freedom (DoF). Trutman et al. [9] describe the IK as a
polynomial optimization problem, which they use to find a
globally optimal solution for serial 7 DoF robots. Tringali and

Cocuzza [10] leverage the Inverse Jacobian method but use a
randomized matrix to weight the pseudo inverse. This adap-
tation allows them to improve the convergence to a globally
optimal IK solution. However, none of these methods take
into consideration collisions with the environment.

Ferrentino et al. [11] uses dynamic programming to solve
the IK with obstacles and make it available in ROS. Giamou
et al. [12] formulate the IK problem as a distance-geometric
problem, allowing them to use semidefinite programming
methods to find a low-rank solution. While the approach is
elegant and fast, it can only incorporate spherical obstacles.
Zhao et al. [13, 14] introduce a modern and fast solver
that combines Inverse Jacobian methods, SQP, and PSO.
Their method can handle dynamic obstacles but is limited
to spheres.

There are also many learning-based approaches for solving
the IK problem more efficiently. One problem all those
methods suffer from is the inherent ambiguity of the IK so-
lution. Bocsi et al. [15] tackles ambiguous solutions by using
structured prediction. Kim et al. [16] uses the graph structure
of robot kinematics to learn the entire nullspace with a
Graph Neural Network (GNN). However, the nullspace gets
exponentially large with the DoFs of the robot, making it
crucial that the learning of the mapping between forward
and inverse kinematics is efficient [17]. To improve the speed
and portability of IK methods, Zaidel et al. [18] introduce
a neuromorphic approach that they apply to a 7 DoF robot
arm.

All IK methods described so far consider an obstacle-free
working environment. Lehner et al. [19] leverage transfer
learning between similar robot kinematics in a single envi-
ronment with obstacles. They use the network predictions
to guide a Rapid Random Tree (RRT) motion planner.
Lembono et al. [20] use Generative Adversarial Networks
(GANs) to learn constrained robot configurations. They use
the predictions of those networks as an initial guess for an
optimization-based planner to warm-start the IK problem
and as samples for an RRT motion planner. They consider
the environment for their tasks, but for each new scene, an
ensemble of GANs needs to be trained to counteract the
mode collapse and produce valuable samples.

Until now, no learning-based approach to the IK problem
incorporates collision avoidance for arbitrary, previously
unseen environments. Moreover, for autonomous robots, the
environment model is generated in real-time from sensor data
and, hence, is a high-resolution, e.g., voxel-based model [21].
For those challenging worlds, no fast and efficient collision-
free IK solver exists.

B. Contributions

We tackle the problem by formulating the IK with col-
lision avoidance as an optimization problem similar to
CHOMP [22] and use a combination of Jacobian-based
projections and gradient descent to solve it numerically. We
use the predictions of a neural network as warm-starts to
speed up the optimizer. Those networks are trained with the
Basis Point Set (BPS) [23] as encoding for the environment

Fig. 2. The three robots used in the experiments in environments generated
with Simplex Noise [24]. The Flat Arm in 2D helps to analyze and visualize
the IK problem in detail. The LWR III and Agile Justin demonstrate the
capabilities of our method for complex robotic systems.

to incorporate collision avoidance. The BPS encoding has
already been successfully used for planning robot motions
in configuration space [2].

Our main contributions are:
• A learning-based fast and accurate solver for IK with

collision avoidance for complex previously unseen en-
vironments (for the 19 DoF humanoid Agile Justin on
a high-resolution voxel grid an IK solution with an
accuracy of 1× 10−3 m and 1× 10−2 rad in 5ms).

• A detailed analysis of the challenges in learning am-
biguous IK with collision avoidance and the result-
ing network, including a twin-headed architecture, a
singularity-free output representation, and boosting.

• The optimal solution to the IK problem varies not
smoothly across the workspace. We show that two heads
are enough for a network to predict the sharp switches
between those regions of different modes.

• A benchmark of the supervised and the unsupervised
learning approach shows a ten times faster training
time for the latter and a more straightforward training
procedure while outperforming the random baseline
significantly.

II. OPTIMIZATION-BASED INVERSE KINEMATICS

A. Objective Terms

We formulate the IK problem, including avoiding collision
with the environment, and self-collision, as an optimization
problem. These hard constraints are taken into account as
weighted terms in an overall objective function. Central to
the problem formulation is the model of the robot. The
forward kinematics maps from joint configurations q ∈ RNDoF

to the link frames {Fi}Nf
i=1 = f(q). Each frame Fi describes

a full 6D pose (pi, Ri) ∈ R3 × SO(3).
The equality constraint for the IK is that the distance

between a specific frame in the chain Fi and a target frame
F̄i is zero. In the objective, this results in a translational part

UP(q, F̄i) =
1

2
∥pi(q)− p̄i∥2 (1)

and a rotational part

UR(q, F̄i) =
1

2
(3− Trace(Ri(q) R̄

−1
i)). (2)

The goal is to obtain a collision-free IK. The collision
inequality constraint between the robot and the environment

is also incorporated as a term in the objective using the
following robot and environment models. We describe the
robots geometry of each link Fi by a set of spheres Si =
{xik, rik}Nsi

k=1 with centers and radii. For the world, we use a
Signed Distance Field (SDF) D(x), which gives the distance
to the closest obstacle for each point x in the workspace. The
collision cost is then given by the sum of all the collisions
of the different body parts

UW(q) =

Nf∑

i=1

Nsi∑

k=1

c
(
D
(
Fi(q) · xik

)
− rik

)
. (3)

In addition to collisions with the world, complex robots must
also account for self-collision. Again, the cost sums up all
the penetrations between the different body pairs

US(q)=

Nf,Nf∑

j>i

Nsi,Nsj∑

k,l

c
(∥∥Fi(q)·xik-Fj(q)·xjl

∥∥-rik-rjl
)
. (4)

The smooth clipping function c is introduced to transforms
the inequality into an equality constraint which is then
written as a additional cost term in the objective [1, 2]. It
considers only the parts of the robot which are in collision
by setting positive distances to zero. Thus, a collision-free
solution has a cost of zero.

While the mapping from the joint configuration to the
end-effector frame is unique, the same does not hold for
the inverse mapping. For an over-actuated robot, infinitely
many joint configurations can reach a given frame in the
workspace. However, one is usually not interested in an
arbitrary solution but one which satisfies additional criteria.
We introduce an additional term to the objective, namely the
closeness UL to a default configuration q̄:

UL(q) =
1

2

NDoF∑

i=1

(qi − q̄i)
2. (5)

Minimizing UL makes the mapping unique and ensures that
the solutions are close to the default configuration, making
motion planning to this configuration faster and easier.

In summary, in the overall objective U , one part is
concerned with the frame at the end-effector UF and one
part accounts for the collisions and additional objectives UA.

U = UF + UA (6)
with UF = UP + λRUR, UA = λWUW + λSUS + λLUL. (7)

Note that the weighting factors can be normalized indepen-
dent of the robot and environment and are mainly to ensure
higher importance of the collision terms over the secondary
objectives like length. With this formulation, the optimal
configuration q∗ and solution to the IK problem is the one
with the lowest objective

q∗ = argmin
q

U(q). (8)

Fig. 3. The flow of information through the neural network. The IK problem
is described by a world xw, and a frame in the workspace xf and the network
should predict a collision-free joint configuration that satisfies the end-
effector. The dotted line indicates the backpropagation during unsupervised
training, where the network weights Θ are directly updated according to
the gradient of the cost function U .

B. Solver with Nullspace Projection

While this formulation as an optimization problem is
complete and (6) is used to train the unsupervised networks
in Section III-C, it is often not efficient to solve this complex
cost function jointly. To weaken the impact of competing
terms in the objective function, we solve the IK problem in
two steps.

First, we solve the pure IK with a projection step to ensure
the constraints at the end-effector UP and UR are satisfied.
This root search can be solved by iteratively applying the
pseudo-inverse of the end-effector constraints:

∆p = [UP(q), UR(q)] (9)

J = [
∂UP(q)

∂q
,
∂UR(q)

∂q
] (10)

qi+1 = qi + J†∆p (11)

For the humanoid Agile Justin, the IK requirements in the
real world are to be accurate below 10−3 m and 10−2 rad.

In the second step, we apply gradient descent with
nullspace projection to satisfy the collision constraints and
optimize the additional terms in UA. Each gradient step is
again projected on the IK manifold to ensure the constraints
at the end-effector stay satisfied

qi+1 = qi + (I − JT (JT)†)
∂UA(q)

∂q
. (12)

These update steps push the configuration out of collision
and closer to the default pose. While this approach is straight
forward to implement and converges quickly for a given
sample, it is susceptible to the initial guess. Especially
for complex robots and environments, multiple samples are
necessary until a feasible solution is found.

III. LEARNING THE INVERSE KINEMATICS

The idea is to mitigate the strong dependence on the initial
guess by using the prediction of a neural network as a warm-
start for the optimization-based IK solver. In this work, we
compare two different learning approaches: First, a super-
vised learning approach that relies on training data generated
by the solver described in Section II-B. Furthermore, we
introduce an unsupervised regression approach, where the
objective function given by (6) is directly used to update the
network weights via backpropagation (see Fig. 3). We use the
same overall architecture for the supervised and unsupervised
networks to compare the approaches.

Fig. 4. Feasibility map (right/blue) for the 2D arm with 5 DoF for a specific
environment. Depending on the robot’s kinematics, not only the parts of the
workspace with obstacles are not reachable but also areas behind obstacles.
The overall number of feasible poses decreases towards the borders of
the workspace. The maximal position error (center/green) and the maximal
orientation error (left/red) highlight which regions are challenging for the
network in more detail.

A. Environment Representation

As collision avoidance with the environment is a central
aspect of the problem, the following section describes how
to generate challenging training worlds and encode the scene
to feed it into the networks. The worlds were generated
using Simplex noise [24], as described by Tenhumberg et al.
[2] for motion planning. By adjusting the noise frequency
and the threshold, we can create diverse and challenging
environments for the robots. Examples of the different worlds
can be seen in Fig. 2.

To encode the environment for the networks, we use
the BPS [23], which was already successfully used for
robotic motion planning [2] between join configurations. The
advantage of this representation over occupancy grids and
point clouds is that it is more memory-efficient, computa-
tionally efficient, and inherently permutation invariant. The
BPS representation can be understood as a subsampled SDF.
Formally, the BPS is an arbitrary but fixed set of points in the
workspace B = {bi}Nb

i=1. The feature vector for the world xW
passed to the network consists of the distances to the closest
point in the environment for all basis points. If a distance
field D describes the environment, one can directly look up
the feature vector

xW = [D(bi), . . . , D(bNb)]. (13)

B. Supervised Learning

We use the algorithm described in Section II for the
sample generation. Exhaustive multi-starts guarantee that a
feasible solution is found, even in challenging scenes. The
supervised training relies on consistent data, implying the
labels are all globally optimal. Ensuring this requires a lot
of computational resources. We use an efficient and generic
cleaning method that uses the objective U and the current
network to ensure all labels are close to the global optimum.
This cleaning is explained and analyzed for motion planning
between joint configurations in Tenhumberg et al. [2]. After
the data generation, we use a standard Mean Squared Error
(MSE) loss to train the network supervised on the ground
truth labels.

Fig. 5. In the left image, 50 random but feasible samples for the robot
in the given environment are drawn in red, and in blue, 50 samples that
were in the hard set after the training finished (see Section III-D.1). The
challenging samples are more extended and fill the narrow passages in the
world better than the random samples. In the right image, the predictions
of the twin heads for a random sample are shown. While satisfying the
end-effector, the two configurations show two distinct modes.

C. Unsupervised Learning

Alternatively, as the objective function (6) holds all the
necessary information to quantify a given configuration, it
can be directly used as a loss function for training a net-
work. Pandy et al. [25] introduced unsupervised regression
networks for robotic motion planning. We adapt the idea and
discuss the extensions needed in the context of IK.

For a given problem defined by a world xW and a frame
xf, one can directly calculate the gradients of (6) with respect
to the network weights Θ by using the chain rule:

∂U

∂Θ
=

∂U

∂q

∂q

∂Θ
. (14)

In Fig. 3, the information flow through the network and the
updates via backpropagation are shown. The huge advantage
of this unsupervised approach is that no computationally
expensive data generation step is needed as in supervised
learning. Here, different worlds xW and target frames xf
are sampled randomly and via backpropagation the resulting
gradients can be directly computed.

D. Learning and Network Architecture

To analyze the IK problem in the whole workspace, we
generated feasibility maps and error maps of the robots in the
different scenes. Fig. 4 shows three maps: feasibility (blue),
maximal position error (green), and maximal orientation
error (red) for a given position in the workspace. The maps
are generated by sampling the whole joint space and collect
which euclidian targets were reached. Then the position and
the orientation error for each feasible target is computed.
Those maps can assess the network’s performance over the
whole workspace, and are far more detailed than random test
sets which are commonly useed The following sub-sections
discuss the insights of this detailed analysis which gave rise
the our network and learning architecture.

1) Boosting: Fig. 4 shows that the challenging samples
close to obstacles are underrepresented if sampled randomly.
Random sampling tends to cluster in the central region and
under-represent extreme positions which the robot can only

Fig. 6. The 1D scheme of the optimization-based IK problem shows the
necessity of mode switches over the workspace to get a globally optimal
solution. Different modes exist with varying costs U over the workspace. If
the network should make the optimal prediction at each position p, it needs
to switch between those modes. The transition regions are hard to represent
for a neural network and can lead to significant errors (see Fig. 7).

reach fully extended. We introduce a boosting technique
to overcome this and produce reasonable initial guesses in
challenging situations. The idea is to have a set of chal-
lenging samples from which the training samples are chosen
periodically. Similar to the method described by Tenhumberg
et al. [2], we use the objective function U to over-represent
complex samples. We define a sample q as hard if its cost
U(q) is four times higher than the rolling mean.

The effect of boosting can be seen in Fig. 5. Here, 50
samples are shown in blue, which were in the hard set after
the training ended. In contrast, in red, 50 randomly sampled
configurations are shown. Those are more clustered towards
the center of the world. This behavior can also be seen in
Fig. 4(left), where only a tiny fraction of the samples in the
configuration space reach the borders of the workspace.

2) Unit Vector Output: We use a singularity-free represen-
tation for the networks’ output using 2D unit vectors instead
of the joint values in radians. In the plane, the unit vector
is a natural representation of an angle, which inherently
corresponds to the directions vector in the workspace. This
modification is especially relevant if the joint limits are
[−π,+π] or close to it. However, also in 3D and with stricter
joint limits, the network can easier represent the underlying
problem when choosing this encoding. The singularity-free
representation omits the need for the network to internally
represent a switch for joint values close to the singularity.

3) Twin-Headed Network: While the length cost UL en-
sures that there is one optimal solution, there are still
different modes over the workspace, and the network must
switch between those modes to successfully predict optimal
IK solutions for all possible targets. Fig. 6 visualizes the
general concept of mode switches between a pair of modes
to ensure an optimal solution.

However, the network’s prediction can become entirely
wrong in these transition regions. This behavior plus our
solution is visualized in Fig. 7. For the 2D arm with 5 DoF,
the transition regions can be seen in the heat map of the
maximal orientation error. Where these transition regions lie
depends even on the initial weights of the network, but each
initialization has the same overall behavior. In each case,
there are regions where the network needs to represent the
switching between two modes. One can see the prediction
breakdown by gradually moving the target frame from a
position outside the ring (green) along a straight path to a
position inside the circle (red). The network switches modes

Fig. 7. This comparison is between a single-headed network (left) and
a twin-headed network (right) for the IK prediction of a 5 DoF robot.
The underlying red heat map indicates the worst orientation error across
all 2π possible (discretized with 2880) goal orientations at each position.
The distinct circular pattern (left) shows the transition region between two
modes, where the prediction of the single-headed network breaks down.
Moving the target frame at a specific orientation between those two regions
leads to entirely wrong predictions. Each head of the twin model also has
switching points, but as those two regions do not intersect, it can always
predict valid and smoothly changing configurations (right). Visit also the
website for additional visualizations of the mode switches.

and cannot produce valuable predictions in this region.
By adding a second head to the network, which outputs

a second prediction, one can overcome this problem. Each
head of the twin model also has its own transition regions, but
as those two areas do not intersect, one always has a valid and
smooth prediction for the configuration. It is essential to add
that two heads are enough, even for more complex settings
with multiple modes. The two heads do not represent the
modes directly but only mask the transition region between
pairs of modes. We introduce an additional loss UH = ∥qa−
qb∥ between the two heads of the network to counteract mode
collapse and gain a valuable second guess. Fig. 5 (right)
highlights that maximizing the difference in configuration
space between those heads produces fundamentally different
solution modes. Besides allowing sharp switches between
modes, this approach leads to the simplest version of a
generative model, with much more accessible training and no
need for network ensembles [20] to prevent mode collapse.

IV. RESULTS

First, we demonstrate the effectiveness of our approach
for the problem of collision-free IK in the case of a 2D
robotic arm. Fig. 8 shows the steps of our IK procedure and
compares it to using simple random sampling for generating
initial guesses. Only five of the initial 20 configurations
are feasible after both optimization steps. This ratio gets
even worse for more complex robots in challenging 3D
environments, which Table III analyzes in more detail.

The right-hand figure shows the same two-stage procedure
for two network predictions. One trained without the world
as a dedicated input and one which uses the BPS of the
world to predict collision-free IK solutions. One can see
clearly how close the two predictions are to the desired TCP.
Furthermore, the prediction of the world-aware network is
already in the correct narrow passage between the obstacles.

Fig. 8. Visualization of the collision-free IK solution process. In the left
image, 20 initial random guesses of configurations (see legend for used
colors) are used. These configurations are then projected onto the desired
TCP (red coordinate system) using (11), ensuring that translational and
rotational constraints are satisfied. Then, we compute the gradient of UA
and apply Gradient Descent inside the TCP-nullspace (12) to move the robot
out of collision and closer to the default configuration. After these steps,
only five feasible (i.e., collision-free) solutions remain. The right image
showcases the same two-stage process when using the (single) prediction
of an IK network but for two network variants. One network is trained
without the world as an input, while the other network incorporates the
BPS of the world to predict collision-free IK solutions. As the predictions
of both networks are close to the desired TCP, the pure projection step on
the TCP is not shown here. However, only the prediction of the world-
aware network converges to a feasible solution while the other gets stuck
in collision.

Using this prediction as an initial guess eliminates the
need for multi-starts in most cases and leads to quicker
convergence, as the optimizer only needs a few iterations
for a feasible solution.

A. Experiments

This section shows the results for the supervised and
unsupervised learning methods for robots with different
complexity. All timings are measured on a computer with
Intel i9-9820X @ 3.30 GHz with 32 GB RAM. All 16 cores
are used for training, whereas online prediction runs only
on a single core. To evaluate the networks, we use their
prediction as a warm-start for the optimization-based solver
described in Section II-B and compare convergence and
feasibility rates.

Table II shows an ablation study for the learning and
network architecture proposed in Section III-D. For the
humanoid robot Agile Justin, the different networks were
trained on 300 random worlds and evaluated on 20 unseen
worlds drawn from the same distribution. The size of the test
set was 100000 samples. Because not the network prediction
directly is used on the robot but the converged result, we
report the feasibility rate after 10 iterations of the solver.
The table shows that each architectural component improves
the performance of the network. In the extreme case where
none of those methods are used, the feasibility rate is only
25%, while the final performance is close to 100%. Notably,
the boosting does not improve the mean performance but
significantly reduces the maximal error of the network’s
predictions. As this approach over-represents the complex
samples with a large objective U , it is designed to improve
those worst cases. This design is crucial if one uses those

TABLE I
TRAINING TIMES FOR THE DIFFERENT NETWORKS

Supervised Unsupervised
Robots Data Generation Training Training

Flat Arm 34.6 h 2.1 h 2.6 h
LWR III 71.3 h 2.7 h 3.0 h

Agile Justin 95.4 h 5.4 h 6.9 h

TABLE II
ABLATION STUDY OF THE NETWORK PREDICTION FOR AGILE JUSTIN

Training w. Twin-Headed Unit Vector Feasibility
Boosting Network Output

Yes Yes Yes 0.986
Yes Yes No 0.871
Yes No Yes 0.695
Yes No No 0.596
No Yes Yes 0.781
No Yes No 0.741
No No Yes 0.569
No No No 0.248

network predictions as a warm-start for an optimization-
based solver in challenging scenes: Long searches with many
multi-starts slow down the numerical solver for those cases.

The results of comparing the supervised and unsupervised
network against a randomly sampled initial guess are sum-
marized in Table III. This evaluation was performed for three
robots: A 2D Arm with 5 DoF, the LWR III with 7 DoF, and
Agile Justin with 19 DoF (see Fig. 2). In 3D, we used a
shelf environment like depicted in Fig. 1. Here 10000 target
frames were randomly sampled in the respective boxes in the
shelf. The overall orientation of the target frame was aligned
with the shelf, and noise was added to ensure feasible yet
challenging samples. The shelf environment is closer to a
real-world setting and has notably different attributes than
the random worlds the networks were trained on.

Table III shows that the average feasibility rate of the
initial guesses from the networks outperforms the random
baseline significantly for a single initial guess (denoted
as (1)). Furthermore, the average number of iterations to
converge is also decreased. The overall speed advantage can
be seen directly from the necessary iterations difference. For
the humanoid robot Agile Justin (19 DoF), the computation
time for a single iteration is 0.5 ms on our testing machine.
This leads to an overall solve time of under 10ms for the
collision-free IK in unseen environments. The learned warm-
starts outperform the random multi-starts in solving time, and
the length cost (5) is reduced. These solutions are often more
convenient and easier to integrate into larger motion planning
tasks than random solutions.

Besides the improvement of the learning-based approaches
over the random multi-start, it can also be seen that su-
pervised and unsupervised training perform similarly well.
Overall, this gives an advantage to the unsupervised method,
as it requires far less time to train as no prior data generation
and data cleaning [2] is needed as Table I shows.

TABLE III
FEASIBILITY AND CONVERGENCE FOR THE DIFFERENT SAMPLING MODES FOR THE WARM-START OF THE IK SOLVER

Robots DoF Initial Guess Avg. Mulit-Starts [#] Feasibility (1) [%] Avg. Iterations [#] Avg. Length Cost UL [rad]

Flat Arm Random 13.27± 5.41 19.7 12.87± 3.78 4.19± 0.75
Random World 5 Supervised 3.64± 1.29 81.3 9.93± 3.67 3.48± 0.71

Unsupervised 3.35± 1.37 83.4 8.53± 3.29 3.41± 0.69

LWR III Random 17.57± 4.53 14.4 15.69± 2.89 3.36± 0.68
Shelf World 7 Supervised 2.97± 0.61 88.7 9.31± 3.78 2.91± 0.70

Unsupervised 3.06± 0.55 92.6 8.76± 4.01 2.85± 0.65

Agile Justin Random 24.52± 7.18 8.3 13.88± 3.93 6.56± 0.93
Shelf World 19 Supervised 4.41± 0.94 88.9 6.91± 3.66 4.72± 0.41

Unsupervised 4.29± 0.97 87.6 7.25± 3.61 4.10± 0.53

B. Real-World Experiment on the Humanoid Agile Justin

We present real-world results on the humanoid Agile
Justin to show the need for collision-free IK. Fig. 9 shows
two table scenes; the robot should move the right TCP to
the same position in both cases, first without obstacle and
then with an additional obstruction. The rendered images in
the bottom row show the self-acquired high-resolution voxel
model [21]. The optimal solution to the IK for the simple
scene does collide with the additional obstacle. The whole
arm is stuck in the box on the table, and using this solution as
a warm-start for our solver does not converge to a collision-
free solution. However, using the neural network’s prediction
as an initial guess produces the solution shown on the right.
The BPS representation and the proposed training scheme
were robust enough to generalize to high-resolution voxel
models collected by Agile Justin’s depth camera [21], even
if the training was only on random simplex worlds.

V. CONCLUSIONS AND FUTURE WORK

We introduced an unsupervised training method for learn-
ing the IK with collision avoidance. It works even for a
humanoid robot with 19 DoF in challenging and diverse
environments sensed with its integrated 3D sensor. An IK
solution with an accuracy of 1 × 10−3 m and 1 × 10−2 rad
is computed in only 10ms on a single CPU core. Our
method trains ten times faster than supervised training by
avoiding the generation of an exhaustive training data set. It
massively outperforms a multi-start baseline, as we showed
in an elaborate benchmark with the humanoid and simpler
robots in challenging environments. Based on a detailed
analysis of the IK problem with collision avoidance, we
derived our network and learning architecture with boosting
to enable rare-case performance and dual-heads to handle the
necessary switching between different configuration modes.
In an ablation study, the relevance of this architecture is
demonstrated.

Separating the task of grasping a specific object in a given
scene into the subtasks of finding a stable grasp, getting
the end configuration via IK, which allows this grasp, and
then planning from a start point to that configuration is not
always possible. Future work will integrate the IK tighter
into the related grasping and path-planning problems. Ideally,
grasping a specific object in a given scene must be solved

Fig. 9. Difference between standard IK (left) and collision-free IK (right)
for the humanoid robot Agile Justin in a real table scene. The rendered
images show the robots’ self-acquired high-resolution voxel model [21] of
the scene. This conservative occupancy map was encoded with BPS and
used as input for the neural network. While only trained on random worlds,
its prediction for this unseen world converges to the collision-free solution
on the right.

jointly, as this guarantees the feasibility of the complete task
and allows us to find globally optimal solutions.

REFERENCES

[1] J. Schulman et al., “Motion planning with sequential convex optimiza-
tion and convex collision checking,” International Journal of Robotics
Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[2] J. Tenhumberg, D. Burschka, and B. Bäuml, “Speeding Up
Optimization-based Motion Planning through Deep Learning,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2022.

[3] B. Bäuml et al., “Agile Justin: An upgraded member of DLR’s family
of lightweight and torque controlled humanoids,” in Proceedings -
IEEE International Conference on Robotics and Automation. IEEE,
5 2014, pp. 2562–2563.

[4] N. Sukavanam and R. Balasubramanian, “An Optimization Approach
to Solve the Inverse Kinematics of Redundant Manipulator,” Inter-
national Journal of Information And Systems Sciences, vol. 6, pp.
414–423, 2011.

[5] T. Sugihara, “Solvability-Unconcerned Inverse Kinematics by the
Levenberg–Marquardt Method,” IEEE Transactions on Robotics,
vol. 27, no. 5, pp. 984–991, 10 2011. [Online]. Available:
http://ieeexplore.ieee.org/document/5784347/

[6] A. Colome and C. Torras, “Closed-Loop Inverse Kinematics for
Redundant Robots: Comparative Assessment and Two Enhancements,”
IEEE/ASME Transactions on Mechatronics, vol. 20, no. 2, pp. 944–
955, 4 2015. [Online]. Available: http://ieeexplore.ieee.org/document/
6832645/

[7] P. Beeson and B. Ames, “TRAC-IK: An open-source library
for improved solving of generic inverse kinematics,” in 2015
IEEE-RAS 15th International Conference on Humanoid Robots
(Humanoids). IEEE, 11 2015, pp. 928–935. [Online]. Available:
http://ieeexplore.ieee.org/document/7363472/

[8] T. J. Collinsm and W.-M. Shen, “Particle Swarm Optimization for
high-DOF inverse kinematics,” in 2017 3rd International Conference
on Control, Automation and Robotics (ICCAR). IEEE, 4 2017, pp.
1–6. [Online]. Available: http://ieeexplore.ieee.org/document/7942651/

[9] P. Trutman, M. S. E. Din, D. Henrion, and T. Pajdla, “Globally Optimal
Solution to Inverse Kinematics of 7DOF Serial Manipulator,” IEEE
Robotics and Automation Letters, vol. 7, no. 3, pp. 6012–6019, 7 2022.
[Online]. Available: https://ieeexplore.ieee.org/document/9745328/

[10] A. Tringali and S. Cocuzza, “Globally Optimal Inverse Kinematics
Method for a Redundant Robot Manipulator with Linear and
Nonlinear Constraints,” Robotics, vol. 9, no. 3, p. 61, 7 2020.
[Online]. Available: https://www.mdpi.com/2218-6581/9/3/61

[11] E. Ferrentino, F. Salvioli, and P. Chiacchio, “Globally Optimal
Redundancy Resolution with Dynamic Programming for Robot
Planning: A ROS Implementation,” Robotics, vol. 10, no. 1, p. 42, 3
2021. [Online]. Available: https://www.mdpi.com/2218-6581/10/1/42

[12] M. Giamou et al., “Convex Iteration for Distance-Geometric
Inverse Kinematics,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 1952–1959, 4 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9677911/

[13] L. Zhao, J. Zhao, H. Liu, and D. Manocha, “Collision-Free
Kinematics for Redundant Manipulators in Dynamic Scenes using
Optimal Reciprocal Velocity Obstacles,” ArXiv, 11 2018. [Online].
Available: http://arxiv.org/abs/1811.00600

[14] L. Zhao et al., “Collision-Free Kinematics for Hyper-Redundant
Manipulators in Dynamic Scenes using Optimal Velocity Obstacles,”
International Journal of Advanced Robotic Systems, vol. 18,
no. 1, p. 172988142199614, 1 2021. [Online]. Available: http:
//journals.sagepub.com/doi/10.1177/1729881421996148

[15] B. Bocsi et al., “Learning Inverse Kinematics with Structured
Prediction,” in 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 9 2011, pp. 698–703. [Online]. Available:
http://ieeexplore.ieee.org/document/6094666/

[16] J. T. Kim, J. Park, S. Choi, and S. Ha, “Learning Robot
Structure and Motion Embeddings using Graph Neural Networks,”
arXiv preprint arXiv:2109.07543, 9 2021. [Online]. Available:
http://arxiv.org/abs/2109.07543

[17] D. Kubus, R. Rayyes, and J. J. Steil, “Learning Forward and Inverse
Kinematics Maps Efficiently,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 10
2018, pp. 5133–5140. [Online]. Available: https://ieeexplore.ieee.org/
document/8593833/

[18] Y. Zaidel et al., “Neuromorphic NEF-Based Inverse Kinematics
and PID Control,” Frontiers in Neurorobotics, vol. 15, 2 2021.
[Online]. Available: https://www.frontiersin.org/articles/10.3389/fnbot.
2021.631159/full

[19] P. Lehner, M. A. Roa, and A. Albu-Schaffer, “Kinematic Transfer
Learning of Sampling Distributions for Manipulator Motion Planning,”
in 2022 International Conference on Robotics and Automation (ICRA).
IEEE, 5 2022, pp. 7211–7217.

[20] T. S. Lembono, E. Pignat, J. Jankowski, and S. Calinon, “Learning
Constrained Distributions of Robot Configurations With Generative
Adversarial Network,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 4233–4240, 4 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9385935/

[21] R. Wagner, U. Frese, and B. Bauml, “3D modeling, distance and gra-
dient computation for motion planning: A direct GPGPU approach,”
in 2013 IEEE International Conference on Robotics and Automation,
no. Iii. IEEE, 5 2013, pp. 3586–3592.

[22] M. Zucker et al., “CHOMP: Covariant Hamiltonian optimization for
motion planning,” The International Journal of Robotics Research,

vol. 32, no. 9-10, pp. 1164–1193, 8 2013.
[23] S. Prokudin, C. Lassner, and J. Romero, “Efficient Learning on

Point Clouds with Basis Point Sets,” in International Conference on
Computer Vision (ICCV), 8 2019, pp. 4332–4341.

[24] K. Perlin, “Noise Hardware,” Real-Time Shading SIGGRAPH Course
Notes, vol. 6, 2001.

[25] M. Pandy, D. Lenton, and R. Clark, “Unsupervised Path Regression
Networks,” in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 9 2021, pp. 1413–1420. [Online].
Available: https://ieeexplore.ieee.org/document/9636818/

	1 Introduction
	2 Task-Oriented Robot Calibration
	2.1 Introduction
	2.2 Related Work
	2.3 Bayesian Calibration with Task-Oriented Weighting
	2.3.1 Maximum a Posteriori Estimation
	2.3.2 Modeling Systematic Error with Virtual Noise
	2.3.3 Task-Oriented Weighting

	2.4 Sensitivity Analysis and Optimal Experimental Design
	2.4.1 Sensitivity Analysis
	2.4.2 Optimal Experimental Design
	2.4.3 Efficient Data Collection

	2.5 Robot Model and Measurement Functions
	2.5.1 Geometric Robot Model
	2.5.2 Non-geometric Robot Model
	2.5.3 Efficient Compensation
	2.5.4 Types of Measurement Functions

	2.6 Experiments
	2.6.1 DLR-Hand II - Contact-based Calibration
	2.6.2 Agile Justin - External Tracking System
	2.6.3 Agile Justin - Internal RGB Camera
	2.6.4 Agile Justin with Sticks

	2.7 Summary

	3 Learning-Based Motion Planning
	3.1 Introduction
	3.2 Related Work
	3.3 Optimization-Based Motion Planning on Voxel Models
	3.3.1 Path Representation with Substeps
	3.3.2 Objectives for Short, Close, and Collision-Free Paths
	3.3.3 Combined Objectives for Motion Planning and Inverse Kinematics

	3.4 Learning for Speeding-Up Optimization-Based Motion Planning
	3.4.1 Environment Representation
	3.4.2 Robot Representation
	3.4.3 Supervised Learning
	3.4.4 Unsupervised Learning

	3.5 Experimental Evaluation
	3.5.1 Challenging Datasets and Test Environments
	3.5.2 Learning-Based Motion Planning
	3.5.3 Learning-Based Inverse Kinematics
	3.5.4 Generalization to Self-Acquired Voxel Models

	3.6 Summary

	4 Conclusion
	Bibliography
	Publications of the Author
	Core Publications
	Additional Publications

	Appendix: Full Text of Publications

