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While quantum statistical mechanics triumphs in explaining many equilibrium phenomena, there is an
increasing focus on going beyond conventional scenarios of thermalization. Traditionally examples of
nonthermalizing systems are either integrable or disordered. Recently, examples of translationally invariant
physical systems have been discovered whose excited energies avoid thermalization either due to local
constraints (whether exact or emergent) or due to higher-form symmetries. In this article, we extend these
investigations for the case of 3D Uð1Þ quantum dimer models, which are lattice gauge theories with finite-
dimensional local Hilbert spaces (also generically called quantum link models) with staggered charged
static matter. Using a combination of analytical and numerical methods, we uncover a class of athermal
states that arise in large winding sectors, when the system is subjected to external electric fields. The
polarization of the dynamical fluxes in the direction of applied field traps excitations in 2D planes, while an
interplay with the Gauss law constraint in the perpendicular direction causes exotic athermal behavior due
to the emergence of new conserved quantities. This causes a geometric fragmentation of the system. We
provide analytical arguments showing that the scaling of the number of fragments is exponential in the
linear system size, leading to weak fragmentation. Further, we identify sectors which host fractonic
excitations with severe mobility restrictions. The unitary evolution of fragments dominated by fractons is
qualitatively different from the one dominated by nonfractonic excitations.
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I. INTRODUCTION

Interacting quantum many-body systems are expected to
thermalize under unitary time evolution when their initial
states are simple Fock states. Consequently, time-evolved
pure states obtained from different Fock states with the same
energy density cannot be distinguished using purely local
operators, even when they have different values of another
local observable. To reconcile this phenomenon with the
quantum mechanics of closed systems, dominated by the

time-reversible Schrödinger equation, one may invoke the
eigenstate thermalization hypothesis (ETH) [1–4].
The ETH may be stated in terms of the matrix elements

of observables in the eigenbasis of the Hamiltonian as

Omn ¼ OðĒÞδmn þ e−SðEÞ=2fOðĒ;ωÞRmn; ð1Þ

where m, n are indices for the energy spectrum En,
Ē ¼ ðEm þ EnÞ=2, and ω ¼ En − Em. Then SðĒÞ and
OðĒÞ are the thermodynamic entropy and expectation
value of the observable in the microcanonical ensemble
at energy Ē, respectively, fO is a smooth function of the
arguments (Ē;ω), and Rmn are random real or complex
variables with zero mean and unit variance [4]. Expectation
values of local observables thus thermalize inOð1Þ time (in
units of coupling) to the microcanonical ensemble due to
the exponential damping offered by the entropy.
Since most systems in nature thermalize, it is interesting

to understand the conditions under which systems do not.
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Integrable and disordered systems offer some of the well-
explored routes to violate ETH [5,6]. Moreover, the initial
experimental exploration of quantum dynamics on a
Rydberg atom-based quantum simulator [7] led to the
discovery of quantum many-body scars (QMBS) [8–10],
which consist of a set of eigenstates with anomalously low
entanglement entropy (and anomalous values of other
observables) embedded in an otherwise ETH-satisfying
spectrum. When starting from states with a high overlap
with these QMBS, the unitary evolution may keep the
system within the subspace of these scars, resulting in a
longer thermalization time. A theoretical description of this
phenomena can be obtained by modeling the system by the
so-called PXP model [11], which has since been found [12]
to be identical to the spin-1

2
quantum-link Schwinger model

[13,14]. This has opened the door to large-scale quantum
simulations of lattice gauge theories. Subsequently a pleth-
ora of nonergodic behaviors have been discovered in
strongly interacting systems [15,16]. QMBS have been
observed in a wide variety of physical systems from spin
models [15–28] and fermionic theories [29–33], aswell as in
lattice gauge theories both with and without matter [34–43],
and even in cases when gauge theories are disordered [44].
Another example of ETH-violating behavior arises when

the Hilbert space is fragmented into sectors that cannot be
distinguished by global symmetries. Certain scenarios such
as disorder-free localization [45–50] sometimes can be
mapped to systems with local gauge or subsystem sym-
metries. Therefore anomalous thermalization in such sys-
tems can be understood as an incoherent sum of different
(gauge) sectors, each thermalizing at its own pace. Other
scenarios such as “weak” and “strong fragmentation” are
more subtle and can emerge without requiring local micro-
scopic symmetries. To understand these scenarios, imagine
that Fock states (in a suitable computational basis, or one
which can be easily prepared in the laboratory) are
represented as vertices of a graph, and the Hamiltonian
represents the connections (bonds) of the graph. If the
resulting graph is a single connected object, the system is
ergodic, but if it instead is divided into disconnected
sectors, the number of which grows with the system size,

then the system can potentially evade thermalization as
postulated by the ETH. A common terminology used in this
case is to say that the system is “fragmented.” The cartoon
representation of Fig. 1 for a Hamiltonian connecting
different states of a finite system provides an intuition
regarding fragmentation.
A further distinction between fragmentation scenarios

lies in whether one encounters a measure zero of ETH-
violating states in the thermodynamic limit (weak frag-
mentation), or whether the number of fragments grows
exponentially with the volume but no single fragment
dominates in the thermodynamic limit (strong fragmenta-
tion) [24,51–61]. The former case is similar to QMBS
leading to eventual thermalization, but the latter can display
behavior distinct from QMBS scenarios, in particular the
dramatically reduced mobility of excitations. A simple way
to mathematically classify fragmentation is to consider the
scaling of the ratio n=N , where n is the number of states in
the largest fragment (in a suitable computational basis)
while N is the total number of states (in the same basis) in
the entire Hilbert space. If this ratio approaches an Oð1Þ
number in the thermodynamic limit, while exhibiting
anomalous behavior (e.g., QMBS states) at finite lattice
sizes, the system is said to be “weakly fragmented,”while if
the ratio scales as e−aV (where V is the volume of the
system) then the system is said to be “strongly fragmented.”
Concretely, this can be converted to a comparison of the
“entropy density,” sfrag, of the biggest fragment with the
thermodynamic entropy density, stdyc. For weak fragmen-
tation, one has stdyc ¼ sfrag in the thermodynamic limit,
while for the case of strong fragmentation, stdyc and sfrag
differ by a ∼Oð1Þ.
In this article, we discuss a form of “geometric frag-

mentation” arising in a class of quantum many-body
systems in three spatial dimensions which have local
conservation laws, better known as quantum-link gauge
theories. Specific examples of these models, such as
quantum dimer models, have been extensively used in
the quantum condensed matter community to discuss the
nonmagnetic phases of electrons at low temperatures where
electrons can form singlets with their nearest neighbors and

FIG. 1. Consider an example of a quantum system with eight states which cannot be further distinguished by local or global
symmetries. The model is said to be “ergodic” if the Hamiltonian connects all the states (left). The same quantum system transforming
under a different Hamiltonian which does not connect all the states, and the model is considered to be “fragmented” (right).
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are relevant as microscopic models of high-temperature
superconductors [62–65]. Realized on a lattice structure
consisting of corner-sharing tetrahedra (pyrochlores), such
models are relevant in the physics of spin-ice compounds and
spin-liquid phases in those systems [66–74]. In the context of
particle physics, these quantum-link models [75–80] were
proposed as generalizations of Wilson’s lattice gauge theory
[81,82] to develop better classical algorithms for quantum
chromodynamics [83–88]. Thanks to recent experimental
developments on quantum simulations and computations,
thesemodels are especially suited to be realized on near-term
devices in order to study phenomena of interest in particle
physics, particularly for problems which defy classical
simulation techniques [13,89–94].
Most of the studies so far have concentrated on the phase

diagram at zero temperature and at finite temperatures,
which is natural given the available classical methods, as
well as the experimentally relevant physics. However,
thanks to the new tools for quantum simulation, there is
an increasing interest in the conditions leading to (lack of)
thermalization in these models. We show that in the
presence of (large) external electric fields, magnetic exci-
tations get trapped in two-dimensional planes hindering
thermalization. We are able to use analytical techniques to
characterize certain aspects of the anomalous states, while
for other cases we display the athermal behavior numeri-
cally. Our starting point is the quantum dimer model on the
cubic lattice. We then confine ourselves to a particular
sector of the model, characterized by the largest winding
number in a direction, which displays fragmentation.
The rest of the paper is organized as follows. In Sec. II,

we introduce the model and discuss the constraints imposed
by the three-dimensional Gauss law, as well as the global
winding number symmetry that plays a crucial role in
inducing geometric fragmentation. We then describe the
observables used to characterize the anomalous dynamics.
The concept of geometric fragmentation is introduced in
Sec. III, with both its origin and nature examined in detail
in Sec. III A. In Sec. III B, we explore the emergence of
fractons within certain fragmented subspaces and how they
give rise to athermal dynamics—both in fragments domi-
nated by fractons and in those that are not. Finally, in
Sec. III C, we present an analytical solution for the
eigenstates and eigenenergies of the fractonic fragments.
We conclude by summarizing our main findings and
providing an outlook in Sec. IV.

II. MODEL AND OBSERVABLES

A. Doped bosonic quantum-link model

We begin by introducing the bosonic Uð1Þ Abelian
quantum-link model (the fermionic version was introduced
in [95]). Although we will focus on the Hilbert space
structure and the real-time dynamics of the model in three
dimensions, an understanding of the model in two

dimensions equips the reader with the insight to appreciate
the special dynamics we show later. The model is defined
as follows on square and cubic lattices,

H ¼ g2

2

X
x;î

E2
x;î

− J
X
□

ðU□ þ U†
□
Þ þ λ

X
□

ðU□ þU†
□
Þ2;

U□ ¼ Ux;îUxþî;ĵU
†
xþĵ;î

U†
x;ĵ
: ð2Þ

The degrees of freedom of the model are defined on links
joining two adjacent lattice sites and labeled with the
subscript ðx; îÞ, with x as a site and î as a unit vector in a
spatial direction. The first term in Eq. (2) is the electric field
energy (square of the electric fluxes, Ex;i), while the second
term is the magnetic field energy, and the third term is the
Rokhsar-Kivelson term. The latter two terms are expressed
via plaquette operators, U□. We will choose a computa-
tional basis which is diagonal in the electric fluxes, and thus
the term linear in plaquette operators is off diagonal in this
basis and will be the kinetic operator Hkin ¼

P
□
ðU□ þ

U†
□
Þ while the term quadratic in the plaquette operator is

diagonal in the flux basis is Hpot ¼
P

□
ðU□ þ U†

□
Þ2.

The speciality of the quantum-link formulation is that
these operators can be represented by a finite-dimensional
Hilbert space and are characterized by the representations
of SUð2Þ algebra. In particular, the operators satisfy the
following commutation relations:

½Ex;î;Uy;ĵ� ¼Ux;îδx;yδi;j; ½Ex;î;U
†
y;ĵ
� ¼−U†

x;î
δx;yδi;j;

½Ux;μ;U
†
y;ν� ¼ 2Ex;μδx;yδi;j: ð3Þ

The Hamiltonian has a local Uð1Þ symmetry generated by
the local lattice Gauss law operator,

Gx ¼
X
i

ðEx;î − Ex−î;îÞ; ½Gx;H� ¼ 0 for all x: ð4Þ

This causes the many-body Hilbert space to break into
exponentially many sectors, labeled by quantum numbers
of the local charge, Gx. A typical choice in particle physics
is to define physical states as being annihilated by the
Gauss law: GxjΨi ¼ 0, which corresponds to zero charge.
In contrast, physical states of a quantum dimer model
(QDM) have doped (immobile) staggered charges, math-
ematically represented asGxjχi ¼ Qð−1Þxjχi, where ð−1Þx
is the site parity, and Q is the quanta of charge.
Any representation of the operators fulfilling Eq. (3) is

allowed to define the theory. The well-known Wilson-type
lattice gauge theory uses the quantum rotor as its degree of
freedom, generating an infinite-dimensional representation
on each of the links [82]. A finite-dimensional representa-
tion is obtained by using spin-S operators S⃗x;î as degrees of
freedom on the link, with the following identifications:
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Ex;î ¼ S3
x;î
; Ux;î ¼ Sþ

x;î
; U†

x;î
¼ S−

x;î
: ð5Þ

In the limit of large S, the Wilson lattice gauge theory is
approached [96]. In this work, we consider the other
extreme limit of S ¼ 1

2
with a two-dimensional local

Hilbert space and work in the electric flux basis. The
electric field energy is constant in this representation and
can be ignored. Working in the electric field basis, the states
can be represented by flux arrows pointing outward
(inward) to the site representing flux 1

2
(− 1

2
). A pictorial

representation of the action of the Hamiltonian on an
individual state is given in Fig. 2. Moreover, physical
states can be locally classified using the Gauss law. The
number of states allowed decreases with the increase in Q:
for three-dimensional cubic lattices,Q ¼ 0 admits 20 states
[95], Q ¼ 1 allows 15 states, Q ¼ 2 allows 6 states, and
Q ¼ 3 allows only a single state. Figure 2 shows the case of
the local charge Q ¼ þ2. We do not draw all the states for
the other Gauss law conditions, but the reader is encour-
aged to draw them for their understanding.

B. Winding number symmetry

The Hamiltonian of the system is invariant under (global)
point group symmetries (rotations, reflections, and trans-
lations), as well as charge conjugation. Our work focuses
on the remaining continuous global center symmetry,
which gives rise to conserved flux winding number sectors.
On an Lx × Ly × Lz ¼ V (three-dimensional) lattice with
periodic boundary conditions, there are three separately
conserved winding numbers W ¼ ðW3D

x ;W3D
y ;W3D

z Þ,

W3D
x ¼ 1

LyLz

X
r

Er;x; W3D
y ¼ 1

LxLz

X
r

Er;y;

W3D
z ¼ 1

LxLy

X
r

Er;z: ð6Þ

Illustrations of the winding number calculations in 3D
are shown in Fig. 3. Wi ranges in integer steps from
−Li=2 to Li=2. Since we consider the physics for the
largest winding sector in a given (z) direction, we will also
need the corresponding two-dimensional winding numbers,
W ¼ ðW2D

x ;W2D
y Þ,

W2D
x ¼ 1

Ly

X
r

Er;x; W2D
y ¼ 1

Lx

X
r

Er;y: ð7Þ

The corresponding calculation for W2D
i is illustrated

in Fig. 4.

FIG. 2. An elementary cube whose top and bottom faces are flippable in the anticlockwise fashion (left). The J-term of the
Hamiltonian acts on the lower (shaded) face and converts it into a clockwise flippable plaquette (middle). Hamiltonian flips preserve the
local charge. (Right) States which are allowed for Q ¼ 2 condition.

FIG. 3. An example state which maximal winding in the z-
direction: ðWx;Wy;WzÞ ¼ ð0; 0; 2Þ. The quantity W3D

x is ob-
tained by summing the flux contributions highlighted in green.

FIG. 4. Calculation of the winding number in two-dimensional
planes. In this example, we have the 2 × 4 lattice with the
winding number ðW2D

x ;W2D
y Þ ¼ ð0; 0Þ. The quantity W2D

x is
obtained by summing the flux contributions highlighted in green.
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C. Time-dependent observables

Before discussing the physics of how disconnected
sectors arise in these models, let us briefly mention the
observables we use to track the consequences of ergodicity
breaking. Since thermalization implies the loss of memory
of initial conditions, a standard technique is the study of
real-time dynamics of the expectation values of operators,
fidelities, and measures of entanglement starting from
initial states which can be easily prepared both theoretically
and experimentally. In Sec. III B, we will examine the
unitary evolution of the system, compare behaviors in
different subspaces, and contrast the sectors which thermal-
ize from those which do not. To exemplify how fragmen-
tation leads to ETH breaking in this model and to illustrate
our analytical findings about atypical dynamics of the
model we numerically calculate the following time-
dependent measures: the fidelity

FðtÞ ¼ jhΨð0ÞjΨðtÞij2; ð8Þ

which measures the overlap with the initial state.
Thermalization implies that FðtÞ goes to zero very rapidly
and typically never becomes an Oð1Þ quantity. When this
quantity regularly increases, some form of ergodicity
breaking is suspected. The Shannon entropy, defined as

SðtÞ¼−
X
n

jcnj2log2ðjcnj2Þ with jΨðtÞi¼
X
n

cnjni; ð9Þ

measures the spread of the wave function in the Fock space.
Note that the numerical value is dependent on the basis
chosen to label the Hilbert space (which we denote as jni in
a particular winding flux sector), but other (local) basis
choices are still expected to show the difference between
thermalizing and nonthermalizing behaviors. When started
in a pure state, it is zero, but will increase to an ∼Oð1Þ
quantity if the wave function has support in the entire Fock
space. The maximally entangled state scales as the loga-
rithm of the total Hilbert space. Finally, we also track the
evolution of kinetic and potential energy, which we label as

EkinðtÞ¼ hΨðtÞjHkinjΨðtÞi; EpotðtÞ¼ hΨðtÞjHpotjΨðtÞi:
ð10Þ

In all our numerical examples, we start the state at t ¼ 0
in one of the flux basis states of the investigated subspace:
jΨð0Þi ¼ jni, and use Δt ¼ 0.001 as the time step size
uniformly in all our calculations. However, since we are
always using exact methods for the calculation, the value at
any arbitrary time can be computed.

III. GEOMETRIC FRAGMENTATION

In the absence of any staggered static charges, i.e., in the
sector characterized by Gx ¼ 0, the model is expected to be

ergodic for zero winding number sectors. While we are
aware that this is the case in d ¼ 2 [35], a similar check
does not (yet) exist in d ¼ 3 to the best of our knowledge.
As the system is doped using staggered static charges, the
allowed Gauss law realizations further constrain the set of
allowed states and risk an otherwise connected Hamiltonian
graph to fragment. This is even more so if the system is
subjected to an external field which locks the electric fluxes
in the direction of the field, but keeps those transverse to the
field unaffected. In this section, we consider a particular
limiting case of the quantum dimer model [i.e., where the
constraint Gx ¼ ð−1Þx selects the physical states and
allows for 15 states locally on each site], with external
electric field. This is equivalent to considering the model in
the highest winding number sector in the direction of the
field, for example in the sector ð0; 0;Wmax

z Þ without any
loss of generality. An example state in this sector is shown
in Fig. 3. Let us now discuss how fragmentation may arise
in this scenario.

A. Fragmentation in the doped quantum link model

In the maximal winding number sector of the dimer
model, all the z-fluxes (in the direction of the external
electric field) point in the same direction. This holds
irrespective of the lattice size. In particular, this means
that the spatial plaquettes in the xz-plane and the yz-plane
cannot be made flippable since the z-links in each of these
plaquettes always point in the same direction. Flippable
plaquettes can only exist in the xy-plane. This leads to the
key result that the maximal flux states can be represented as
Lz stacked 2D QDMs, which stagger the charge as one
moves in the z-direction at a fixed value of ðx; yÞ.
This means that we can effectively describe the basis

states in the flux basis of the ð0; 0;Wmax
z Þ sector as

jΨ3Di ¼ jΨ1
2Di ⊗ jΨ2

2Di ⊗ � � � jΨLz
2Di; ð11Þ

since the fluxes in the z-direction are fixed. The effective
Hamiltonian reduces to a sum of operators only acting on
the xy planes,

H ¼ H2D
1 ⊗ 1⊗ðLz−1Þ þ 1 ⊗ H2D

2 ⊗ 1⊗ðLz−2Þ þ � � �
þ 1⊗ðLz−1Þ ⊗ H2D

Lz
: ð12Þ

The Hamiltonian can be taken to be 1 for the terms in the
xz- and yz-planes since their plaquettes are not flippable by
construction. Furthermore, the effective 2D QDMs must be
stacked in a pattern such that the correct winding sectors
W3D

x and W3D
y are reproduced. This is responsible for

creating a further constraint in the perpendicular directions
even though the external field does not directly affect Ex

and Ey links. The winding number for a direction i,W3D
i , is

obtained by adding the ith flux through a plane
perpendicular to i. On the other hand, W2D

i is obtained
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by summing the Ei along a line perpendicular to the links.
Therefore, we can calculate the winding number of jΨ3Di
by summing the winding numbers of Lz stacked 2D QDMs,

W3D
x ¼

XLz

i¼1

W2D
x;i ; W3D

y ¼
XLz

i¼1

W2D
y;i : ð13Þ

In the maximal winding sector ðWx;Wy;Wmax
z Þ, this

provides a way to identify the new conserved quantity,
W2D

i , since W2D
i of the 2D planes cannot change by

applying the Hamiltonian. The only flippable plaquettes
are in the xy-planes which cannot communicate via frozen
Ez fluxes on the xz- and the yz-planes. It is important to
realize this is not the case for states in arbitrary winding
number states in 3D and is not due to a global symmetry of
the Hamiltonian. Particularly, if we can fulfill Eq. (13) with
different combinations of 2D QDM planes, they would not
be connected by the Hamiltonian. This results in geometric
fragmentation of the Hilbert space. Naively, one may think
that this always implies fragmentation for maximal flux in

one direction, but there is no guarantee that there exist at
least two ways to fulfill Eq. (13). To predict fragmentation
definitively, we must also obtain winding subspaces of an
arbitrary lattice of size Lx × Ly × Lz consisting of states
that fulfill Eq. (13) in at least two different ways. In
Supplemental Material [97], we analytically prove this to
be the case for a large class of examples.
In the main text, let us instead show how this arises by

simple examples. Consider the 4 × 2 × 2 lattice in the
winding sectorW3D ¼ ð1; 1; 4Þ: this is fragmented into two
subspaces, each consisting of eight states. Table 1 shows
the subspaces of the QDM alongwith the number of states
in each. The geometry makes the system be treated as two
parallel alternating dimer planes of size 2 × 4, which have
to fulfill Eq. (13). An example of this effective representa-
tion for the 2 × 2 × 2 lattice is shown in Fig. 5. To fulfill
these equations with states depicted in Table 1, there are
only two ways:
(1) W2D

x ¼ 1 and W2D
y ¼ 0 for the first plane, and

W2D
x ¼ 0 W2D

y ¼ 1 for the second plane
(2) W2D

x ¼ 0 and W2D
y ¼ 1 for the first plane, and

W2D
x ¼ 1 W2D

y ¼ 0 for the second plane.
From here we see that the sector is fragmented into two
subspaces. In both solutions, one plane contains eight
possible states, and the other plane contains one possible
state, resulting in the fact that both subspaces have eight
states as predicted by a brute-force numerical calculation,
where we construct the Hamiltonian graph for the Fock
space and check the number of connected components.
Therefore, the numerical example matches our maximal-
flux description of how fragmentation occurs. Similarly, in
the sector (1,4,1), one finds a similar fragmentation, as is of
course predicted by symmetry. It is instructive to consider
the winding sector W3D ¼ ð3; 0; 2Þ of the 2 × 2 × 4 lattice
as a second example. This winding subspace is fragmented

FIG. 5. When the winding numbers are maximal in a given direction, it is possible to represent the states as 2D planes since the
dynamics is frozen in the perpendicular direction of the plane.

TABLE I. Winding subspaces of a 2 × 4 QDM. Fractons are
plaquette excitations which have reduced mobility along sub-
dimensional manifold than the one in which the Hamiltonian is
defined.

Wx Wy No. states Fractons

2 0 1 ✗
−1 0 8 ✓
0 −1 1 ✗
0 0 16 ✗
0 1 1 ✗
1 0 8 ✓
2 0 1 ✗
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into four distinct sectors, each containing four 3D quantum
dimer model (QDM) states. Due to the geometry of the
system, each state can be interpreted as comprised of four
parallel, alternating dimer planes of size 2 × 2, each subject
to the constraints imposed by Eq. (13). There exist four
distinct ways to satisfy these constraints using distinct
2 × 2 subspaces of the 2D QDM. The possible subspaces of
the 2 × 2 QDM are shown in Table II. The construction
begins by selecting one of the four planes to host a
configuration with winding numbers W2D

x ¼ 0 and
W2D

y ¼ 0, while assigning W2D
x ¼ 1 and W2D

y ¼ 0 to the
remaining planes. Since there are four possible choices for
the plane in the W2D

x ¼ 0, W2D
y ¼ 0 configuration, this

results in four distinct fragments, each containing four
states, within the subspace.
Next we analyze the type of fragmentation—strong or

weak—that emerges due to geometric constraints induced
by maximal flux along a single direction in a 3D QDM. To
quantify the nature of this fragmentation, we consider the
following ratio in the thermodynamic limit (L → ∞) of the
cubic lattice L × L × L:

F ¼ lim
L→∞

Nlargest

Ntotal
ð14Þ

where Nlargest denotes the number of states in the largest
fragment within a given fragmented winding sector, and
Ntotal is the total number of states in that winding sector.
If this quantity scales as expð−VÞ, the system exhibits
strong fragmentation, otherwise we will claim weak
fragmentation.
In the main text of this work, we concentrate on the

winding sector ð0; 0;Wmax
z Þ specifically to characterize the

nature of its fragmentation. Based on the construction of
stacking Lz 2D lattice planes along the z-direction, it
follows directly that the largest fragment within this
winding sector corresponds to stacking Lz copies of the
ðW2D

x ;W2D
y Þ ¼ ð0; 0Þ sector on top of one another in a

lattice of size Lx × Ly × Lz. Let us say the number of states
in the 2D ðW2D

x ;W2D
y Þ ¼ ð0; 0Þ sector is n0. It follows that

Nlargest ¼ nLz
0 . Our approach involves establishing upper

and lower bounds on F [Eq. (14)]. The key problem with

evaluating the scaling of F is that Ntotal (total number of
states across all fragments) is not easily computable since
we are dealing with a constrained model in the thermody-
namic limit. Thus we will instead find the scalings of two
numbers: Nmin which is a known subset of the total number
of states and thus always smaller than Ntotal, and Nmax,
which is by construction larger than Ntotal for all L. We thus
will have Nmin < Ntotal < Nmax for all L.
For Nmin, we note that, in the thermodynamic limit, 2D

lattice planes in the following five winding number sectors
(0,0), ð0;�1Þ and ð�1; 0Þ have the same number of Fock
states. To satisfy W3D

x ¼ 0, we can combine Lz=2 pairs of
2D planes, such that both elements of a single pair have
(0,0) windings or one plane has (1,0) and the other ð−1; 0Þ
winding (similarly for y-windings). Further, n1 ≈ n0, where
n1 is the number of states in the (1,0) winding sector

(similarly for the y-winding). Thus, Nmin ≈ nLz
0 5

Lz
2 (the

solutions along the x- and y-directions are independent)
and we can form an upper bound by only considering these
subsets of allowed solutions to the winding constraints,

lim
L→∞

Nlargest

Ntotal
< Gupper ¼ lim

L→∞

Nlargest

Nmin
¼ lim

L→∞
e−L

lnð5Þ
2 : ð15Þ

On the other hand, we can obtain an Nmax by overcounting
the number of allowed solutions, by including all the
winding sectors (there are Lþ 1 of them in each direction)
and assuming that each 2D winding sector has the same
number of states ≈n0, when in reality the number of states
in the sector decrease with the winding of the sector. Thus,

Nmax ≈ nLz
0 ðLþ 1Þ2Lz2 , where L ¼ Lz and Lz has been

written out to show the pairing. This yields a lower bound
Glower,

lim
L→∞

Nlargest

Ntotal
>Glower ¼ lim

L→∞

Nlargest

Nmax
¼ lim

L→∞
e−L lnðLþ1Þ: ð16Þ

Evaluating the entropy density (where the total entropy is
logarithm of the number of states), we find that the leading
correction to the value in the thermodynamic limit is
Oð1=L2Þ in the former case and OðlnðLÞ=L2Þ in the latter
case. Since the leading correction vanishes as L → ∞, the
entropy density of the biggest fragment is the same as that
of the full theory, and thus we classify this scenario as weak
fragmentation. The actual behavior of the leading correc-
tion in our model is in between these limits, but will also go
asOðα=L2Þ, where α has a weaker dependence on L than a
logarithm.
We emphasize that this leading behavior is different from

that of models which are expected to thermalize according
to the ETH. For example, the spin-1=2 antiferromagnetic
Heisenberg model on the cubic lattice only has the total
magnetization as the global conserved quantity. If one
considers the ratio of the entropy density in the largest
magnetization sector (which has L3=2 spins with Sz ¼ 1=2

TABLE II. Winding subspaces of a 2 × 2 QDM. Fractons are
plaquette excitations which have reduced mobility along sub-
dimensional manifold than the one in which the Hamiltonian is
defined.

Wx Wy No. states Fractons

−1 0 1 ✗
0 −1 1 ✗
0 0 4 ✓
0 1 1 ✗
1 0 1 ✗
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and the other L3=2 spins with Sz ¼ −1=2), the leading
correction decays as Oð1=L3Þ, faster than the case of the
3D quantum dimer model we have presented. Intuitively,
the weak fragmentation in our case is a consequence of a
genuine 3D system fragmenting into individual 2D planes,
with the excitations only confined within the 2D planes.
It can be shown that this plane pairing argument is enough

to predict the exact leading correction to the thermodynamic
limit.More precise upper and lower bonds could bemade by

establishing a scaling behavior of nfðWÞ
n0

where nf is the
number of states in an arbitrary winding W sector of 2D
L × L lattice, but we consider this unnecessary for our
present purpose. Furthermore, similar arguments can be
made for otherwinding sectors of thismodel if the amount of
flux in one direction is maximal (jW3D

i j ¼ Lj · Lk=2). We
find that these sectors are alsoweakly fragmented. The proof
of the weak fragmentation is provided in Supplemental
Material [97].

B. Real-time dynamics and thermalization

In Sec. I, we pointed out that unitary dynamics provides
another way to diagnose the presence of ETH-violating
behavior—geometric fragmentation in our case. The sys-
tem initialized in one of the fragmented subspaces would
thermalize slowly (or not at all in certain cases), requiring
times much greater than Oð1Þ time than expected if
fragmentation were absent. In some cases, this ETH-
violating behavior can be related to the existance of
quasiparticles, called fractons, with restricted mobility.
We start this subsection by developing an analytical
understanding of fractons in certain fragmented spaces.
Using the (non)existance of fractons, we can characterize
the real-time dynamics for the 3D QDM with maximal flux
in a given direction into two different categories. We
contrast the dynamics for a fragmented sector of the model
to another sector which thermalizes according to the
prediction of ETH.

1. Fragmented subspaces

In Sec. III A, we established fragmentation in the
maximal winding sector (in a particular direction).
Geometric fragmentation arose in this model due to the
stacking of 2D lattices containing “confining magnetic
excitations,” while the interlayer fluxes are frozen. The
mobility of the magnetic excitations are highly restricted, as

we show below, and these are the fractons of this model. We
begin by identifying the winding sectors in 2D lattices
containing fractons and study how their presence influences
the dynamics of the stacked lattices.
For the 2D QDM with periodic boundaries and of size

L × ðnLþ 2Þ, where n∈N0, we find that the winding
sector characterized by jW2D

y j ¼ L − 1 and jW2D
x j ¼ n

exhibits a highly nontrivial structure and supports only
severely constrained dynamics. By symmetry, an analogous
result holds for the sector with exchanged indices. The
topology of the electric fluxes is such that configuration in
this sector contains exactly two flippable plaquettes sharing
a common link [see for example Fig. 4 (left)]. Starting from
either of the two flippable plaquettes, which are the two
fractons in this case, the kinetic term of the Hamiltonian
acting on any initial state leads to a sequence of states
where one of the flippable plaquettes in the pair move
diagonally. Due to periodicity, this fracton pair cycles
through the entire lattice and returns to the initial state
after exactly L × ðnLþ 2Þ flips. As a result, this 2D
winding space class is especially interesting due to its
atypical structure and the emergence of strongly frustrated
dynamics. This structure naturally influences the dynamics
of the 3D model.
The construction of the states in the aforementioned

winding spaces follows the specific structure described
next and gives rise to frustrated dynamics. Understanding
the construction helps to quantify the allowed dynamics
analytically. Consider the specific example of n ¼ 0 and
L ¼ 4, which is the 4 × 2 lattice, shown in the left panel of
Fig. 6. We begin with a configuration in which an S-shaped
flux loop (in thick orange) is drawn at the lower left edge
which connects through periodic space by traversing the
lattice in both the x- and y-directions. Two successive
plaquette flips on plaquettes marked by a cross in the left
and middle of Fig. 6 return the system to the original
configuration, translated spatially in x and y direction each
by a single lattice spacing. As a result, the entire subspace is
spanned by only two distinct states, up to a spatial trans-
lation of fluxes consistent with the background charge
distribution.
It is instructive to examine now the case L ¼ 4 and

n ¼ 1 in more detail. This choice corresponds to a 4 × 6
lattice. As a representative case (among four symmetry-
related winding spaces), we focus on the winding sector
W2D

y ¼ 1, W2D
x ¼ −1. The leftmost panel in Fig. 7 is the

FIG. 6. Inchworm motion of the flippable plaquettes across the entire 2D plane, the two flippable plaquettes are fractions with limited
mobility.
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starting state of our construction of this winding space. In
orange, one can see a flux loop connected through periodic
two-dimensional space that, except for an S-shape in the
lower left corner, has a “staircase” structure through the
lattice. The fluxes forming the flux loop fully constrain
the rest of the configuration. Given the periodic boundary
conditions, the winding numbers, and the staggered
charges, this is the only compatible flux pattern on the
remaining links. Flipping the plaquette marked with a black
cross results in the state in the middle panel of Fig. 7. One
can see that there remain two flippable plaquettes sharing a
link, but now they are horizontal neighbors. Flipping the
plaquette marked with a black cross results in the state
shown on the rightmost panel Fig. 7 where flippable
plaquettes are again vertical neighbors and simply related
to the state in the leftmost panel via a lattice translation in
the x- and y-direction each. Subsequent flips lead to a
staircaselike movement of the fracton (the flippable pla-
quette pair) through the 2D plane, which resembles a worm
crawling along a line, and hence we dub it as the
“inchworm” motion. The whole winding subspace can
thus be described by two states up to a translation.
Constructing the states for n > 1 involves addition of a
staircase of directed flux to be able to close the flux loop.
For L ¼ 4 and n ¼ 2, this is illustrated in Supplemental
Material [97].
It is now clear how for arbitrary L and n this construction

can be extended: we start with the S-shape flux line in the
lower left corner and close the flux-loop by drawing n
staircaselike flux lines through the lattice. The remaining
fluxes are fixed by this construction due to the Gauss law
and the 2D winding numbers (example for n ¼ 2 and
L ¼ 4 in Supplemental Material [97]). The three additional
winding sectors, related by symmetry, can be easily
constructed. These sectors are obtained by either starting
with an inverted S-shape flux line at the lower left corner
(corresponding to a start of the flux line at a positive
charge), by initiating the S-shape one site shifted in the
x-direction (start from the negative charge), or by

combining both modifications (i.e., a shift and an inverted
S-shape). The inverted configuration results in a staircase-
like motion that is also inverted (mirrored) about the y-axis,
while initiating the construction from the negative charge
leads to a reversal in the direction of the flux line.
Illustrative examples of these constructions for the case
L ¼ 4, n ¼ 1 are provided in Supplemental Material [97].
We emphasize the severely restricted mobility of these
excitations: even though the parent system has a three-
dimensional extent, these excitations can only propagate
along a single line cutting across the diagonal.
The winding sectors discussed above exhibit highly

unconventional dynamics, characterized by the emergence
of fractons. While the behavior of these excitations is
already of considerable interest in the purely two-dimen-
sional setting, we do not pursue a detailed analysis in this
work. Instead, we take a step further by connecting these
findings to our results on fragmentation in the three-
dimensional case and the associated conservation of wind-
ing numbers. In the fragmented regime, the 3D lattice
effectively consists of decoupled stacks of 2D layers,
within which the 2D winding numbers remain conserved.
Consequently, the system’s evolution is confined within
these 2D winding sectors. We identify two distinct classes
of fragmented subspaces, each exhibiting a characteristic
dynamics as the system is evolved in real time:

(i) The “fractonic” fragmentation class is one where at
least one fragment of the winding subspace can be
understood in terms of the motion of planar fractons.
Certain fragments in this category can be constructed
by stacking 2D lattices whose basis states are related
by the constrained motion of planar fractons, while
there might exist other fragments which contain at
least one 2D layer where the dynamics are not
governed by planar fractons. The fragments that
can be described by layers of moving fractons have
EpotðtÞ ¼ const and EkinðtÞ ¼ 0 for all starting states,
because the total number of flippable plaquettes
cannot change. Due to the constrained motion, we

FIG. 7. The inchworm motion of fractons on the 4 × 6 lattice.
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observe even stronger resistance to thermalization
and large oscillations in entropy and fidelity in time.
We consider cases where some 2D layers are frozen
in a fragment and all the others are constructed by 2D
planes hosting fractons. Since the frozen layers do
not add any dynamics, the entire dynamics are from
the layers with fractions.

(ii) The “nonfractonic” fragmentation class is defined by
the absence of fragments with only fracton-dominated
2D layers. The dynamics in each fragment is con-
structed by 2D layers, such that at least one layer does
not allow fractons. Thus, all ways to stack the 2D
subspaces have at least one subspace without a
constant number of flippable plaquettes. We want
to highlight that this class can, but not necessarily has,
to support fractons. Here, the EpotðtÞ and the EkinðtÞ
are not constant in time for any of the starting states.
This class also shows resistance to thermalization.

We now illustrate the behavior of each of the fragmen-
tation classes concretely through examples. In each exam-
ple, we show how the 3D winding numbers can be satisfied
by stacking 2D lattices and then show results of real-time
dynamics initialized from a product state in the respective
fragmented sector. Our numerical examples focus on
lattices that extend over two sites in two directions and
four sites in the remaining direction. For these system sizes,
full exact diagonalization is feasible. In such lattices, the
maximal winding number magnitude depends on the lattice
extent: if a direction spans two sites, the maximal flux is
maxðjW3D

i jÞ ¼ 4, whereas if it spans four sites, the maxi-
mum is maxðjW3D

i jÞ ¼ 2. We construct states according to
the conventions described in Sec. III A, and we choose the
maximal flux to be along the z-direction. Depending on
whether the maximal extent of the lattice is along z, the
construction involves stacking either four 2 × 2 lattices
(corresponding to jW3D

z j ¼ 2) or two 4 × 2 lattices (corre-
sponding to jW3D

x j ¼ 4). The available winding sectors for
each lattice geometry are summarized in Tables I and II,
where we also indicate whether the corresponding 2D
winding sector contains fractons.
Let us start with a very special example of a fractonic

fragmentation class, the ðWx;Wy;WzÞ ¼ ð0; 0; 2Þ sector of
the 2 × 2 × 4 lattice. There are 36 states that have no
flippable plaquettes (each a frozen subspace), one big
fragmented subspace that consists of 256 states, and 24
small fragmented subspaces each consisting of 16 states.
This sector is constructed by stacking four 2 × 2 lattices in
the z-direction such that

W3D
x ¼

X4
i¼1

W2D
x;i ¼ 0 and W3D

y ¼
X4
i¼1

W2D
y;i ¼ 0: ð17Þ

There are multiple ways to do this:

(1) Four ðW2D
x ;W2D

y Þ ¼ ð0; 0Þ 2D winding sector latti-
ces stacked above each other. This corresponds to
the big fragment with 256 states.

(2) Two ðW2D
x ;W2D

y Þ ¼ ð0; 0Þ winding sector lattices
stacked with one ðW2D

x ;W2D
y Þ ¼ ð0; 1Þ winding

sector lattice and one ðW2D
x ;W2D

y Þ ¼ ð0;−1Þ wind-
ing sector lattice. There are 12 ways to stack these
four planes above each other. Each sector has 16
states coming from the ones in the 2D planes with
zero winding.

(3) Two ðW2D
x ;W2D

y Þ ¼ ð0; 0Þ winding sector lattices
and one ðW2D

x ;W2D
y Þ ¼ ð1; 0Þ winding sector lattice

and one ðW2D
x ;W2D

y Þ ¼ ð−1; 0Þ winding sector lat-
tice. There are 12 ways to stack these four planes
above each other, each with 16 states.

(4) Finally, there are 36 different ways to stack
ðW2D

x ;W2D
y Þ ¼ ð1; 0Þ and ðW2D

x ;W2D
y Þ ¼ ð−1; 0Þ,

ðW2D
x ;W2D

y Þ ¼ ð0;−1Þ and ðW2D
x ;W2D

y Þ ¼ ð0; 1Þ
2D planes above each other and fulfill Eq. (17).
These are not interesting because in these are only
2D lattices without flippable plaquettes stacked
above each other.

From the above classification, it follows that taking an
initial state in any of these sectors and then doing an unitary
time evolution maintains a constant potential energy.
Because the total energy must also be constant in time,
their kinetic energies are constant in time as well. All
nonfrozen fragments are completely described by the
dynamics of fractons.
Figure 8 summarizes the dynamics for our four measures

of interest. As expected, the states without flippable
plaquettes corresponding to construction 4 (blue line) do
not change in time, their fidelity is always equal to 1, and
their entropy, kinetic energy, and potential energy are
always equal to 0. The behavior in time for all four
measures of the states within the winding sector fragments
is identical regardless of the starting state. The small
subspaces (solid purple line) and the big subspace (solid
orange line) show oscillations in the fidelity and the entropy
each with a constant amplitude and period, so thermal-
ization is evaded. All fragments are described by the
dynamics of planar fractons and the fragments only differ
in the amount of frozen 2D subsystems.
Another example of the fractonic fragmentation class is

the ðWx;Wy;WzÞ ¼ ð1; 0; 4Þ sector of the 2 × 4 × 2 lattice.
In this winding sector, there are two large fragmented
spaces with 128 states each, and two small ones of 8 states
each. The sector is constructed by stacking two 2 × 4
lattices in the z-direction such that

W3D
x ¼

X2
i¼1

W2D
x;i ¼ 1 and W3D

y ¼
X2
i¼1

W2D
y;i ¼ 0: ð18Þ
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The fragmented subspaces are formed specifically by
stacking:
(1) One ðW2D

x ;W2D
y Þ ¼ ð1; 0Þ plane and one

ðW2D
x ;W2D

y Þ ¼ ð0; 0Þ plane. There are two ways
to do this stacking.

(2) One ðW2D
x ;W2D

y Þ ¼ ð2; 0Þ and plane and one
ðW2D

x ;W2D
y Þ ¼ ð−1; 0Þ plane, and again there are

two ways to do the stacking.
The results are shown in Fig. 9. We observe four distinct

types of behaviors in the large subspaces, whereas in the
small subspaces (purple line), the behavior is independent
of the starting state. In all subspaces we observe oscillations
in the entropy and the fidelity: the entropy does not
approach a steady state and the overlap with the initial
wave function does not settle at zero. These oscillations are
larger in the two small fragmented spaces. None of them
thermalize according to ETH—note that for all of them the
fidelity is significant even for very late times, and the
Shannon entropy is far from the one a maximally entangled
state would possess. In the large subspaces, the expectation
values of the kinetic and potential energy fluctuate in time,
whereas in the small subspaces the expectation value of the
kinetic energy is zero and the potential energy is constant in
time. These are the fragments where all 2D subsystems are
described by planar fractons and their dynamics.
An examplewinding space that is part of the nonfractonic

fragmentation class is given by the ðWx;Wy;WzÞ ¼ ð0; 1; 4Þ
sector. We want to highlight again that this is still a
fragmented sector, but it does not have fragments completely
dominated by fractons. This sector consists of two different

fragmented subspaces each consisting of 16 states. This
sector is constructed by stacking two 2 × 4 lattices in the z-
direction such that

W3D
x ¼

X2
i¼1

W2D
x;i ¼ 0 and W3D

y ¼
X2
i¼1

W2D
y;i ¼ 1: ð19Þ

Theonlyway to obtain thesewindingnumbers is by stacking
one plane with ðW2D

y ;W2D
z Þ ¼ ð0; 0Þ and one lattice plane

with ðW2D
y ;W2D

z Þ ¼ ð0; 1Þ. There are obviously two differ-
ent possibilities to do this construction.We then observe four
different evolution behaviors in each of the fragments
depending on the starting state. Because the 2D subspaces
that are stacked above each other do not have a constant
number of flippable plaquettes, the potential energy is not
constant in time, and thus the kinetic energy will change in
time as well. No fragment is described by planar moving
fractons stacked above each other. The four measures we
computed are shown in Fig. 10.All time-evolved states show
fluctuations in the fidelity and the entropy. The entropy does
not approach a steady value and the fidelity does not
continuously go to zero. In this winding space, the expect-
ation values of the kinetic and the potential energy are not
constant, but fluctuate in time. The behavior is not inde-
pendent of the starting state. Still we do not observe full
thermalization and see continued fluctuations in the entropy
and fidelity in time, unlike what is predicted by ETH.

FIG. 8. Real-time dynamics of the “fractonic fragmentation class,” for the case of the (0, 0, 2) sector of the 2 × 2 × 4 lattice. The
figures plot fidelity, Shannon entropy, the kinetic and the potential energy, from left to right.

FIG. 9. Real-time dynamics of the fractonic fragmentation class (example 2). Once again, from left to right, the behavior of the fidelity,
the Shannon entropy, kinetic and potential energies are shown. The athermal nature of the evolution is evident in the persistent
oscillations that do not decay with time.
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2. Nonfragmented subspaces

We expect the nonfragmented subspaces to thermalize.
As an example of a nonfragmented subspace of the 2 ×
2 × 4 lattice, we choose the ðWx;Wy;WzÞ ¼ ð2; 2; 1Þ sub-
space. This subspace does not have maximum flux in any
direction and consists of 2084 states that are connected to
each other by the Hamiltonian. We show the defined
measures for nine random states of this subspace in
Fig. 11. The fidelity goes to nearly zero very fast and
does not increase, and the entropy rises until it saturates
near the maximal entropy value (indicated as dotted black
line), which indeed indicates that the system thermalizes.

C. Analytical solutions in the fractonic fragments

Here we give analytical solutions of the eigenstates and
the eigenvectors for fragments that are completely domi-
nated by planar fractons. We begin by investigating the 2D
subspaces, because then Eqs. (11) and (12) will make it
trivial to construct the 3D eigenstates and eigenvalues from
those in 2D. Consider a lattice Lx × Ly ¼ L × ðnLþ 2Þ,
with n∈N0, in a winding sector defined by jW2D

y j ¼ L − 1

and jW2D
x j ¼ n. The subspace has N ¼ Lx · Ly flux states,

and each flux state has two flippable plaquettes with average
potential energy α ¼ −2 λ

J. Each flux state is connected by
the Hamiltonian to exactly two other flux states. By
choosing the right order of the flux states, this results in
the following matrix representation of the Hamiltonian:

H2D
fracton ¼ α IN×N þ CN; ð20Þ

where IN×N is the identity matrix and CN the adjacency
matrix of the undirected cycle graph of N nodes

CN ¼

2
66666666666664

0 1 0 0 � � � 0 1

1 0 1 0 � � � 0 0

0 1 0 1 � � � 0 0

0 0 1 0 � � � 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 0 � � � 0 1

1 0 0 0 � � � 1 0

3
77777777777775

: ð21Þ

Because the identity matrix commutes with every matrix
(and hence alsowithCN), it is sufficient to diagonalizeCN to
calculate the eigenenergies and eigenstates. The identity
matrix introduces an absolute shift by α in the eigenenergies.
It is a well-known fact (e.g., [98]) that the adjacency matrix
of the cycle graph is circulant with eigenvectors given by the
discrete Fourier basis

jλji ¼
1ffiffiffiffi
N

p ð1;ωj;…;ωðN−1ÞjÞT ð22Þ

with ω ¼ e2πi=N , j ¼ 0;…; N − 1 and the eigenvalues are

λj ¼ 2 cosð2πj=NÞ: ð23Þ

Therefore, the eigenenergies are ej ¼ αþ λj.

FIG. 10. Real-time dynamics for the nonfractonic fragmentation class. From left to right, the behavior of the fidelity, the Shannon
entropy, kinetic and potential energies are shown. Even though fractons do not dominate this class of fragments, the persistent
oscillations do not decay with time indicating athermal behavior.

FIG. 11. Real-time dynamics of nonfragmented subspaces: clear indications of saturation observed in overlap fidelity, Shannon
entropy, kinetic and potential energies (from left to right) as the system evolves unitarily in time.
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It is now trivial to construct the eigenspectrum and
eigenvectors of the fracton-dominated fragments. Given Lz
number of stacked Lx × Ly 2D planes dominated by
fractons, the eigenvectors of the effective Hamiltonian
(12) are all possible combinations of the eigenstates of
the 2D subsystems,

jEfjgi ¼ ⊗
Lz

l¼1
jλjli ð24Þ

and the eigenenergies are the sum of the eigenenergies of
the chosen eigenstate for each combination,

Efjg ¼
XLz

l¼1

ejl : ð25Þ

The actual eigenvalues clearly depend on N. For stacking
2 × 2 planes, N ¼ 4, which gives rise to the beating motion
in Fig. 8. Other examples such as Fig. 9 have larger values
of N (e.g., N ¼ 8 for the purple line in the figure) and give
rise to more frequencies. The crucial point is that no matter
how large the lattices are, such frequencies are always
present leading to athermal behavior.

IV. CONCLUSION AND OUTLOOK

While paradigms behind static properties of strongly
correlated matter have acquired a maturity both in con-
densed matter and high-energy physics (even though novel
phenomena are frequently reported), the analogous state of
the field of nonequilibrium physics is still in its infancy.
Understanding fragmentation, its causes, and its conse-
quences, is indeed among the most challenging questions in
the field.
Gauge theories possess constrained Hilbert spaces due to

local symmetries, which are not enough to render themodels
integrable. Exotic behavior is obtained when matter and
gauge fields strongly interact and cannot be treated non-
perturbatively, and very few analytical results can be
obtained. In this article, we are able to construct a limiting
case of a global symmetry in the cubic dimer model where
many more emergent subsystem symmetries are generated.
These cause a geometric fragmentation of the model which
can be shown to be in the class ofweakly fragmented systems
using analytic techniques. Further, the certain fragments
have excitations which are highly constrained to move in
two spatial dimensions smaller than the original dimension
of the system. The presence and absence of these fractonic
excitations produce different dynamical behavior, which we
have also characterized using numerics on small lattices.We
emphasize thatwe have given results showing this geometric
fragmentation that are valid on large lattices and indeed in
the thermodynamic limit. For fragmentation sectors which

are dominated by fractons, we provide analytical solutions
for eigenvalues and eigenvectors.
Several general consequences are obvious from our

study. In particular, all the statements about the fragmen-
tation in Sec. III A were made for the cubic dimer model,
which uses the Gauss sector where we have doped the
system with staggered Q ¼ �1. These results are also true
for the Gauss charge zero sector, Q ¼ 0. In that sector,
again, maximal flux restricts the action of the Hamiltonian
to 2D planes orthogonal to the maximal flux, and the
difference is that these 2D lattices do not have charges in
this case. The construction of the fragmented subspaces and
the weak fragmentation of the W3D

x ¼ W3D
y ¼ 0 sector for

all choices of Lx and Ly for maximal flux in Lz direction
hold true for this charge sector and can be generalized from
our study.
It is easy to imagine various interesting directions of

research emerging from our study. Are there other regimes
possible in the pure gauge theory when other kinds of
fragmentation emerge? It is also easy to imagine making
the charges dynamical in a controlled fashion by endowing
them with a large but finite mass. While winding numbers
are not exact symmetries in the presence of charges, one
can start with an initial state with a large flux and observe
how the total flux evolves in time. This will clearly depend
on the phase of the quenching Hamiltonian: a confined
phase may try to keep the fluxes around for longer, while in
a Coulomb phase fluxes may dissipate by string breaking
and recombination. In either case, exotic dynamical and
athermal behavior can be expected.
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