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Mental fatigue is an important construct for aviation as it can impact pilots’
performance. However, its assessment has been and still is challenging. Most
research done in this field is based on basic laboratory experiments, and the
measurement methods in use have certain limits one needs to overcome in order
to apply them in a cockpit. In this review, we present an overview of research on
mental fatigue, its assessment and the gap between fundamental research and
its application in aviation. We provide an overview over classical experimental
paradigms for mental fatigue induction and subjective measures, as well as
advanced head-worn sensing technologies (or such that target head and face),
namely electroencephalography (EEG), functional near-infrared spectroscopy
(fNIRS) and eye-tracking. For each measure, we discuss limitations and open
challenges. Finally, we draw conclusions on the feasibility of integrating the
measurements into the cockpit. We also highlight gaps that future research
needs to bridge.
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1 Introduction: the future of aviation and detecting
pilot incapacitation

Commercial aviation is steadily moving toward deeper automation to support the flight
crew. Two emerging concepts of operation formalize a reduced on-board crew: Reduced-
Crew Operations (RCO)—with one pilot actively flying during low-demand segments such
as cruise while the other rests for longer than traditional controlled rest—and Single-Pilot
Operations (SiPO)—with a single pilot from take-oft to landing, continuously supervising
advanced assistance systems. In both cases, automation shifts the pilot’s role from active
manipulation to continuous supervision and decision authority. The human remains
ultimately responsible for detecting anomalies and managing deviations from the plan.
Accordingly, safety hinges on the pilot’s ability to sustain alertness and intervene effectively
across the entire flight (Fatigue Countermeasures Working Group, 2018).

Operating alone elevates the importance of detecting drifts from an optimal state—
from subtle degradations to full incapacitation. Incapacitation spans partial forms (e.g.,
injuries limiting control inputs) to total loss of function (e.g., unconsciousness) and
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includes subtle states not immediately observable to others, such as
headache, blurred vision, and degraded physiological or cognitive
states (stress, overload, mental fatigue). For a comprehensive
overview of the causes of different types of cognitive incapacitation
and its effects on pilots, see Deniel et al. (2025) and Causse et al.
(2025). Among potential risks of cognitive incapacitation, one
is particularly salient in automation-centric cockpits: the out-of-
the-loop (OOTL) phenomenon. Long stretches of nominal, low-
demand monitoring can foster disengagement and erode situation
awareness, setting the conditions for OOTL (Berberian et al,
2017; Hopstaken et al., 2015). While overload, sudden stress, and
startle can precipitate OOTL, the risk also rises when a lone pilot
supervises a highly automated RCO/SiPO cockpit—either through
cumulative time-on-task in monotonous vigilance or through
sustained demanding episodes that deplete cognitive resources and
induce mental fatigue (MF) (Charbonnier et al., 2016; Grandjean,
1979; van Weelden et al., 2022). MF can be defined as an acute, non-
pathological state induced by task demands. It lies between high
alertness and sleepiness, marked by subjective weariness, reduced
alertness, and the desire to disengage (Grandjean, 1979). Unlike
sleepiness it is reversible with breaks (Charbonnier et al., 2016;
Lal and Craig, 2001; Okogbaa et al., 1994; Shen et al., 2006; van
Weelden et al., 2022). More information on the biological origins
of mental fatigue can be found in Pessiglione et al. (2025).

As mental fatigue (MF) increases, core executive functions
degrade in well-documented ways. MF impairs task control,
planning, and preparation, yielding slower and less effective action
selection (Lorist et al., 2000). It reduces attentional resources
needed to detect and process unexpected events such as auditory
alarms (Dehais et al, 2018) and degrades inhibitory control
and error/action monitoring (Boksem et al., 2005, 2006). MF is
also associated with working-memory decrements that constrain
guidance of ongoing behaviour (Borragan et al., 2017; Karthikeyan
etal., 2022). Decision processes change under MF, with measurable
shifts in risk preference and feedback processing (Jia et al,
2022). In aviation-like, prolonged operations, MF and cognitive
performance co-vary over mission time, producing less flexible
responsiveness to dynamic demands (Rosa et al, 2022). In
sum, evidence shows that rising MF degrades attention control,
inhibition, error monitoring, planning/action execution, working
memory, and decision-making. These impairments undermine
system monitoring and adaptive responding, leading to poorer
situation awareness (Zhou et al.,, 2023) and a reduced ability to
adapt to external contingencies (e.g., adverse weather, failures)
and to take appropriate decisions (e.g., go-around/abort landing)
when required.

Framing cognitive incapacitation as a continuum—rather than
a binary state—highlights the value of detecting and forecasting
a pilots drift toward impairment early, so mitigation can be
timely and adaptive (Paz Gongalves Martins et al., 2021; Reston
et al., 2002). In RCO/SiPO, the usual cross-check from a second
crewmember is missing; a lone pilot may not perceive their own
decline, which strengthens the case for onboard incapacitation
monitoring tailored to single-operator supervision (Deniel et al.,
2025). To be effective in this context, monitoring must be non-
invasive, unobtrusive, and sensitive to gradual, covert changes—
especially when highly automated flight reduces the frequency of
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pilot inputs. Control-input monitoring can flag illogical actions,
but risks missing slow, subclinical drifts when interventions are
rare. By contrast, head-/face-oriented sensing offers continuous,
real-time windows into cognitive state: EEG provides direct neural
markers with millisecond resolution; fNIRS captures cortical
haemodynamics with relative robustness to electrical noise; and
eye-tracking indexes MF through blinks, saccades, dwell time, pupil
dynamics. Each modality brings distinct strengths and integration
challenges for the cockpit, motivating a progressive, operationally
viable transition from lab validation to real-time assistance (Arico
et al., 2018; Peysakhovich et al., 2018).

There have been past attempts to review and structure the
literature around MF and ways of assessing it via (neuro-)
physiological and behavioural measures. For example, reviews
both from fundamental (Tran et al., 2020) and driving research
(Stancin et al., 2021) exist that discuss the usefulness of different
EEG indices in assessing MF. In the context of driving, Lohani
et al. (2019) discussed practical implications and challenges
of bringing multiple neurophysiological, peripheral physiological
and behavioural assessment methods to real-world applications.
A recent review on MF assessment via peripheral physiology
and eye-tracking with a distinct focus on pre- vs. post-fatigue
assessments included only three studies focused on fixed-wing
aircraft (Dickens et al., 2024). The aviation literature on continuous,
cockpit-ready MF monitoring, however, remains comparatively
sparse and the findings are hard to compare between different
experimental paradigms and varying fidelity (van Weelden et al,,
2022). We therefore begin our review with established laboratory
paradigms for inducing MF and discuss how their mechanisms
map to aviation-relevant demands. We then review subjective,
behavioural, and physiological assessment methods of MF with
emphasis on head-worn/face-targeted methods—EEG, fNIRS, and
eye-tracking—, empirical findings, and limitations for real-time, in-
cockpit use. We close by outlining integration challenges (comfort,
certification, artefacts, online processing, individual calibration),
gaps between lab and flight decks, and a staged roadmap toward
robust, multimodal pilot-state monitoring that can safeguard
single-operator operations against OOTL and MF hazards.

2 Paradigms for inducing mental
fatigue

Most of what we know about MF has been established in
controlled, foundational paradigms designed to isolate effects on
primary executive functions. Detailing these paradigms is essential
here because the neurophysiological (EEG, fNIRS) and eye-tracking
measurements reviewed in the following sections have largely been
developed, validated, and interpreted within these task frameworks.
Although these tasks are not “aviation” per se, they provide the
mechanistic bedrock for understanding MF and for selecting
candidate markers that can transfer to cockpit contexts. The
utilized tasks follow at least one of two characteristics: they are
cognitively challenging and require sustained attention and mental
effort, and/or they are of considerable length and drain cognitive
resources through time on task. In some experiments, participants
undergo a sequence of different tasks to maximise the induced MF
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at the end of the experiment. In others, one long, monotonous
MF-inducing task is combined with a shorter second task before
and after, to allow for a pre- and post-MF induction assessment.
Although not aviation per se, these paradigms map directly to
cockpit-relevant functions: ability to remain alert for rare events,
alarm/callout detection, response inhibition under monotony, and
keeping and updating goals under load—all critical in RCO/SiPO
supervision. In this section, we provide an overview of commonly
used experimental paradigms for MF induction.

In cognitive psychology, various tasks and paradigms have been
designed to investigate MF, aiming to replicate real-world demands
or explore the cognitive processes underlying sustained attention.
Thus, tests aiming at attention and continuous monitoring of
stimuli are widely used to induce MF. The Psychomotor Vigilance
Task (PVT; Dinges and Powell, 1985) is a well-established
paradigm, commonly used to measure reaction times in response
to visual stimuli presented at random intervals (Drummond et al.,
2005). Unlike tasks involving complex decision-making, the PVT
isolates the effects of fatigue on simple reaction times, making it
particularly valuable for sleep research and studies of MF. It is
highly sensitive to lapses in attention caused by sleep deprivation,
prolonged cognitive effort, or other fatigue-inducing factors. The
Sustained Attention to Response Task (SART; Robertson et al.,
1997) offers a different approach to studying vigilance and cognitive
control (Durantin et al., 2015). In SART, participants are presented
with a rapid sequence of stimuli, such as numbers, and must
withhold responses to rare target stimuli while responding to
frequent non-targets. This task is particularly effective in examining
the relationship between sustained attention, impulsivity, and
mind-wandering, offering insights into how lapses in vigilance
occur during repetitive tasks. Another widely used paradigm is
the Continuous Performance Test (CPT; Rosvold et al., 1956),
which requires participants to respond selectively to target stimuli
presented in a stream of distractors (Bearden et al., 2004). The CPT
measures vigilance and response inhibition and is often used in
clinical settings to assess attention deficits, such as in individuals
with ADHD or neurological disorders. Variants of the CPT include
the AX-CPT, which introduces contextual cues to investigate
sustained attention under more complex conditions. Eventually,
one of the most iconic paradigms is the Mackworth Clock Task
(MCT), introduced by Mackworth (1948) as an experimental
simulation of long-term monitoring by radar operators in the
British Air Force during World War II. In this task, participants
monitor the movement of a clock hand and must detect infrequent
and unpredictable target events, such as the clock hand skipping
a step (Martel et al., 2014). It simulates real-world monitoring
tasks, such as radar operation, making it ideal for assessing the
sustained attention required in high-stakes environments like
aviation or surveillance.

A second type of tasks uses the mechanism of cognitive control
to elicit demand and produce MF over time. For example, the
Go/No-Go Task is used to study attention and inhibitory control,
where participants respond to “Go” stimuli and withhold responses
to “No-Go” stimuli (Shaw et al., 2013). This task is frequently
employed to examine how MF and sustained attention demands
affect response inhibition and decision-making over time. Another
such task is the Stroop task (Stroop, 1935) in which the participant
is shown a word for a colour (such as “red”) with either matching
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or mismatching font colour. The participant has to correctly name
the colour the word is printed in while ignoring its meaning.
Similarly, the Flanker task (Eriksen and Eriksen, 1974) requires
the participant to respond to a stimulus while ignoring flanking
distractors. Another cognitive control test is the Sternberg task,
which requires the participant to memorize target letters presented
in one colour while ignoring distractor letters presented in another
colour. All these tasks require selective attention and cognitive
control, and prolonged execution induce MF.

Continuous working memory load is a third way of inducing
MF. One example of this is the n-back task. The n-back paradigm
goes back to Kirchner (1958), but has since been used in countless
variations (Owen et al., 2005). The basic principle is as follows: a
participant is presented with a continuous series of stimuli, often
visual or auditory like letters. For each stimulus, they have to decide
if it is the same as the one presented n steps before (e.g., 1 before
in a 1-back condition, 2 before in a 2-back condition etc.) by
pressing a button. Research has shown that even prolonged 1-back
task execution can lead to MF due to the monotonous, repetitive
nature of the task (Grissmann et al., 2017). Another way to induce
MF by increasing working memory load is the Uchida-Kraepelin
test (U-K test). Here, participants need to perform serial addition
tasks as fast and accurate as possible, which requires considerable
mental effort and sustained attention. Additionally, these working
memory paradigms can be combined with classical tasks such as
an interfering secondary task (e.g., an odd/even decision task) to
increase mental effort and accelerate resource depletion, thereby
inducing a higher and faster onset of MF (Borragan et al., 2017).
One key advantage of such paradigms is their potential use as
a preparatory phase before a primary task—for example, as a
warm-up before a flight simulator session—with the specific goal
of pre-inducing mental fatigue in order to assess its impact on
operational performance.

While this section does not provide a complete list of tasks
and paradigms, it illustrates that most of the research done on
ME its development and behavioural and physiological correlates,
is based on these simple laboratory tasks. Research on applied
tasks often uses time on task (i.e., prolonged task execution) to
induce MF, or combine task execution with prior sleep deprivation
(Ahn et al., 2016; Khan et al., 2015). Moreover, in realistic tasks
without the ability to control all confounding factors, cognitive
states may interact (Roy et al, 2013). In sum, even though the
discussed paradigms and cognitive functions are relevant for pilots
and cockpit tasks and provide the foundation for research on MF,
the findings based on these basic research paradigms should not
be projected onto applied and real-world settings without careful
consideration and empirical evaluation.

3 Measures of mental fatigue

3.1 Common subjective measures of
mental fatigue

The easiest way of assessing MF is by collecting subjective
ratings. These measures usually have very little technical
requirements, are easy to administer and seem rather face-valid
both to participants and experimenters because MF can be asked
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about directly. Thus, there is a broad range of scales available
to capture different aspects of MF (and related concepts) across
various domains.

One widely used tool is the Visual Analogue Scale (VAS),
which measures self-reported levels of fatigue on a simple linear
scale, offering a quick and effective way to assess subjective fatigue
(Shahid et al., 2012). The Karolinska Sleepiness Scale (Akerstedt
and Gillberg, 1990) is a one-item measure often used to assess
MF. While originally designed for sleep research, the first half
of the scale can also capture shifts in attention towards feeling
mentally fatigued. The KSS thereby demonstrates that MF can be
considered somewhere in the middle of the continuum between
attentive and sleepy. Based on the KSS, the F-ISA (Hamann
and Carstengerdes, 2020) is a short and face-valid one-item
MF measurement that is designed to only capture MF without
extending towards sleepiness. Another notable instrument is the
Chalder Fatigue Questionnaire (CFQ), a validated tool designed
to measure the severity of perceived fatigue. This scale has been
extensively applied in neuroergonomics to examine the interplay
between mental workload and fatigue (Jackson, 2015; Young
et al., 2015). The Multidimensional Fatigue Inventory (MFI-20)
is another comprehensive tool that evaluates multiple dimensions
of fatigue, including general fatigue, physical fatigue, MF, reduced
activity, and reduced motivation (Mehta and Parasuraman, 2013;
Smets et al., 1995). Similarly, the Mental Fatigue Scale (MFS) has
been shown to effectively quantify MF in specific populations. This
scale assesses cognitive and physical dimensions of fatigue and has
demonstrated satisfactory statistical properties (Diaz-Garcia et al.,
2021).

Additionally, the NASA Task Load Index (NASA-TLX), though
originally designed to assess workload, has been adapted to measure
MF in operational and experimental settings. Its ability to quantify
task-related fatigue through subjective ratings of mental demand,
physical demand, and temporal demand makes it a valuable
tool in human factors research (Hart and Staveland, 1988). The
Dundee Stress State Questionnaire (DSSQ) also contributes to
the assessment of MF, as it provides insights into stress and
fatigue levels by evaluating subjective task engagement and distress
(Matthews et al., 1999).

The development and application of these subjective scales
highlight their importance in capturing the nuanced experiences of
MF. These tools play a vital role in advancing our understanding of
fatigue effects on cognitive and physical functioning and contribute
significantly to developing targeted strategies for mitigating its
impact in operational settings. Nevertheless, subjective measures
suffer from certain drawbacks that limit their application to
real-world settings. Such data can only be gathered by either
interrupting the task to get a real-time estimate, or by applying
the scales after the task and assessing MF in retrospect. Moreover,
the validity of the measures is limited by the participants’ ability
for introspection, their willingness to give true answers, and other
sources of bias like individual response styles (Weijters et al.,
2010a,b). As such, subjective measures lack the unobtrusiveness,
objectivity and ability to measure continuously which one would
want for a MF assessment method for cockpit applications. Thus,
when trying to detect incapacitation due to MF in pilots, researchers
need to look beyond subjective measures and find more suitable
candidate measurements, such as the physiological and behavioural
measurements described in the following sections.
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3.2 Electroencephalography

Electroencephalography (EEG), which measures electrical
activity generated by cortical pyramidal neurons, is a vital
tool for monitoring brain activity in real-world environments
(Gramann and Plank, 2019). Wet-electrode high-density EEG
(HD-EEQG) systems remain the gold standard due to their superior
signal quality, noise-reduction capabilities, and source localization
accuracy. However, these systems are bulky and require extensive
setup times, which limits their practical use in operational settings.
To address these challenges, a new generation of more portable
systems with fewer electrodes (e.g., 32 or 16) or wireless semi-
dry and dry-electrode setups have been developed. These systems
provide greater mobility and faster setup times but are often
associated with lower signal-to-noise ratios (Di Flumeri et al,
2019).

3.2.1 Measuring mental fatigue using EEG
Event related potentials

Time-domain analyses, such as event-related potentials (ERPs),
enable the examination of stimulus-locked brain responses (e.g.,
neural response to the onset of auditory alarms), revealing
insights into perceptual, attentional, and motor processes as well
as related mental effort (Ghani et al., 2020). As an objective
and discrete measure, ERPs serve as a robust indicator of ME
reflecting alterations in cognitive processing as fatigue develops.
These measurements rely on precise synchronization between the
presented stimuli and the EEG recordings, ensuring the accuracy
of the data. Key ERP features, such as amplitude and latency, are
particularly informative. A reduction in the amplitude of ERPs is
often associated with decreased cognitive resource allocation, while
increased latencies reflect slowed neural processing, both of which
are indicative of increased MF.

Spectral analyses

In contrast to time-domain analyses, frequency-domain
analyses decompose EEG signals into distinct frequency bands—
delta (1-4Hz), theta (4-8Hz), alpha (8-12Hz), beta (13-
30 Hz), and gamma (30-150 Hz)—providing valuable insights into
underlying neural and cognitive states, such as MF (Borghini
et al.,, 2014). Time-frequency analyses enable continuous tracking
of brain dynamics, while advancements in source localization
techniques (Mullen et al., 2013) enhance the spatial resolution
of EEG, allowing researchers to study neural network dynamics
in real-world contexts, offering promising opportunities for
neuroergonomics research.

Steady State Visual Evoked Potentials (SSVEPs)

SSVEPs are brain responses elicited by periodic visual
stimulation, typically in the form of flickering lights or patterned
stimuli presented at a constant frequency (Norcia et al.,, 2015).
These evoked responses appear as frequency-locked oscillatory
activity in the EEG, matching the stimulation frequency and its
harmonics. SSVEPs are particularly advantageous because they
are robust, require minimal cognitive effort from the participant,
and can be detected with relatively short calibration times.
Crucially, SSVEPs are highly modulated by attention. When
multiple stimuli flickering at distinct frequencies are presented
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(e.g., one at 11Hz and another at 12Hz), the brain response
is selectively enhanced for the attended frequency while being
suppressed for the ignored one. This feature allows SSVEPs
to serve as an implicit and continuous measure of attentional
focus and MF. Previous studies by Silberstein et al. (1990)
and O’Connell et al. (2009b) have demonstrated that SSVEP
responses are significantly affected by vigilance declines, with
reductions in SSVEP amplitude corresponding to attentional
lapses. However, SSVEPs also present certain drawbacks due to
their intrusiveness: the repetitive visual flashes can induce visual
fatigue and distract participants from the primary task. To mitigate
these effects, recent studies have proposed solutions such as
reducing flash brightness (Ladouce and Dehais, 2024) or using
contrast-based textures (Dehais et al., 2024), both set to near-
threshold (periliminal) levels, making them barely perceptible to
participants—while still preserving sufficient intensity to elicit
robust brain responses.

3.2.2 Empirical findings

EEG has been extensively applied to investigate MF and
attentional fluctuations, providing valuable insights into the neural
mechanisms underlying cognitive performance. Tasks such as
the SART and the PVT have revealed associations between
task-unrelated thoughts, EEG frequency band changes, and
performance lapses (Groot et al., 2021; Molina et al, 2019;
Torkamani-Azar et al., 2020). Similarly, the MCT has been used to
study vigilance decrements, demonstrating relationships between
changes in frontal theta and parietal theta power and performance
declines (Boksem et al., 2005; Esposito et al., 2022; Wascher et al.,
2014). Several studies have identified specific neurophysiological
markers that signal impending lapses in vigilance. For example,
O’Connell etal. (2009a) reported increased alpha power in the right
inferior parietal cortex up to 20s before errors occurred during a
continuous temporal expectancy task, suggesting its potential as
a neural indicator of approaching lapses. In a prolonged Flanker
task, Eichele et al. (2010) observed a gradual decrease in N2
amplitude several trials before errors. Shou et al. (2015) found
that pre-stimulus alpha activity predicted errors in a prolonged
colour-word matching Stroop task. Martel et al. (2014), using
the MCT, observed distinct neural patterns preceding lapses.
These included increased alpha power about 10 s before a missed
target, likely indicating a shift toward internally focused attention.
They also reported a reduction in the P3 component, which
reflects diminished attentional resource allocation. Importantly,
this reduction occurred in response to events up to 5 s before lapses,
suggesting progressive task disengagement. More recently, Ladouce
et al. (2025) demonstrated the potential of using SSVEP to tag
MF and predict attentional errors. They applied low-luminance,
minimally intrusive 14 Hz flickers during a 45-min MCT. SSVEP
amplitude decreased prior to lapses of attention, providing a
predictive neural marker for attentional disengagement. Unlike
traditional alpha and theta markers, SSVEPs offered a temporally
stable and specific measure of vigilance that was unaffected by
prolonged task engagement. These results highlight the suitability
of SSVEPs for real-time tagging of MF in sustained attention
tasks, which is particularly relevant for high-stakes environments
like aviation.
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3.2.3 Challenges

EEG provides promising opportunities and valuable metrics for
assessing MF. However, despite its potential, analytical approaches
including event-related potentials (ERPs), spectral analyses, and
time-frequency domain analyses face significant challenges when
applied in real-world settings. A key issue is the limited specificity in
frequency indices associated with cognitive decline. Many markers
commonly linked to MF and performance decrements also occur
in other cognitive states—such as elevated mental workload, stress,
or drowsiness—making it difficult to isolate neural signatures
uniquely related to MF. Furthermore, the temporal instability of
spectral markers and the dependence of ERP-based measures on
precisely time-locked events complicate their use for real-time
monitoring. As a result, these traditional methods provide only
discrete snapshots of MF rather than continuous assessments,
restricting their applicability in dynamic operational environments
(Dehais et al., 2020; Roy et al., 2013, 2016).

Beyond interpretational issues, EEG signals are also highly
susceptible to artefacts that hinder reliable fatigue assessment in
real-world conditions. Physiological artefacts—including muscle
activity, eye blinks, and neck muscle contractions—can distort
recordings, particularly in frontal and temporal regions, and tend
to increase as fatigue progresses. Motion artefacts from head and
body movements further compromise signal stability, especially in
dynamic environments such as flight simulators or real aircraft,
where electrode displacement may lead to signal loss. External
noise sources—power line interference, electromagnetic noise from
avionics, and vibrations in flight—can additionally contaminate
EEG signals, particularly in lower-frequency bands. To mitigate
these issues, advanced signal processing techniques such as
independent component analysis (ICA) and artefact subspace
reconstruction (ASR) are typically employed. ASR, in particular,
has been shown to efficiently remove noise while preserving neural
activity, enabling reliable brain-state estimation with dry EEG in
real-flight conditions (Callan et al.,, 2018; Dehais et al., 2019).
However, implementing these methods in real-time applications
remains difficult due to computational constraints and the need for
robust, low-latency processing.

3.3 Functional near-infrared spectroscopy

Functional near-infrared spectroscopy (fNIRS) is a non-
invasive method for measuring stimulus- or task-induced changes
in the oxygen consumption in the cortical tissue (Huppert et al.,
2009). Increasing cortical activity, for example due to higher task
demands, leads to an increase in oxygen consumption in the
involved areas, and the resulting higher demand for oxygen is
compensated for by an increasing blood flow through the tissue.
An increasing amount of oxygenated blood (HbO) is transported to
the active area, while deoxygenated blood (HbR) is simultaneously
“washed out” (Huppert, 2016; Huppert et al., 2009). HbO and HbR
have different light-absorbing properties, which make an fNIRS
measurement possible. During such a measurement, light in two
different wavelengths in the near-infrared spectrum (between 650
and 900 nm) is shone into the brain by placing a light source like
an LED or laser onto the scalp. The light permeates the skull and
tissue until it reaches the cortex, is scattered and absorbed on its
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approximately banana-shaped path through the brain and reaches a
detector that is placed a few centimetres apart from the light source,
see Figure 1.

The difference between the light intensity upon entry into and
exit from the brain is measured, and by converting into HbO
and HbR concentrations using the modified Beer-Lambert law
(MBLL) (Huppert et al., 2009; Jacques, 2013), changes in cortical
oxygenation, and thus in brain activity, can be detected (Bae,
2015; Huppert, 2016). The light sources and detectors, both called
optodes, are kept in place with a flexible cap like the ones used
for EEG, or a headband for prefrontal measurements. The farther
apart the source and detector, the deeper the light penetrates the
brain. With an optimal distance of around 3 cm between source
and detector, the light can reach approximately 1-2 cm deep into
the cortex (Huppert, 2016).

fNIRS devices are wearable and can be used as a single
measurement or in combination with EEG. The fNIRS signal is
usually sampled at around 2-4 Hz due to the natural slow change
in the haemodynamic signal underlying the method, but it can
achieve a spatial precision of about 2-3 cm (Huppert, 2016). fNIRS
data are rather robust against contamination with electrical noise
from the recording environment or from movement artefacts (Liu
etal., 2015), making it an ideal candidate measurement for applied
settings like the cockpit.

3.3.1 Measuring mental fatigue using fNIRS

In fNIRS, changes in cortical activation are measured by
analysing changes in HbO and HbR (and sometimes by calculating
the total concentration of haemoglobin, HbT). Various measures
have been used for this purpose, of which this chapter will provide
an overview.

Moments of distribution

The most common way of analysing fNIRS data is computing
and comparing moments of distribution, like the mean or peak
concentrations of HbO and HbR, or the skewness, kurtosis or
variance of the data in a given time interval or experimental
condition. These parameters are often used in basic and applied
tasks to indicate changes in cortical oxygenation. However, these
metrics are rather unidimensional, require quasi-stationary signals
and provide only limited information in tasks with longer durations
and varying demands in which frequent fluctuations of cognitive
activity are expected.

Power spectra

Similar to EEG data, fNIRS data can also be transformed
into the frequency domain. While this approach is less common
than using moments of distribution, it has been applied to MF
assessment (Chuang et al., 2018).

Connectivity

Connectivity describes the co-variation of the fNIRS signal
within or between certain cortical areas and is indicative of
the distribution of cortical processes involved in the activity.
Parameters used for this kind of analysis are for example Pearson’s
correlation coefficients (e.g., Badarin et al., 2024) or wavelet-based
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measures like the wavelet transform and wavelet-based coherence
(L. Xu et al., 2017).

Cortical lateralization

Lateralization describes to which extent processes are
distributed across the two brain hemispheres. There is first
evidence that this method can be used in the context of assessing
MF using fNIRS (Zhang et al., 2017).

General linear models

Another way of analysing fNIRS data is a regression-based
estimation of the cortical activation. In this approach, based
on the hypothesis that the fNIRS data follow a haemodynamic
response function, said function is modelled into the regression.
Beta coeflicients of the regression are obtained for each channel
(or region of interest) and can be compared between experimental
conditions or over time. While successfully showing activation
changes between different levels of mental workload, the
application of this approach to MF paradigm has yielded mixed
results (Hamann and Carstengerdes, 2023; Nogueira et al., 2022).

Steady-State Visual Evoked Potentials (SSVEPs)

While SSVEPs as measures of attention and vigilance are well-
researched in EEG, there are only a few studies yet in which the
technique has been applied to fNIRS. Wang et al. (2020) used
flickers with a frequency of 0.2Hz and showed corresponding
peaks in the frequency-domain transformed fNIRS signal at 0.2 and
0.4 Hz, thus proving the feasibility of SSVEPs in fNIRS research.
Li et al. (2016) used fNIRS data to identify if participants focussed
on presented stimuli in order to improve SSVEPs in EEG. Meng
et al. (2023) combined fNIRS and EEG data to improve their
SSVEP measurement, and could thereby reduce the pixel density
of the flickers to 20%, thus increasing participants’ comfort. These
findings, while not directly related to MF research, show that the
SSVEP paradigm can be used on, and possibly improved with,
fNIRS data.

3.3.2 Empirical findings

The body of empirical findings on fNIRS-based MF assessment
is growing steadily, although the findings are mixed. Studies
have found increasing cortical activation with increasing time on
task and thus growing MF. Mean HbO increased in prolonged
simulated driving tasks of 3-7h (Li et al, 2018, 2009), and in
realistic tasks in the medical field lasting up to 5h (Nihashi et al.,
2019), or at least trends of increasing HbO during simulated drives
of up to 7h (Li et al., 2024b,c). Moreover, peak oxygenation (HbO)
was found to increase in a visuospatial 2-back task with time
on task until around 45 min, then decline again until minute 60
(Karthikeyan et al., 2022). In a similar fashion, an increase in power
spectra in HbO has been found to coincide with EEG alpha band
increases after 60 min of simulated driving (Chuang et al., 2018).
However, there are also contradictory findings of significantly
reduced mean HbO in fatigued vs. alert states in basic PV'T tasks
(Nogueira et al., 2022) and simulated driving (Nguyen et al., 2017).
Finally, Hamann and Carstengerdes (2023) induced MF via an
adapted auditory 1-back task combined with a visual monitoring
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FIGURE 1
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Visualisation of the banana-shaped path of the light through the brain from a light source to a detector during an fNIRS measurement (Hamann,

task over the course of 90 min in the context of a flight simulation,
but found no consistent trend in cortical activity in HbO or HbR.

Increasing MF generally seems to decrease connectivity
between brain regions and change the distribution of activity
between the two hemispheres. Badarin et al. (2024, 2022) used a
Sternberg task to induce MF and reported decreasing connectivity
between brain regions. Similar findings were reported by Li et al.
(2024a) after a 110-min version of the U-K test with and without
a secondary auditory task, and by Peng et al. (2021) in a complex
paradigm combining PVT with arithmetic tasks, reading in a
foreign language and simulated driving (a re-analysis of their data
can be found in Yan et al., 2024). Xu et al. (2017) found decreasing
connectivity after 1 h of driving combined with a secondary mental
arithmetic task. Zhang et al. (2017) compared lateralization of
cortical activity in a 20-min CPT before and after an 80-min verbal
2-back task for MF induction and found increasing lateralization in
the right cortex.

Moreover, classification algorithms trained on various
parameters like mean, variance, skewness or kurtosis could be
used to successfully identify MF. Varandas et al. (2022) combined
a visuospatial working memory task with a concentration task
that required mental arithmetic, and a digital lesson including a
reading comprehension test. Pan et al. (2022) and Dehais et al.
(2018) utilized realistic flight simulations with either time of day
(Pan et al., 2022) or a secondary auditory oddball task (Dehais
et al.,, 2018) as MF induction. In all three approaches, MF could be
assessed successfully.

3.3.3 Challenges
Because fNIRS is a comparatively new method, especially
for applied research, few standardised procedures exist for data
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pre-processing and analysis. Like EEG, fNIRS is not free from
artefacts. Bright light sources or infrared radiation should be
avoided, for example by shielding detectors with an additional
dark cap. Moreover, the fNIRS signal can be affected by systemic
artefacts such as heart rate, respiration, and body movements
that may displace sensors or interfere with cerebral blood flow
(Brigadoi et al., 2014). Thus, the data must be cleaned before further
processing, e.g., by means of filtering or regression-based statistical
methods. Accordingly, robust, real-time pre-processing algorithms
are still needed. Even with cleaned data, the optimal parameters
for MF detection remain debated. The choice between analysing
oxygenated (HbO), deoxygenated (HbR) or total haemoglobin
(HbT) concentrations, combined with widely differing analysis
strategies and measurement locations (a discussion of which
is omitted in this report for the sake of brevity), makes it
difficult to compare literature and identify consistent patterns of
MF development in fNIRS data. Moreover, only a few studies
have focused on gathering and analysing continuous data, most
relying instead on pre-post comparisons. Thus, information about
changes in fNIRS data over the course of experiments is still rare,
limiting our ability to determine whether fNIRS can reliably assess
MF continuously. In sum, the literature highlights the need for
further research—particularly regarding the sensitivity, reliability
and validity of different fNIRS parameters for the continuous
MF assessment.

3.4 Eye-tracking
Eye-tracking offers a “behavioural lens” into the transition

from alertness to fatigue by capturing measurable changes in
eye movements and physiological signals. As MF progresses, it
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affects ocular behaviours in ways that are both observable and
quantifiable. Eye-trackers utilize cameras or sensors to record these
parameters, often in real-time, offering a non-intrusive method
to assess cognitive and emotional states. Eye-trackers can be
broadly categorized based on their underlying technology and
application context, including video-based eye trackers, electro-
oculography (EOG) systems, and wearable eye trackers. Video-
oculography or video-based eye trackers use cameras and infrared
light to track the position of the pupil and corneal reflection. These
systems can be mounted on monitors or integrated into devices,
making them suitable from stationary setups in lab experiments
to virtual reality applications. Wearable eye-trackers, such as
head-mounted systems or smart glasses, enable eye-tracking in
dynamic, real-world environments. However, increased mobility
often leads to decreased accuracy of measures (Carter and Luke,
2020; Martinez-Marquez et al., 2021). Electro-oculography (EOG)
measures electrical potentials around the eyes to track movement,
functioning well in conditions where direct visual line-of-sight is
challenging (Tian and Cao, 2021). While less precise than video-
based systems, EOG is robust to lighting changes and has been
applied in fatigue studies. Currently, most eye-trackers are based
on video. However, with technological advancements, eye-tracking
systems have become more robust, cost-effective, accurate, and less
intrusive, making them increasingly accessible for real-time fatigue
state monitoring in operational setting (Martinez-Marquez et al.,
2021).

3.4.1 Measuring mental fatigue using eye-tracking

MF manifests in measurable ocular behaviours. Parameters
such as blink rate, saccadic dynamics, fixation patterns, and pupil
responses have been studied extensively as indicators of cognitive
and emotional states. A number of the derived eye tracking
parameters are useful MF indicators.

Pupil dilation and variability

Mental fatigue is often related to a decrease in baseline pupil
diameter or decreased pupil diameter variability. Moreover, lower
dilation speeds are linked to a decrease in alertness (Bafna and
Hansen, 2021).

Blinks

Increased blink count (number of blinks in a trial), frequency
(number of blinks in a trial divided by the time) and normalized
blink ratio are associated with an increase in MF, boredom and
reduced vigilance (Bafna and Hansen, 2021).

Saccade and micro saccades

Saccades are rapid eye movements that shift the gaze between
points of interest. Microsaccades are tiny, involuntary saccades that
occur during fixation to prevent sensory fading and enhance visual
acuity. Mental fatigue slows down saccade velocity, reduces saccade
amplitude, and increases saccade duration. Microsaccades may
become less frequent or erratic during prolonged mental exertion
(Bafna and Hansen, 2021).

Ocular drift
Ocular drift refers to the small, slow, involuntary eye
movements that occur during fixation, often not perceivable to the
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observer. Mental fatigue can increase the amplitude and irregularity
of ocular drift, reflecting diminished oculomotor control and
reduced focus stability (Di Stasi et al., 2013).

Fixation patterns

Gaze fixation refers to the period during which the gaze remains
stable on a specific point of interest. Fixation patterns are the spatial
and temporal characteristics of these pauses. Mental fatigue leads
to longer fixation durations and fewer fixations overall (Xu et al,,
2018).

Percentage of eye closure (PERCLOS)

PERCLOS measures the percentage of time the eyes are at least
80% closed over a given period. Increased PERCLOS is a strong
indicator of ME, particularly in tasks requiring sustained attention
(Bafna and Hansen, 2021).

3.4.2 Empirical findings

In eye-tracking experiments on MEF participants are often
required to perform vigilance tasks, such as monitoring a static
screen for subtle changes or responding to infrequent stimuli.
This is not just true for basic experimental tasks but also for
realistic simulations which often require sustained attention, such
as prolonged driving or flights (Ma et al., 2018; Qin et al., 2021; Rosa
et al,, 2022). Prolonged engagement generally leads to decreased
gaze fixation times, reduced pupil size and pupil size variability,
and increased blink frequency (Hopstaken et al., 2015; Martin
et al., 2022; Naeeri et al., 2021; Unsworth et al., 2024; Zhao et al.,
2025), even though there is also evidence of effects in the opposite
direction (Hu and Lodewijks, 2021; Lampe and Deml, 2022). These
eye behaviour patterns align with declining cognitive resources
and attentional control. Machine learning algorithms have proven
useful for MF assessment and even show potential for real-time
monitoring: the combination of eye-tracking metrics with other
physiological data (heart rate variability) have proven effective
in assessing MF (Qin et al, 2021). Savas and Becerikli (2018)
proposed a real-time driver fatigue detection system based on
the Support Vector Machine (SVM) algorithm and measures of
PERCLOS and blinks, combined with facial expressions, to detect
signs of MF. Makhmudov et al. (2024) developed a system that
uses convolutional neural networks (CNNs) to analyse gaze and
yawning behaviour, achieving over 96% accuracy in detecting MF
indicators from a web camera. Xu et al. (2018) showed the potential
of using fixation time and pupil area metrics and the “fuzzy K-
nearest neighbour” algorithm to assess MF during monotonous
driving simulations in real time.

3.4.3 Challenges

Despite these advancements, several challenges remain in
leveraging eye-tracking for MF monitoring. One of the main
challenges is variability in individual gazing behaviour, which can
lead to inconsistencies in MF assessment models (Zargari Marandi
et al,, 2018). Differences in baseline pupil size, blink rates, and
gaze behaviour necessitate personalized calibration for optimal
accuracy. Furthermore, environmental factors such as lighting
conditions, screen glare, and occlusions from eyeglasses or head
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movements can impact data reliability (Addo Martins et al., 2021;
Vrzakova and Bednarik, 2012). Addressing these challenges will
require the development of adaptive algorithms that can account
for individual differences and external influences in real-time
applications (Li and He, 2024), and/or the need to train the systems
for each pilot individually.

4 Conclusion: bridging the gap
between laboratory and cockpit

The aim of this work was to explore and compare multiple
head-worn sensing methods for monitoring mental fatigue (MF),
and to discuss the methodological and practical challenges that
must be addressed to enable pilot-state monitoring in aviation.
The review began by summarising key research paradigms and
highlighting the strengths and limitations for each approach. But
how large is the gap between the current state of research and an
application in the cockpit?

Subjective measures are easy, quick, and cost-efficient and have
therefore been widely used to assess MF. Yet, they suffer from
well-known limitations, including intrusiveness, low temporal
resolution and dependence on the pilots self-assessment and
honesty. Thus, these methods do not qualify for continuous MF
monitoring in the cockpit. Consequently, research has turned to
behavioural and physiological measures such as EEG, fNIRS and
eye-tracking to capture the pilot’s state. Yet, to date there is still no
viable, operational pilot monitoring system in place. Why is that
and is it justified to continue this line of research?

EEG has been used for decades to assess cognitive performance
in both controlled laboratory settings and real-world environments,
including aircraft. EEG provides high temporal resolution and
direct neural markers of cognitive states. Various EEG metrics—
such as time-domain analysis, spectral analysis, time-frequency
decomposition, and connectivity measures—have been extensively
validated and proven effective in tracking mental states such as
MF. Recent research leveraging “invisible flickers” for SSVEPs
highlights their potential for assessing attentional engagement in
pilots and evaluating the cognitive processing required to maintain
situation awareness. By flashing different cockpit elements at
distinct frequencies (e.g., the speed indicator, altimeter, or Flight
Mode Annunciator panel), it may be possible to determine how
effectively MF affects pilot performance (Dehais et al., 2019). This
approach holds great promise for studying the depth of information
processing in the cockpit and could serve as a valuable complement
to eye-tracking systems. While eye trackers primarily measure
visual fixation and gaze direction, SSVEPs can capture peripheral
visual attention, also known as “covert” attention—a crucial skill
for pilots when supervising complex flight decks. This capability
makes SSVEPs particularly useful for assessing attentional shifts
and the processing of visual information beyond direct gaze,
offering deeper insights into pilot’s cognition that eye trackers alone
cannot provide.

fNIRS measurements are less prone to noise and artefacts
commonly found in a cockpit, such as movement and electrical
noise, than EEG data, and the higher spatial resolution could make
miniaturization with only a few channels possible. However, the
method remains highly sensitive to infrared light exposure from
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the sun and G-forces, particularly in real-flight conditions, and
only few studies have focused on continuous fNIRS measurements
for gradual MF increases. No “gold standard” parameter has yet
emerged, but fNIRS’s ability to detect changes in cortical activity
makes it a promising candidate for tailored assistance, particularly
for detecting dwindling attention or increasing MF. The first studies
have shown its applicability both in flight simulations and real
flights. Advancements in eye-tracking technology for MF detection
have shown significant potential for real-time, non-intrusive
monitoring. Eye-tracking provides valuable data on gaze behaviour
and attentional shifts but is limited in its ability to infer deeper
cognitive processes beyond visual fixation. It provides a range of
metrics for detecting ME including blink rate, pupil dilation, and
PERCLOS. One of its key strengths is the use of remote, video-based
eye-tracking systems, which offer a non-intrusive solution that does
not interfere with the pilot’s tasks or field of vision. Advances in
machine-learning-based fatigue detection have shown promise in
controlled real-time simulation environments.

The individual measurements offer unique advantages but also
inherent limitations that affect cockpit applicability. A multimodal
approach—integrating EEG, fNIRS, eye-tracking, and situational or
aircraft data—could present a promising solution for improving
the robustness and redundancy in MF assessment in aviation
(Boumann et al., 2023; Hamann and Carstengerdes, 2024; Hinss
et al.,, 2022). To move beyond single-sensor limits, event-locked
multimodal fusion ties ocular events to brain responses so we
infer not just where the pilot looks but how deeply information
is processed. For EEG and eye-tracking, time-lock EEG to
fixation onsets on safety-relevant AOIs to compute fixation-
related potentials (EFRPs) and brief spectral changes—capturing
processing depth and time-on-task drift (Degno and Liversedge,
2020; Takeda et al., 2001). Also time-lock to blinks to extract blink-
related oscillations (BROs), which are sensitive to task/sensory
context (Liu et al, 2019) and have been shown to vary with
cognitive load in a flight-like multitasking environment (MATB-
II; Page et al.,, 2024). For fNIRS + eye-tracking, treat fixations
as GLM events to estimate fixation-triggered AHbO/AHbR—as
demonstrated in fixation-related fNIRS during natural reading
(Roelke et al., 2020)—a procedure that can be ported to
cockpit AOIs to test whether safety-relevant glances reflect
deeper cortical processing. Finally, EEG-fNIRS hybrids already
demonstrate complementary electro-/hemodynamic MF markers
in realistic driving and flight contexts—an architecture that extends
naturally with gaze events for cockpit-grade state estimation
(Chuang et al., 2018; Dehais et al, 2018). Yet, synchronizing
data from different modalities is complex and requires advanced
algorithms capable of processing large volumes of data in real-
time without compromising performance or accuracy (Wang,
2024).

Bridging the gap from laboratory studies to operational flight
also involves substantial technological and practical challenges.
Most research to date has focused on group-level analysis and
provides results for the average individual. Whereas, tailored
assistance based on a pilots current cognitive state requires
accounting for inter- and intraindividual differences. Personal
calibrations—and potentially frequent recalibrations—will likely be
necessary to accommodate fluctuations in brain activity over days
and weeks.
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In most studies discussed in this paper, data are processed post-
hoc and real-time implementation in operational flight conditions
remains especially difficult for EEG, which is highly sensitive to
electronic and electromagnetic noise, speech and motion artefacts.
For cockpit applications, raw physiological data must be processed
in real-time, thus requiring even more hardware and software to be
integrated into the cockpit. Despite recent advancements in signal
processing, the authors are not aware of any hardware or software
that fits these requirements fully which could be integrated into
a cockpit.

From a practical standpoint, neither EEG nor fNIRS is
contactless and both require the pilot to wear a tight cap or
headband throughout the flight. In commercial aviation where
pilots do not to wear a helmet, the integration of EEG or fNIRS
sensors poses a challenge in terms of ease of use, acceptance and
comfort. The devices need to be unobtrusive, wearable, comfortable
and easy to apply and remove by pilots (Kneffel et al., 2025). In
addition, the hardware must not limit the pilots’ field of view or
movement. The device must be fast and easy to remove in case of
danger or evacuation, and must not pose a safety hazard due to
inflammable batteries. Most of the measurements are undertaken in
laboratory settings with cumbersome devices that tend to become
uncomfortable when worn for a prolonged period of time (see
e.g., Radiintz and Meffert, 2019 for an analysis of EEG device
wearing comfort). However, miniaturisation is advancing rapidly.
Some recent devices integrate EEG sensors into standard audio
headsets or mount eye-tracking cameras directly in the cockpit,
suggesting that intrusiveness will continue to decrease. Finally,
integrating physiological monitoring into the cockpit—a pilots
workplace—raises important questions of data protection, ethics,
cyber-security, and certification for use in aircraft. These regulatory
and ethical frameworks must evolve in parallel with technological
developments and be tailored to specific operational contexts. In
sum, there is a need for miniaturized portable, comfortable, safe,
secure and trustworthy systems that still offer excellent signal-to-
noise ratios and high data quality across diverse conditions.

Assessing MF in operational aviation remains a critical
challenge due to the complex and dynamic nature of real-world
flight conditions. Yet, only with reliable and valid measurement
methods will an operator state assessment provide a benefit to the
pilot. Such an assessment will need to be very precise and leave
no room for false detections and resulting unsuitable adaptations.
When deciding for (single or combined) sensors, care should be
taken that are and remove by pilots (Kneffel et al., 2025).

Overall, there is a clear need for miniaturized, comfortable, safe,
and trustworthy systems that can deliver high-quality data across
a wide range of flight conditions. Assessing MF in operational
aviation remains challenging due to the complexity of real-
world conditions, yet reliable and valid measurement methods
are essential for operator-state assessment to provide real benefit
to pilots.

Progress will not occur through a single leap from laboratory
to cockpit. Instead, following Peysakhovich et al. (2018), we
recommend a staged approach, which outlines four key phases for
the integration of neurophysiological monitoring in aviation:

e Stage I: Validate metrics in controlled settings: Pilot Training

and Flight Performance Analysis on Ground—Initial
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validation of multimodal neurophysiological —metrics
reliable MF

detection and assessing their impact on pilot training

in controlled environments, ensuring
and cognitive performance.

e Stage II: Integrate recordings for flight data augmentation:
On-Board Recordings for Flight Data Augmentation—
Implementation of neurophysiological recordings as

“black

box”, providing deeper insights into pilot cognitive states

supplementary data sources for the aircrafts
during flight.

e Stage III: Enable adaptive alerting systems: Flight Deck
Adaptation with Warning and Alerting Systems—Real-time
monitoring of pilot cognitive states to enable adaptive warning
systems that, for example, support situation awareness and
prevent performance degradation due to MF.

e Stage IV: Advance Al-driven automation: Multimodal-
Based Aircraft Adaptation and Automation—Advanced
Al-driven systems utilizing multimodal neurophysiological
data to enhance pilot-aircraft interaction, with the long-
term goal of enabling adaptive automation, where the
aircraft could temporarily take over control in cases of
pilot incapacitation.

The gap between laboratory-based pilot-state monitoring
and cockpit implementation remains substantial—but so too
does our expanding understanding of human cognition and
neurophysiology.It is essential to be aware of the current
capabilities and limitations of methods, the challenges the real
world poses in comparison to a controlled laboratory environment,
and to derive the focus of research activities from this knowledge.
Pilot-state monitoring is far from a solved problem, yet it is
a solvable one—provided that the field embraces incremental,
evidence-based progress toward safe, practical, and accepted
integration in aviation.
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