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Abstract

The Reusability Flight Experiment (ReFEXx) is a vertical take-off horizontal landing demonstrator developed by the German
Aerospace Center (DLR) to investigate technologies for aerodynamically controlled Reusable Launch Vehicles (RLVs).
A key requirement for such missions is an Aerodynamic Database (AEDB) that reliably predicts aerodynamic forces and
moments while quantifying the associated uncertainties, which are critical for mission and control design. Conventional
AEDB generation from Computational Fluid Dynamics (CFD) and Wind Tunnel Test data relies heavily on heuristic
interpolation and expert judgment, making uncertainty quantification subjective and difficult to reproduce. This study
applies Bayesian inference, using Gaussian Process (GP) regression, to model aerodynamic coefficients of ReFEx and
to provide principled uncertainty estimates. Both full GP models and sparse GP approximations were investigated on a
representative AEDB subset covering critical phases of the re-entry trajectory. Results show that full GP models reproduce
aerodynamic behavior with high accuracy and robust uncertainty bounds, while sparse GP models closely approximate
their posteriors at significantly reduced computational cost. These findings demonstrate that Bayesian GP models enable
objective, data-driven AEDB model generation, and extend previous applications on the vertical take-off vertical landing
demonstrator CALLISTO to the vertical take-off horizontal landing configuration of ReFEx.

Keywords: ReFEx, Reusable Launch Vehicle, Aerodynamic Database, Bayesian Inference, Gaussian Process, Uncertainty
Quantification

1. Introduction

The advent of Reusable Launch Vehicles (RLVs) has
significantly reshaped space transportation, with both
commercial and institutional actors investing in different
reusability strategies. At the German Aerospace Cen-
ter (DLR), two complementary flight demonstrators are
currently under development to explore this technological
spectrum. The Cooperative Action Leading to Launcher
Innovation for Stage Toss-back Operations (CALLISTO)
vehicle, a joint project with French National Centre for
Space Studies (CNES) and Japan Aerospace Exploration
Agency (JAXA), is a Vertical Take-off Vertical Landing
(VTVL) demonstrator to be operated at the Guiana Space
Centre (CSG) [1]. In parallel, the Reusability Flight Ex-
periment (ReFEXx) is being prepared as a Vertical Take-
off Horizontal Landing (VTHL) re-entry experiment to be
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launched from the Koonibba Test Range (KTR) in Aus-
tralia [2]. Together, these two demonstrators aim to pro-
vide complementary knowledge about different reusability
strategies and to mature the key technologies required for
future European RLV systems [3].

A crucial enabler for such vehicles is the availability of
reliable Aerodynamic Databases (AEDBs), which provide
the coefficients necessary to model aerodynamic forces and
moments across the relevant flight envelope. For RLVs,
constructing these databases is particularly challenging due
to the wide range of flight conditions, the presence of con-
trol surfaces and other actuators, and the need to combine
data from heterogeneous sources such as Computational
Fluid Dynamics (CFD) and Wind Tunnel Test (WTT). Tra-
ditionally, the generation of AEDBs has relied heavily on
manual inspection, expert judgment, and heuristic fitting
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of data, which made the process labor-intense and difficult
to reproduce. Especially the quantification of uncertainties
in both the input data and the resulting models constitutes
a major challenge, despite its importance for robust system
design, particularly for mission planning and the Guid-
ance, Navigation & Control (GNC) subsystem. To ensure
safe and reliable operations, engineering teams require not
only accurate aerodynamic predictions but also an explicit
quantification of the prediction uncertainty.

Recent studies have demonstrated that Bayesian in-
ference provides a promising approach to tackle these
challenges. In particular, Gaussian Process (GP) mod-
els have been successfully applied to estimate uncertain-
ties in AEDBs for reusable demonstrators such as CAL-
LISTO [4,5]. Building on this foundation, the central
research question addressed in this paperis: Can the uncer-
tainties in AEDBs of typical winged RLVs, such as ReFEx,
be adequately modeled by (Sparse) Bayesian Gaussian
Process models?

The contribution of this study is twofold. First, we ex-
tend the Bayesian modeling approach to ReFEx, a VTHL
vehicle, whereas previous studies were limited to the
VTVL demonstrator CALLISTO. Second, we apply multi-
input GP models to capture dependencies on several flight
parameters, and systematically compare sparse GP approx-
imations against their full GP counterparts in terms of pre-
dictive accuracy and similarity of posterior distributions.
Furthermore, Section 4.7 relates these contributions to the
broader literature on uncertainty quantification in aerody-
namic modeling.

The remainder of this paper is structured as follows.
Section 2 introduces the ReFEx system and its mission.
Section 3 describes the aerodynamic dataset derived from
CFD and WTT sources. Section 4 outlines the applied
Bayesian modeling methodology, including GPs and their
sparse approximations. The results of model fitting and
evaluation are presented and discussed in Section 5. Fi-
nally, Section 6 concludes with a summary of key findings
and an outlook on future work.

2. System and Mission Overview

ReFEXx, currently under development at DLR and illus-
trated in Figure 1, pursues two main objectives. First, it
will demonstrate a controlled, autonomous re-entry flight
from hypersonic to subsonic speeds, thereby replicating
essential phases of a winged RLV first-stage [2, 6]. Key
aspects include validation of GNC strategies, aerodynamic
design for stable flight across widely varying flow regimes,
and the transition from exo-atmospheric to aerodynamic
control. A defining maneuver during re-entry flight is a
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heading change exceeding 30°, which represents a critical
capability for future RLV stages that must precisely return
to designated landing zones [7, 8].

Re-Entry Segment

(ReFEx) Fairing

| Payload
----- Adapter

Spacer

Motor
Adapter

VSB - 30

Interstage
Adapter

Fig. 1: ReFEx launch configuration on VSB-30.

The second objective of ReFEx is the maturation of
enabling technologies for European reusable launch sys-
tems [6]. These include, but are not limited to, autonomous
trajectory optimization, advanced flight instrumentation
such as fiber-optic sensors and Flush Air-Data Sensing
(FADS), and methods for generating high-fidelity aerody-
namic data. The flight will deliver unique in-flight data to
validate computational models, improve design method-
ologies, and reduce development risk for future RLVs. By
relying exclusively on aerodynamic control surfaces for its
return, ReFEx complements DLR’s VTVL demonstrator
CALLISTO, thus covering both major reusability concepts
and building a broader European technology base [3].

As depicted in Figure 2, ReFEx will be launched atop a
VSB-30 sounding rocket, reaching altitudes and velocities
representative of a first-stage separation before entering its
experimental phase [6,9]. Following booster burnout, the
vehicle is de-spun, the payload fairing is jettisoned, and
ReFEx is released. After wing deployment and locking,
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Fig. 2: ReFEx mission events and timeline.

control authority gradually transitions from the cold-gas re-
action control system to the aerodynamic surfaces (canards
and rudder) as dynamic pressure increases. The main mis-
sion challenge is to ensure stability and maneuverability
during this transition, while covering the full flight enve-
lope from hypersonic through subsonic regimes. Aerody-
namic difficulties include control reversals at high angles of
attack, ensuring trimmability across a wide Mach-altitude
range, and executing the required heading change of more
than 30° [7, 10]. Meeting these challenges demands a ro-
bust aerodynamic design, supported by a comprehensive
AEDB, and an adaptive GNC system capable of main-
taining precise trajectory control while handling extreme
thermal and mechanical loads.

3. Aerodynamic Dataset

Accurate aerodynamic characterization is essential to
define the flight envelope of a vehicle, to assess its control-
lability, and to support guidance and control design. For
this purpose, an AEDB is commonly established which
provide aerodynamic force and moment coefficients across
all relevant flight conditions, covering combinations of ve-
locity, altitude, control surface deflections, orientation and
rotation rates. In the case of ReFEx, the AEDB was built
from complementary CFD simulations and WTT cam-
paigns conducted during vehicle development. The fol-
lowing subsections summarize these data sources, before
introducing the representative subset of the AEDB that is
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used in this study as the basis for Bayesian uncertainty
modeling.

3.1 Computational Fluid Dynamics

Several CFD simulation campaigns were carried out
during the ReFEx development to both support the aero-
dynamic design and provide the aerodynamic coefficients
required for flight dynamics and GNC analyses. The de-
sign process followed an iterative approach, where par-
tial datasets of evolving vehicle geometries were com-
puted until convergence toward the final configuration was
achieved [11]. For this final geometry, a comprehensive
dataset covering all relevant parameter variations was gen-
erated, enabling aerodynamic control design throughout
the entire mission envelope.

For ReFEx, the list of parameters that describe the
flight condition consists of Mach number, angle of at-
tack, sideslip angle, altitude, canard deflections (left and
right), rudder deflection, and rotation rates. The database
spans the full flight regime, with 0.5 < Ma < 5.5 and
-45° < a < 10°, supplemented by selected corner cases.
In total, approximately 2,400 CFD data points were pro-
duced for the final AEDB [12].

All simulations were performed with the DLR TAU
solver [13], a three-dimensional parallel hybrid multigrid
code, validated for subsonic, transonic, and hypersonic
flows [14-16]. It solves the Reynolds-Averaged Navier-
Stokes (RANS) equations using a second-order finite-
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volume method optimized for High-Performance Comput-
ing (HPC) systems. For ReFEx, the one-equation Spalart-
Allmaras turbulence model was used [17], whereas the
influence of different turbulence model has also been in-
vestigated [18].

Fig. 3: Movable CFD mesh blocks for ReFEx’ control sur-
faces, reprinted from [12].

To reduce the number of required meshes, a mesh-in-
mesh technique was applied. This allows localized grids
for movable surfaces, such as the rudder and canards as
shown in Figure 3, to be translated or rotated relative to the
main mesh s long as geometric and overlap requirements
are fulfilled.

Fig. 4: Coupled Numerical Fluid-Flight Mechanics and
Structure Simulation (CoNF%S?) Fluid-Structure Inter-
action (FSI) simulation of ReFEx’ belly-up flight phase.

As an example of advanced CFD analysis conducted
for ReFEx, Figure 4 shows a CoNF%S? simulation of the
belly-up flight phase [19]. In addition to predicting aerody-
namic behavior, these simulations assessed thermal load-
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ing on sensitive components such as the Global Navigation
Satellite System (GNSS) antenna wraped around the vehi-
cle. Theresults confirmed that critical temperatures remain
below material limits, with structural elements inside the
vehicle acting as effective heat sinks.

3.2 Wind Tunnel Tests

In parallel to the CFD activities, several WTT cam-
paigns were carried out in the Trisonic Wind Tunnel (TMK)
at DLR Cologne to characterize the aerodynamic behavior
of ReFEx and to provide experimental reference data. The
objectives were to assess static and dynamic stability of the
vehicle, and to calibrate the FADS system.

The TMK is a blow-down wind tunnel with a 0.6 m X
0.6 m test section and covers Mach numbers from 0.5 to
5.7. It enables test durations of up to 60s, with rapid
Mach number changes possible within supersonic runs.
For the WTT campaigns, a 1 : 13 scale ReFEx model
was developed, which is shown in Figure 5. The modular
design allowed variation of canard deflections (0°, +£5°,
+10°, £15°) and rudder deflections (0°, 5°, 10°) on this
model.

Fig. 5: ReFEx wind tunnel model for 6-DoF static and dy-
namic stability measurements.

Static stability tests were performed at Mach numbers
1.4—4.5 and Reynolds numbers between 7—15 million [20].
Angles of attack up to 40° and sideslip angles of 5° were
tested in both belly-up and belly-down orientations. The
model was instrumented with a six-component balance,
and Schlieren imaging provided additional flow visualiza-
tion as shown in Figure 6. A total of 84 runs were conducted
to cover significant parts of ReFEx’ flight envelope. Un-
certainties of the aerodynamic conditions were estimated
from proper calibrations of the balance and wind tunnel
uncertainties. The retrieved data allowed the identification
of static stability boundaries and regions of potential rud-
der reversal [18,20]. The dataset also provided reference
points to anchor CFD results and to investigate potential
Reynolds and sting effects [18].
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Fig. 6: Schlieren images of the ReFEx model during a
Mach 2.5 (left) and Mach 4.5 (right) run; canard an-
gle —5°, angle of attack 28°.

Dynamic stability tests were performed with a modified
model at Mach numbers 1.4 —2.5 and canard deflections of
0°,5°,and 10°. A total of 22 runs were completed with the
free-oscillation measurement technique near the vehicle
trim conditions. The aerodynamic derivatives were de-
termined both from cross-spring measurements and from
Schlieren imaging, showing excellent agreement. Uncer-
tainties in the coefficients were estimated from proper cal-
ibrations and wind tunnel uncertainties, as well as from
repeated model release during one run. The obtained re-
sults confirmed that ReFEXx is longitudinally dynamically
stable under the tested conditions, with damping increasing
towards lower Mach numbers. The aerodynamic stiffness
coefficients were consistent with those obtained in the static
campaign, reinforcing the reliability of the measurements.

Finally, a dedicated FADS calibration campaign was
performedusing a1l : 3 scale model of ReFEx’ nose section
equipped with multiple pressure ports. Across 84 runs,
angles of attack between —45° and 20°, sideslip angles up
to 12°, and Mach numbers from 0.4 to 4.5 were tested. This
dataset enables in-flight reconstruction of angle of attack,
sideslip angle, and dynamic and static pressure of the free
stream based on FADS the measurements.

3.3 Data Subset Definition

The AEDB of ReFEx, generated through the CFD and
WTT campaigns, contains more than 10,000 samples in
total, covering a wide range of variables that character-
ize the vehicle’s aerodynamic behavior across different
flight conditions. The most relevant independent parame-
ters include the Mach number (Ma), angle of attack («),
sideslip angle (B), rotational rates (p, g, r), canard deflec-
tions (17,-,7;), and rudder deflection (¢), as well as the
aerodynamic force coefficients (cy, ¢y, ¢;) and moment co-
efficients (casx, My, Cpmz) as dependent parameters.
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For this study, a targeted selection was made to reduce
the complexity and computational requirements of the anal-
ysis, enabling a focused investigation of the most relevant
aerodynamic effects within a reduced yet representative
parameter space. The dedicated AEDB subset was defined
by fixing the following conditions:

* Fixed Mach number: Ma = 1.7

* No vehicle rotation: p = g =r = Orads™*
* Symmetric canard deflections: n, =n; =:
* No rudder deflection: ¢ = 0°

This subset includes 91 CFD samples and 670 WTT
samples, resulting in 761 data points, with @ & 1 remain-
ing as independent parameters. Compared to CFD, the
WTT samples are denser due to finer sampling in @ and
cover a wider range as shown in Figure 7. This subset
was chosen because it corresponds to the roll maneuver
phase of ReFEx’ descent trajectory, a flight regime where
aerodynamic control is especially critical. With the same
rationale, the Normal Force Coefficient ¢, was selected
as the most relevant dependent variable, as it dominates
lift and stability during the roll maneuver. Furthermore,
this flight regime offers reliable data coverage from both
WTT and CFD sources, ensuring robust model training and
validation. Due to this subset selection, the aerodynamic
modelling task can focus on the mapping (a,7n) — c;.
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Fig. 7: Scatter plot of selected AEDB subset as used in this
study. Left panel highlights slice of dataset for n = 10°.
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4. Methods
4.1 Problem Setup & Notation

The creation of the aerodynamic model for ReFEx can
be formalized as a regression task, aiming to learn a map-
ping function from the flight conditions to the aerodynamic
coefficients of the vehicle. [4,5] As described in Section 3,
the outputs of this function are the aerodynamic force and
moment coefficients, which can be conveniently concate-
nated into a coefficient vector c:

€ := (Cx, Cy, C2y CMxs CMy, CMz) 1)

These coefficients depend on the flow conditions, ve-
hicle orientation and angular rates, control surface deflec-
tions, and the used data source. For simplicity, these de-
pendencies can be aggregated to a generalized input vector
x. In line with the AEDB as described in Section 3, the
following parametrization of inputs is adopted for ReFEx:

x:=(Ma,a,B,p.q.r. 1,11, ¢, sTC) 2)

Here, src € {CFD, WTT, FLIGHT} represents a cat-
egorical indicator of the data source, which allows to
consider source-specific uncertainties in the model. The
FLIGHT is a specially unobserved category, which will
be used for predictions as discussed in Section 4.5.

In a classical non-Bayesian setting, the goal of aerody-
namic modelling would be to seek a deterministic mapping
f from inputs x to output ¢. Any regression parameters in-
troduced by this model, collected in the generalized param-
eter vector 0, shall be chosen so that the observed AEDB
data (¢;,x;) € D is well-approximated by this function:

c=f(x;0) 3)

Even though this classical approach is widely used in
practice, often guided by expert heuristics, it does not pro-
vide an explicit quantification of uncertainties in the model
and the observations. Consequently, a Bayesian alternative
for AEDB modelling has been derived in previous work,
which enables a principled representation and propagation
of uncertainty. [4, 5] In this formulation, the objective is to
learn a conditional probability distribution over the aero-
dynamic coefficients ¢, given the input vector x and model
parameters 6:

c~p(c|x;0) 4

In such a Bayesian setting, also the model parameters 6
are treated as random variables. Given the observed data
(¢;,X;) € D and any fixed hyperparameters € (which en-
code modelling choices not updated during inference), the
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parameter distributions can be updated via application of
Bayes’ theorem. This update, commonly called Bayesian
Inference or Training, yields the posterior distribution of
the parameters 6:

posterior

p(0 | (5i’-’~5i)i:1..\2)|»€)

likelihood prior 5)
—_——
p(Ciz1.1p| | Xiz1.1p];0.€) p(8 | €)

[ P(Eiciyp) | Ficrp); 0, €) p(8 | €) dO

Here, the likelihood function expresses how likely the
data are for different parameter values, while the prior
distribution captures the model knowledge or assumptions
before any data is observed. In practice, weakly informa-
tive priors are often preferred. These priors avoid assign-
ing probability mass to implausible regions of parameter
space, while still maintaining enough flexibility to let the
data drive the inference [21].

Once the posterior distribution has been inferred, it can
be used to generate out-of-sample predictions for yet un-
observed flight conditions x via the posterior predictive
distribution:

p(e | x;(€i,%i)i=1. D> €)

o o ©)
=/Mﬂn®pWH%mmume0

Similarly, the prior predictive distribution characterizes
predictions before any data has been used for inference.
This is commonly used to check the plausibility of model
assumptions, which are encoded through the choice of like-
lihood function and prior distributions:

Mde=/p@MWﬂpwkm0 ™

As discussed in [5], this Bayesian framework admits a
variety of aerodynamic modelling choices. In this study,
we focus on GP models only, which is one of the broadest
and most versatile classes of Bayesian models for AEDB
regression.

4.2 Gaussian Processes

GPs provide a flexible, non-parametric, and widely used
class of probabilistic models [22]. Conceptually, they gen-
eralize the multivariate normal distribution to an infinite-
dimensional setting, thereby defining a probability distri-
bution over functions:
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fx) ~ GP(m(x), k(x,x")) ®

where m(x) is the mean function and k(x,x”) the co-
variance function, also called kernel, of the GP.

For any finite collection of inputs X = [x3,... ,xn] "
(e.g. training data), the corresponding function values f =
[f(x1),...,f(x,)]" follow, by definition, a multivariate
normal distribution

f ~ N(m,K) ©)

with mean vector m = m(X) and covariance matrix
K = k(X, X).

In most applications, the mean function typically plays
a minor role and is therefore often set to zero. The ker-
nel, however, encodes key characteristics of the represented
functions, such as smoothness, stationarity, and other struc-
tural properties. Standard kernel families are well doc-
umented in the literature and can be combined through
transformations (e.g. rescaling, convolution, warping) or
compositions (sum, product) to tailor the GP to specific
data characteristics [22].

In this study, we investigate several Bayesian GP mod-
els based on different covariance functions, as detailed in
Section 4.6. The kernels used were selected and composed
from the widely applied families summarized in Table 1.
The main differences between these kernel families lie in
their assumptions about the smoothness of the modeled
function. The White Noise (WN) kernel represents un-
correlated, discontinuous functions. The Matérn family
introduces controllable smoothness: forv = 1/2,3/2,5/2,
the resulting functions are continuous and ([v]—1)-times
differentiable, with the limit v — oo yielding the infinitely
differentiable Squared-Exponential (SE) kernel. The Ra-
tional Quadratic (RQ) kernel can be interpreted as a scale
mixture of SE kernels with varying length scales. Finally,
the Intrinsic Coregionalization (IC) kernel encodes cate-
gorical data and is used here to represent the different error
characteristics of the data sources in the AEDB.

For variables defined on periodic domains, such as angle
of attack @ or canard deflection angle 7, a periodic input
warping is applied to enforce cyclical continuity:

ke (x,x") = k (u(x), u(x"))

u(x) = (sinx,cosx)’ (10)

This transformation converts any stationary kernel k
into a periodic kernel k°, ensuring that the GP respects the
cyclic nature of the underlying data.
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4.3 Sparse Gaussian Process Approximation

A major limitation of GPs lies in their computational
cost. Inference requires inverting the full n X n covariance
matrix, which scales as O(n?) in time and O(n?) in mem-
ory. This quickly becomes infeasible as the dataset size n
increases.

To mitigate this, sparse approximations introduce a
smaller set of m < n inducing points, which act as repre-
sentative locations in the input space [23]. Conditioning
on these inducing points yields a low-rank approximation
of the covariance matrix, where Z denotes the vector of
inducing inputs:

Oxx = K(X,Z)K(Z,Z) 'K (Z,X) (11)

Since only the m X m covariance K(Z,Z) needs to
be inverted, the overall computational cost is reduced to
O(nm? + m?), which is more tractable when m < n.

Several sparse approximation schemes build on this con-
struction by modifying how Qxx is combined with the
remaining variance terms:

Deterministic Training Conditional (DTC) replaces
the full covariance Kxx with the low-rank approximation
QOxx. While this greatly reduces computational cost, it
ignores the residual variance and systematically underesti-
mates predictive uncertainty [24]. For this reason, DTC is
not further considered in this study.

Fully Independent Training Conditional (FITC) im-
proves upon DTC by restoring the diagonal elements of the
covariance:

Krrre = Oxx + diag[Kxx — Oxx] (12)

This preserves the marginal variances of the training
data points while retaining a low-rank structure for off-
diagonal terms.

Variational Free Energy (VFE) adopts a variational
viewpoint, yielding an approximation of the form

Kvrg ~ Oxx + o1, (13)

together with an additional trace correction for the resid-
ual Kxx — Oxx. This ensures a principled approximation
that maintains a valid lower bound to the full GP, while
avoiding the overconfident behavior of DTC.

Besides the approximation scheme, the quality of sparse
approximations strongly depends on the placement of the
inducing points. In this study, three strategies are consid-
ered:
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Table 1: List of common simple GP kernels used in this study.

Name Kernel k(x,x’)

White Noise (WN)
Matérn-1/2 (M)

Matérn-3/2 (M)
Matérn-5/2 (Ms2)

kwn (x,x")

kmsp(x,x";€) = (
Squared-Exponential (SE)
Rational Quadratic (RQ)

Intrinsic Coregionalization IC)  kic(x,x’; B)

= 6)(,)('
knir (x, x5 €) ZEXP(

kvzn(x,x"56) = (1 + M) exp

_ =Xl
13

_V3lx—x|
3

Vallx—x'|| | 5llx—x"|?
1+ 7 + =55

_lx=x)?
202
llx—x'12\ P

2502

ksg(x,x';€) = EXp(

kro(x,x';¢,B) = (1 +
= BX,X/

exp(_vgn);—x'n)

K-means Clustering partitions the training data into m
clusters using the K-means algorithm [25]. The cluster
centroids are then used as inducing inputs. Since centroids
are drawn toward regions of high density, this approach
allocates more inducing points where the data is concen-
trated.

Farthest Point Sampling (FPS) is a greedy algorithm
designed to maximize spatial coverage [26]. Starting from
a randomly chosen point, subsequent inducing points are
selected iteratively such that each new point is the farthest
(in Euclidean distance) from all previously chosen ones.

Halton Sequence Sampling applies a low-discrepancy
quasi-random sequence as inducing points. This Halton
sequence is commonly used in numerical integration and
space-filling designs [27]. Compared to purely random
sampling, Halton sequences provide more uniform cover-
age of the data domain. In practice, a scrambled version is
often used to avoid structural artifacts and improve unifor-
mity.

These methods reflect different trade-offs between lo-
cal density representation (K-means), space-filling cover-
age (FPS), and quasi-random uniformity (Halton), and are
compared in this study on their impact on predictive accu-
racy and uncertainty quantification.

4.4 Model Training & Diagnostics

Bayesian inference typically requires approximating the
posterior distribution defined in (5), which is in most cases
intractable to compute analytically. The common approach
for this task is Markov Chain Monte Carlo (MCMC) sam-
pling, which provides asymptotically exact samples from
the posterior and has become the de facto standard in many
scientific applications. Alternative methods, such as Vari-
ational Inference (VI), offer potentially faster but approxi-
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mate solutions by fitting a simpler distribution to the pos-
terior. In this work, MCMC has been adopted in order to
fully capture the complex posterior dependencies arising
in aerodynamic regression models.

MCMC sampling approximates the posterior distribu-
tion by generating multiple chains of dependent sam-
ples. While conceptually straightforward, practical chal-
lenges arise when exploring regions of high curvature or
strong correlations in the parameter space, where stan-
dard Metropolis-Hastings schemes may mix poorly. To
address this, we employed the state-of-the-art Hamiltonian
Monte Carlo (HMC) method with the No-U-Turn Sampler
(NUTS) as implemented in the P yMC framework [28]. This
algorithm efficiently explores the posterior by leveraging
gradient information of the log-likelihood and automati-
cally adapts path lengths to avoid redundant trajectories.

To ensure validity of the inferred posterior, multiple
convergence diagnostics were monitored. First, the num-
ber of divergences during sampling as indicated by the
NUTS algorithm was tracked and kept at zero for accepted
models. Second, the Potential Scale Reduction Factor (Ié)
was required to remain below 1.01, indicating sufficient
convergence across chains. Third, the Effective Sample
Size (ESS) was evaluated both in the bulk and the tails of
the distribution, requiring values to exceed 400 for stable
estimation of posterior quantities. These thresholds are
commonly used in practical applications [29]. In addition
to these quantitative metrics, visual checks of prior predic-
tive and posterior predictive distributions were performed
to verify physical plausibility and adequate coverage of the
data.
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4.5 Model Evaluation

The primary criterion to assess the quality of an aero-
dynamic database model is its predictive performance. For
the ReFEx dataset, no specific error metric tailored to cap-
ture development risks was prescribed, so the Root Mean
Squared Error (RMSE) is considered an appropriate gen-
eralized metric. RMSE balances sensitivity to outliers
with overall error magnitude, and provides a direct and
interpretable measure of the average deviation between
predicted and reference aerodynamic coefficients. Other
error measures, such as the Maximum Residual Error or
the Median Absolute Deviation, have also been analyzed
in previous studies [5] and could be considered to comple-
ment RMSE, but are not focused here due to their limited
additional value.

A well-known risk in model assessment is overfitting
when predictive quality is judged solely on in-sample resid-
uals. To mitigate this risk, performance in this study is also
evaluated for out-of-sample predictions based on cross-
validation. Two training setups are therefore defined: the
Nominal training setup, where all available data are used
to fit the model, and the Stratified K-Fold Cross-Validation
(K-Fold) setup, where the dataset is partitioned into k = 5
folds that are stratified across data sources to ensure bal-
anced coverage of aerodynamic data. The latter setup al-
lows a reliable estimate of predictive generalization error
via predicting the hold-out data set for each fold.

In this study, predictive quality is primarily evaluated
on the FLIGHT data class. This choice is motivated by en-
gineering relevance: while CFD and WTT data are crucial
for model construction, they inherently include systematic
source-dependent errors. The FLIGHT class represents
the most realistic vehicle configuration and enables assess-
ment of the model’s generalization capability to yet unob-
served conditions. For brevity in this study, the training
and prediction setups are occasionally reported together,
e.g. Nominal(FLIGHT).

For sparse GP approximations, the evaluation requires
a slightly different perspective. The central objective here
is not only to achieve computational efficiency, but also to
demonstrate that the sparse models remain faithful approx-
imations of the underlying full GP model. Hence, predic-
tion errors of sparse models should closely match those of
the corresponding full GP models if sufficient similarity
can be ensured.

To assess the fidelity of the sparse GP models, their pos-
terior distributions have directly been compared to those of
the corresponding full GP. Here, three complementary sim-
ilarity metrics are applied: the Wasserstein Distance [30],
the Energy Distance [31], and the Kullback-Leibler (KL)
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Divergence [32]. Together, these measures quantify how
closely the sparse posterior matches the full posterior in
terms of distributional shape, spread, and information con-
tent. This way, they provide robust means of assess which
sparse approximations are suitable surrogates for the full
GP model.

4.6 Study Setup
4.6.1 Full GP Models

This study investigates several Bayesian GP models with
different covariance functions to evaluate their suitability
for representing ReFEx” AEDB. The modelling approach
builds on earlier work for CALLISTO [4, 5].

Adapting the general problem formulation from Sec-
tion 4.1 to the AEDB subset defined in Section 3.3, the
coeflicient and input vector simplify to:

c=(cp) (14)
x = (a,n, src) (15)

All investigated models assume a GP prior with constant
zero mean and a model-specific covariance function k:

c(x) ~GP(O0, k(x,x")) (16)

In total, 16 full GP models were tested, as listed in Ta-
ble 2. It should be noted that the models GPModell to
GPModel4 depend only on « and were included primarily
to verify reproducibility with earlier work [5]. As they
cannot adequately represent the two-dimensional (a,7)
dataset, they are not further considered in this paper.

The covariance functions of all models share a common
structure, as can be seen for GPModel9:

k(x,x") = #2k§/15/2(0" a';Cra)kysp(mn's Ep )

nominal

+ kic (src, src’; O')Zki/n/z (a,a’; fe,a)ki/n/z (m, 77,, fe,n)

error

+ v2kWN(x, x')
———
noise

a7

Here, the nominal kernel captures the nominal depen-
dency of the aerodynamic coefficients on the flight con-
ditions, the error kernel accounts for source-dependent
systematic errors in the training data, and the noise ker-
nel models global measurement noise in the data while
improving numerical stability of the inference algorithms.
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Table 2: List of investigated GP models with different structures of covariance function.

Model Covariance Function & (x,x")

GPModell  k(x,x") = u?- kep (e, a’) + kic(sre, sre’)? - kysp (@, a’) + V2 kwn

o

k@, @) - kgg (1) + kic(ste, st))? - kypy (@, @) - kg, (1,1) + kac(se, stc))? - kwn + V2 - kwn

ks (@ @) < kyysp 1.17) + kic(ste, s1¢)? - kypapn (@, @) - kypan (1,17) + kic(sre, sre’)? - kwn + v - kwn

kgg(a, @) - kysp(m,m') + kic(sre, src’)? - kyn(@, @) - kypp (') + kic(sre, src’)? - kwn + v - kwn

GPModel2  k(x,x") = u?- kig(a,a) + kic(sre, sre’)? - kip(a, o) + V2 kwn

GPModel3  k(x,x') = 4 - kyyspp (@, @) + kic(sre, stc’)? - kypyp (@, @) + v - kwn

GPModel4  k(x,x') = u?- kep (@, @) + kic(sre, sre’)? - kyn(a, ') + V2 kwn

GPModel5  k(x,x") = u?- kep(a,a’) - kg (n,n') + kic(sre, sre’)? - kep(a, @) - kgg(n,m') + V2 kwn
GPModel6  k(x,x’) = ,Uz kg, @) - kg (n.n') + kic(sre, src)? - kypyp(. @) - kyyp () +v2 - kww
GPModel7  k(x,x") =pu

GPModel8  k(x,x') = u?- kgp(a, @) - kygsp(m, ') + kic(sre, sre’)? - kyysp (@, @) - kysp(n,n') + V2 kwn
GPModel9  k(x,x’) = ,ui kysp (@, @) - kysp (n.n') + kic(sre, src’)? - kyyy (@, @) - kygy p(1.n') + 2 - kwn
GPModell0  k(x,x") =u

GPModelll  k(x,x') = 42 - kypapp (@, @) - kygspy (0, 1') + kic(se, s1¢/)2 - kypyn (@, @) - kg 1s1') + V2 - kwn
GPModell2  k(x,x’) = ,ui ks (@, @) < kygap (1) + kic(sre, st¢’)? - kyyy (@, @) - kygyn (1) + V2 - kwn
GPModell3 k(x,x’)=pu

GPModell4  k(x,x") = u%- kﬁQ(a,a') . kﬁQ(n,n') + kie(sre, sre’)? - kynp(a, @) - kyyn(nn') + v kwn
GPModell5 k(x,x’) = u?- ksg(a, ') - kpo(n,n') + kic(sre, sre’)? - kypp(a,a’) -k p (') + V2 kwn
GPModell6  k(x,x’) = u?

“kpo(@, @) - kgg(n, ') + kic(sre, src')? - ko (@, @) - ko (1.1') +v? - kww

For all kernel parameters, weakly-informative prior dis-
tributions were assigned to guide inference towards physi-
cally meaningful ranges while preserving model flexibility,
as commonly recommended for Bayesian modelling [21].
Length-scales € and amplitudes u, o follow inverse Gamma
distributions, while the noise variance v and the scale pa-
rameter S (for RQ kernels) follow Gamma distributions.

{ ~ InvGamma(us, o¢)
u ~ InvGamma(u,,, 0,)

Tsre ~ InvGamma(p ., 0o, ) (18)
v ~ Gamma(u,, o)

B ~ Gamma(ug, og)

These priors were defined independently for each kernel
and input dimension. Also, source-dependent errors were
assumed to be uncorrelated between CFD and WTT data,
so the IC kernel adopts a diagonal structure with o =
diag(o-src)'

All models were trained both in the Nominal and
the K-Fold setups defined in Section 4.5, while pre-
dictions were made for the three data classes src =
CFD,WTT,FLIGHT.

4.6.2 Sparse GP Models

To evaluate the effectiveness of sparse GP approxima-
tion, 16 sparse GP models were also investigated in this
study, as listed in Table 3. All sparse models are derived
from GPModel9, which was chosen as the benchmark due
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Table 3: List of investigated sparse GP models with dif-
ferent approximation schemes, inducing point selection
algorithms, and percentages of inducing point compared
to full dataset.

Model Scheme Algorithm Coverage
GPModelS9_0  VFE FPS 20%
GPModelS9_1  FITC FPS 20%

GPModelS9_2  VFE K-Means 20%
GPModelS9_3 FITC K-Means 20%
GPModelS9_4  VFE FPS 30%
GPModelS9_5 FITC FPS 30%
GPModelS9_ 6  VFE K-Means 30%
GPModelS9_7  FITC K-Means 30%
GPModelS9_8 VFE Halton_vl  20%
GPModelS9 9 FITC Halton_vl  20%
GPModelS9 10 VFE Halton_vl  30%
GPModelS9_11 FITC Halton_v1l  30%
GPModelS9_12 VFE Halton_v2  20%
GPModelS9_13 FITC Halton_v2  20%
GPModelS9 14 VFE Halton_v2  30%
GPModelS9_15 FITC Halton_v2  30%

to its favorable balance between complexity, accuracy, and
representativity (see Section 5.2).

Two sparse approximation schemes were applied, VFE
and FITC, to assess their influence on the predictive accu-
racy and computational efficiency of the models.
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Also, the placement of inducing points was varied using
three selection algorithms: K-means, FPS, and Halton (as
defined in Section 4.3). For the Halton sequence, two
variants were tested: one spanning a fixed input domain
[-30°, 30°]% (Halton_vI), and one restricted to the range
of the training data (Halton_v2).

The number of inducing points was set to 20% and
30% coverage of the training dataset. Empirically, fewer
than 20% often caused convergence issues, while exceed-
ing 30% reduced the computational benefits of sparsifica-
tion.

Except for the replacement of the full GP likelihood by
a sparse approximation as defined in Table 3, all sparse GP
models employed the same kernel structure, prior settings,
and inference setups as their full GP counterpart.

4.7 Related Work

Early AEDBs were typically handcrafted by experts who
fitted simple models to wind-tunnel data. For example, the
Space Shuttle’s aerodynamic data book [33] was based
entirely on extensive wind-tunnel campaigns, where ex-
perts assigned a lower-bound tolerance (data scatter) and
an upper-bound variation (systematic error) to the mea-
sured coefficients. Such classical aerodynamic models re-
lied on low-degree interpolation of selected data points
combined with expert judgment, which made objective
and reproducible uncertainty quantification rather difficult.
In contrast, modern AEDBs are typically assembled from
multiple numerical and experimental data sources to better
assess the influence of systematic errors. While systematic
methods to quantify uncertainties in AEDBs have emerged
in the recent years [4, 34, 35], they are not yet widely
adopted by current vehicle development activities [36-38].

GP regression, also called kriging, has recently become
a popular surrogate modeling tool in aerodynamics due to
its ability to provide both accurate predictions and built-in
uncertainty quantification. For example, GPs have been
used to model the aerodynamics of missiles [39] and air-
craft [40], and have been integrated into general aerody-
namic modelling toolboxes [41,42]. However, the appli-
cability of GPs to large aerodynamic datasets is limited by
their cubic computational cost. To address this, sparse GP
approximations such as FITC and VFE have been success-
fully tested on wind-tunnel datasets [43]. However, these
studies did not follow a full Bayesian approach, as the GP
kernel parameters were fixed a-priori and have not been
updated by Bayesian Inference.

In the Bayesian paradigm, GPs are one class among
several probabilistic models. A recent study on the RLV
demonstrator CALLISTO has compared multiple Bayesian

IAC-25-D2.5.5

AEDB models, particularly Fourier models, spline models
and GP models [5]. While no clear evidence could be found
to generally favor one Bayesian model class over the others,
it could be shown that several Bayesian approaches yielded
better accuracy in predicting uncertain aerodynamic coef-
ficients than the classical expert-fitted model. Also for
blunt-body entry vehicles, Bayesian inference has recently
been applied within a nonlinear 6-DoF simulation frame-
work, using a linearized aerodynamic model to estimate the
stability derivatives of a capsule under uncertainty [35].
In a different field, deep Bayesian GPs were compared
to both standard GPs and Bayesian Neural Networks for
medical prediction tasks [44]. Their study showed that
deep GP models capture prediction uncertainty more ef-
fectively than the investigated alternatives. Taken together,
these results suggest that carefully chosen Bayesian models
can significantly improve uncertainty estimates in complex
systems, such as aerospace vehicles.

5. Results & Discussion

The models introduced in Section 4.6 were implemented
with the probabilistic programming library PyMC 5.18 [28]
and trained using the NUTS sampler from NumPyro [45,
46]. Inference on each model was conducted with four in-
dependent chains and 1,000 post-warmup draws per chain,
while convergence diagnostics and posterior analyses were
carried out with ArviZz [47]. All computations were per-
formed on local workstations (8-16 logical cores, 32-128
GiB RAM) under Ubuntu 22.04 with Python 3.12, ensuring
a consistent and reproducible environment.

The following sections present and discuss the results
of this simulation campaign. We first analyze the fit-
ting behavior of the full and sparse GP models, including
convergence diagnostics and posterior characteristics (Sec-
tion 5.1). We then evaluate their predictive performance
across different training and validation setups (Section 5.2).
Finally, we compare sparse approximations against their
full GP counterpart to assess fidelity and computational
efficiency (Section 5.3).

5.1 Training Convergence

Figure 8 illustrates the typical Bayesian inference work-
flow for GPModel9, by comparing its prior predictive and
posterior predictive distributions. It can be observed that
the prior is deliberately vague, reflecting only our weak
assumptions made about data magnitude and smoothness.
After training on the AEDB subset, the posterior adapts
closely to the data: uncertainty levels shrink substantially,
the 89% Highest Density Interval (HDI) covers all obser-
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Fig. 8: Comparison of prior predictive distribution (left) and posterior predictive distribution (right) for GPModel9.

Table 4: Convergence diagnostics for the GP models listed
in Table 2 in the nominal training setup.

Model Divergences Max R Min ESS Bulk  Min ESS 14
GPModel5 0 1.00 2085.93 2236.30
GPModel6 0 1.00 1298.17 1152.37
GPModel7 0 1.00 3323.57 1742.15
GPModel8 0 1.00 2101.15 2321.38
GPModel9 0 1.00 1736.07 1301.80
GPModel10 0 1.00 2766.54 1866.47
GPModell1 0 1.00 1744.59 1704.82
GPModel12 0 1.00 1513.62 1057.12
GPModel13 0 1.00 2545.02 1664.01
GPModel14 0 1.00 1621.23 1460.59
GPModell5 0 1.00 1429.00 661.98
GPModel16 0 1.00 2156.35 2198.99

vations, and the underlying trend emerges directly from the
dataset. This behavior exemplifies the intended advantage
of Bayesian inference, to perform automated model fitting
with principled uncertainty quantification, without manual
parameter tuning by human experts.

Convergence of the MCMC algorithm was verified us-
ing the diagnostics introduced in Section 4.4. For the
nominal training setup, all full GP models met the standard
thresholds for R and ESS, as summarized in Table 4. Under
the more demanding K-Fold setup, convergence issues were
encountered for GPModel6, which showed R ~ 1.03 and
ESS pui = 200. These indicators suggested poor chain
mixing and insufficient exploration of the posterior by the
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NUTS sampler, leading to the exclusion of this model from
further analyses as proper representation of the true pos-
terior could not be ensured. Slight convergence issues
were also noted for GPModel5 and GPModell0, but these
could be mitigated by adjusting the target acceptance rate
of the NUTS sampler, allowing both models to be retained.
The remaining GP models converged reliably also for the
K-Fold setup as shown in Table A1l.

For the sparse GP models, convergence diagnostics are
reported in Table 5 for the nominal setup and Table A2
for the K-Fold setup. In both cases, most models satisfied
the convergence criteria, with exception of GPModelS9_7
(nominal) and GPModelS9_5 (K-Fold). Attempts to im-
prove their convergence were unsuccessful, and they were
therefore also excluded from further evaluation.

Overall, the diagnostics confirm that the applied MCMC
algorithm produced reliable posterior approximations for
the majority of investigated models. This provides a robust
basis for the subsequent analyses of model performance
and predictive behavior.

5.2 Evaluation of Prediction

The predictive performance of the investigated Bayesian
models was assessed using the RMSE as primary met-
ric. RMSE provides a balanced measure of accuracy,
accounting for both overall error magnitude and sensitiv-
ity to outliers, and is thus considered as suitable for the
ReFEx dataset where no dedicated metric of the devel-
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Table 5: Convergence diagnostics for the sparse GP models
listed in Table 3 in the nominal training setup. Non-
converged models are excluded from the table and from
further analysis.

Model Divergences Max R Min ESS g, Min ESS 1,4
GPModelS9_0 0 1.00 2283.45 2209.22
GPModelS9_1 0 1.00 2284.90 2283.97
GPModelS9_2 0 1.00 2451.31 2389.57
GPModelS9_3 0 1.00 2195.29 1975.04
GPModelS9_4 0 1.00 2823.90 2646.76
GPModelS9_5 0 1.00 2258.58 2058.78
GPModelS9_6 0 1.00 2852.83 2470.23
GPModelS9_38 0 1.00 1295.03 1599.26
GPModelS9_9 0 1.00 1444.64 1535.89
GPModelS9_10 0 1.00 1375.51 1737.62
GPModelS9_11 0 1.00 1207.02 715.12
GPModelS9_12 0 1.00 1719.68 1838.20
GPModelS9_13 0 1.00 1478.46 1366.82
GPModelS9_14 0 1.00 1934.11 2158.33
GPModelS9_15 0 1.00 1446.09 1039.45

opment risk is prescribed. As outlined in Section 4.5,
the Nominal(FLIGHT) setup is considered as most rep-
resentative for evaluating the prediction quality of each
model, provided that sufficient generalization capability of
the model can be confirmed via the KFold(FLIGHT) setup.
RMSE values for the CFD and WTT categories were also
computed to check for inference inconsistencies within the
training domains, but they are not further analyzed here.

Figure 9 summarizes the RMSE results for the GP mod-
els listed in Table 2. Models including a WN kernel
(GPModel7, GPModell0, GPModell3) consistently show
higher RMSE, indicating limited suitability of this kernel
choice. In contrast, GPModel5 yields the lowest RMSE
in the FLIGHT category across both nominal and K-Fold
setups, followed by GPModel8, GPModel9, and the RQ
models (GPModell4 to GPModell6). Despite their in-
creased number of model parameters, the RQ models do
not show clear benefit over the other models. However, it
should be noted that the error bars of most models are over-
lapping, suggesting that this ranking should not be over-
interpreted. Comparing the out-of-sample predictions for
the K-Fold setup with the nominal setup, it can be observed
that the RMSE consistently but not significantly increases
for each model, indicating their sufficient generalization
capabilities beyond their training data.

To illustrate the model behaviors, Figure 10 compares
the prediction results of GPModel5, GPModelS, and GP-
Model9. While GPModel5 achieves the lowest overall
RMSE, its predictions exhibit a noticeable bias towards
training points. This can be interpreted as underfitting of
the data, leading to overly confident predictions that fail to
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Fig. 9: RMSE results for the GP models listed in Table 2
across different training-prediction setups. For each
model, the central marker indicates the median estimate,
the thick bars show the interquartile range, and the thin
lines represent the 89% HDI.

capture the observed data trend. Also GPModel8 shows a
similar tendency, with the mean deviating from the training
data despite an adequate data coverage by the HDI. In con-
trast, GPModel9 aligns closely with the data, with both the
mean and uncertainty bands capturing the observed trends
more faithfully.

Overall, it can be concluded that GPModel9 is one of
the most representative models for the investigated AEDB
dataset. It achieves competitive RMSE scores, while avoid-
ing the underfitting behavior observed in GPModel5 and
GPModel8. For this reason, GPModel9 was chosen as
baseline for subsequent investigation of sparse GP approx-
imation methods.

5.3 Similarity of Sparse Approximation

As discussed in Section 4.3, the computational com-
plexity of full GP models makes sparse approximations an
attractive alternative to reduce computational effort. This
benefit, however, must be balanced carefully against the
approximation errors they may introduce. To assess this
trade-off, several sparse variants of GPModel9, as listed in
Table 3, were evaluated against the full model.

During the inference runs in this study, the sparse ap-
proximations reduced the runtime from 60 — 150 min for
the full GP model to about 20—40 min, demonstrating clear
computational savings in practical setups as well. Due to
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Fig. 10: Regression plots for GPModel5 (left) and GPModel8 (right) in comparison with GPModel9. Nominal training

setup with predictions for src = FLIGHT and o = —5°.

limited resources, a systematic benchmarking campaign
could however not be conducted.

Figure 11 summarizes the RMSE results for sparse mod-
els under nominal and K-Fold training setups. Generally,
the sparse models achieve similar RMSE levels compared
to GPModel9, although their HDI intervals are systemat-
ically wider, indicating higher uncertainty in their predic-
tions. Interestingly, in some cases the RMSE of the sparse
models falls below that of the full model, particularly ob-
servable for Halton-sequence models (GPModelS9_8 to
GPModelS9_15). However, the largely overlapping error
bars suggest these differences are indicative rather than
statistically significant. Importantly, RMSE alone cannot
capture the fidelity of the posterior distribution, which is
the main criterion for evaluating the quality of the different
sparse approximations.

To quantify the similarity more directly, posterior pre-
dictions of the sparse models were compared to GPModel9
using Wasserstein and Energy distances, as shown in Fig-
ure 12. These metrics were computed over a structured
grid in @ and 7, and evaluated for all 16 pairwise per-
mutations of the MCMC chains. Among all candidates,
GPModelS9_2 achieved the lowest values across all sim-
ilarity metrics and categories, marking it as the closest
approximation of GPModel9.

A more detailed visual comparison is presented in
Figure 13, showing regression plots for GPModel9 (full
model), GPModelS9_4, GPModelS9_2, and GPMod-
elS9_11 at selected values of @. The results show that
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Fig. 11: RMSE results for the sparse GP models listed in
Table 2 across different training-prediction setups. For
each model, the central marker indicates the median
estimate, the thick bars show the interquartile range,
and the thin lines represent the 89% HDI.

GPModelS9_2 and GPModelS9_11 replicate the predictive
behavior of the full model closely, while GPModelS9_4
yields slightly deviating trends in data-sparse regions. No-
tably, GPModelS9_2 and GPModelS9_11 employ 20% and
30% of the training samples as inducing points, respec-
tively, suggesting that accuracy depends more on the place-
ment than the sheer number of inducing points.
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Fig. 12: Posterior predictive similarity metrics computed
from all pairwise permutations of the four chains of
GPModel9 (full GP). For each sparse model, the central
marker indicates the median estimate, the thick bars
show the interquartile range, and the thin lines represent
the 89% HDI.

Overall, these findings highlight the importance of
inducing-point selection and approximation scheme. GP-
ModelS9_2, using the VFE scheme with K-means clus-
tering and 20% coverage of inducing points, emerged as
the most reliable sparse model for the investigated setup.
This aligns with the broader literature, where VFE is re-
garded as a state-of-the-art scheme for sparse GPs [48].
At the same time, no universally optimal selection strategy
for inducing points can be deduced. For example, in VI-
based inference, inducing points can be optimized jointly
with kernel parameters [23]. In MCMC settings this is,
however, impractical due to the greatly increased compu-
tational cost, which would jeopardize the benefits of sparse
approximation. Therefore, fixed inducing points obtained
via clustering methods or heuristic strategies remain sub-
ject for practical compromises.

In conclusion, while all investigated sparse GP models
provided good agreement with the full GP model, GPMod-
elS9_2 stands out as the best-performing approximation for
the ReFEx dataset. Nevertheless, optimal configurations
may vary across datasets and applications, underscoring
the need for case-specific evaluation.

6. Conclusions

The objective of this study was to evaluate whether
Bayesian models can effectively capture and quantify aero-
dynamic uncertainties in the AEDB of ReFEx. Build-
ing on earlier work conducted for CALLISTO, a VTVL
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demonstrator, the present study extended the methodology
to ReFEx, a VTHL vehicle, thereby testing the general
applicability of Bayesian modeling across different RLV
configurations.

The presented results confirm that Bayesian GP mod-
els can reliably reproduce the aerodynamic behavior of
ReFEx within the investigated dataset and provide robust
uncertainty quantification. Among the tested configura-
tions, GPModel5 (with SE kernels) achieved the lowest
RMSE across both training and cross-validation predic-
tions. However, GPModel9 (with Matérn-5/2 (Ms;;) and
Matérn-1/2 (My,;) kernels) was identified as the most rep-
resentative model due to reduced bias with respect to the
observed data, albeit at the cost of larger predictive vari-
ance. Sparse GP approximations proved capable of re-
producing the posterior distribution of full GPs with high
fidelity, while significantly reducing computational cost.
RMSE analyses demonstrated that predictive accuracy re-
mained close to that of the corresponding full GPs, and
similarity metrics such as Wasserstein and Energy dis-
tances confirmed that the posterior distributions of sparse
GPs closely matched their full GP counterpart. Overall,
the Bayesian framework provided a systematic and repro-
ducible treatment of aerodynamic uncertainties, offering
clear advantages over classical expert-driven approaches.

The study is also subject to several limitations. The
presented analysis was restricted to a reduced AEDB sub-
set corresponding to the roll-maneuver regime of ReFEx
and focused on the prediction of the normal force coef-
ficient. Only a limited number of model configurations
were investigated, and some had to be excluded due to con-
vergence issues. Furthermore, out-of-sample evaluation
was constrained by the available CFD and WTT coverage,
meaning that extrapolation beyond the observed domain or
to the flight configuration could not be validated (yet).

Despite these constraints, the findings demonstrate the
feasibility of integrating Bayesian models into the AEDB
generation workflow of RLVs. In particular, sparse GP en-
able scaling to larger datasets, which is essential for future
operational databases. By reducing reliance on manual ex-
pert assessments, this approach offers a more traceable, re-
producible, and automatable process for uncertainty quan-
tification in aerodynamic modeling.

Future work will extend the models to cover the full
AEDB of ReFEx, incorporating additional inputs such as
Mach number, sideslip angle, and rudder deflections, as
well as all aerodynamic force and moment coefficients,
and their dynamic derivatives. A crucial next step will
be the validation of the Bayesian AEDB against ReFEx
flight data, which will provide direct insights into the rep-
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Fig. 13: Regression plots for GPModel9, GPModelS9_4, GPModelS9_2, and GPModelS9_11 at selected values of a.

Predictions are shown for ¢ as a function of 7.

resentativeness of the modeled uncertainties. Beyond GPs,
also other Bayesian modeling approaches such as Bayesian
Neural Networks (BNNs) or Bayesian Additive Regression
Trees (BARTS) could be explored for comparison. More
broadly, the successful application of Bayesian inference to
aerodynamic modeling in ReFEx also underlines its poten-
tial for wider adoption across aerospace engineering and
related domains.
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Appendix A. Convergence Diagnostics

Table Al: Convergence diagnostics for the GP models

listed in Table 2 in the K-Fold training setup. Non-
converged models are excluded from the table and
from further analysis. Models in italic reached con-
vergence thanks to a higher target acceptance rate of

the NUTS sampler (95%).

Model Divergences Max R Min ESS Bulk  Min ESS 14
GPModel5 0 1.00 1897.77 1618.76
GPModel7 0 1.00 2717.56 1491.86
GPModel8 0 1.00 1839.26 2004.22
GPModel9 0 1.00 1269.50 1125.24
GPModell0 0 1.00 2436.20 1497.17
GPModell1 0 1.00 1287.19 1003.34
GPModel12 0 1.00 1347.85 1364.35
GPModel13 0 1.00 2664.71 1470.15
GPModel14 0 1.01 1411.74 1327.59
GPModell5 0 1.00 1492.20 847.52
GPModel16 0 1.00 1763.10 2048.70

Table A2: Convergence diagnostics for the sparse GP mod-
els listed in Table 3 in the K-Fold training setup. Non-
converged models are excluded from the table and

from further analysis.

Model Divergences Max R Min ESS g, Min ESS 1,
GPModelS9_0 0 1.00 2472.88 2330.53
GPModelS9_1 0 1.00 2274.21 2161.00
GPModelS9_2 0 1.00 2001.57 1964.38
GPModelS9_3 0 1.01 2290.44 1715.16
GPModelS9_4 0 1.00 2353.63 2312.25
GPModelS9_6 0 1.00 2555.32 1992.34
GPModelS9_8 0 1.00 1233.10 1418.26
GPModelS9_9 0 1.01 1283.95 999.52
GPModelS9_10 0 1.01 1297.61 1518.39
GPModelS9_11 0 1.00 1229.42 1230.32
GPModelS9_12 0 1.00 1603.51 1986.46
GPModelS9_13 0 1.00 1461.22 1286.90
GPModelS9_14 0 1.00 1846.12 1829.16
GPModelS9_15 0 1.00 1388.49 1379.02
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