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Understanding human collaborative behavior in tasks with physical interaction is essential for 
advancing physical human-robot collaboration. Investigating how individuals learn to collaborate over 
repeated interactions can provide valuable insights for developing robotic agents capable of gradually 
improving coordination and collaboration performance. Therefore, this study investigated learning 
behavior in a high-precision task over repeated haptic collaboration. Specifically, we examined if 
learned collaboration behavior is partner-specific, what collaboration strategies are developed, and if 
interpersonal differences affect collaboration. Our results indicate that repeated physical collaboration 
with the same partner allowed for immediate high performance with a familiar partner in subsequent 
collaborations, whereas adapting to an unfamiliar partner required retraining. Participants used 
partner-specific collaboration behaviors—in terms of motions and forces—that could be retained in 
subsequent interactions. Collaborators reduced the variability of their arm motions over repeated 
collaboration, achieving higher performance, likely due to increased predictability. Collaboration 
also enabled knowledge transfer between partners, with individual improvement being enhanced 
when paired with a better-performing partner. These findings suggest that partners in a collaborative 
precision task optimize their performance by gradually negotiating a joint action strategy, which is 
reused in subsequent collaborations with familiar partners and carries over to solo task execution.
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Collaborative haptic interactions are essential for performing various tasks, from moving heavy objects to 
performing precision surgeries. In precision physical collaboration tasks, such as surgery, successful collaboration 
requires that the actions of haptically interacting partners are precisely coordinated. Haptic communication—
information exchange via forces and movements—has been shown to be essential for such interpersonal 
coordination during physical interaction1,2. The study of physical human-human collaboration has attracted 
increasing attention due to its potential applications in physical human-robot collaboration (pHRC)3,4. In 
pHRC, advantages of both the human and the robot can be leveraged to achieve increased task performance4,5. 
Understanding how humans learn to collaborate over repeated interactions may enable the development of 
robots that gradually learn to complement the partner’s behavior to improve coordination and, consequently, 
enhance collaboration performance. The current study investigates how physically collaborating individuals 
learn to collaborate in a repeated high-precision task.

Learning a forward model of a partner’s collaborative behavior over repeated interactions would allow 
individuals to predict their partner’s actions6,7, potentially improving the predictability of joint actions and 
enhancing coordination. Such a predictive model would support two key cognitive processes: on the one hand, 
self-other distinction, which enables the differentiation between self-generated and partner-caused effects; on 
the other hand, self-other integration, which merges both partners’ actions into a coordinated, shared goal8. By 
integrating the predictions of the partner’s actions into their own action planning, collaborators can coordinate 
their individual actions9. This emphasizes the importance of considering the partner’s intention, e.g., in the form 
of a movement goal, when planning and adjusting one’s own behavior is one aspect of successful collaboration10. 
Additionally, based on predictions of a partner’s behavior, collaborators can also distinguish who is responsible 
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for certain parts of the task and when it is appropriate to act11, enabling a separation into complementary 
behaviors to achieve a common goal3. Learning a predictive model of the particular partner’s contribution 
would imply limited transferability to unfamiliar partners. Adaptation behavior specific to the partner has been 
observed in social interactions, such as during dialog12. It remains to be investigated if collaboration knowledge 
learned in physical collaboration tasks is specific to the partner with whom it is learned and, therefore, if the 
transferability of this knowledge to an unknown partner is limited13. We, therefore, investigate if familiarity with 
a partner improves physical collaboration (H1) and if individuals acquire partner-specific interaction dynamics 
during repeated physical collaboration (H3).

In collaboration tasks, reducing action variability has been identified as a common strategy to enhance 
predictability and, consequently, collaboration performance14–16. Human collaborators in non-physical tasks 
lower the temporal variability in their actions, leading to higher predictability of the timing of their actions14,17. 
In physical interaction tasks, reducing variability in both the timing and magnitude of applied forces has been 
shown to improve collaboration performance15,18. Additionally, by maintaining a consistent action sequence, 
the predictability and, consequently, the performance can be increased16. However, to our knowledge, the 
collaboration strategy of increasing predictability through action variability reduction has not yet been 
examined in physical tasks with continuously high precision requirements. Thus, we examine if collaborators 
learn to reduce action variability over consecutive trials of a high-precision task to achieve higher collaboration 
performance (H2).

Research in task learning has shown that learned knowledge can be retained over extended periods, allowing 
individuals to quickly achieve previous performance levels when re-engaging with the task19,20. However, task 
retention is influenced by task demands, with explicit information and physical tasks being retained better than 
sensorimotor or accuracy-focused aspects20,21. Physical human-human collaboration can improve the retention 
of task performance over training the task alone22. However, current robotic collaboration agents are unable to 
improve skill retention beyond the level of training the task alone22. This shows that the mechanisms behind 
high skill retention in human-human collaboration are not fully understood, although understanding them is 
essential for the development of robotic agents with comparable retention benefits. Moreover, if certain aspects 
of physical collaboration behavior are specific to the partner with whom one is collaborating, the question 
arises whether these partner-specific behaviors can be retained over time. We investigate if learned interaction 
dynamics that may be specific to the collaboration partner can be retained (H3).

Understanding how collaboration affects performance and facilitates knowledge transfer between individuals 
is a key aspect of research on human collaboration. Previous studies have indicated that by sharing control 
over degrees of freedom, collaborators can exceed solo performance levels, while similar benefits cannot be 
achieved if control is distributed between partners1,13,23. Studies examining the effect of performance differences 
between collaborators report varying outcomes: larger individual performance differences were found to hinder 
collaborative performance24, whereas partnering with an expert improved collaborative performance in other 
cases1,25. During collaboration, the benefits for the lower-performing partner may come at the cost of the higher-
performing partner26. Research shows inconclusive results on collaboration’s effect on individual performance, 
with one study reporting improvement in individual performance1 and others finding no effect23,27. Compared 
to collaboration with an expert, partnering with a collaborator of a similar performance level has been shown 
to enhance individual learning25,28. These findings emphasize the need for further research to clarify how task-
specific factors and partner characteristics influence collaborative learning and performance outcomes. We 
study whether interpersonal differences, such as individual performance levels and anthropometrics, affect 
collaboration performance and learning capabilities (H4).

In this work, we investigate learning behavior over repeated physical collaboration using a collaborative 
hot wire task. In this task, pairs of participants had to move a manipulandum along a predefined wire path 
without making contact with the wire, demanding precise control of the object’s motion. Effective collaboration 
in the hot wire task requires partners to coordinate their shared control over the object’s motion precisely 
in space and time, enabling them to jointly execute precise corrective actions to rectify position errors. For 
every movement adjustment when performing the task, participants will experience a distinction between 
self-induced action effects and the action effects caused by the interaction partner. This is perceived haptically 
through interaction forces and object movement. However, due to the high precision demands the capability to 
adapt motions is limited, which constrains haptic communication used for interpersonal coordination during 
physical interaction1,2. Any perceived effects that cannot be explained or do not match with expectations of own 
action effects may then be attributed to the interaction partner. Gradually, a predictive model of the partner’s 
collaboration behavior may be acquired through repeated exposure to the contribution of an interaction partner 
during the joint action6,7. The knowledge acquired about the interaction partner may enhance spatiotemporal 
movement coordination between both interaction partners29 and could facilitate self-other integration, which 
may lead to increased joint action predictability. Additionally, this acquired knowledge may facilitate self-other 
distinction, which could help in learning to perform actions that complement the partner’s actions.

In summary, we investigate (H1) whether partner familiarity improves collaboration performance, (H2) 
whether action variability gets reduced to improve collaborative performance, (H3) whether partner-specific 
interaction dynamics are learned and retained, and (H4) how interpersonal differences influence collaboration 
performance and learning capabilities. By focusing on these aspects, this study contributes to a deeper 
understanding of the learning behavior within physical collaboration, which may offer insights that could 
inform the development of more effective human-robot interactions in tasks requiring high-precision haptic 
coordination.
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Methods
Participant information
In this study, we tested 44 participants. These participants had a mean age of 25.57 years (standard deviation 
SD = 4.51 years). The gender distribution was 30 females, 13 males, and one participant identifying as 
other. Regarding handedness, 36 participants were right-handed, seven were left-handed, and one was 
ambidextrous. The mean height of participants was 169.86  cm (SD = 9.42 cm), and the mean weight was 
65.89  kg (SD = 13.49 kg). None of the participants had prior experience with the task before taking part 
in the experiment. A power analysis based on30 was performed for the statistical model with Eq. (6), which 
investigates the effects of trial progression and collaboration conditions on the task performance of collaborating 
participants. The analysis showed that with effect sizes of 0.5 for trials and 15.0 for conditions, this sample 
size was sufficient to achieve a power greater than 0.85 at a significance level of 0.05. In the study, 44 unique 
participant pairs were formed throughout the experiment (see section “Experiment structure” for details on how 
pairs were arranged). Among them, 30 pairs consisted of two right-handed participants, two pairs included two 
left-handed participants, 10 pairs combined one left- and one right-handed individual, and two pairs consisted 
of one right-handed and one ambidextrous participant. Regarding gender composition, there were 6 male-male 
pairs, 14 male-female pairs, 22 female-female pairs, and 2 pairs involving a participant identifying as other 
(paired once with a female and once with a male). Participants were informed about the purpose of the study, 
the procedure, potential risks, and their rights regarding participation and data protection. All participants 
confirmed their participation in the study by signing a written informed consent form. The study was performed 
in accordance with relevant guidelines and regulations. The ethics proposal for this study was approved by the 
Pilot Research Ethic Committee (Pilot REC) of TU Wien (case number: 024_21102022).

Experiment structure
The experiment was structured into five blocks as described in Table 1 and was conducted in groups of four 
participants (referred to as Participants P1 to P4 in the following). Each participant first performed the task alone 
one after another (Solo condition S1) to establish a baseline for individual performance prior to collaboration. 
Then, they executed the task in fixed pairs to train the collaboration (Participant P1 with Participant P2, 
Participant P3 with Participant P4) during the first joint block (Training condition A1). This was followed by a 
second solo block (S2), with the same order of participants as in S1, to investigate any transfer of performance 
between individuals due to the preceding collaboration. The final two blocks were joint tasks performed either 
with the same partner as in condition A1 (Repeat condition A2) or with an unknown partner (Switch condition 
B, where Participant P1 was paired with Participant P3 and Participant P2 with Participant P4). In condition B, 
both participants had prior collaboration experience, but with a different partner, requiring both to adapt to their 
new interaction partner. The order of A2 and B was randomized across groups to avoid the influence of order 
effects when comparing these conditions. Due to this structure, all participants had the same amount of prior 
task exposure when collaborating. When transitioning from one block condition to the other, participants had 
a break, except for the transition from the second to the third joint block. Here, the duration of the intermediate 
breaks varied depending on the participant due to the changing pairings. These differences balance each other 
out and should therefore not affect our results when comparing the block conditions. This design resulted in 44 
unique pairs for the experiment, with 24 participants completing block order 1 and 20 participants completing 
block order 2. Each solo block consisted of five trials, while the joint blocks comprised fifteen trials. The average 
durations of the blocks were as follows: S1 – 10.11 min, A1 – 11.13 min, S2 –8.04 min, A2 – 10.16 min, and B – 
10.14 min.

Experiment procedure
As a collaborative task with high precision requirements and interpersonal haptic interaction, a collaborative 
version of the hot wire game was chosen, where a metal ring must be moved along a wire path while trying to 
avoid contact between the ring and the wire (see Fig. 1). Participant data, i.e., age, height, weight, and gender, were 
collected using an anonymized form at the start of each experiment session. Before the start of the experiment, 
participants were instructed to hold the handle with their right hand in a specific way that allowed them to 
perform the full movement without requiring them to change the grip during trial execution. As shown in Fig. 
1, the participant starting the motion from the left gripped the handle from the top, while the other participant 

Table 1.  Structure of the experiment with two different block orders consisting of solo (S1 and S2) and 
collaboration blocks (A1, A2, and B).
The entries in square brackets indicate the order in which participants (P1-P4) performed each block, with 
arrows showing the sequence of individual or paired participation.
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gripped it from the bottom, enabling to perform the required handle rotation to reach the contact point. The 
participants were further instructed to stand directly opposite each other (face-to-face configuration), facing 
the wire path between them, allowing them to perform the full range of motion required for the task without 
stepping laterally. They were asked to maintain their standing position and not to lean on the table. During 
the solo trials in conditions S1 and S2, participants controlled the handle by holding only the grip located on 
their side, while the grip on the opposite side remained unused. Detailed information about the experiment 
structure, including the different block conditions and the number of trials, was provided to participants as 
well. Participants were informed that they had a target time of 20 s to complete each trial and should aim for a 
steady and comfortable pace. At the beginning of each trial, a high-pitched sound was played after which the 
participants holding the handle were allowed to start the trial by lifting the handle from the docking station. In 
each trial, participants had to move the handle to the hot wire’s turning point, touch a contact piece, and then 
return it to the start position, while trying to avoid contact with the wire throughout the whole motion. To end 
the trial, the handle had to be placed in the docking station, whereafter a low-pitched sound was played to signal 
the trial stop to the participant. After each trial, a score value ranging from 0 to 100 was displayed, reflecting 
the task performance (see Eqs. (1–3) for details on the calculation of the score value). Participants were asked 
to review their score in order to improve the task performance in subsequent trials. After each experimental 
block, the participants filled out a questionnaire that included all six items from the NASA TLX assessment 
tool31—mental demand, physical demand, temporal demand, performance, effort, and frustration—as well 
as additional questions on the sense of control and perceived task contribution. For the present analysis, we 
examined the questions regarding temporal task load, sense of control, subjective performance, and perceived 
contribution relative to their partner’s contribution (see Table 2). The contribution question was only asked after 
collaboration blocks (A1, A2, and B). The average duration of the experiment was 1 hour and 33 min (SD = 5 
min), including calibration, execution of the trials, and filling out the questionnaires. The mean trial duration 
was 23.05 s (SD = 7.75 s).

Question Abbreviated description Scale

How hurried or rushed was the pace
of the task? Temporal load − 4 (Low) to 4 (High)

How successful were you in accomplishing
what you were asked to do? Performance − 4 (Low) to 4 (High)

How much did you feel in control
during the task? Sense of control − 4 (Low) to 4 (High)

Who contributed more to the task? Contribution − 4 (My Partner) to 4 (Me)

Table 2.  Questions from the questionnaire that participants were asked after each experimental block.

 

Fig. 1.  Experimental setup of the hot wire apparatus used in this study. One trial consists of the collaborators 
moving the handle (a) along the hot wire path (b) from the docking station (c) to the turning point (d) and 
back. The objective is to finish the trail within a specified amount of time while minimizing the percentage 
of time the handle is in contact with the wire. Motion tracking markers were placed on the handle (a) and 
participants’ hands and wrists (e). A force-torque sensor (f) was integrated into the handle for measuring 
interaction forces.
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Experiment measurements
For each trial, we measured the trial execution time, the contact state between the handle and the wire, the 
interaction forces and torques, and the movements of the handle and the human hands and wrists. Additionally, 
gripping strength and movements of the elbow and shoulder were recorded, although these were not included 
in the subsequent analysis. These measures were recorded at 20 Hz. In our specific setup, a copper pipe with an 
outer diameter of 10 mm was bent to a shape of 1 m length as depicted in Fig. 1. The handle, weighing 368 g, 
consisted of a centerpiece and grips on opposing sides. In the centerpiece, a brass ring was recessed with a hole 
diameter of 20 mm, resulting in a 10 mm clearance between the ring and the wire. When the ring contacts the 
copper wire during task execution, an electrical circuit is closed, which was used to register the contact. A force-
torque sensor (Schunk FTN-Mini-40 SI-80-4) was mounted between the centerpiece and one of the grips (Fig. 
1(f)), measuring the forces and torques applied to the handle. To balance the weight distribution of the handle 
such that the center of mass was located in the center of the contact ring, a counterweight for the force-torque 
sensor was mounted on the opposing handle side. The handle’s motion began and ended in a docking station 
equipped with a switch that was activated by the handle’s weight. The trial’s execution time was measured from 
the moment the handle was lifted from the docking station until it was returned. A motion capture system from 
OptiTrack using twelve PrimeX13 cameras was used to capture the motion of the handle and the arm motions 
of participants using rigid body trackers on the handle, hands, and wrists (see Fig. 1(a) and (e)). The trackers 
are placed on the participants’ right arms, as only the right hand is used to execute the task. All motions were 
represented in the base coordinate system, see Fig. 1.

Metrics for data analysis
We considered metrics for task performance and time series similarity to evaluate the collected data.

Task performance
The score value s ∈ [0, 100], displayed to the participants after every trial, is used as a performance metric. Since 
a speed-accuracy tradeoff was evident from pilot data for this task, penalties for long execution times (time 
penalty) and imprecise movements indicated by contact between the handle and the hotwire (contact penalty) 
were deducted from the maximum score of 100.

	
s =

{ 0 if ptime + pcontact > 100
100 − ptime − pcontact if ptime + pcontact ≤ 100 � (1)

The time penalty ptime ∈ [0, 100], which encourages the participants to finish within a given time, is calculated 
by multiplying the task execution time texec exceeding a threshold of tth = 20 s by a constant scaling factor:

	
ptime =

{ 0 if texec ≤ tth
2 1
s (texec − tth) if tth < texec < tth + 100

2 s
100 if tth + 100

2 s ≤ texec

� (2)

The precision penalty pcontact ∈ [0, 100] is based on the percentage of time the handle’s ring is in contact with 
the wire tcontact relative to the total execution time. This percentage value is then scaled by a constant factor to 
compute the penalty:

	
pcontact =

{
300 tcontact

texec
if tcontact

texec
< 100

300
100 if 100

300 ≤ tcontact
texec

� (3)

The time threshold tth was determined based on the preceding piloting of the experiment task to select an 
achievable target time for completing the task. The scaling factors for the penalties were selected and validated 
during pilot experiments to reflect the task’s main objective of high movement precision by assigning higher 
penalties to contacts, while also ensuring appropriate task difficulty.

Time series similarity
We used a metric based on Dynamic Time Warping (DTW)32 to quantify how similar two compared time 
series are. When, e.g., comparing two motions that might follow the same path but with varying speeds, DTW 
can be used to remove these non-linearly varying speed differences. Given two time series Xa ∈ RNa×M  and 
Xb ∈ RNb×M , with sample numbers Na and Nb and dimensionality M, the DTW algorithm finds the warping 
path πDTW which aligns the sequences such as to minimize a distance metric (here Euclidean distance) between 
both:

	

πDTW(Xa, Xb) = min
π

∑
(i,j)∈π

√√√√
M∑

m=1

(Xa,i,m − Xb,j,m)2� (4)

This warping path consists of a set of index pairs {(ik, jk)}K
k=1 representing the alignment between samples 

from Xa and Xb. Based on the warping path πDTW from Eq. (4) the dissimilarity between the aligned time 
series can be quantified with the DTW distance, computed as the sum of the Euclidean distances between 
the aligned samples. To additionally reduce the influence of varying time series lengths the DTW distance is 
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normalized by the warping path length. This metric d, therefore, represents the average Euclidean distance of all 
aligned samples.

	

d(Xa, Xb) = 1
K

∑
(i,j)∈πDTW

√√√√
M∑

m=1

(Xa,i,m − Xb,j,m)2 � (5)

Results
First, we analyzed how familiarity with the partner affects the quantitative performance score and the subjective 
assessment of the collaboration. Next, we examined if collaborators increase the predictability of their actions 
to enhance the collaboration performance. We also investigated whether the interaction dynamics used during 
collaboration were specific to the partner. Finally, the effects of interpersonal differences on performance and 
learning capabilities were examined. We use Linear Mixed Effects Models (LMEMs)33 for the statistical analysis 
as they allow us to account for the non-independence of observations as we have in our experimental data due to 
the grouping of participants and conditions. Results are considered significant at a p-value of p < 0.05.

(H1) Partner-specific learning in a physical collaboration task
To analyze the effect of partner familiarity on collaboration, we first examine its impact on performance scores 
and joint improvement. For this analysis, we use an LMEM that captures the fixed effects of trial number and 
block condition while accounting for the random effect of a performance level specific to each pair:

	

Scoreklm =βA1ConditionA1,k + βA2ConditionA2,k + βBConditionB,k

+ βA1,TrialTriallConditionA1,k + βA2,TrialTriallConditionA2,k + βB,TrialTriallConditionB,k

+ bPair,m + εklm.
� (6)

Here, Scoreklm is the performance score in the k-th condition (k ∈ {1, 2, 3}) for the l-th trial (l ∈ {1, . . . , 15}) 
of the m-th pair of participants (m ∈ {1, . . . , 44}). The categorical fixed effect ConditionCond,k  indicates the 
collaboration condition, where Cond ∈ {A1, A2, B} corresponds to conditions A1 (Partner 1), A2 (Partner 1 
repeat), and B (Partner 2). These categorical variables are equal to 1 if the observation belongs to the respective 
condition and 0 otherwise. The fixed effect coefficients βA1, βA2, and βB represent the estimated score in 
the first trial of each condition. The term Triall ∈ {0, . . . , 14} denotes the trial number and the coefficients 
βA1,Trial, βA2,Trial, βB,Trial capture how the score changes over the trial number in each collaboration condition. 
The random effect bPair,m ∼ N (0, σ2

Pair) accounts for differences in performance levels between pairs, with its 
variances σ2

Pair estimated by the LMEM. Finally, the residual term εklm ∼ N (0, σ2
ε) captures the remaining 

unexplained variation of observations. Detailed results for this LMEM are presented in Supplementary Table S1. 
The condition-specific fixed effects were statistically compared within the model using pairwise linear contrasts 
evaluated with t-tests, and the resulting p-values were adjusted for multiple comparisons using Bonferroni-
Holm correction34. Results from this comparison indicate that repeating collaboration with the same partner in 
condition A2 resulted in significantly higher initial performance compared to training with this partner (A1) 
(p < 0.001, βA2 > βA1). This is reflected by the estimated score in the first trial of condition A2 (βA2) exceeding 
that of condition A1 (βA1). When comparing the estimated score for the first trial of training with a partner 
in A1 (βA1) to the estimated initial score when switching to an unfamiliar partner in condition B (βB), no 
significant difference was found (p = 0.062, βA1 vs. βB). However, switching to an unfamiliar partner (B) led to 
a lower initial performance than in A2 (p = 0.037, βB < βA2). In Fig. 2(a), this difference in initial performance 
between collaboration with an unfamiliar or familiar partner is shown by the red and yellow regression lines 
starting with different score values at the first trial. This highlights that familiarity with a partner resulted in 
higher initial performance. The performance change over trials also differed depending on the familiarity with 
the partner. During the initial collaboration condition (A1), performance improved significantly across trials 
(p < 0.001, βA1, Trial > 0), which is captured by the coefficient βA1, Trial. This trend is shown by the positive 
slope of the blue regression line in Fig. 2(a). With the unfamiliar partner (B) a similar performance improvement 
as in condition A1 (p = 0.37, βB, Trial vs. βA1, Trial) was observed. However, repeating collaboration with 
the known partner (A2) showed no significant performance improvement over trials (p = 0.70, βA2, Trial), 
suggesting a performance plateau35, possibly due to the effects of mental or physical fatigue36. An analysis using 
a simplified version of the LMEM from Eq. (6), was conducted to compare performance between conditions A2 
and B at a specific trial. In this simplified LMEMs, separate models were fitted for each trial number, excluding 
the trial number as a model predictor. The results revealed that from the fourth trial onwards, the difference in 
performance between these two conditions became non-significant (p > 0.13, βB vs. βA2). This indicates that 
while performance was initially lower with an unfamiliar partner, repeated collaboration enabled participants to 
rapidly adapt to the new partner, allowing the new pairs to achieve the same performance level as the familiarized 
participant pairings. These findings suggest the development of partner-specific collaboration behavior, which 
enables immediate high performance with a familiar partner while requiring re-negotiation of the collaboration 
behavior when interacting with an unfamiliar partner (H1).

Because we are mainly interested in how partner familiarity affects overall task performance, the trends of 
time and contact penalties are described qualitatively to provide additional context for the statistically evaluated 
score results. Figure 2(b) shows that the time penalty was initially highest in the training condition (A1) and 
decreased most in the initial three trials in this condition. For conditions A2 and B, the time penalty started 
at a similar level, showing only a slight decrease over trials. Since the time penalty primarily improved during 
initial collaboration (A1), this suggests that its improvement was mainly driven by task learning and relatively 
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unaffected by familiarity with the partner. Because the contact penalty, shown in Fig. 2(c), was generally on a 
larger scale than the time penalty, it had a bigger influence on the score values. The contact penalties in condition 
B resembled those in condition A1, starting high and decreasing over trials. In A2, however, the contact penalty 
began lower, initially declined, but then increased, approaching levels seen in A1 and B. This trend indicates 
that prolonged interaction may have led to fatigue or other factors that limit achievable motion accuracy. These 
observations suggest that contact penalties were likely more influenced by familiarity with the partner than time 
penalties, because joint motion accuracy may rely more on precise coordination of individual contributions 
(H1).

After examining the effect of partner familiarity on performance scores, we investigate the influence of 
familiarity with the partner on the subjective assessment of collaboration. The subjective ratings of temporal 
task load, subjective performance, sense of control, and contribution are shown in Fig. 3. Comparisons between 
the conditions were made directly within the following LMEM using pairwise linear contrasts of the estimated 
fixed effects evaluated with t-tests:

	Ratingk̂n = βS1ConditionS1,k̂ + βA1ConditionA1,k̂ + βA2ConditionA2,k̂ + βBConditionB,k̂ + bParticipant,n + εk̂n.

Ratingk̂n represents the subjective rating in k̂-th condition (k̂ ∈ {1, . . . , 4}) from the n-th participant 
(n ∈ {1, . . . , 44}). The categorical fixed effect ConditionCond,k̂ , where Cond ∈ {S1, A1, A2, B}, indicates 
the block condition, with βS1, βA1, βA2, βB reflecting the effect of conditions on the subjective rating. The 
random effect bParticipant,n captures participant-specific differences in subjective ratings, and εk̂n is the residual 

Fig. 3.  Mean and standard deviation of the subjective ratings for temporal task load, sense of control, 
subjective performance, and contribution in the different experiment block conditions.

 

Fig. 2.  Development of the performance score and its underlying penalties over the trial progression in 
different conditions. (a) Mean of the performance score is shown over the trial numbers within the block 
condition of first solo (S1), collaborative training (A1), second solo (S2), repetition with the previous partner 
(A2), and switching to an unfamiliar partner (B). The dotted lines show the change of the score in the different 
collaboration conditions according to the LMEM of Eq. (6). The scores in the first trial of the collaboration 
conditions are captured by βA1, βA2, βB, while score changes over trials are represented by βA1, Trial, 
βA2, Trial, βB, Trial. The development of the average time penalty (b) and the contact penalty (c) over the trials 
in the different collaboration conditions (A1, A2, B) is shown, indicating their influence on the performance 
score.
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error. Participants reported feeling more rushed when collaborating with an unfamiliar partner (B) rather than 
with a familiar partner (A2) (p = 0.049, βB > βA2). Comparing the sense of control in conditions A2 and B 
to the one from the first solo condition (S1) shows a familiar partner (A2) did not diminish the sense of control 
compared to performing the task alone (p = 0.39, βA2 vs. βS1). Conversely, with an unfamiliar partner (B), 
the sense of control was reduced (p = 0.031,  βB < βS1). This result, along with the reduction in perceived 
time pressure when collaborating with a familiar partner, suggests that working with an unfamiliar partner 
could have imposed additional cognitive demands (H1). The relationship between participants’ sense of control 
and their collaboration performance was analyzed using the following LMEM, which accounts for performance 
variability at both the participant and condition levels:

	 Performancekn = β0 + βControlControlkn + bParticipant,n + bCondition,k + εkn.

Here, Performancekn represents either the subjective performance rating or the objective task score for the k-th 
collaboration condition and for the n-th participant. Control denotes the participant’s sense of control rating, 
with coefficient βControl reflecting the relationship between sense of control and performance. β0 represents 
the estimated performance when the sense of control rating is zero. The random effect bParticipant,n accounts 
for participant-specific performance differences, and bCondition,k  captures performance variability across 
conditions. The residual error is denoted εkn. Results showed that a higher sense of control was associated with 
both better subjective performance ratings (βControl = 0.65, SE = 0.073, t(130) = 8.84, p < 0.001) and 
higher objective task scores (βControl = 3.10, SE = 0.85, t(130) = 3.67, p < 0.001) during collaboration. 
The standard error SE indicates how strongly the estimated coefficient β varies. The significance of the coefficient 
is assessed using the t-statistic t(df) with the associated degrees of freedom df, which represent the amount 
of information available for estimating the coefficient. The t-distribution determined by df is used to decide 
whether the t-statistic is large enough to indicate a statistically significant result. These results highlight the 
importance of the sense of control, and therefore the familiarity with the partner, for effective collaboration 
(H1). The subjective ratings from participant’s questionnaires further show that participants consistently rated 
their own contributions during collaboration as lower than those of their partners. This was confirmed by a 
one-sample one-tailed t-test for subjective rating of contribution across conditions A1, A2, and B1 (p < 0.001).

H1: In summary, these findings underscore the role of partner familiarity in facilitating effective collaboration 
in terms of collaboration performance and subjective assessment of the collaboration. This is supported by 
higher initial performance with a familiar partner (A2 > A1, p < 0.001; A2 > B, p = 0.037), and a reduced sense 
of control and increased subjective time pressure when collaborating with an unfamiliar partner (p = 0.025 and 
p = 0.049, respectively).

(H2) Action predictability during high-precision collaboration
We aimed to investigate whether participants learned to reduce the variability of their motions across trials to 
improve collaboration performance. Figure  4 illustrates how the dissimilarity of motions from consecutive 
trials ds changed over the trial number in the collaboration block conditions. Specifically, we analyzed the 
dissimilarities of consecutive handle dHandle, Position

s , hand dHand, Position
s , and wrist dWrist, Position

s  position 
trajectories. Because two participants collaborated, two consecutive motion dissimilarity metrics of hand and 
wrist movements, calculated according to Eq. (5), are available for all collaboration trials. Therefore, for the hand 
and wrist motion dissimilarity, the metric values of the partners were averaged in each trial to obtain a single 
dissimilarity metric per body part for each trial. The change of dissimilarity over trials was analyzed considering 
its variability between pairs and conditions with a LMEM of the form:

	 ds,kl̂m = β0 + βTrialTriall̂ + bPair,m + bCondition,k + εkl̂m.� (7)

Here, ds,kl̂m represents the dissimilarity of subsequent motions in the k-th condition for the -th trial 
(l̂ ∈ {1, . . . , 14}) of the m-th pair. The term Triall̂ ∈ {0, . . . , 13} denotes the trial number, with coefficient 

Fig. 4.  Developemnt of consecutive motion dissimilarity over trials. Consecutive motion dissimilarity metrics 
are shown for handle position trajectories (a), hand position trajectories (b), and wrist position trajectories (c). 
The trend over trials, estimated using the LMEM with Eq. (7), is displayed as a black-dotted line, which starts 
for the second trial at β0 and changes with slope βTrial over the trial number.

 

Scientific Reports |        (2025) 15:23381 8| https://doi.org/10.1038/s41598-025-03341-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


βTrial reflecting the change in dissimilarity over trials. The coefficient β0 represents the estimated dissimilarity 
level without the effect of trials. The random effects bPair,m and bCondition,k  capture the variability of the 
dissimilarity metric across pairs and experimental conditions, and εkl̂m represents the residual error. For 
example, the dissimilarity between the wrist position trajectory from the second and the first trial in condition 
A1 is calculated as d(XWrist,A1,2, XWrist,A1,1), where XWrist,A1,l̂ ∈ RN

l̂
×3 is the 3D wrist position trajectory 

from the -th trial in condition A1 with Nl̂ samples. The results of the LMEM revealed a significant decrease 
in the dissimilarity of consecutive arm movements for the hand and wrist (p < 0.01, βHand,Position

Trial < 0, 
βWrist,Position

Trial < 0), as shown by the negative slope of the regression lines in Fig. 4(b, c). The detailed results are 
presented in Supplementary Table S2. This suggests that participants may converge to consistent arm movements 
over time (H2). In contrast, the trajectories of the handle positions became increasingly dissimilar (p < 0.001, 
βHandle,Position

Trial > 0), which may be due to the increasing difficulty in precisely controlling the handle as the 
trial progressed. Figure 5(a, b) illustrates the difference between high and low consecutive motion dissimilarity, 
exemplified by one participant’s initial and final wrist motions.

A decrease in inter-trial variability of motions suggests improved predictability, which could affect 
collaboration performance. To verify this hypothesis statistically, the LMEM from Eq. (6) is extended by the 
dissimilarity metric ds,kl̂m as an additional fixed effect with the associated coefficient βs. Since the dissimilarity 
measure compares motions between consecutive trials within the conditions, there is one less observation per 
condition than the number of trials. To ensure consistency, the first trial of each condition is excluded from 
the LMEM in Eq. (6). This model is chosen because it allows for the examination of how motion dissimilarity 
influences performance while accounting for the effects of trial progression, condition differences, and inherent 
pair-specific score variability. The dissimilarity metrics of the handle, hand, or wrist motions are added in 
separate models. All consecutive trial dissimilarity metrics significantly lowered the performance during 
collaboration (p < 0.005, βs < 0). In other words, the more similar consecutive motions were, the higher 
the achieved performances were (H2). This is especially noticeable for the dissimilarity of consecutive handle 
motions with its comparatively high influence on the score (see Supplementary Table S3). Because of the task’s 
high precision requirements for the handle, the consecutive handle motion dissimilarity was on a smaller scale 
than that of the arm motions, which were further away from the wire path to be tracked. The comparatively 
smaller scale of the handle dissimilarity metric values could explain their higher impact on the score. We also 
saw that the dissimilarity of the handle position trajectories increased over the course of the trials. This suggests 
that the increase in the dissimilarity of consecutive handle movements may not have been due to intentional 
collaboration behavior, such as task exploration37. Instead, it was probably caused by unwanted side effects 
such as fatigue36. As the number of trials increases, the continuously high precision requirements could make it 
difficult for participants to maintain high accuracy over longer periods of time. Since the hand and wrist motions 
could have been adjusted without changing the handle positioning relative to the wire path, they may have 
converged to motions that were more ergonomic without impairing the task performance.

H2: In summary, while not all movements showed a consecutive reduction in variability, performing 
repetitive and predictable motions significantly improved collaboration performance, likely due to the increased 
predictability of the motions. This is supported by a high consecutive-motion dissimilarity significantly 
decreasing performance for all tested motion components (p < 0.005).

(H3) Partner-specifc interaction dynamics
During the collaboration, participants may adapt their collaboration behaviors, such as interaction dynamics 
(i.e., motions and forces), to their specific partner to optimize the collaboration. Therefore, we investigate if the 
interaction dynamics established during the training (A1) are specific to the training partner. This is analyzed 

Fig. 5.  Progression towards consistent wrist movements during repeated collaboration. Exemplary wrist 
motion trajectories from one participant during the training collaboration condition (A1) show the 
greater dissimilarity in (a) the initial trials (dWrist, Position

s = 43.32 mm) compared to (b) the final trials 
(dWrist, Position

s = 13.05 mm), demonstrating increased consistency in wrist movements as collaboration trials 
progress.
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by examining how similar the movements and forces at the end of the training (A1) are to those when the 
collaboration is either repeated with the familiar partner (A2) or with an unfamiliar partner (B). This training 
dissimilarity dc is computed using Eq. (5). Specifically, we considered the training dissimilarity of force dForce

c , 
handle orientation dHandle, Orientation

c , handle position dHandle, Orientation
c , hand position dHand, Position

c , and 
wrist position dWrist, Position

c  trajectories. For example, the training dissimilarity of the wrist position trajectory 
from the l-th trial of condition A2 is calculated as d(XWrist,A1,15, XWrist,A2,l). To analyze the effect of conditions 
A2 and B on the training dissimilarity dc while accounting for pair-level variability of training dissimilarity, we 
use the LMEM:

	 dc,k̃lm = βA2ConditionA2,k̃ + βBConditionB,k̃ + bPair,m + εk̃lm.� (8)

Here, dc,k̃lm represents the training dissimilarity for the k̃-th condition (k̃ ∈ {1, 2}) in the l-th trial of the 
m-th pair. The categorical fixed effect ConditionCond,k̃ , where Cond ∈ {A2, B}, indicates the experimental 
condition, with the coefficients βA2 and βB capturing the effect of conditions on the training dissimilarity. The 
random effect bPair,m accounts for pair-specific differences in the dissimilarity metric, and εk̃lm is the residual 
error. The results are visualized in Fig. 6 for different motions and the interaction force. Detailed results of the 
analysis with the LMEM are listed in Supplementary Table S4. The estimated fixed effect coefficients of conditions 
A2 and B were statistically compared within the LMEM through a pairwise linear contrast using a t-test. The 
trajectories of the handle position (p < 0.001), the handle orientation in Euler angles (p < 0.001), the hand 
position (p = 0.027), and the forces (p < 0.001) from the last trial of condition A1 were more similar to those 
from condition A2 than to those from condition B (βA2 < βB). However, wrist position trajectories did not 
show significant differences in training dissimilarity between conditions A2 and B (p = 0.41, βWrist, Position

A2  vs. 
βWrist, Position

B ). As the distance from the manipulation target (i.e., the wire path) increased, the differences in 
training dissimilarities between conditions A2 and B became less significant, suggesting that these movements 
may have been less influenced by the specific partner. Instead, these movements of the hand and especially the 
wrist may have been adjusted based on other factors like ergonomic aspects38.

H3: In summary, these findings suggest that interaction dynamics were partner-specific, as the participants 
used different interaction dynamics when working with an unfamiliar partner than with a familiar partner. 
Participants recalled the interaction dynamics established during training (A1) when collaborating with the 
same partner (A2), as evidenced by significantly lower training dissimilarities in A2 compared to B for forces, 
handle orientation, handle position, and hand position trajectories (p < 0.001, p < 0.001, p < 0.001, and 
p = 0.027, respectively).

(H4) Effects of partner differences on performance and learning capabilities
We analyze the effect of interpersonal differences between partners on collaboration. First, the individual 
performance levels are considered. The influence of individual performance differences on the improvement in 
individual performance resulting from collaboration was analyzed using the linear model:

	 ∆ScoreS2−S1,n = β0 + β∆S1, Self-Other∆ScoreS1,Self−Other,n + εn.� (9)

Here, ∆ScoreS2−S1,n represents the change in average score from the first solo block (S1) to the second 
solo block (S2) for the n-th participant. The fixed effect ∆ScoreS1,Self−Other,n is the average performance 
difference between the paired individuals during the first solo block, with coefficient β∆S1, Self-Other capturing 
its influence on the individual performance improvement. β0 reflects the individual performance improvement 
in case of no performance difference between partners, and εn is the residual error. This model allows for an 
assessment of how performance differences between collaborators during the first solo block (S1) influence 
the individual improvement from S1 to the second solo block (S2). Participants who performed worse than 

Fig. 6.  Similarity of motion and force time series from condition A2 (Partner 1 repeat) or B (Partner 2) 
to the final trial of condition A1 (Partner 1). Each plot illustrates the estimated fixed effect coefficients of 
this dissimilarity metric dc for the two conditions A2 and B along with their 95% confidence intervals. 
Additionally, the distributions of the metric data are visualized through violin plots. The force profiles (a), 
handle orientation trajectories (b), handle position trajectories (c), and hand position trajectories (d) were 
significantly more similar to the training condition A1 in condition A2 than in condition B. Wrist position 
trajectories (e) did not showed significantly different dc values in condition A2 than in condition B.
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their partners in the first solo block (S1) showed greater improvement from S1 to the second solo block (S2) 
(β∆S1, Self-Other = −0.14, SE = 0.07, t(42) = −2.03, p = 0.048). Conversely, participants who performed 
better than their partners in S1 showed less performance improvement from S1 to S2. This is illustrated by 
the negative slope of the LMEM’s regression line in Fig. 7. This finding indicates that performance transfer 
between participants may depend on the difference in the individual performance levels of the two partners 
(H4). We further observed that larger individual performance differences between collaborators decreased the 
performance during collaboration (β|∆S1, Pair| = −0.39, SE = 0.16, t(915) = −2.45, p = 0.015). This was 
determined using an extension of the LMEM from Eq. (6) that incorporates the absolute difference in scores 
between the two partners during the first solo block (S1) |∆ScoreS1,Pair|m as an additional fixed effect, with 
its associated coefficient β|∆S1, Pair|. This allows the model to examine how individual performance differences 
between collaborators during the first solo block (S1) influence the collaboration score Scoreklm in addition 
to the effects of the LMEM with Eq. (6). A greater disparity in individual performance may, therefore, hinder 
collaborative performance (H4).

Next, we considered how differences in partner characteristics influenced collaboration performance. 
The characteristics considered were anthropometric variables, body height and weight, but also other 
features such as age, handedness (left, right, ambidextrous), and gender (male, female, other). The effect on 
collaboration performance was analyzed by extending the LMEM from Eq. (6) with an additional fixed effect 
∆char,m, representing the differences in a specific characteristic (e.g. age) between partners of the m-th pair. 
The coefficient β∆char captures the effect of these differences in characteristics on collaboration performance. 
For gender and handedness, this fixed effect is a binary variable that indicates whether the partners differ in 
this characteristic (∆char,m = 1) or do not differ (∆char,m = 0). Separate extended LMEMs were created for 
each characteristic to examine its influence on the collaboration score Scoreklm, while retaining the original 
fixed effects for trial progression and condition differences, as well as the pair-specific differences in score. A 
difference in handedness between participants significantly decreased performance (βhandedness

∆char = −13.71, 
SE = 5.56, t(915) = −2.46, p = 0.014). This indicates that pairs in which both partners are left- or right-
handed may have achieved higher scores (H4). Given the imbalance in handedness among participants in our 
experiment (more right-handed than left-handed), we conducted a stratified bootstrapping analysis with 1,000 
iterations to assess the robustness of the observed effect of differing handedness on performance. This method 
preserved the original proportion of handedness differences in each resampled dataset by resampling within 
groups defined by same or differing handedness39. While bootstrapping does not fully overcome the uneven 
handedness distribution and the small number of mixed-handed pairs, it provides a useful assessment of the 
effect’s robustness. The stratified bootstrapped 95% confidence interval for the effect of differing handedness was 
[−25.06, −1.26], confirming that its negative impact on collaboration performance remains significant despite 
the data imbalance. Other differences in partner characteristics did not affect the collaborative performance 
(p > 0.4, β∆char). We investigated if the reduced collaboration performance of mix-handed pairs is caused by 
the task being more challenging to left-handed participants since they are required to execute the task with their 
non-dominant hand. The effect of handedness on solo task performance was analyzed using the LMEM

	 Scorek̆l̆n = βrightHandright,n + βleftHandleft,n + βambHandamb,n + bCondition,k̆ + bParticipant,n + εk̆l̆n.� (10)

Here, Scorek̆ln represents the score in the ̆k-th solo condition (k̆ ∈ {1, 2}) for the -th trial (l̆ ∈ {1, . . . , 5}) of the 
n-th participant. The categorical fixed effects Handright,n, Handleft,n, and Handamb,n indicate the handedness 
of the n-th participant (right-handed, left-handed, ambidextrous), with the corresponding coefficients βright, 

Fig. 7.  Correlation of the individual performance difference between partners with the individual score 
improvement after collaboration. The individual performance difference ∆ScoreS1,Self−Other was computed 
as the difference in score between the partnered individuals during the first solo task execution (S1). Individual 
performance improvement ∆ScoreS2−S1 was determined as the increase in individual score from the first 
(S1) to the second (S2) solo task execution. The red line with a slope of β∆S1, Self-Other represents the modeled 
relationship based on the LMEM with Eq. (9).

 

l̆ ∈ {1, . . . , 5}
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βleft, and βamb capturing the effect of each handedness type on the task score. The random effects bCondition,k̆  and 
bParticipant,n account for score differences between solo conditions and participants, while εk̆l̆m is the residual 
error term. The estimated fixed effect coefficients of the handedness types were statistically compared within 
the LMEM using pairwise linear contrasts evaluated with t-tests, and the resulting p-values were adjusted for 
multiple comparisons using the Bonferroni-Holm correction. The results of this analysis revealed no statistically 
significant differences in solo task performance between participants depending on their handedness (p > 0.6, 
βright vs. βleft vs. βamb). Detailed results for this LMEM are presented in Supplementary Table S5.

Finally, we assessed whether differences in partner characteristics affect individual learning with the linear 
model:

	 ∆ScoreS2−S1,n = β0 + βS2−S1,∆char∆charn + εn.

The fixed effect ∆charn denotes the difference in a characteristic between the n-th participant and the 
corresponding partner in collaboration condition A1, with βS2−S1,∆char capturing its effect on individual 
performance improvement. β0 accounts for this individual improvement in case of no difference of characteristic 
between partners, and εn is the residual error. None of the differences in partner characteristics affected 
individual learning through collaboration (p > 0.16, βS2−S1,∆char) (H4).

H4: In summary, these results suggest that interpersonal differences in individual performance levels and 
handedness can influence physical collaboration performance and individual learning capabilities, emphasizing 
the importance of considering partner compatibility in collaboration tasks. Specifically, larger individual 
performance differences of partners led to greater individual learning gains for the worse-performing partner 
(p = 0.048) but reduced collaborative performance (p = 0.015). Differing handedness between paired 
individuals significantly lowered collaborative task scores (p = 0.014).

Discussion
In this study, we investigated the learning behavior of haptically coupled collaborators in a task with high 
precision demands. We examined which collaboration behaviors are adopted over repeated interactions, 
whether these learned collaboration behaviors are specific to the partner, and how interpersonal differences 
influence collaboration.

Improvements in performance in the hot wire task can be attributed to different factors. For example, one 
potential factor is practicing the task itself, e.g. learning the course of the wire through self-induced action 
effects such as moving and touching the wire40. Another possible factor is learning to better predict the partner’s 
actions and their effects6,7. The results from our study indicate that by repeating physical collaboration in a 
high-precision task with the same partner, learned collaboration behaviors are effectively retained and utilized 
to enhance collaboration performance. This observation may indicate that a degree of familiarization with the 
partner’s influence occurred with prolonged practice, as knowledge about the collaborator’s behavior is learned 
and used to enhance interpersonal coordination. When switching to an unfamiliar partner, the transfer of learned 
collaboration knowledge was limited, because a similar level of performance as with a familiar partner was only 
achieved after a retraining phase with the unfamiliar partner, as theorized in a previous work13. These findings 
indicate that learned behaviors are at least partially partner-specific (H1) , which may provide initial benefits 
during repeated collaboration with a familiar partner. When switching to an unfamiliar partner, participants 
reported a reduction in the sense of control and increased time pressure compared to executing the task with a 
familiar partner, suggesting additional subjective cognitive demands with an unfamiliar partner. When switching 
to an unfamiliar partner, any potentially learned partner-specific predictive model will inherently result in a 
higher prediction error, as it does not account for the unfamiliar partner’s collaboration behavior. Consequently, 
this model needs to be retrained or adapted to accommodate the new collaboration dynamics. Although a prior 
study examined how varying levels of partner expertise influence physical collaboration performance with an 
unfamiliar partner28, our study examines a different aspect by investigating if learned collaboration knowledge 
is specific to the partner and how switching to an unfamiliar partner affects collaboration.

We observed that during collaboration the partner contribution was subjectively higher-rated. One possible 
factor influencing this perception can be the force escalation/sensory attenuation effect, where self-generated 
stimuli, like forces, are perceived to be lower than external stimuli41. Sensory attenuation has been shown to 
facilitate self-other distinction through temporal cues in an auditory joint action task42. Research on human 
collaboration has emphasized the importance of self-other distinction and integration in joint actions9,11. In our 
physical collaboration task sensory attenuation may enhance sensitivity to haptic information from the partner. 
This could improve the ability to distinguish between self-generated and partner-induced action effects, allowing 
individuals to adjust their actions more accurately in response to their partner’s contributions, which ultimately 
leads to better coordination. Further investigation is required to understand the role of sensory attenuation in 
haptic communication during physical collaboration.

Collaborators converged to a stereotypical arm motion trajectory indicated by reduced inter-trial variability. 
Lower inter-trial variability of motions allowed for higher collaboration performance, which could be explained 
by the increase in action predictability (H2). While previous studies have shown that learning to reduce action 
variability can enhance predictability and performance in both non-physical and physical collaboration tasks14–18, 
our findings extend these results to a physical task with high-precision requirements. This demonstrates that the 
reduction of joint action variability is a collaboration strategy employed across a wide range of collaborative 
tasks. Through the repeated experience of the partner’s action effects, a predictive model6,7 of the partner’s 
task contribution may be built and refined. This predictive model could be used to progressively improve the 
coordination of one’s own actions with those of the partner, allowing to reduce variability and consequently 
increase the predictability of joint actions.
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When collaborators repeated the collaboration with a familiar partner, their movements and forces showed 
high similarity to those observed during initial training with that partner. In contrast, switching to an unfamiliar 
partner resulted in noticeably different interaction dynamics, reflected by motion and force patterns that differed 
from those with the initial partner. This indicates that the interaction dynamics established with a collaboration 
partner were specific to the partner (H3). The partner-specific interaction dynamics were effectively retained19,20 
in subsequent collaborations with a known partner. This retention of learned interaction dynamics likely 
contributes to the higher initial performance observed with familiar partners, as the established interpersonal 
coordination can be recalled without the need for re-negotiation13. Conversely, collaborating with an unfamiliar 
partner likely requires establishing new interaction behaviors. However, after a brief retraining phase of a few 
trials, performance with an unfamiliar partner can match the one with a familiar partner. This suggests that the 
interaction dynamics learned from collaboration with one partner could be used to enable fast adjustment to 
new collaborators. Retention in physical cooperation tasks has already been investigated in a previous study22. 
However, our findings extend those results by showing that during physical collaboration partner-specific 
interaction dynamics are used, which can be recalled in subsequent collaborations with a familiar partner.

Our findings indicate that certain partner differences can significantly affect both individual performance 
improvement and collaborative outcomes (H4). Specifically, individual performance differences between partners 
lowered the collaboration performance, aligning more with the findings of a previous study24. Contrasting 
findings were reported in other works1,25. Furthermore, individuals who initially performed worse than their 
partners exhibited greater improvements after collaboration, indicating a transfer of skill or knowledge from the 
higher-performing participants to their partners. The enhanced knowledge transfer with a better-performing 
partner could be caused by self-other integration, as individuals integrate their partner’s superior task strategies 
into their own behavior. This finding contrasts with previous results25,28, where individual performance improved 
more when collaborating with a partner of similar skill level. When individuals were paired with novices instead 
of experts, individuals were able to collect more experience with the task as more exploration of task dynamics 
occurred28. In our hot wire task, however, exploration was limited due to the high-precision requirements, which 
could explain the different findings. Additionally, all participants in our experiment were novices who had no 
prior practice with the task, limiting the observed range of expertise in participants. It is possible that knowledge 
transfer is diminished when performance differences are larger. When novices collaborate with highly skilled 
partners, they may assume a more passive role, thus engaging less with the task. The reduced engagement would 
limit their exploration of the task dynamics, thereby decreasing their ability to learn these task dynamics. This 
suggests a nonlinear relationship between individual learning capabilities and the partner’s proficiency, where 
collaborating with a slightly better-performing partner may enhance learning, while a considerably better partner 
may hinder it. Additionally, pairs with the same handedness exhibited better collaboration performance. This 
contrasts with findings reported in previous research43, where it was concluded that the spatial configuration 
of participants (face-to-face vs. side-by-side) affected collaboration performance in a joint object manipulation 
task while handedness did not. Unlike this earlier study43, our experiment included both same- and different-
handedness pairings while maintaining a face-to-face configuration. Therefore, it was possible to examine the 
influence of handedness differences on collaboration performance without varying other task conditions. In our 
study, all participants were required to use their right hand, meaning left-handed participants had to complete 
the task with their non-dominant hand. This might suggest that the observed effect could be due to participants 
performing worse with their non-dominant hand. However, our results indicate that participants’ handedness 
did not significantly affect solo task performance. An alternative possible interpretation is that performing the 
task with the non-dominant hand may require greater cognitive effort44, which could reduce this participant’s 
ability to effectively coordinate with the partner, thereby impairing overall collaboration performance in mixed-
handedness pairs. This finding should be further investigated in future studies with larger and more balanced 
samples, potentially also incorporating objective measures of cognitive load to directly assess its role in mixed-
handedness collaboration. These results emphasize the need to consider partner compatibility in collaborative 
settings, both to enhance performance and to maximize learning outcomes.

In summary, the study provides insights into the dynamics of human collaboration in high-precision tasks. 
Our findings suggest that collaboration performance improves as individuals gradually learn to improve the 
coordination of their actions through repeated interaction. This learning process may involve developing a 
predictive model of the partner’s contributions, enhancing predictability and coordination. Moreover, the 
specific collaboration partner influences both collaborative behavior and individual learning capabilities. Future 
studies should explore how these findings depend on task demands, such as precision requirements, range of 
motion, force demands, and amount of haptic feedback.

Our presented findings have the potential to enhance pHRC by designing robotic systems that aim to replicate 
human-like collaboration behavior. For instance, a robotic agent could gradually learn partner-specific interaction 
dynamics from repeated physical interactions with the same partner. By recalling these in future collaborations 
it may allow to achieve high performance immediately without requiring a retraining phase. Additionally, by 
leveraging the benefits of collaboration with a more skilled partner, robots could possibly be designed as expert 
teachers to enhance human performance in tasks requiring high precision, such as surgical training. Future 
research should explore what factors influence knowledge transfer during collaboration, including the impact of 
a wider range of performance differences. This could, for example, be tested in the collaborative hot wire task by 
conducting experiments with robotic agents of varying proficiency, such as different levels of trajectory tracking 
accuracy. These potential applications of our findings to pHRC should be validated in future studies.

Data availability
Data collected during this study is available on request from the corresponding author.
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