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Abstract

The increasing presence of robots in human workspaces underscores the need for intelligent systems that can understand
human behaviors and act accordingly for a natural human-robot interaction (HRI). In this work, we propose a method
to generate a robot’s behavior for social HRI by integrating both human and robot intentions into the robot’s decision-
making process. Our system learns appropriate robot behaviors in social scenarios by observing human-human interactions
(HHI). Using a transformer-based model, we first capture the dynamics of each individual and then iteratively adapt both
human and robot behavior to achieve a successful interaction. By connecting our model with a human-to-robot motion
retargeting framework, our system learns how a robot should behave solely from observing human data. To address the
disparity between HHI and HRI, we employ several loss functions that encourage our robot to reproduce the social dynam-
ics observed in humans. As a result, our approach outperforms the state-of-the-art in dyadic human motion forecasting
prediction in the largest dataset available and obtains high-quality robot behaviors in human-robot interaction scenarios.
Finally, we conduct a thorough evaluation of our performance for HHI, and HRI, and implement and test the system in
the real-world TIAGo++ robot.

Keywords Human-robot interaction - Imitation learning - Motion forecasting - Deep learning

1 Introduction short. Instead, it is desirable that robots infer and understand

social norms, individual preferences, and the intentions of

In recent years, the coexistence of humans and robots
within a shared workspace has become increasingly com-
mon, leading to an interest in human-robot interaction. As
these entities share physical proximity, robots are compelled
to integrate human actions into their decision-making pro-
cesses. Traditionally, this has been addressed through the
design of reactive robotic behaviors to assist humans in
achieving a specific goal. However, when it comes to auton-
omous social interaction between robots and humans, mere
prediction of human actions for robot decision-making falls
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the surrounding humans to effectively engage in these inter-
actions. Still, designing robot behaviors that accommodate
all these diverse variables presents a significant hurdle. On
the contrary, in this paper we propose to learn the social
dynamics existing in human-human interactions and trans-
late those learned behaviors into robots. An illustration of
our robot’s decision-making process is depicted in Fig. 1.
Understanding human behavior is a long-standing chal-
lenge in the Al and robotics community, involving the
comprehension of complex, context-dependent actions and
intentions. In the context of social interactions, the move-
ments of individuals reflect their behavior and intentions.
As humans, we predict the future movement and state of a
human in the short-term future to optimize for fluent inter-
action [1]. For instance, when meeting a person, we extend
the hand to perform a handshake but adapt our approaching
behavior to the observed motion of the other individual, so
that both hands meet. In the research community, the task of
predicting future human poses based on past observations is
known as human motion forecasting. While there has been
significant progress in single human motion forecasting

@ Springer


https://doi.org/10.1007/s12369-025-01333-3
http://orcid.org/0000-0001-5147-7704
http://crossmark.crossref.org/dialog/?doi=10.1007/s12369-025-01333-3&domain=pdf&date_stamp=2025-11-3

3212

International Journal of Social Robotics (2025) 17:3211-3230

Fig. 1 Illustration of our robot’s decision-making process. Our
TIAGo++ robot learns to forecast the most natural movements in a
human-robot interaction by observing dyadic human interactions.
After this learning process, our model can generate high-quality robot
behaviors that adapt to the partner’s intent. It achieves this by envi-
sioning how human and robot intents can seamlessly blend together
through a deep-learning motion forecasting network

[2-9], they primarily focused on modeling the dynamics
of a unique skeleton in local representations, without con-
sidering their global trajectory. Instead, learning the depen-
dencies between the various individuals in human-human
interacting scenarios remains a challenge. Multi-person
forecasting [ 10—15] aims to model the spatial dependencies
among the surrounding agents to predict their future move-
ment. Existing studies on multi-person scenarios encode
the relationship of multiple humans in scenarios with little
or artificially synthesized interactions between the subjects
[12—14], or with interactions that are not adequate for robots
[15], such as fighting. Instead, we envision scenarios that
are more representative of real-world Human-Robot Inter-
actions (HRI) and model highly interactive scenes between
humans that are executing a shared action [16], such as
handovers, dancing, or greeting.

Even if we can model human dynamics in social set-
tings, transferring this behavior to robots remains a chal-
lenge. Previous works [17—19] have focused on a reactive
robot behavior, where the robot forecasts human motion
and then responds with a set of predefined actions. More
recently, [20] showed that by forecasting the surrounding
human actions, the robot can anticipate its expected behav-
ior and proactively assist the human, thus making the over-
all human-robot interaction more fluent. However, all the
aforementioned works handcrafted the robot’s response to
the predicted human intent. In the context of social human-
robot interactions, handcrafting the appropriate robot
behavior that accounts for the very diverse human actions
remains unfeasible. The optimal procedure would be to
learn the adequate robot responses similar to multi-person
interaction works [10-15], where one of the individuals is
a robot. Recently, there have been many efforts in building
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human-robot interaction motion datasets for manipulation
scenarios [21, 22]. However, these datasets are limited in
terms of the variability of robot embodiments and action
diversity. Additionally, [21, 22] only focused on human
motion prediction conditioned on the robot actions but
neglected the generation of the robot interaction behavior.

In fact, constructing large-scale human-robot interaction
datasets is cumbersome, and the robot behaviors are usually
controlled using teleoperation during the recording, limit-
ing the scalability of the framework. Instead, in our previ-
ous work [23] we use a human-to-robot motion-retargeting
algorithm [24] to unify the human and robot behaviors into
a shared latent space. Thus, our ECHO system [23] could
learn to generate human-robot interaction behaviors inde-
pendently of the individual embodiments. Still, by con-
structing ECHO as a two-step framework and exclusively
predicting the robot’s behavior in a pre-trained shared latent
space, the robot’s decoded actions lacked spatial awareness.
That is, in a human-robot handshake, the individual robot
behavior resembled a proper handshake in local coordinates,
but did not adapt to the partner’s hand location. Therefore,
the human and robot hands did not meet. In this work, we
extend ECHO [23] by proposing a contact-aware robot
behavior generation that learns in an end-to-end manner the
spatio-temporal dependencies between humans and robots,
thus encouraging the social dynamics to be met during robot
execution. Additionally, to achieve a trade-off between
faithfully imitating the style of the human references while
preserving the semantics of the interactions, we incorporate
a proximity sensor loss, which dynamically adapts where
the model should focus during training. Our novel spatial
dynamic loss boosts the quality of the generated human-
robot interactions. We conduct a thorough quantitative and
qualitative evaluation to ablate the benefits of our approach
for HRI, and introduce new social metrics to measure the
quality of an interaction. Finally, we implemented a real-
time framework using ROS to generate such HRI behaviors
in a TIAGo++ robot.

In conclusion, we propose an end-to-end learning model
that generates human-robot behaviors from purely human-
human interaction observation. We adopt the single and dual
motion transformer from [23] that decouples the human and
robot future movements in the early stages and learns to
refine the interaction behavior by considering the overall
global movements. However, instead of predicting a pre-
trained shared representation among humans and robots, our
framework generates robot joint angles to directly control
the robot behavior. Later, we perform forward kinematics in
the robot to obtain the end-effector position and encourage
those to be closer to the reference human motion. Thanks
to our adaptive proximity loss, our training encourages
the model to achieve high-quality human imitation while
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following the physical contacts of the reference interactions.
Given the evolutionary nature of this work, in this paper,
we extend the results from [23] to the human-robot interac-
tion behavior, introducing new qualitative and quantitative
experiments for HRI scenarios, better techniques to boost
the results in HRI and novel social metrics to evaluate those,
and we implement our framework in the real world using
the TIAGo++ robot. The contributions of our paper can be
summarized as follows:

e An end-to-end deep learning framework to gener-
ate robot behaviors in social settings that are aware of
the spatio-temporal dependencies in human-human
interactions.

e An efficient model that achieves state-of-the-art perfor-
mance in real-time for social human forecasting and in
human-robot collaborative scenarios.

e A novel proximity-aware dynamic loss that weighs the
importance of different measurements during training,
to achieve the right balance between individual behavior
imitation and social interactions.

e The implementation of the system in a real-world robot
to generate fluent social behaviors with humans.

2 Related Work

This section is organized as follows. First, we review the
literature on human behavior modeling from the motion
perspective. Then we focus on the translation of those
behaviors to robots using imitation learning. Finally, we
introduce various works on Human-Robot Interaction that
consider human behavior modeling in their robot behavior
response.

2.1 Human Intent in HRI

For robots to interact alongside humans to achieve a shared
goal, they need to understand the human partner’s intent and
incorporate it into their decision-making process, so that
both entities are coordinated. Losey et al. [25] identified
three key terms essential for human intention understand-
ing in physical HRI: intent information, which refers to how
intent is defined; intent measurement, as the modality of the
data; and intent interpretation, which involves how to incor-
porate this data into the robot control.

The intent information and measurements have been
defined differently according to the task the intelligent sys-
tem is performing. Some examples include human trajec-
tory prediction in autonomous driving [26], gaze following
to convey human attention to objects [20, 27, 28], action
classification for predicting future action plans [29-31], and

3D skeleton movement for understanding human behavior
[22, 32-34], synchronizing movements [35], or determining
when the robot should provide mutual support [36]. In this
work, we focus on predicting the 3D human skeleton dur-
ing HRI to ensure the robot’s behavior is coordinated with
the human partner. Unlike previous works that incorporate
human intention without considering the robot as part of the
interaction, such as [32-34], we involve both humans and
robots in the decision-making process. Our system itera-
tively refines the human’s expected behavior based on the
robot’s intent and vice versa, enhancing the understanding
of social dynamics and making the robot’s behavior proac-
tive. This results in more fluent robot actions, as they are
conditioned on the expected human states and do not need
to wait for a human movement to finish before responding.

2.2 Human Behavior Modeling

To achieve robots that coexist with humans within a shared
workspace, we first need intelligent systems that can rec-
ognize, interpret, and reason about the behavior of the
surrounding humans. Human behavior understanding
encompasses various aspects, including the prediction of
human movements [2, 6, 8, 15, 23, 37, 38], their interactions
with the objects of the scene [20, 28], their gaze direction
[39—41] and the actions they perform [30, 31, 42]. Given our
focus on understanding human behavior for social interac-
tions, this section will specifically review works related to
human movement prediction, both in single- and multiple-
person scenarios.

The field of human motion forecasting has primarily con-
centrated on modeling the spatio-temporal patterns inherent
in human joints to predict future 3D skeleton information.
Sequence-based neural networks, including Recurrent Neu-
ral Networks (RNNs) [2, 43], Discrete Cosine Transform
(DCT) with Graph Convolutional Networks (GCN) [4, 5],
and more recently, attention-based models [6—8] have been
extensively employed for this purpose. However, all afore-
mentioned works only consider the spatial dependencies
among the different joints of an individual body, overlook-
ing the interactions between individuals involved in a social
activity.

In the context of multi-person motion forecasting, it
becomes imperative to incorporate global coordinates
of individuals and the relationships between them. Initial
works [37, 44] focused on predicting the global trajectory
of humans in a scene. However, for scenarios involving
human-human and human-robot interaction, it is essential to
extend the problem to encompass the 3D representation of
all joints of a human skeleton. Recent studies have explored
various techniques to address these challenges [38]. lev-
eraged context information from images to condition the
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motion generation [14], decoupled individual and multiple
human features using transformers to enhance long-term
prediction for groups of people, and [15] focused on mod-
eling dyadic interactions of humans, enhancing the motion
forecasting based on others through cross-attention mecha-
nisms. To explicitly capture interactions among joints within
the same individual and with others [45], operated on each
joint with self-attention, and [10] partitioned the body into
parts and operated on the flattened sequence through self-
attention. While these strategies facilitate better capturing
of spatial relationships between joints within individuals,
they increase the complexity of transformers in capturing
inter-human dependencies. Recently [11], proposed to reuse
DCT and GCN [46] in an autoregressive manner for dyadic
interactions. However, such approaches utilizing DCT may
produce overly smooth synthesized motions that fail to cap-
ture subtle nuances within motions. Moreover, predicting
the entire future sequence in one step, as demonstrated in
our work, avoids the accumulation of errors over iterations,
associated with autoregressive approaches [11, 15], pre-
venting potential collapse in the long term.

Motivated by the recent success of denoising diffusion
probabilistic models (DDPMs) [47] for human motion gen-
eration [48, 49], several studies have focused on applying
DDPM:s to multi-person motion generation in social dynam-
ics using diffusion-based models [16], synthesizing the reac-
tive behavior of a human given that of their counterpart [50,
51]. Despite the high motion diversity and fidelity achieved
with DDPMs, they often deviate too far from the ground
truth compared to deterministic models [48] or become
unrealistic within a historical context. Additionally, DDPMs
are computationally intensive, requiring significantly more
resources and time for inferring a single motion sequence.
Due to these limitations, we do not include DDPMs in our
comparison, as they are not suitable for real-time robot
behavior generation in social human-robot interaction,
which is the goal of our work.

2.3 Imitation Learning

The release of large-scale dyadic human motion interaction
datasets involving intense contact interactions [15], dancing
[52] or very diverse social actions [16] have motivated the
extensive research on modeling these social dynamics [11,
14, 15, 38, 45, 50, 51]. However, the available human-robot
interaction datasets are limited and focus on manipulation
scenarios [21, 22]. To overcome this issue, we propose to
translate human-human interactions to human-robot inter-
actions by making use of motion retargeting approaches.
This task aims to translate a motion from humans to robots
while maintaining a high visual resemblance.

@ Springer

Motion retargeting has been a long-standing challenge in
the animation and robotics community, driven by the need
to achieve natural human-like movements across different
embodiments. Early efforts approached retargeting as an
optimization problem, solving inverse kinematics (IK) with
specific space-time constraints [53-57]. These methods
aimed to preserve end-effector or intermediate joint posi-
tions but often struggled to generalize to complex human
motions. To address these limitations, learning-based
methods reframed human-to-robot motion retargeting as
a domain adaptation problem, emphasizing the preserva-
tion of visual fidelity between source and target motions.
While motion retargeting has been extensively explored to
translate human motions to animated characters [58—62],
this paper focuses specifically on the retargeting to robotic
embodiments.

Learning-based human-to-robot motion retargeting aims
to preserve visual resemblance during the imitation pro-
cess while enabling effective control of real robots. Unlike
animation-focused methods that rely on Cartesian space
or rotation representations between body limbs [58-62],
the goal here is to generate control commands that accu-
rately imitate a human movement. Given the difficulty and
time-consuming process of manually building a dataset of
human and robot pairs, [63] proposed an automatic pipe-
line to synthesize human-robot pairs offline. This method
involved retrieving the closest synthesized pose from a pre-
generated dataset based on a given human pose. However,
[63] adopted a nearest neighbor retrieval algorithm that
struggled to generate smooth motions.

To address this, [24] proposed to learn a shared repre-
sentation space between humans and robots, allowing for
direct decoding of robot commands from this latent space.
In this paper, we use ImitationNet [24] to construct a data-
set of noisy human-robot interactions. These interactions
are considered noisy, because [24] only ensures visual
resemblance in local coordinates with respect to the source
human, failing to maintain the spatial dependencies between
the generated robot pose and the human that is part of the
dyadic interaction. For instance, in a handshaking scenario,
the retargeted robot end-effector may not align closely with
the reference human hand if the robot’s height is lower than
that of the human being imitated.

To this end, our work not only teaches the future robot
controls to interact with a human in a social setting but also
adapts and refines the robot’s expected behavior to be as
close as possible to the reference human-human interaction
during close situations. To address this, we propose proxim-
ity-aware spatial losses that consider the similarity between
the source human motion and the generated robot behav-
ior, as well as maintaining the spatial dependencies with the
counterpart human in the interaction. Our dynamic losses
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decide which training objective to pursue at each time-step
depending on the semantics of the interaction.

3 Methodology

This section presents the task of human-human and human-
robot interaction behavior generation based on motion
forecasting. First, we formally describe the social forecast-
ing task. Later, we describe the different parts of our pro-
posed architecture, which is illustrated in Fig. 2. Finally,
we introduce the differences between human-human and
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Fig. 2 Overview of our human-robot interaction (HRI) behav-
ior generation. During training, a given human-human interaction
is retargeted to a human and robot interaction using ImitationNet
[24]. The first step is to construct the appropriate motion sequences
Xiepand X l;e  for the agents a and b that participate in the interac-
tion. X7 ; contains the observed last N motion states for the agent
i padded with the repetition of the last pose observed xf, such that
Xief =[x, --x%,--- ,x’y], with a total sequence length 7. Then,
we encode both reference motions using a Multi-Layer Perceptron
(MLP), so that E7. ;€ RT*P_ We also encode the textual social

human-robot interaction behavior generation and propose
various techniques applied to improve the overall behavior.

3.1 Problem Formulation

Let S be a dyadic interaction between two agents described
by a textual description D. Depending on the embodiment
of the agents, our social scenario can be classified as human-
human (S g i) or human-robot (S i r) interaction. We define
an interaction X' where i = {H, R} as a motion sequence
composed of T states, such that X' = [x}, -, x%]. We
describe an agent state in reference to a map reference sys-
tem in terms of global coordinate trajectory and local agent
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description with [49] and obtain a. We prepend a to E?,  and forward
each individual motion to the self-motion generation module, which

provides a future motion reference E:e ¢ through a self-attention trans-
former and a sequence of L temporal MLP layers. To align both single
motion references to the other partner in the interaction, we forward

E?e ¢ and E‘:ae ¢ = b to the social-motion generation module. There,
we iteratively refine the motions from agent a based on b, and vice
versa, obtaining E:oc and Esoc. Finally, we decode each EZSOC and
sum it to the last observed motion state x’; to simplify the training
objective
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pose. We consider the global trajectory g: € R” for an agent
i = {H, R} at time ¢ as the xyz translation v} € R? and qua-
ternion rotation Q2 € R* from the reference coordinate sys-
tem. In addition, we define a human local pose h € R7»*"
with J, joints, using quaternions (n=4) or xyz (n=3) for
joint representation. Similarly, a robot pose € R”~** has
J, joints, represented by joint angles (s=1).

The task of social behavior generation is defined as the
prediction of the future motion X%, = [y, - , @] per
all entities in the scenario (eitheri = {H, H } ori = {H, R})

1

given their past observations X, ; = [xh, -

, '], where
N represents the number of observed motion states in the
past. In this paper, we reformulate the forecasting objective
so that our network f, only learns the displacement of the
future states with respect to the last state observed x,, such
that X syt = fo(X past)) + X n. This same strategy has

been shown to be effective in prior works [7, 8, 64].

3.2 Human and Robot Behavior Generation

Modeling the different and diverse behaviors encountered
in a typical social scenario requires understanding the
spatio-temporal dependencies of the agent’s participant
in the interaction. Motivated by the high-quality perfor-
mance of attention-based models [65] in human motion
[6-8, 10, 15, 45], we adopt transformers as the core of our
architecture. Instead of considering a single-token autore-
gressive approach that predicts the next state of each agent
in the scene, we aim to forecast the whole interaction at
once. Therefore, we pad our observed interactions by
repeating the last state observed 7—N times, so the input
sequence has length 7. We refer to the padded interac-
tions as X1 ;= [&}, -+, @l - ] Intuitively, X,
represents that the agents do not change their state in the
future. Our transformer-based architecture learns how to
change those reference motion behaviors to achieve a social
interaction.

To simultaneously learn the dependencies between the
individual local joint coordinates and global trajectory (i.e.,
if the evolution of the agent poses represents a walking for-
ward behavior, the global trajectory should adapt accord-
ingly), we encode both representations together. That is,
we flatten the rotation-based local skeleton, both for human
h;’; or robot 7, and concatenate the global trajectory gi.
We embed this information using a multi-layer perceptron
(MLP) per each time-step and agent in the interaction,
RTXD

obtaining E’, § € , which is a higher-level represen-

tation of the human or robot observed behavior.

When aiming to anticipate the expected behavior in a
social interaction, we consider that three important factors
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should be taken into account. First, the expected social
interaction description: depending on location, social norm,
relationship, etc., two humans might perform a different
joint behavior. Second, the evolution of the current status:
we cannot abruptly change our global trajectory or the cur-
rent pose, but we transition smoothly to achieve a certain
behavior. In fact, when performing a handshake, our inten-
tion drives the arm movement to be extended following the
dynamics of the ongoing motion. We name this second term
as the ‘self intent’, which drives one behavior without con-
sidering the other person. However, in a social scenario, we
refine the end position of the hand movement to match the
other participant’s hand, so we can perform a proper hand-
shake. This third factor, which we describe as ‘social intent’,
refines the movement from the ‘self intent’ to accomplish
the social interaction, taking into account not only the indi-
vidual dynamics but also the behavior of the partner. Our
goal is to translate those social dynamics into the designed
architecture for a higher-quality behavior generation.

First, we encode the social description a using the
encoder of a text-to-motion pre-trained model [66], such
that @ € R”. Second, we define a self-motion genera-
tion module that operates on each single behavior without
considering the partner in the interaction. Our self-motion
generation follows a traditional strategy of self-attention
architecture [65], where we first add a sinusoidal posi-
tional embedding to E’_ s» append the social descrip-
tion token a to the encoded observed behavior such that
Eief = [&,Eief] e R(T+UXD " and forward Efnef to a
self-attention transformer. Then, similar to [8, 9] for single-
motion forecasting tasks, we iteratively smooth the output
of the self-motion transformer by expanding and compress-
ing the time dimensionality of the output through L tempo-

ral MLP layers, obtaining Eief € RX(T+LxD,
Until here, we have only modeled each individual’s

behavior as an independent entity without considering the

partner’s behavior. Motivated by the aforementioned ‘social
intent’, we propose to refine Efef conditioned on Eief.
Note that a and b are the two agents in the interaction, which
can be depicted as two humans H1 and H?2 or human H and
robot R depending on the scenario. Our social-motion gen-
eration module uses a series of two cross-attention layers
to refine one subject motion based on the other. Our cross-
attention mechanism learns how to blend an input Query

(Q) based on a conditioning Key (K) and Value (V). First,
we use Ezef as Q and Eie‘f as K and V for the first cross-
attention. The goal is that the resulting motion of the subject
a (Ea ) has been refined to be compliant with subject b.
. b

This step is now repeated in the inverse order, being E,, ¢ as

soc
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a

Qand ESOC as K and V. This dual cross-attention strategy is
repeated k times to iteratively enhance each agent’s behav-
ior to be in synchrony with the other agent during the social
interaction. For an illustrated description of our self- and
social-motion generation module refer to Fig. 2.

and Eb

soc’

a

Finally, given E soc that represent the behav-
ior of each agent in the interaction, we use an MLP layer
to infer each motion behavior at each time-horizon in the
future, such that le or robot f'i represent the local pose of
an agent and gi indicates the predicted global information.

3.3 Losses

Our task is to optimize the parameters of a deep learning
neural network to learn the behaviors of humans in human-
human interactions, as well as the robot’s behavior when
participating in human-robot interactions. For that, we
consider the weighted sum of different losses based on the
task at hand, which aims to ensure that the generated behav-
iors are natural and follow the dynamism in typical social
interactions.

3.3.1 Movement Losses

Following the aforementioned factors that we considered
relevant to encounter in social interaction, we define two
losses that encourage the model to learn the ‘self intent’
and ‘social intent’ expected from social behavior. First, we
enforce the output of the self-motion generation module to
generate dynamic movements that approximate the evolu-
tion of the individual. Then, we guide the refinement of the
motions produced in the social-motion generation module
to the ground-truth motion state information for each indi-
vidual. We denote these two losses as self-loss L7 and
social loss L., which take the form of a Mean Square Error
(MSE) function. Note that D;; represents the decoder used
to project the learned motion representations, either from

the self- (EiE ) or social-module (E,,,
local and global agent information X°.

i

), to the respective

A7

Loef(X') = MSE(Dg(E,.;) — X) (1)
Looe(X') = MSE(Dy (E",.) — X7 )

3.3.2 Interaction Losses

Lsery and L, enforce each individual of the interaction to
follow their original behavior. However, for a natural social
interaction, if one of the individual’s behavior shifts, the

partner should adapt their movement accordingly. This spa-
tial synchrony is very explicit in physical interactions, such
as dancing together, handing over objects, or greeting with
a handshake, where any subtle change of movement of one
individual affects and should be considered by the other to
carry on with the interaction. To enforce learning this behav-
ior, we propose an interaction loss L, ¢e, that minimizes the
distance between some correspondent joints from agent a
to b in the interaction, referred to as Distance Matrix (DM).
Note that L;,¢, is applied to the global Cartesian position
of the agents’ joints with respect to a reference map frame.
In the case of human-human interaction, the human
motion is already represented as xyz for the local joint
position and root coordinates. Thus, we can easily obtain
the global information. Moreover, given that both agents
participating in the interaction are human, we consider all
joints in the calculation of the Distance Matrix. However,
for human-robot interaction, we first need to compute for-
ward kinematics to the robot’s joint angles r to obtain the
xyz positions of each robot joint with respect to the robot’s
base, F'K (7). We later compute the transformation matrices
from the robot’s base to the global map coordinates using
the root position v¥ and orientation Q% and obtain the joint
Cartesian position in the global coordinate system. Given
that humans and robots only share certain joints, we con-
sider only the human hands and the robot’s end-effectors for
the DM computation. The proposed interaction 10ss Ly ¢er
is shown in Eq. 3. For simplification, we denote as Y’ the xyz
global position of all J; joints of an agent 7, either human or

robot, and V' as its root position. Similarly, Yl, and ' are
the predicted global coordinates and root positions.

Lint(Y,Y?) = MSEDM(Y", Y”) —DM(Y%, YY) (3)

3.3.3 Embodiment Losses

Up to this point, the proposed losses have optimized our
model to generate a natural behavior (Lseir and L) that
synchronizes and adapts to the other participant in the inter-
action. However, there is a need to enforce that the gener-
ated embodied poses are feasible and adequate. For that, in
the case of human-human interactions, we adopt a bone loss
Lpone to reinforce the predicted body joints in XYZ-euclid-
ean representations to have consistent bone lengths. We use
the kinematic structure of the human to minimize the MSE
between the bone lengths of the ground-truth human skel-
eton and the predicted ones.

As we adopt joint angle representation to describe the
robot’s joints, we do not encounter that issue in robots.
However, while the human motions are obtained from high-
quality motion capture systems in real-world interactions,
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the robot partner behavior used for training is generated by a
pre-trained imitation model, named ImitationNet [24]. Imi-
tationNet only focuses on retargeting the style of a human
pose to a robot pose but does not consider external con-
straints in the learning process, such as ensuring that the
hand is in a similar global position as the reference human.
For example, when considering a reference human pose in
global coordinates Y/ who is extending the arm to perform
a handshake, ImitationNet will generate a robot pose Y%
also with the extended arm. However, given that the height
of the TIAGo++ robot is less than the height of a human, the
robot hand is in a much lower position. In an ideal situation,
we would like the generated behavior to focus less on the
local configuration of the robot at the times of close proxim-
ity (e.g., hugs, contacts) and more on the relative distance
between the human and the robot’s limbs. While L, ier
enforces this spatial synchrony between the two individuals
in the interaction, we consider it necessary to encourage the
predicted robot pose to be as close as possible to the refer-
ence human pose used in the retargeting within the local
coordinate system. Therefore, we propose an imitation loss
Lims+ that minimizes the distance between the human hands

.o H
of the reference human motion Y., and the end-effector

. . . . o R
position obtained from the predicted robot motion Y ..

Limit = MSE(XZ - Xi) )

3.3.4 Adaptive Proximity Losses for HRI

Our previously proposed multiple losses have aimed to
enhance the model performance according to the different

Two individuals confront each other, with the initial individual reaching out
his/her arm while the second individual extends his/her hand.

Inter. Loss X | Imit. Loss X hdapt. Loss X||Inter. Loss v | Imit. Loss v/ hdapt. Loss v/

.l b
At N L ) f i\ h‘\
distance “/ s \ i
Inter. Loss v | Imit. Loss v |Adapt. Loss X||Inter. Loss v | Imit. Loss v/ lﬁdapt. Loss v/

contact ) - G
situations w k‘»» & P

[} o [} L

A L\

Fig. 3 Qualitative effect of different losses over the generated behav-
ior of the TIAGo++ robot. When human and robot are at a certain
distance, the robot should focus on following the reference human
motion (in blue), encouraging the ImitationNet reconstruction loss. On
the contrary, during close situations, the robot should focus on imitat-
ing the reference trajectory, ensuring that the robot arms are in contact
to the partner’s elbows. We achieve this trade-off through the use of a
adaptive loss
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nature of the dataset, either HHI (clean, collected using pre-
cise MoCap systems) or HRI (noisy, obtained by retargeting
one individual to a robot using ImitationNet [24]). During
human-human interactions, the optimization objectives of
the neural network is to minimize a total loss compounded
by:

thi = )\self * Lself + )\soc * Esoc (5)
+ )\int * Lint + )\bone * Lbone

Given that all losses operate over the same clean HHI
data, the overall Ly,;,; simply focuses on reconstructing the
masked future behaviors by aggregating penalties from dif-
ferent point of view (individual or social conditions, relative
distances between the subjects or bone changes).

However, this process remains challenging for HRI, as
the movement losses (Lgerr and Lgoc) prioritize generat-
ing behaviors that closely match ImitationNet’s robot ref-
erence, while the interaction (L;,;) and imitation losses
(Limst) prioritize preserving the end-effector trajectories
from the reference human motion. In the scenario where all
aforementioned HRI losses are compounded together, the
overall training objective only aligns when the end-effec-
tor of the human reference matches the end-effector of the

. o . < H
retargeted robot using ImitationNet (i.e., when X __ equals

X i ), which is usually not the case if the targeted robot
has a different shape than the original human (e.g., lower
height, longer arms). Overemphasizing the weight of L.+
and L;,,;; would lead to unnatural robot behaviors that
constantly aim to follow the global trajectory of the human
hand. For instance, due it the shorter height of the TIAGo++
robot, it has to raise its arms to match the human’s during
walking, as depicted in the top-left snapshot of Fig. 3.

To resolve the aforementioned misalignment in training
objectives, we introduce a novel loss function that adap-
tively adjusts the importance of the individual and interac-
tive losses at each time-step of the interaction. Specifically,
when subjects are at a certain distance, we prioritize fol-
lowing the ImitationNet reference; when they are close, we
emphasize following the reference trajectory. Rather than
defining thresholds based on the relative distance between
the subjects’ base, we introduce a new method to detect
physical contact or close proximity. This method works as
follows:

1. Detecting physical contact in human-human inter-
action. We model the human body with simple colli-
sion meshes: limbs and torso as cylinders, and hands
as spheres. We manually set the radius for each mesh
(as shown in Fig. 4). When the meshes of two subjects
collide, we assign a binary value indicating contact.
Additionally, we manually define a proximity margin,
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m, to detect when the meshes are close, defining prox-
imity sensors S,,(H*, H?), where S,,(H/},, HE )
returns 1 if the distance between any pair of human A to
human B is less than m and 0 otherwise. For example, in
a handshake, when m=0, the sensors indicate contact,
and when m=0.05, they indicate proximity within 5 cm.

2. Detect physical contact in the human-robot inter-
action. Similarly, we define collision meshes for the
robot’s body parts (arms, torso, and end-effector) and
apply the same method as for HHI to detect collisions
in HRI.

3. Design an adaptive loss.The proximity informa-
tion from HHIs is used to adjust the weighting of
interaction losses. The weight factor, w,., is cal-
culated  as: Wpr = 0.5 % Sp—o(Hi 1, HE 1)+
0.5 Sm:o.os(H;if,HTBef). On that regard, our final
loss is computed as shown in Eq. 6, where the inter-
action and imitation losses are only encouraged dur-
ing close proximity (i.e., wy, = 1 during contact and
wpr = 0.5 when very close). Notice that the values of
m=0.0 and m=0.05 have been manually predefined to
account for contact situations and very close proximity
levels.

»Chm' =Wpr * ()\znt * »Cint + Aimit * Lzmzt)"_
(1 - w;m*) * ()\self * Eself + )\soc * Esoc)

(6)

Fig. 4 Illustration of a physical contact in a human-human interaction
(left) alongside the reference human-robot interaction (right) from
ImitationNet. The original behavior depicts a human who has helped
another person to stand-up by providing balance by grabbing the part-
ner’s arm. However, ImitationNet cannot preserve the contact between
the left end-effector of the robot and the human left arm, which empha-
sizes the need of refining the reference robot motion during close situ-
ations between both agents

4 Experiments
4.1 Datasets
4.1.1 InterGen Dataset

InterGen [16] is the largest 3D human-human motion data-
set, featuring 6022 dyadic interactions described by 16,756
natural language annotations. The dataset includes physical
interactions recorded by professionals (e.g., dancing, box-
ing) and everyday social activities (e.g., handover, greeting,
communication). Although we are more interested in the lat-
ter interaction types for learning social HRI behaviors for
robots, we train our models on the full dataset to increase the
robustness of our model to diverse interactions and offer a
fair benchmark for future works that only focus on HHI. We
define the forecasting task as predicting the motion of each
individual entity in the next 1.5seconds given an observa-
tion of 0.5 seconds. A human is described by 22 joints com-
prising both legs, arms, torso, and head.

4.1.2 Human-Robot Interaction Dataset

Due to the lack of a proper social dataset for human-robot
interaction, we make use of a pre-trained human-to-robot
motion retargeting model [24] to transfer the human motions
to a TTAGo++ humanoid robot. ImitationNet [24] converts a
human local pose represented as quaternions to a robot pose
in joint angles. Still, ImitationNet only generates the robot
joint angles and cannot predict the prismatic trunk height,
the robot’s head orientation, or transfer the root position.
For those, we decide to copy the human’s head orientation
to the robot as well as the root trajectory. Regarding the
prismatic trunk, we set the default trunk height to 1meter.
Note that in our previous approach [23] we only control the
robot arms. Overall, we use the inverse kinematics from
[67] to extract the local pose of the human reference as
well as the root orientation (in quaternions) and translation
(in Cartesian space). ImitationNet is used to convert those
local human poses to robot joint angles, which can then
be transformed into the robot’s Cartesian position through
Forward Kinematics and the corresponding transforma-
tion matrices obtained from the original human. Finally, we
define the robot behavior generation task as predicting the
robot’s motion in the next 1.0 seconds given an observation
of 0.5 seconds.

4.1.3 CHICO Dataset
Although transferring social behaviors is the goal of this

work, we also evaluated our framework in a Human-
Robot Collaboration (HRC) scenario involving a shared
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manipulation task. CHICO [21] contains a single operator
in a smart factory environment performing seven assembly
tasks together with a Kuka LBR robot. The 3D motions of
both the human and the robot are recorded. In this case, the
task is to predict the operator’s motion intent (e.g., object
pick and place, surface polishing, hammering, or object lift-
ing) in the HRC scenario, while also considering the robot’s
behavior. We follow the standard evaluation and predict the
next 1000 ms given 400 ms of past observations.

4.2 Metrics

Given the various nature of our evaluation, we consider
different metrics per each task. For the human-human and
human-robot behavior generation tasks, we follow the stan-
dard metrics in multi-person motion forecasting [10, 12].
Given that the standard evaluations focus on xyz positions
of the human joints, we convert human and robot motions
to the global coordinate system in the Cartesian space, as
indicated in Section 3.3.2.

4.2.1 Metricsin HHI

JPE. We compute the Joint Position Error (JPE) to measure
the error (in millimeters) of each joint position in a given
future time step with respect to the map coordinate frame.
Note that our evaluation for human-human interaction con-
siders both humans as part of the equation (subj=2), but
in human-robot interaction, we only evaluate the robot’s
behavior (subj=1).

subj
1

J
1 S
§:7§ Xt X2
subj ~ J, ~ ] J ]|| ) (7

i

JPE(Y,Y) =

AJPE. Aligned JPE (AJPE) only considers the local posi-
tion error with respect to the root position (i.e., the pelvis
of the human or the base footprint of our TIAGo++ robot),
allowing us to evaluate non-physical interactions such as
waving or communicating, where precise prediction of the
root position is less important.

AJPE(Y,Y) = JPE(Y —v,Y — ). (8)

FDE. While AJPE and JPE focus on the agent joint infor-
mation, we compute the Final Displacement Error (FDE)
to evaluate the global trajectory of each individual behav-
ior, where v{ and ! are the estimated and ground truth root
position of the final pose at the #-th predicted timestamp for
each agent 7.

FDE(Y,Y) = |[v; — ;]| 9)
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MPJPE. Following the standard evaluation adopted in the
CHICO dataset [21], we use the Mean Per Joint Position
Error (MPJPE) to evaluate human motion forecasting.

4.2.2 Metricsin HRI

While AJPE and JPE allow for precise evaluation in human-
human interaction generation, they are not sufficient in the
case of robot behavior generation due to the lack of a clean
dataset. In Section 3.3.3, we pointed out the limitations of
the human-to-robot retargeting models, which enable us to
transfer human behavior to robots locally but do not pre-
serve the relative distances existing in the human-human
partners. In our HRI scenario, AJPE and JPE only account
for the alignment to the ImitationNet reference, which is
important during proximity situations, where individual
style is the most important. However, they do not measure
the alignment of the HRI based on the original HHI. To
better measure this social synchrony between humans and
robots, we propose two new metrics.

To do this, we detect the ground-truth proximity between

the original human-human interaction (Sm(HTAef,Hffg )
and compare it with the generated human-robot behaviors

(Spm(HA  RE

gens gen)) using the F1-Score. We define F1 Con-
tact as the F1-Score when using no margin (m=0.0) and
F1-Proximity when using a small margin (m=0.05).

Finally, we also evaluate the gaze behavior of the robot
compared to the reference human. We consider that transfer-
ring a natural gaze behavior to the robot is very important
in social interaction, as it helps the human partner to better
understand the robot’s intent. We measure the difference in
head rotation as the distance between the normalized qua-
ternions of the reference human head and the retargeted
robot head.

4.3 Implementation Details

All models were trained on a single GPU for 100 epochs
using an exponential decay scheduler and AdamW as an
optimizer, with a 5-epoch warm-up. We observed that the
evaluation code used in [23] only considered the human
pelvis in the global coordinate system, instead of all joints.
This affected the measurements of the JPE and AJPE across
all baselines. We corrected the issue and re-evaluated all
metrics.

4.4 Quantitative Evaluation

Motivated by the goal of designing a robust and accurate
model to generate high-quality robot behaviors for HRI, we
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first conduct an extensive evaluation of the proposed model
using ground-truth data and existing benchmark datasets.
Therefore, we first evaluate our model in the InterGen data-
set [16] for Human-Human Interaction, and in the CHICO
dataset [21] for Human-Robot Collaboration, and perform
a thorough ablation study to investigate the benefits of all
proposed approaches. Later, we evaluate our best model for
human-robot interaction.

4.4.1 Human-Human Interaction

We train and evaluate our model, along with state-of-the-
art baselines for multi-person motion forecasting, using the
InterGen dataset under identical training configurations to
ensure a fair comparison. As shown in Table 1, our frame-
work consistently outperforms all baselines across various
metrics. We denote Zero Velocity as the repetition of the
last pose observed, which acts as the simplest baseline for
our evaluation. Additionally, [6] is a single-person motion
forecasting model that treats each participant in the dyadic
interaction as independent. We use [6] in the comparison
to showcase the strong benefits of considering the human
partner when modeling social interactions. In contrast, mod-
els such as [10-12, 15] are specifically designed for multi-
person motion forecasting. Table 1 indicates that while
autoregressive approaches like those in [11, 15] perform
well for short-term predictions, they struggle with captur-
ing long-term dependencies. Furthermore, our model pre-
dicts the entire motion sequence in one shot, resulting in
significantly faster inference, which will be crucial later for
the robot behavior generation in real HRI. Fig. 5 illustrates
the performance of our model in human-human interaction
scenarios.

4.4.2 Human-Robot Collaboration

To further evaluate the robustness of our approach to differ-
ent datasets, we train and evaluate our model in the CHICO
dataset [21] for the human motion forecasting conditioned
on the observed robot and observed human motion. Fol-
lowing the original work [21], we report the MPJPE for
the short-term (400 ms) and long-term (1000 ms) horizons.
Table 2 showcases that our model outperforms previous
baselines, especially in long-term forecasting.

4.4.3 Ablation Study

We conduct a systematic evaluation of different varia-
tions of our framework to showcase the benefits of those
approaches, which are presented in Table 3.

First, we assess the benefit of using text as an additional
modality to guide the human-human interaction generation.

Table 1 Evaluation of our model in the InterGen dataset for the human-human interaction forecasting task [16]. We indicate with bold the best result and with an underscore the second-best result

across each different metric, where a lower metric is better

FDE (mm)|

0.20

APJE (mm) |

0.20

JPE (mm) |

0.20

1.00 1.50

0.50

1.00 1.50

1.50 0.50

1.00

0.50

seconds

205.30 292.73

106.35
78.68
37.42

46.12

39.93
38.92
16.24

132.59
19.51

112.22

93.95
82.67
88.44

234.45 324.36 29.11 70.54
64.76

126.69

48.75

Zero Velocity
HisReplt [6]

202.80

147.26
84.00

119.96

37.48
20.69

176.61 235.55

103.85
59.93
66.27

55.99
25.94

26.55

146.06

106.85

47.13

185.00

119.53

Social TGCN [12]
TBIFormer [10]
TwoBody [11]
ExPI [15]

Ours

166.85

100.39
75.63

93.15

112.74

48.62

18.90
14.57

205.67

135.47

140.70

174.08

106.19

47.60
56.69

42.41

18.24
19.01

166.10
80.92

37.60
25.70

13.38
11.61

113.83
66.65

85.66
50.22

44.41

15.30
15.15

203.70

127.01
71.32

48.15

33.40

108.57

18.82
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Fig. 5 Qualitative results for Human-Human Interaction in the InterGen [16] dataset. Each scenario shows the ground-truth human pair (left) and

the predicted (right) per each time horizon

Table 2 Quantitative evaluation of the short (400ms) and long-term
(1000ms) motion forecasting in the CHICO dataset [21] reported in
MPJPE. Here, bold indicates the best result and underscores the sec-
ond-best result

milliseconds (ms) 400 1000
Zero Velocity 162.0 282.0
HisReplt [6] 54.6 91.6
MSR-GCN [4] 54.1 90.7
STS-GCN [68] 53.0 87.4
SeS-GCN [21] 48.8 85.3
Ours 47.1 80.5

We assess the performance without this feature for a fair
comparison with the baseline models that do not consider
the text guidance in their architecture. Still, our model out-
performs previous baselines by large margins, mostly on the
long-term prediction.

Second, we evaluate four different variations of our
architecture, such as removing learning only the motion dis-
placement (‘w/o Baseline’), adopting the Discrete Cosine
Transform (‘w/ DCT’), not using a set of temporal MLP lay-
ers in the self-motion generator module (‘w/o TempMLP’),
and not using the iterative refinement in the social motion
generation module (‘w/o Iterative Refinement’). As men-
tioned in Sect. 3.2, we simplify the training objective of
our model by just learning the displacement of the motions
with respect to the last state observed per each individual.
Here, ‘w/o Baseline’ refers to predicting the full motion
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directly, instead of learning only the displacement, which
significantly degrades performance in the long term. Then,
we also analyze the use of DCT to encode the motions in the
frequency domain as proposed in [11]. While prior works
[11] have shown that DCT aids models trained on smaller
datasets by enhancing generalization, we observe that when
using DCT on large datasets such as InterGen, our model
struggles to capture the details in the interaction. The use
of TempMLP has also been adopted by prior works in the
motion forecasting field, such as [8—10]. Table 3 shows
benefits of using TempMLP in the short-term predictions.
Finally, we evaluate the iterative refinement proposed in the
social-motion generation module by comparing interleaved
cross-attention with a sequential refinement approach that
first updates one individual and then the other. As expected,
interleaving the refinement helps the model incorporate
the other partner’s intention into the behavior generation
of one partner, which improves the stability of long-term
forecasting.

Thirdly, we evaluate the use of our individual losses
Lind, which help the model in the short term. These results
are aligned with the motivation proposed in Section 3.2,
as L;nq encourages a better ‘self-intent’, which drives the
human motion in the short-term as it accounts only for
one’s dynamics. However, it slightly reduces the impor-
tance of social motion, which is key for better long-term
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One person throws a punch in front of him, and the other person imitates their movement.

Fig. 6 Imitation game. This scenario depicts the ability of our genera-
tive model to understand simple games such as repeating other move-
ments. (blue human imitates red person). We believe that using the

shared latent space of ImitationNet helps reducing the gap between
both embodiments, which helps the robot understand what the word
‘imitation’ entails

One individual extends her left hand and gently taps the shoulder of the other individual with her right hand.

Fig. 7 Physical contact. Thanks to the proposed losses, the robot is able to extend the arms to contact the human partner’s shoulder during this
interaction

the estimated human pose in the background at each time
of the snapshot, which showcases the inaccuracies of the
fed data to the model. Similarly, in Fig. 11 we evaluated a
handshake between a human and a robot. However, given
that we are using the on-board camera of the TIAGo++
for pose estimation, we observe that if the human was too
close to the robot, the pose estimation was incorrect or even
not detecting the person and as a result, the robot was not

behaving properly. Therefore, we simulated a handshake
from a distance. Still, we can observe that the TIAGo++
robot adapts its end-effector position to the human’s hand
height, which demonstrates that it captured the importance
of ensuring contact with the human hand during a prompted
‘handshake’ interaction.
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One individual stands facing another individual and lifts both hands, greeting him with a wave. At the same time,
the second person also raises both hands and reciprocates the gesture.

Fig.8 Actor-reactor situation. During this task, the robot is able to gen-
erate a fast response to the partner’s waving behavior, showcasing the
importance of forecasting the counterpart motion (e.g., anticipating the

Fig. 9 End-to-end pipeline of our real-world robot control for social
human-robot interactions. Here we do not showcase any robot behav-
ior, but the overall human capture system. First, we use YOLOV9 [69]
and HybridIK [70] for human detection and pose estimation. Then,
we transform all the coordinates to the robot’s coordinate frame and
generate the robot behavior accordingly

6 Limitations and Future Work

Despite the generated robot behavior depicted in the real-
world HRI aligning with the prompted text, it is important
to mention that the quality of those behaviors is lower com-
pared to the high-quality interactions when tested in the
InterGen dataset. We believe this sim-to-real gap is mainly
caused by:

e Inaccuracies in the pose estimations, as can be observed
in Figs. 9 and 10. This issue accentuates when the human

@ Springer

waving while the partner is only starting to raise the arms) to accu-
rately decide when to generate the reciprocative gesture

is positioned very close from the on-board TIAGo++
camera, causing the pose estimator to fail since it can-
not detect the entire body. Developing a more reliable
pose estimation for very close situations could mitigate
this sim-to-real gap. Similarly, adapting our generative
architecture by incorporating potential masking in the
human partner observation, as [7, 8], could enhance the
robustness to outliers and occlusions in the perception
system. We leave this for future work.

e Communication delays that exist between the com-
manded robot joints and the actual robot response,
which make hard the implementation on the TIAGo++
robot without faster controllers.

Additionally, our current model relies on the contextualiza-
tion of the interaction through a textual description, which
describes expected behaviors as the ‘waving’ depicted in
Figs. 8 and 10. We believe that including textual conditions
to the generative model is beneficial as it instructs and con-
ditions the expected behaviors of the robots, making them
suitable to operate in pre-defined scenarios or roles. For
instance, if a service robot is at a conference center greeting
and assisting the public, the robot operator could directly
specify expected actions as ‘shake hands’, ‘bow’, or ‘greet’.
Similarly, it allows one to coordinate speech with actions
assuming a VLM is processing visual inputs and command-
ing the motions to our framework. Finally, and even sim-
pler, the model could just be prompted to follow partner’s
commands, such as ‘let’s dance bachata’ or ‘give me a hug’.
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Pose Estimation

One individual stands facing another individual and lifts both hands, greeting him
with a wave. At the same time, the second person also raises both hands and

reciprocates the gesture.

Fig. 10 Real-world waving interaction between a human and the TIAGo—++ robot. Despite the pose estimation loses track of the human, our method
is robust enough to generate reasonable interaction behaviors and wave back to the human

One individual extends a handshake with their right hand, while the other reciprocates with their
own.

Fig. 11 Real-world waving interaction of a human simulating a handshake with the TIAGo++ robot. Since the pose estimation uses the on-board

TIAGo++ camera, the handshake motion is performed from distance

Exploring better methods to flexibly decide when to prompt
and how to prompt the model remains an underexplored
research path, which would enhance even more the auton-
omy and contextual alignment of the robots’ behaviors in
populated environments.

7 Conclusions

Motivated by the dynamic and adaptable nature of human
behaviors observed in human-human interactions (HHI),
this paper introduces a transformer-based framework that

predicts the human intent and robot behaviors concurrently
to enhance a natural human-robot interaction (HRI). First,
we make use of a human-to-robot motion retargeting sys-
tem to learn robot behaviors from human data. Then, we
adopt an iterative refinement process that learns to adapt
both human and robot motions to each other’s intent under
a social interaction. As a result, our model outperforms the
state-of-the-art when forecasting dyadic human motion
within the largest dataset available and predicting the human
intent for a Human-Robot Collaboration task. By leverag-
ing cues from HHI as references during training and with
the inclusion of a novel dynamic loss adaptation based on
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the agents proximity, we ensure that robot-generated behav-
iors are aligned with social interaction norms. We conduct
a comprehensive ablation study to systematically validate
the efficacy of our approach in both HHI and HRI contexts
and propose novel metrics to gauge the dynamics of social
interactions. Finally, we evaluate our framework through
qualitative HRI experiments on simulated and real-world
TIAGo++ robots, thereby paving the way for autonomous
social robots capable of navigating and working alongside
humans.
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