
International Journal of Social Robotics (2025) 17:3211–3230
https://doi.org/10.1007/s12369-025-01333-3

short. Instead, it is desirable that robots infer and understand 
social norms, individual preferences, and the intentions of 
the surrounding humans to effectively engage in these inter-
actions. Still, designing robot behaviors that accommodate 
all these diverse variables presents a significant hurdle. On 
the contrary, in this paper we propose to learn the social 
dynamics existing in human-human interactions and trans-
late those learned behaviors into robots. An illustration of 
our robot’s decision-making process is depicted in Fig. 1.

Understanding human behavior is a long-standing chal-
lenge in the AI and robotics community, involving the 
comprehension of complex, context-dependent actions and 
intentions. In the context of social interactions, the move-
ments of individuals reflect their behavior and intentions. 
As humans, we predict the future movement and state of a 
human in the short-term future to optimize for fluent inter-
action [1]. For instance, when meeting a person, we extend 
the hand to perform a handshake but adapt our approaching 
behavior to the observed motion of the other individual, so 
that both hands meet. In the research community, the task of 
predicting future human poses based on past observations is 
known as human motion forecasting. While there has been 
significant progress in single human motion forecasting 

1  Introduction

In recent years, the coexistence of humans and robots 
within a shared workspace has become increasingly com-
mon, leading to an interest in human-robot interaction. As 
these entities share physical proximity, robots are compelled 
to integrate human actions into their decision-making pro-
cesses. Traditionally, this has been addressed through the 
design of reactive robotic behaviors to assist humans in 
achieving a specific goal. However, when it comes to auton-
omous social interaction between robots and humans, mere 
prediction of human actions for robot decision-making falls 
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The increasing presence of robots in human workspaces underscores the need for intelligent systems that can understand 
human behaviors and act accordingly for a natural human-robot interaction (HRI). In this work, we propose a method 
to generate a robot’s behavior for social HRI by integrating both human and robot intentions into the robot’s decision-
making process. Our system learns appropriate robot behaviors in social scenarios by observing human-human interactions 
(HHI). Using a transformer-based model, we first capture the dynamics of each individual and then iteratively adapt both 
human and robot behavior to achieve a successful interaction. By connecting our model with a human-to-robot motion 
retargeting framework, our system learns how a robot should behave solely from observing human data. To address the 
disparity between HHI and HRI, we employ several loss functions that encourage our robot to reproduce the social dynam-
ics observed in humans. As a result, our approach outperforms the state-of-the-art in dyadic human motion forecasting 
prediction in the largest dataset available and obtains high-quality robot behaviors in human-robot interaction scenarios. 
Finally, we conduct a thorough evaluation of our performance for HHI, and HRI, and implement and test the system in 
the real-world TIAGo++ robot.
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[2–9], they primarily focused on modeling the dynamics 
of a unique skeleton in local representations, without con-
sidering their global trajectory. Instead, learning the depen-
dencies between the various individuals in human-human 
interacting scenarios remains a challenge. Multi-person 
forecasting [10–15] aims to model the spatial dependencies 
among the surrounding agents to predict their future move-
ment. Existing studies on multi-person scenarios encode 
the relationship of multiple humans in scenarios with little 
or artificially synthesized interactions between the subjects 
[12–14], or with interactions that are not adequate for robots 
[15], such as fighting. Instead, we envision scenarios that 
are more representative of real-world Human-Robot Inter-
actions (HRI) and model highly interactive scenes between 
humans that are executing a shared action [16], such as 
handovers, dancing, or greeting.

Even if we can model human dynamics in social set-
tings, transferring this behavior to robots remains a chal-
lenge. Previous works [17–19] have focused on a reactive 
robot behavior, where the robot forecasts human motion 
and then responds with a set of predefined actions. More 
recently, [20] showed that by forecasting the surrounding 
human actions, the robot can anticipate its expected behav-
ior and proactively assist the human, thus making the over-
all human-robot interaction more fluent. However, all the 
aforementioned works handcrafted the robot’s response to 
the predicted human intent. In the context of social human-
robot interactions, handcrafting the appropriate robot 
behavior that accounts for the very diverse human actions 
remains unfeasible. The optimal procedure would be to 
learn the adequate robot responses similar to multi-person 
interaction works [10–15], where one of the individuals is 
a robot. Recently, there have been many efforts in building 

human-robot interaction motion datasets for manipulation 
scenarios [21, 22]. However, these datasets are limited in 
terms of the variability of robot embodiments and action 
diversity. Additionally, [21, 22] only focused on human 
motion prediction conditioned on the robot actions but 
neglected the generation of the robot interaction behavior.

In fact, constructing large-scale human-robot interaction 
datasets is cumbersome, and the robot behaviors are usually 
controlled using teleoperation during the recording, limit-
ing the scalability of the framework. Instead, in our previ-
ous work [23] we use a human-to-robot motion-retargeting 
algorithm [24] to unify the human and robot behaviors into 
a shared latent space. Thus, our ECHO system [23] could 
learn to generate human-robot interaction behaviors inde-
pendently of the individual embodiments. Still, by con-
structing ECHO as a two-step framework and exclusively 
predicting the robot’s behavior in a pre-trained shared latent 
space, the robot’s decoded actions lacked spatial awareness. 
That is, in a human-robot handshake, the individual robot 
behavior resembled a proper handshake in local coordinates, 
but did not adapt to the partner’s hand location. Therefore, 
the human and robot hands did not meet. In this work, we 
extend ECHO [23] by proposing a contact-aware robot 
behavior generation that learns in an end-to-end manner the 
spatio-temporal dependencies between humans and robots, 
thus encouraging the social dynamics to be met during robot 
execution. Additionally, to achieve a trade-off between 
faithfully imitating the style of the human references while 
preserving the semantics of the interactions, we incorporate 
a proximity sensor loss, which dynamically adapts where 
the model should focus during training. Our novel spatial 
dynamic loss boosts the quality of the generated human-
robot interactions. We conduct a thorough quantitative and 
qualitative evaluation to ablate the benefits of our approach 
for HRI, and introduce new social metrics to measure the 
quality of an interaction. Finally, we implemented a real-
time framework using ROS to generate such HRI behaviors 
in a TIAGo++ robot.

In conclusion, we propose an end-to-end learning model 
that generates human-robot behaviors from purely human-
human interaction observation. We adopt the single and dual 
motion transformer from [23] that decouples the human and 
robot future movements in the early stages and learns to 
refine the interaction behavior by considering the overall 
global movements. However, instead of predicting a pre-
trained shared representation among humans and robots, our 
framework generates robot joint angles to directly control 
the robot behavior. Later, we perform forward kinematics in 
the robot to obtain the end-effector position and encourage 
those to be closer to the reference human motion. Thanks 
to our adaptive proximity loss, our training encourages 
the model to achieve high-quality human imitation while 

Fig. 1  Illustration of our robot’s decision-making process. Our 
TIAGo++ robot learns to forecast the most natural movements in a 
human-robot interaction by observing dyadic human interactions. 
After this learning process, our model can generate high-quality robot 
behaviors that adapt to the partner’s intent. It achieves this by envi-
sioning how human and robot intents can seamlessly blend together 
through a deep-learning motion forecasting network
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following the physical contacts of the reference interactions. 
Given the evolutionary nature of this work, in this paper, 
we extend the results from [23] to the human-robot interac-
tion behavior, introducing new qualitative and quantitative 
experiments for HRI scenarios, better techniques to boost 
the results in HRI and novel social metrics to evaluate those, 
and we implement our framework in the real world using 
the TIAGo++ robot. The contributions of our paper can be 
summarized as follows:

	● An end-to-end deep learning framework to gener-
ate robot behaviors in social settings that are aware of 
the spatio-temporal dependencies in human-human 
interactions.

	● An efficient model that achieves state-of-the-art perfor-
mance in real-time for social human forecasting and in 
human-robot collaborative scenarios.

	● A novel proximity-aware dynamic loss that weighs the 
importance of different measurements during training, 
to achieve the right balance between individual behavior 
imitation and social interactions.

	● The implementation of the system in a real-world robot 
to generate fluent social behaviors with humans.

2  Related Work

This section is organized as follows. First, we review the 
literature on human behavior modeling from the motion 
perspective. Then we focus on the translation of those 
behaviors to robots using imitation learning. Finally, we 
introduce various works on Human-Robot Interaction that 
consider human behavior modeling in their robot behavior 
response.

2.1  Human Intent in HRI

For robots to interact alongside humans to achieve a shared 
goal, they need to understand the human partner’s intent and 
incorporate it into their decision-making process, so that 
both entities are coordinated. Losey et al. [25] identified 
three key terms essential for human intention understand-
ing in physical HRI: intent information, which refers to how 
intent is defined; intent measurement, as the modality of the 
data; and intent interpretation, which involves how to incor-
porate this data into the robot control.

The intent information and measurements have been 
defined differently according to the task the intelligent sys-
tem is performing. Some examples include human trajec-
tory prediction in autonomous driving [26], gaze following 
to convey human attention to objects [20, 27, 28], action 
classification for predicting future action plans [29–31], and 

3D skeleton movement for understanding human behavior 
[22, 32–34], synchronizing movements [35], or determining 
when the robot should provide mutual support [36]. In this 
work, we focus on predicting the 3D human skeleton dur-
ing HRI to ensure the robot’s behavior is coordinated with 
the human partner. Unlike previous works that incorporate 
human intention without considering the robot as part of the 
interaction, such as [32–34], we involve both humans and 
robots in the decision-making process. Our system itera-
tively refines the human’s expected behavior based on the 
robot’s intent and vice versa, enhancing the understanding 
of social dynamics and making the robot’s behavior proac-
tive. This results in more fluent robot actions, as they are 
conditioned on the expected human states and do not need 
to wait for a human movement to finish before responding.

2.2  Human Behavior Modeling

To achieve robots that coexist with humans within a shared 
workspace, we first need intelligent systems that can rec-
ognize, interpret, and reason about the behavior of the 
surrounding humans. Human behavior understanding 
encompasses various aspects, including the prediction of 
human movements [2, 6, 8, 15, 23, 37, 38], their interactions 
with the objects of the scene [20, 28], their gaze direction 
[39–41] and the actions they perform [30, 31, 42]. Given our 
focus on understanding human behavior for social interac-
tions, this section will specifically review works related to 
human movement prediction, both in single- and multiple-
person scenarios.

The field of human motion forecasting has primarily con-
centrated on modeling the spatio-temporal patterns inherent 
in human joints to predict future 3D skeleton information. 
Sequence-based neural networks, including Recurrent Neu-
ral Networks (RNNs) [2, 43], Discrete Cosine Transform 
(DCT) with Graph Convolutional Networks (GCN) [4, 5], 
and more recently, attention-based models [6–8] have been 
extensively employed for this purpose. However, all afore-
mentioned works only consider the spatial dependencies 
among the different joints of an individual body, overlook-
ing the interactions between individuals involved in a social 
activity.

In the context of multi-person motion forecasting, it 
becomes imperative to incorporate global coordinates 
of individuals and the relationships between them. Initial 
works [37, 44] focused on predicting the global trajectory 
of humans in a scene. However, for scenarios involving 
human-human and human-robot interaction, it is essential to 
extend the problem to encompass the 3D representation of 
all joints of a human skeleton. Recent studies have explored 
various techniques to address these challenges [38]. lev-
eraged context information from images to condition the 
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Motion retargeting has been a long-standing challenge in 
the animation and robotics community, driven by the need 
to achieve natural human-like movements across different 
embodiments. Early efforts approached retargeting as an 
optimization problem, solving inverse kinematics (IK) with 
specific space-time constraints [53–57]. These methods 
aimed to preserve end-effector or intermediate joint posi-
tions but often struggled to generalize to complex human 
motions. To address these limitations, learning-based 
methods reframed human-to-robot motion retargeting as 
a domain adaptation problem, emphasizing the preserva-
tion of visual fidelity between source and target motions. 
While motion retargeting has been extensively explored to 
translate human motions to animated characters [58–62], 
this paper focuses specifically on the retargeting to robotic 
embodiments.

Learning-based human-to-robot motion retargeting aims 
to preserve visual resemblance during the imitation pro-
cess while enabling effective control of real robots. Unlike 
animation-focused methods that rely on Cartesian space 
or rotation representations between body limbs [58–62], 
the goal here is to generate control commands that accu-
rately imitate a human movement. Given the difficulty and 
time-consuming process of manually building a dataset of 
human and robot pairs, [63] proposed an automatic pipe-
line to synthesize human-robot pairs offline. This method 
involved retrieving the closest synthesized pose from a pre-
generated dataset based on a given human pose. However, 
[63] adopted a nearest neighbor retrieval algorithm that 
struggled to generate smooth motions.

To address this, [24] proposed to learn a shared repre-
sentation space between humans and robots, allowing for 
direct decoding of robot commands from this latent space. 
In this paper, we use ImitationNet [24] to construct a data-
set of noisy human-robot interactions. These interactions 
are considered noisy, because [24] only ensures visual 
resemblance in local coordinates with respect to the source 
human, failing to maintain the spatial dependencies between 
the generated robot pose and the human that is part of the 
dyadic interaction. For instance, in a handshaking scenario, 
the retargeted robot end-effector may not align closely with 
the reference human hand if the robot’s height is lower than 
that of the human being imitated.

To this end, our work not only teaches the future robot 
controls to interact with a human in a social setting but also 
adapts and refines the robot’s expected behavior to be as 
close as possible to the reference human-human interaction 
during close situations. To address this, we propose proxim-
ity-aware spatial losses that consider the similarity between 
the source human motion and the generated robot behav-
ior, as well as maintaining the spatial dependencies with the 
counterpart human in the interaction. Our dynamic losses 

motion generation [14], decoupled individual and multiple 
human features using transformers to enhance long-term 
prediction for groups of people, and [15] focused on mod-
eling dyadic interactions of humans, enhancing the motion 
forecasting based on others through cross-attention mecha-
nisms. To explicitly capture interactions among joints within 
the same individual and with others [45], operated on each 
joint with self-attention, and [10] partitioned the body into 
parts and operated on the flattened sequence through self-
attention. While these strategies facilitate better capturing 
of spatial relationships between joints within individuals, 
they increase the complexity of transformers in capturing 
inter-human dependencies. Recently [11], proposed to reuse 
DCT and GCN [46] in an autoregressive manner for dyadic 
interactions. However, such approaches utilizing DCT may 
produce overly smooth synthesized motions that fail to cap-
ture subtle nuances within motions. Moreover, predicting 
the entire future sequence in one step, as demonstrated in 
our work, avoids the accumulation of errors over iterations, 
associated with autoregressive approaches [11, 15], pre-
venting potential collapse in the long term.

Motivated by the recent success of denoising diffusion 
probabilistic models (DDPMs) [47] for human motion gen-
eration [48, 49], several studies have focused on applying 
DDPMs to multi-person motion generation in social dynam-
ics using diffusion-based models [16], synthesizing the reac-
tive behavior of a human given that of their counterpart [50, 
51]. Despite the high motion diversity and fidelity achieved 
with DDPMs, they often deviate too far from the ground 
truth compared to deterministic models [48] or become 
unrealistic within a historical context. Additionally, DDPMs 
are computationally intensive, requiring significantly more 
resources and time for inferring a single motion sequence. 
Due to these limitations, we do not include DDPMs in our 
comparison, as they are not suitable for real-time robot 
behavior generation in social human-robot interaction, 
which is the goal of our work.

2.3  Imitation Learning

The release of large-scale dyadic human motion interaction 
datasets involving intense contact interactions [15], dancing 
[52] or very diverse social actions [16] have motivated the 
extensive research on modeling these social dynamics [11, 
14, 15, 38, 45, 50, 51]. However, the available human-robot 
interaction datasets are limited and focus on manipulation 
scenarios [21, 22]. To overcome this issue, we propose to 
translate human-human interactions to human-robot inter-
actions by making use of motion retargeting approaches. 
This task aims to translate a motion from humans to robots 
while maintaining a high visual resemblance.
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human-robot interaction behavior generation and propose 
various techniques applied to improve the overall behavior.

3.1  Problem Formulation

Let S be a dyadic interaction between two agents described 
by a textual description D. Depending on the embodiment 
of the agents, our social scenario can be classified as human-
human (SHH ) or human-robot (SHR) interaction. We define 
an interaction Xi where i = {H, R} as a motion sequence 
composed of T states, such that Xi = [xi

0, · · · , xi
T ]. We 

describe an agent state in reference to a map reference sys-
tem in terms of global coordinate trajectory and local agent 

decide which training objective to pursue at each time-step 
depending on the semantics of the interaction.

3  Methodology

This section presents the task of human-human and human-
robot interaction behavior generation based on motion 
forecasting. First, we formally describe the social forecast-
ing task. Later, we describe the different parts of our pro-
posed architecture, which is illustrated in Fig. 2. Finally, 
we introduce the differences between human-human and 

Fig. 2  Overview of our human-robot interaction (HRI) behav-
ior generation. During training, a given human-human interaction 
is retargeted to a human and robot interaction using ImitationNet 
[24]. The first step is to construct the appropriate motion sequences 
Xa

ref  and Xb
ref  for the agents a and b that participate in the interac-

tion. Xi
ref  contains the observed last N motion states for the agent 

i padded with the repetition of the last pose observed xi
N , such that 

Xi
ref = [xi

0, · · · xi
N , · · · , xi

N ], with a total sequence length T. Then, 
we encode both reference motions using a Multi-Layer Perceptron 
(MLP), so that Ei

ref ∈ RT ×D . We also encode the textual social 

description with [49] and obtain â. We prepend â to Ei
ref  and forward 

each individual motion to the self-motion generation module, which 
provides a future motion reference Ê

i
ref  through a self-attention trans-

former and a sequence of L temporal MLP layers. To align both single 
motion references to the other partner in the interaction, we forward 
Ê

a
ref  and Ê

i
ref = b to the social-motion generation module. There, 

we iteratively refine the motions from agent a based on b, and vice 
versa, obtaining Ê

a
soc and Ê

b
soc. Finally, we decode each Ê

i
soc and 

sum it to the last observed motion state xi
N  to simplify the training 

objective
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should be taken into account. First, the expected social 
interaction description: depending on location, social norm, 
relationship, etc., two humans might perform a different 
joint behavior. Second, the evolution of the current status: 
we cannot abruptly change our global trajectory or the cur-
rent pose, but we transition smoothly to achieve a certain 
behavior. In fact, when performing a handshake, our inten-
tion drives the arm movement to be extended following the 
dynamics of the ongoing motion. We name this second term 
as the ‘self intent’, which drives one behavior without con-
sidering the other person. However, in a social scenario, we 
refine the end position of the hand movement to match the 
other participant’s hand, so we can perform a proper hand-
shake. This third factor, which we describe as ‘social intent’, 
refines the movement from the ‘self intent’ to accomplish 
the social interaction, taking into account not only the indi-
vidual dynamics but also the behavior of the partner. Our 
goal is to translate those social dynamics into the designed 
architecture for a higher-quality behavior generation.

First, we encode the social description a using the 
encoder of a text-to-motion pre-trained model [66], such 
that â ∈ RD. Second, we define a self-motion genera-
tion module that operates on each single behavior without 
considering the partner in the interaction. Our self-motion 
generation follows a traditional strategy of self-attention 
architecture [65], where we first add a sinusoidal posi-
tional embedding to Ei

ref , append the social descrip-
tion token â to the encoded observed behavior such that 
Ē

i

ref = [â, Ei
ref ] ∈ R(T +1)×D, and forward Ē

i

ref  to a 
self-attention transformer. Then, similar to [8, 9] for single-
motion forecasting tasks, we iteratively smooth the output 
of the self-motion transformer by expanding and compress-
ing the time dimensionality of the output through L tempo-
ral MLP layers, obtaining Ê

i

ref ∈ R×(T +1)×D.
Until here, we have only modeled each individual’s 

behavior as an independent entity without considering the 
partner’s behavior. Motivated by the aforementioned ‘social 
intent’, we propose to refine Ê

a

ref  conditioned on Ê
b

ref . 
Note that a and b are the two agents in the interaction, which 
can be depicted as two humans H1 and H2 or human H and 
robot R depending on the scenario. Our social-motion gen-
eration module uses a series of two cross-attention layers 
to refine one subject motion based on the other. Our cross-
attention mechanism learns how to blend an input Query 
(Q) based on a conditioning Key (K) and Value (V). First, 
we use Ê

a

ref  as Q and Ê
b

ref  as K and V for the first cross-
attention. The goal is that the resulting motion of the subject 
a (Ê

a

soc) has been refined to be compliant with subject b. 

This step is now repeated in the inverse order, being Ê
b

ref  as 

pose. We consider the global trajectory gi
t ∈ R7 for an agent 

i = {H, R} at time t as the xyz translation vi
t ∈ R3 and qua-

ternion rotation Ωi
t ∈ R4 from the reference coordinate sys-

tem. In addition, we define a human local pose h ∈ RJh×n 
with Jh joints, using quaternions (n = 4) or xyz (n = 3) for 
joint representation. Similarly, a robot pose r ∈ RJr×s has 
Jr joints, represented by joint angles (s = 1).

The task of social behavior generation is defined as the 
prediction of the future motion Xi

fut = [xi
N+1, · · · , xi

T ] per 
all entities in the scenario (either i = {H, H} or i = {H, R}) 
given their past observations Xi

past = [xi
0, · · · , xi

N ], where 
N represents the number of observed motion states in the 
past. In this paper, we reformulate the forecasting objective 
so that our network fθ only learns the displacement of the 
future states with respect to the last state observed xN, such 
that Xfut = fθ(Xpast)) + XN . This same strategy has 
been shown to be effective in prior works [7, 8, 64].

3.2  Human and Robot Behavior Generation

Modeling the different and diverse behaviors encountered 
in a typical social scenario requires understanding the 
spatio-temporal dependencies of the agent’s participant 
in the interaction. Motivated by the high-quality perfor-
mance of attention-based models [65] in human motion 
[6–8, 10, 15, 45], we adopt transformers as the core of our 
architecture. Instead of considering a single-token autore-
gressive approach that predicts the next state of each agent 
in the scene, we aim to forecast the whole interaction at 
once. Therefore, we pad our observed interactions by 
repeating the last state observed T − N times, so the input 
sequence has length T. We refer to the padded interac-
tions as Xi

ref = [xi
0, · · · , xi

N · · · , xi
N ]. Intuitively, Xi

ref  
represents that the agents do not change their state in the 
future. Our transformer-based architecture learns how to 
change those reference motion behaviors to achieve a social 
interaction.

To simultaneously learn the dependencies between the 
individual local joint coordinates and global trajectory (i.e., 
if the evolution of the agent poses represents a walking for-
ward behavior, the global trajectory should adapt accord-
ingly), we encode both representations together. That is, 
we flatten the rotation-based local skeleton, both for human 
hi

t or robot ri
t, and concatenate the global trajectory gi

t. 
We embed this information using a multi-layer perceptron 
(MLP) per each time-step and agent in the interaction, 
obtaining Ei

ref ∈ RT ×D, which is a higher-level represen-
tation of the human or robot observed behavior.

When aiming to anticipate the expected behavior in a 
social interaction, we consider that three important factors 
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partner should adapt their movement accordingly. This spa-
tial synchrony is very explicit in physical interactions, such 
as dancing together, handing over objects, or greeting with 
a handshake, where any subtle change of movement of one 
individual affects and should be considered by the other to 
carry on with the interaction. To enforce learning this behav-
ior, we propose an interaction loss Linter that minimizes the 
distance between some correspondent joints from agent a 
to b in the interaction, referred to as Distance Matrix (DM). 
Note that Linter is applied to the global Cartesian position 
of the agents’ joints with respect to a reference map frame.

In the case of human-human interaction, the human 
motion is already represented as xyz for the local joint 
position and root coordinates. Thus, we can easily obtain 
the global information. Moreover, given that both agents 
participating in the interaction are human, we consider all 
joints in the calculation of the Distance Matrix. However, 
for human-robot interaction, we first need to compute for-
ward kinematics to the robot’s joint angles r to obtain the 
xyz positions of each robot joint with respect to the robot’s 
base, FK(r). We later compute the transformation matrices 
from the robot’s base to the global map coordinates using 
the root position vR and orientation ΩR and obtain the joint 
Cartesian position in the global coordinate system. Given 
that humans and robots only share certain joints, we con-
sider only the human hands and the robot’s end-effectors for 
the DM computation. The proposed interaction loss Linter 
is shown in Eq. 3. For simplification, we denote as Yi the xyz 
global position of all Ji joints of an agent i, either human or 
robot, and vi as its root position. Similarly, Ŷ

i
, and v̂i are 

the predicted global coordinates and root positions. 

Lint(Y a, Y b) = MSE(DM(Ŷ
a
, Ŷ

b
) − DM(Y a, Y b))� (3)

3.3.3  Embodiment Losses

Up to this point, the proposed losses have optimized our 
model to generate a natural behavior (Lself  and Lsoc) that 
synchronizes and adapts to the other participant in the inter-
action. However, there is a need to enforce that the gener-
ated embodied poses are feasible and adequate. For that, in 
the case of human-human interactions, we adopt a bone loss 
Lbone to reinforce the predicted body joints in XYZ-euclid-
ean representations to have consistent bone lengths. We use 
the kinematic structure of the human to minimize the MSE 
between the bone lengths of the ground-truth human skel-
eton and the predicted ones.

As we adopt joint angle representation to describe the 
robot’s joints, we do not encounter that issue in robots. 
However, while the human motions are obtained from high-
quality motion capture systems in real-world interactions, 

Q and Ê
a

soc as K and V. This dual cross-attention strategy is 
repeated k times to iteratively enhance each agent’s behav-
ior to be in synchrony with the other agent during the social 
interaction. For an illustrated description of our self- and 
social-motion generation module refer to Fig. 2.

Finally, given Ê
a

soc and Ê
b

soc, that represent the behav-
ior of each agent in the interaction, we use an MLP layer 
to infer each motion behavior at each time-horizon in the 
future, such that ĥ

i

t or robot r̂i
t represent the local pose of 

an agent and ĝi
t indicates the predicted global information.

3.3  Losses

Our task is to optimize the parameters of a deep learning 
neural network to learn the behaviors of humans in human-
human interactions, as well as the robot’s behavior when 
participating in human-robot interactions. For that, we 
consider the weighted sum of different losses based on the 
task at hand, which aims to ensure that the generated behav-
iors are natural and follow the dynamism in typical social 
interactions.

3.3.1  Movement Losses

Following the aforementioned factors that we considered 
relevant to encounter in social interaction, we define two 
losses that encourage the model to learn the ‘self intent’ 
and ‘social intent’ expected from social behavior. First, we 
enforce the output of the self-motion generation module to 
generate dynamic movements that approximate the evolu-
tion of the individual. Then, we guide the refinement of the 
motions produced in the social-motion generation module 
to the ground-truth motion state information for each indi-
vidual. We denote these two losses as self-loss Lself  and 
social loss Lsoc, which take the form of a Mean Square Error 
(MSE) function. Note that DH represents the decoder used 
to project the learned motion representations, either from 
the self- (Ê

i

ref ) or social-module (Ê
i

soc), to the respective 
local and global agent information Xi. 

Lself (Xi) = MSE(DH(Ê
i

ref ) − Xi)� (1)

Lsoc(Xi) = MSE(DH(Ê
i

soc) − Xi)� (2)

3.3.2  Interaction Losses

Lself  and Lsoc enforce each individual of the interaction to 
follow their original behavior. However, for a natural social 
interaction, if one of the individual’s behavior shifts, the 
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nature of the dataset, either HHI (clean, collected using pre-
cise MoCap systems) or HRI (noisy, obtained by retargeting 
one individual to a robot using ImitationNet [24]). During 
human-human interactions, the optimization objectives of 
the neural network is to minimize a total loss compounded 
by: 

Lhhi = λself ∗ Lself + λsoc ∗ Lsoc

+ λint ∗ Lint + λbone ∗ Lbone
� (5)

Given that all losses operate over the same clean HHI 
data, the overall Lhhi simply focuses on reconstructing the 
masked future behaviors by aggregating penalties from dif-
ferent point of view (individual or social conditions, relative 
distances between the subjects or bone changes).

However, this process remains challenging for HRI, as 
the movement losses (Lself  and Lsoc) prioritize generat-
ing behaviors that closely match ImitationNet’s robot ref-
erence, while the interaction (Lint) and imitation losses 
(Limit) prioritize preserving the end-effector trajectories 
from the reference human motion. In the scenario where all 
aforementioned HRI losses are compounded together, the 
overall training objective only aligns when the end-effec-
tor of the human reference matches the end-effector of the 
retargeted robot using ImitationNet (i.e., when X̃H

ee equals 
X̃

R

ee ), which is usually not the case if the targeted robot 
has a different shape than the original human (e.g., lower 
height, longer arms). Overemphasizing the weight of Lint 
and Limit would lead to unnatural robot behaviors that 
constantly aim to follow the global trajectory of the human 
hand. For instance, due it the shorter height of the TIAGo++ 
robot, it has to raise its arms to match the human’s during 
walking, as depicted in the top-left snapshot of Fig. 3.

To resolve the aforementioned misalignment in training 
objectives, we introduce a novel loss function that adap-
tively adjusts the importance of the individual and interac-
tive losses at each time-step of the interaction. Specifically, 
when subjects are at a certain distance, we prioritize fol-
lowing the ImitationNet reference; when they are close, we 
emphasize following the reference trajectory. Rather than 
defining thresholds based on the relative distance between 
the subjects’ base, we introduce a new method to detect 
physical contact or close proximity. This method works as 
follows:
1.	 Detecting physical contact in human-human inter-

action. We model the human body with simple colli-
sion meshes: limbs and torso as cylinders, and hands 
as spheres. We manually set the radius for each mesh 
(as shown in Fig. 4). When the meshes of two subjects 
collide, we assign a binary value indicating contact. 
Additionally, we manually define a proximity margin, 

the robot partner behavior used for training is generated by a 
pre-trained imitation model, named ImitationNet [24]. Imi-
tationNet only focuses on retargeting the style of a human 
pose to a robot pose but does not consider external con-
straints in the learning process, such as ensuring that the 
hand is in a similar global position as the reference human. 
For example, when considering a reference human pose in 
global coordinates YH who is extending the arm to perform 
a handshake, ImitationNet will generate a robot pose YR 
also with the extended arm. However, given that the height 
of the TIAGo++ robot is less than the height of a human, the 
robot hand is in a much lower position. In an ideal situation, 
we would like the generated behavior to focus less on the 
local configuration of the robot at the times of close proxim-
ity (e.g., hugs, contacts) and more on the relative distance 
between the human and the robot’s limbs. While Linter 
enforces this spatial synchrony between the two individuals 
in the interaction, we consider it necessary to encourage the 
predicted robot pose to be as close as possible to the refer-
ence human pose used in the retargeting within the local 
coordinate system. Therefore, we propose an imitation loss 
Limit that minimizes the distance between the human hands 
of the reference human motion Ỹ H

ee and the end-effector 

position obtained from the predicted robot motion Ŷ
R

ee. 

Limit = MSE(X̃H

ee − X̂
R

ee)� (4)

3.3.4  Adaptive Proximity Losses for HRI

Our previously proposed multiple losses have aimed to 
enhance the model performance according to the different 

Fig. 3  Qualitative effect of different losses over the generated behav-
ior of the TIAGo++ robot. When human and robot are at a certain 
distance, the robot should focus on following the reference human 
motion (in blue), encouraging the ImitationNet reconstruction loss. On 
the contrary, during close situations, the robot should focus on imitat-
ing the reference trajectory, ensuring that the robot arms are in contact 
to the partner’s elbows. We achieve this trade-off through the use of a 
adaptive loss
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4  Experiments

4.1  Datasets

4.1.1  InterGen Dataset

InterGen [16] is the largest 3D human-human motion data-
set, featuring 6022 dyadic interactions described by 16,756 
natural language annotations. The dataset includes physical 
interactions recorded by professionals (e.g., dancing, box-
ing) and everyday social activities (e.g., handover, greeting, 
communication). Although we are more interested in the lat-
ter interaction types for learning social HRI behaviors for 
robots, we train our models on the full dataset to increase the 
robustness of our model to diverse interactions and offer a 
fair benchmark for future works that only focus on HHI. We 
define the forecasting task as predicting the motion of each 
individual entity in the next 1.5 seconds given an observa-
tion of 0.5 seconds. A human is described by 22 joints com-
prising both legs, arms, torso, and head.

4.1.2  Human-Robot Interaction Dataset

Due to the lack of a proper social dataset for human-robot 
interaction, we make use of a pre-trained human-to-robot 
motion retargeting model [24] to transfer the human motions 
to a TIAGo++ humanoid robot. ImitationNet [24] converts a 
human local pose represented as quaternions to a robot pose 
in joint angles. Still, ImitationNet only generates the robot 
joint angles and cannot predict the prismatic trunk height, 
the robot’s head orientation, or transfer the root position. 
For those, we decide to copy the human’s head orientation 
to the robot as well as the root trajectory. Regarding the 
prismatic trunk, we set the default trunk height to 1 meter. 
Note that in our previous approach [23] we only control the 
robot arms. Overall, we use the inverse kinematics from 
[67] to extract the local pose of the human reference as 
well as the root orientation (in quaternions) and translation 
(in Cartesian space). ImitationNet is used to convert those 
local human poses to robot joint angles, which can then 
be transformed into the robot’s Cartesian position through 
Forward Kinematics and the corresponding transforma-
tion matrices obtained from the original human. Finally, we 
define the robot behavior generation task as predicting the 
robot’s motion in the next 1.0 seconds given an observation 
of 0.5 seconds.

4.1.3  CHICO Dataset

Although transferring social behaviors is the goal of this 
work, we also evaluated our framework in a Human-
Robot Collaboration (HRC) scenario involving a shared 

m, to detect when the meshes are close, defining prox-
imity sensors Sm(HA, HB), where Sm(HA

ref , HB
ref ) 

returns 1 if the distance between any pair of human A to 
human B is less than m and 0 otherwise. For example, in 
a handshake, when m = 0, the sensors indicate contact, 
and when m = 0.05, they indicate proximity within 5 cm.

2.	 Detect physical contact in the human-robot inter-
action. Similarly, we define collision meshes for the 
robot’s body parts (arms, torso, and end-effector) and 
apply the same method as for HHI to detect collisions 
in HRI.

3.	 Design an adaptive loss.The proximity informa-
tion from HHIs is used to adjust the weighting of 
interaction losses. The weight factor, wpr, is cal-
culated as: wpr = 0.5 ∗ Sm=0(HA

ref , HB
ref )+

0.5 ∗ Sm=0.05(HA
ref , HB

ref ). On that regard, our final 
loss is computed as shown in Eq. 6, where the inter-
action and imitation losses are only encouraged dur-
ing close proximity (i.e., wpr = 1 during contact and 
wpr = 0.5 when very close). Notice that the values of 
m = 0.0 and m = 0.05 have been manually predefined to 
account for contact situations and very close proximity 
levels.

Lhri =wpr ∗ (λint ∗ Lint + λimit ∗ Limit)+
(1 − wpr) ∗ (λself ∗ Lself + λsoc ∗ Lsoc)� (6)

Fig. 4  Illustration of a physical contact in a human-human interaction 
(left) alongside the reference human-robot interaction (right) from 
ImitationNet. The original behavior depicts a human who has helped 
another person to stand-up by providing balance by grabbing the part-
ner’s arm. However, ImitationNet cannot preserve the contact between 
the left end-effector of the robot and the human left arm, which empha-
sizes the need of refining the reference robot motion during close situ-
ations between both agents
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MPJPE. Following the standard evaluation adopted in the 
CHICO dataset [21], we use the Mean Per Joint Position 
Error (MPJPE) to evaluate human motion forecasting.

4.2.2  Metrics in HRI

While AJPE and JPE allow for precise evaluation in human-
human interaction generation, they are not sufficient in the 
case of robot behavior generation due to the lack of a clean 
dataset. In Section 3.3.3, we pointed out the limitations of 
the human-to-robot retargeting models, which enable us to 
transfer human behavior to robots locally but do not pre-
serve the relative distances existing in the human-human 
partners. In our HRI scenario, AJPE and JPE only account 
for the alignment to the ImitationNet reference, which is 
important during proximity situations, where individual 
style is the most important. However, they do not measure 
the alignment of the HRI based on the original HHI. To 
better measure this social synchrony between humans and 
robots, we propose two new metrics.

To do this, we detect the ground-truth proximity between 

the original human-human interaction (Sm(HA
ref , HB

ref )) 
and compare it with the generated human-robot behaviors 

(Sm(HA
gen, RB

gen)) using the F1-Score. We define F1 Con-
tact as the F1-Score when using no margin (m = 0.0) and 
F1-Proximity when using a small margin (m = 0.05).

Finally, we also evaluate the gaze behavior of the robot 
compared to the reference human. We consider that transfer-
ring a natural gaze behavior to the robot is very important 
in social interaction, as it helps the human partner to better 
understand the robot’s intent. We measure the difference in 
head rotation as the distance between the normalized qua-
ternions of the reference human head and the retargeted 
robot head.

4.3  Implementation Details

All models were trained on a single GPU for 100 epochs 
using an exponential decay scheduler and AdamW as an 
optimizer, with a 5-epoch warm-up. We observed that the 
evaluation code used in [23] only considered the human 
pelvis in the global coordinate system, instead of all joints. 
This affected the measurements of the JPE and AJPE across 
all baselines. We corrected the issue and re-evaluated all 
metrics.

4.4  Quantitative Evaluation

Motivated by the goal of designing a robust and accurate 
model to generate high-quality robot behaviors for HRI, we 

manipulation task. CHICO [21] contains a single operator 
in a smart factory environment performing seven assembly 
tasks together with a Kuka LBR robot. The 3D motions of 
both the human and the robot are recorded. In this case, the 
task is to predict the operator’s motion intent (e.g., object 
pick and place, surface polishing, hammering, or object lift-
ing) in the HRC scenario, while also considering the robot’s 
behavior. We follow the standard evaluation and predict the 
next 1000 ms given 400 ms of past observations.

4.2  Metrics

Given the various nature of our evaluation, we consider 
different metrics per each task. For the human-human and 
human-robot behavior generation tasks, we follow the stan-
dard metrics in multi-person motion forecasting [10, 12]. 
Given that the standard evaluations focus on xyz positions 
of the human joints, we convert human and robot motions 
to the global coordinate system in the Cartesian space, as 
indicated in Section 3.3.2.

4.2.1  Metrics in HHI

JPE. We compute the Joint Position Error (JPE) to measure 
the error (in millimeters) of each joint position in a given 
future time step with respect to the map coordinate frame. 
Note that our evaluation for human-human interaction con-
siders both humans as part of the equation (subj = 2), but 
in human-robot interaction, we only evaluate the robot’s 
behavior (subj = 1). 

JPE(Y , Ŷ ) = 1
subj

subj∑
i=1

1
Ji

J∑
j=1

||Xi
j − X̂i

j ||2,� (7)

AJPE. Aligned JPE (AJPE) only considers the local posi-
tion error with respect to the root position (i.e., the pelvis 
of the human or the base footprint of our TIAGo++ robot), 
allowing us to evaluate non-physical interactions such as 
waving or communicating, where precise prediction of the 
root position is less important. 

AJPE(Y , Ŷ ) = JPE(Y − v, Ŷ − v̂).� (8)

FDE. While AJPE and JPE focus on the agent joint infor-
mation, we compute the Final Displacement Error (FDE) 
to evaluate the global trajectory of each individual behav-
ior, where vi

t and v̂i
t are the estimated and ground truth root 

position of the final pose at the t-th predicted timestamp for 
each agent i. 

FDE(Y , Ŷ ) = ||vt − v̂i
t||2� (9)
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first conduct an extensive evaluation of the proposed model 
using ground-truth data and existing benchmark datasets. 
Therefore, we first evaluate our model in the InterGen data-
set [16] for Human-Human Interaction, and in the CHICO 
dataset [21] for Human-Robot Collaboration, and perform 
a thorough ablation study to investigate the benefits of all 
proposed approaches. Later, we evaluate our best model for 
human-robot interaction.

4.4.1  Human-Human Interaction

We train and evaluate our model, along with state-of-the-
art baselines for multi-person motion forecasting, using the 
InterGen dataset under identical training configurations to 
ensure a fair comparison. As shown in Table 1, our frame-
work consistently outperforms all baselines across various 
metrics. We denote Zero Velocity as the repetition of the 
last pose observed, which acts as the simplest baseline for 
our evaluation. Additionally, [6] is a single-person motion 
forecasting model that treats each participant in the dyadic 
interaction as independent. We use [6] in the comparison 
to showcase the strong benefits of considering the human 
partner when modeling social interactions. In contrast, mod-
els such as [10–12, 15] are specifically designed for multi-
person motion forecasting. Table 1 indicates that while 
autoregressive approaches like those in [11, 15] perform 
well for short-term predictions, they struggle with captur-
ing long-term dependencies. Furthermore, our model pre-
dicts the entire motion sequence in one shot, resulting in 
significantly faster inference, which will be crucial later for 
the robot behavior generation in real HRI. Fig. 5 illustrates 
the performance of our model in human-human interaction 
scenarios.

4.4.2  Human-Robot Collaboration

To further evaluate the robustness of our approach to differ-
ent datasets, we train and evaluate our model in the CHICO 
dataset [21] for the human motion forecasting conditioned 
on the observed robot and observed human motion. Fol-
lowing the original work [21], we report the MPJPE for 
the short-term (400 ms) and long-term (1000 ms) horizons. 
Table 2 showcases that our model outperforms previous 
baselines, especially in long-term forecasting.

4.4.3  Ablation Study

We conduct a systematic evaluation of different varia-
tions of our framework to showcase the benefits of those 
approaches, which are presented in Table 3.

First, we assess the benefit of using text as an additional 
modality to guide the human-human interaction generation. 
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directly, instead of learning only the displacement, which 
significantly degrades performance in the long term. Then, 
we also analyze the use of DCT to encode the motions in the 
frequency domain as proposed in [11]. While prior works 
[11] have shown that DCT aids models trained on smaller 
datasets by enhancing generalization, we observe that when 
using DCT on large datasets such as InterGen, our model 
struggles to capture the details in the interaction. The use 
of TempMLP has also been adopted by prior works in the 
motion forecasting field, such as [8–10]. Table 3 shows 
benefits of using TempMLP in the short-term predictions. 
Finally, we evaluate the iterative refinement proposed in the 
social-motion generation module by comparing interleaved 
cross-attention with a sequential refinement approach that 
first updates one individual and then the other. As expected, 
interleaving the refinement helps the model incorporate 
the other partner’s intention into the behavior generation 
of one partner, which improves the stability of long-term 
forecasting.

Thirdly, we evaluate the use of our individual losses 
Lind, which help the model in the short term. These results 
are aligned with the motivation proposed in Section 3.2, 
as Lind encourages a better ‘self-intent’, which drives the 
human motion in the short-term as it accounts only for 
one’s dynamics. However, it slightly reduces the impor-
tance of social motion, which is key for better long-term 

We assess the performance without this feature for a fair 
comparison with the baseline models that do not consider 
the text guidance in their architecture. Still, our model out-
performs previous baselines by large margins, mostly on the 
long-term prediction.

Second, we evaluate four different variations of our 
architecture, such as removing learning only the motion dis-
placement (‘w/o Baseline’), adopting the Discrete Cosine 
Transform (‘w/ DCT’), not using a set of temporal MLP lay-
ers in the self-motion generator module (‘w/o TempMLP’), 
and not using the iterative refinement in the social motion 
generation module (‘w/o Iterative Refinement’). As men-
tioned in Sect. 3.2, we simplify the training objective of 
our model by just learning the displacement of the motions 
with respect to the last state observed per each individual. 
Here, ‘w/o Baseline’ refers to predicting the full motion 

Table 2  Quantitative evaluation of the short (400 ms) and long-term 
(1000 ms) motion forecasting in the CHICO dataset [21] reported in 
MPJPE. Here, bold indicates the best result and underscores the sec-
ond-best result
milliseconds (ms) 400 1000
Zero Velocity 162.0 282.0
HisRepIt [6] 54.6 91.6
MSR-GCN [4] 54.1 90.7
STS-GCN [68] 53.0 87.4
SeS-GCN [21] 48.8 85.3
Ours 47.1 80.5

Fig. 5  Qualitative results for Human-Human Interaction in the InterGen [16] dataset. Each scenario shows the ground-truth human pair (left) and 
the predicted (right) per each time horizon
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performance. Adequately weighting both losses helps to 
optimize the human-human interaction behavior, as shown 
in Table 3.

4.4.4  Human-Robot Interaction

We adopt the best model configuration from the human-
human interaction benchmark and train it for robot behavior 
generation in social human-robot interactions. We report the 
results in Table 4, which clearly demonstrates the effective-
ness of using the proposed imitation (Limit) and interac-
tion (Lint) losses with the adaptive weighting to enhance 
both the robot individual style (JPE, AJPE, FDE) and social 
metrics.

Notice that simply using the imitation (Limit) and inter-
action (Lint) losses degrades the quality of the motion 
style. The reason for this issue was already discussed in 
Sect. 3.3.4, where a conflicting optimization objective 
during training causes the model to optimize for opposite 
behaviors: either following the noisy robot reference or the 
ground-truth human hand trajectory. Our results showcase 
that using our adaptive weighting factor wph presented in 
Sect. 3.3.4 leads to an improvement across most of the style 
metrics and all social metrics. We believe that using the 
Linter and Limit in Cartesian space (contrary to Lself  and 
Lsocial that are in a mix of joint-space and base transfor-
mations, as obtained from ImitationNet) provides additional 
guidance to the model to better preserve the individual style 
of the robot’s behavior and generate a more natural interac-
tion with the human partner. The last row of Table 4 shows 
how our model improves upon the reference behaviors from 
ImitationNet as it achieves more accurate contacts and 
closer proximity.

Additionally, we also evaluate the benefit of adopting the 
pre-trained ImitationNet [24] as the encoder and decoder for 
the robot’s local joints in our model. Indeed, the only differ-
ence lies in whether we train the MLP encoder and decoder 
layers from scratch or freeze them with weights pre-trained 
for the human-to-robot retargeting task. We observe a slight 
improvement in social metrics compared to models that do 
not use ImitationNet. We believe that the shared latent space 
from ImitationNet is more continuous and helps overcome 
the existing coupling effect in joint-based representation, 
where small changes in root joints drastically affect the Car-
tesian position of the end-effector. Given that ImitationNet 
is trained with contrastive losses (pulling visually similar 
poses together, and pushing different poses away), working 
on that representation enhances the possibility to manipu-
late certain joints to achieve an end-effector position with-
out affecting the motion style.

Finally, Table 4 shows that all models are able to fol-
low the reference gaze behavior with high precision, with 
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slight improvement when no additional social or embodi-
ment losses are applied. This is expected as removing Lint 
and Limit causes all the learning to focus on the self Lself  
and social Lsoc losses, which are responsible for optimizing 
the prediction of the robot head orientation.

Additionally, we showcase three generated human-robot 
interaction behaviors in different contexts: an imitation 
game (Fig. 6), a physical contact scenario (Fig. 7), and an 
actor-reactor interaction (Fig. 8). In all images, the blue and 
pink human characters represent the ground-truth human-
human interaction, while the green character and the robot 
reflect the behaviors generated by our framework. The 
textual descriptions conditioning the generated behavior 
are shown above each image sequence. Notably, the robot 
successfully establishes physical contact in Fig. 7 by rais-
ing its arm toward the partner’s shoulder. Similarly, Fig. 8 
demonstrates how our generative model captures the spatio-
temporal dependencies inherent in social interactions, as the 
robot waits for the partner’s wave before responding with 
the appropriate gesture.

5  Real-World Experiments

To further evaluate the robustness of our model and to 
demonstrate the possibility of controlling a robot in real-
time, we implemented an end-to-end pipeline to generate 
the commands for a TIAGo++ robot for social human-robot 
interactions.

Our pipeline is presented in Fig. 9. We make use of 
YOLOv9 object detector [69] to detect the humans from the 
robot’s onboard camera, and forward the cropped human 
bounding box to HybridIK [70] for the human pose estima-
tion. With the aforementioned pipeline we are able to obtain 
human poses at approximately 15 FPS , which is closer to 
the 15 FPS rate used when training our model in the Inter-
Gen dataset. By aligning the depth image from the robot’s 
sensor and the detected 2D poses, we are able to obtain the 
human pose in the robot’s optical frame and transform those 
coordinates to the robot base. Then, we construct the human 
and robot motion sequences as proposed in Sect. 3 and gen-
erate the appropriate robot’s joint angles, root position, and 
rotation, as well as head movement. Given that the robot’s 
behavior was completely autonomous and no safety mea-
sures were implemented to avoid obstacles in the scene, and 
because we observed unstable behaviors when both the base 
and the robot arms were moving at the same time, we chose 
not to control the robot’s base in the real world. The results, 
depicted in Figs. 10 and 11, showcase the control of the real 
TIAGo++ robot for human-robot interactions. In particu-
lar, Fig. 10 depicts the robot performing a social behavior 
where it waves back to a human. Notice that we projected 
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behaving properly. Therefore, we simulated a handshake 
from a distance. Still, we can observe that the TIAGo++ 
robot adapts its end-effector position to the human’s hand 
height, which demonstrates that it captured the importance 
of ensuring contact with the human hand during a prompted 
‘handshake’ interaction.

the estimated human pose in the background at each time 
of the snapshot, which showcases the inaccuracies of the 
fed data to the model. Similarly, in Fig. 11 we evaluated a 
handshake between a human and a robot. However, given 
that we are using the on-board camera of the TIAGo++ 
for pose estimation, we observe that if the human was too 
close to the robot, the pose estimation was incorrect or even 
not detecting the person and as a result, the robot was not 

Fig. 7  Physical contact. Thanks to the proposed losses, the robot is able to extend the arms to contact the human partner’s shoulder during this 
interaction

 

Fig. 6  Imitation game. This scenario depicts the ability of our genera-
tive model to understand simple games such as repeating other move-
ments. (blue human imitates red person). We believe that using the 

shared latent space of ImitationNet helps reducing the gap between 
both embodiments, which helps the robot understand what the word 
‘imitation’ entails
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is positioned very close from the on-board TIAGo++ 
camera, causing the pose estimator to fail since it can-
not detect the entire body. Developing a more reliable 
pose estimation for very close situations could mitigate 
this sim-to-real gap. Similarly, adapting our generative 
architecture by incorporating potential masking in the 
human partner observation, as [7, 8] , could enhance the 
robustness to outliers and occlusions in the perception 
system. We leave this for future work.

	● Communication delays that exist between the com-
manded robot joints and the actual robot response, 
which make hard the implementation on the TIAGo++ 
robot without faster controllers.

Additionally, our current model relies on the contextualiza-
tion of the interaction through a textual description, which 
describes expected behaviors as the ‘waving’ depicted in 
Figs. 8 and 10. We believe that including textual conditions 
to the generative model is beneficial as it instructs and con-
ditions the expected behaviors of the robots, making them 
suitable to operate in pre-defined scenarios or roles. For 
instance, if a service robot is at a conference center greeting 
and assisting the public, the robot operator could directly 
specify expected actions as ‘shake hands’, ‘bow’, or ‘greet’. 
Similarly, it allows one to coordinate speech with actions 
assuming a VLM is processing visual inputs and command-
ing the motions to our framework. Finally, and even sim-
pler, the model could just be prompted to follow partner’s 
commands, such as ‘let’s dance bachata’ or ‘give me a hug’. 

6  Limitations and Future Work

Despite the generated robot behavior depicted in the real-
world HRI aligning with the prompted text, it is important 
to mention that the quality of those behaviors is lower com-
pared to the high-quality interactions when tested in the 
InterGen dataset. We believe this sim-to-real gap is mainly 
caused by:

	● Inaccuracies in the pose estimations, as can be observed 
in Figs. 9 and 10. This issue accentuates when the human 

Fig. 9  End-to-end pipeline of our real-world robot control for social 
human-robot interactions. Here we do not showcase any robot behav-
ior, but the overall human capture system. First, we use YOLOv9 [69] 
and HybridIK [70] for human detection and pose estimation. Then, 
we transform all the coordinates to the robot’s coordinate frame and 
generate the robot behavior accordingly

 

Fig. 8  Actor-reactor situation. During this task, the robot is able to gen-
erate a fast response to the partner’s waving behavior, showcasing the 
importance of forecasting the counterpart motion (e.g., anticipating the 

waving while the partner is only starting to raise the arms) to accu-
rately decide when to generate the reciprocative gesture

 

1 3

3226



International Journal of Social Robotics (2025) 17:3211–3230

predicts the human intent and robot behaviors concurrently 
to enhance a natural human-robot interaction (HRI). First, 
we make use of a human-to-robot motion retargeting sys-
tem to learn robot behaviors from human data. Then, we 
adopt an iterative refinement process that learns to adapt 
both human and robot motions to each other’s intent under 
a social interaction. As a result, our model outperforms the 
state-of-the-art when forecasting dyadic human motion 
within the largest dataset available and predicting the human 
intent for a Human-Robot Collaboration task. By leverag-
ing cues from HHI as references during training and with 
the inclusion of a novel dynamic loss adaptation based on 

Exploring better methods to flexibly decide when to prompt 
and how to prompt the model remains an underexplored 
research path, which would enhance even more the auton-
omy and contextual alignment of the robots’ behaviors in 
populated environments.

7  Conclusions

Motivated by the dynamic and adaptable nature of human 
behaviors observed in human-human interactions (HHI), 
this paper introduces a transformer-based framework that 

Fig. 11  Real-world waving interaction of a human simulating a handshake with the TIAGo++ robot. Since the pose estimation uses the on-board 
TIAGo++ camera, the handshake motion is performed from distance

 

Fig. 10  Real-world waving interaction between a human and the TIAGo++ robot. Despite the pose estimation loses track of the human, our method 
is robust enough to generate reasonable interaction behaviors and wave back to the human
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the agents proximity, we ensure that robot-generated behav-
iors are aligned with social interaction norms. We conduct 
a comprehensive ablation study to systematically validate 
the efficacy of our approach in both HHI and HRI contexts 
and propose novel metrics to gauge the dynamics of social 
interactions. Finally, we evaluate our framework through 
qualitative HRI experiments on simulated and real-world 
TIAGo++ robots, thereby paving the way for autonomous 
social robots capable of navigating and working alongside 
humans.
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