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Abstract

Climate change remains a defining challenge of the twenty-first century, profoundly impacting ecosystems, econo-
mies, and human settlements. Among its consequences, the intensification of flood risks in coastal cities poses a criti-
cal threat to sustainable development, particularly in the Global South. This study bridges climate change-induced
flooding scenarios with urban growth modelling, integrating Shared Socioeconomic Pathways (SSPs) into the SLEUTH
model to simulate future urban trajectories and assess flood exposure under varying climate and socioeconomic
conditions. Leveraging Earth observation information products, flood hazard scenarios based on Representative
Concentration Pathways (RCPs) and high-resolution (30 m) urban growth projections, this study evaluates coastal,
fluvial, and pluvial flood exposure for nine coastal agglomerations with diverse socioeconomic and environmental
contexts. Urban growth projections under SSP1/RCP2.6, SSP2/RCP4.5, and SSP5/RCP8.5 scenarios reveal significant
variability in urban expansion rates, with four cities projected to expand by over 50% by 2050. Flood exposure assess-
ments for the target year 2050 reveal nuanced spatial and scenario-dependent patterns across all flood types: Sura-
baya (Indonesia) faces severe coastal flooding (up to 83 km? under SSP5/RCP8.5), while Guayaquil (Ecuador) and Ho
Chi Minh City (Vietnam) experience extensive risks of fluvial flood exposure, with over 37% of newly developed areas
inundated in Guayaquil. Notably, the SSP2/RCP4.5 “Middle of the Road"scenario yields the lowest flood exposure

in Khulna (Bangladesh) and Surabaya, whereas SSP1/RCP2.6 and SSP5/RCP8.5 project 30% to over 70% higher expo-
sure in these cities. Disproportionate exposure to inundation in newly urbanized areas, particularly for Dar es Salaam
(Tanzania) and Guayaquil, underscores potential risks associated with rapid and uninformed urbanization into flood
prone regions. These findings emphasize the dual role of high radiative forcing climate scenarios and socioeconomic
pathways in shaping flood exposure and associated risks, advocating for integrated strategies that combine climate
mitigation with proactive, scenario-based urban planning.
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1 Introduction

Climate change is one of the most pressing challenges
of the twenty-first century, with widespread impacts on
ecosystems, economies, and human settlements (IPCC
2023). Among its many consequences, the intensification
of flood risks in coastal cities is a major concern. Coastal
and pluvial floods, driven by rising sea levels, shift-
ing precipitation patterns, and more frequent extreme
weather, threaten urban sustainability and resilience, par-
ticularly in the Global South (Glavovic et al. 2022). His-
torically, coastal cities have thrived as hubs of commerce,
culture, and innovation, attracting populations seeking
economic opportunities and a higher quality of life (Bar-
ragan and de Andrés 2015). However, rapid urbanization
and climate change now heighten flood risks, requiring
urgent attention. Coastal cities, often near seas and river
estuaries, are at the forefront of climate-induced flooding
(Hallegatte et al. 2013; Edmonds et al. 2020; Strauss et al.
2021). The impacts are multifaceted, ranging from imme-
diate threats to life and property to long-term socioeco-
nomic disruptions. Flood events often jeopardize critical
infrastructure, disrupt supply chains, displace communi-
ties, and are undermining the social fabric of these cit-
ies (Dodman et al. 2023). Moreover, recurring floods
perpetuate a cycle of damage and recovery that exacts
a substantial toll on public finances and exacerbates the
vulnerability of marginalized populations (Glavovic et al.
2022).

1.1 Settlement growth prediction: input data and tools

The scientific community has responded to this chal-
lenge by developing advanced modelling tools and meth-
odologies to assess and predict flood exposure for urban
environments (Hanson et al. 2010; Edmonds et al. 2020;
Nicholls et al. 2021; Strauss et al. 2021). Integrating
these tools with scenarios of future urban and settlement
growth is imperative, as urbanization continues and
(peri-)urban areas expand into flood-prone zones. These
tools, along with accompanying research, have been bol-
stered by freely accessible, global, flood-related datasets
for past events (Tellman et al. 2021), current floodplains
(Nardi et al. 2019) and early warning systems (Alfieri
et al. 2013). Key datasets delineating current and future
coastal and riverine flood prone areas under integrated
climate scenarios include the Fathom Global Flood Map
(30 m resolution) (Hawker et al. 2022; Fathom 2023) and
the World Resources Institute (WRI) Aqueduct Flood
Analyzer maps (30%x30 arc seconds resolution) (Win-
semius et al. 2015, WRI Aqueduct 2023). In addition,
Earth observation (EO) products have become vital for
urban modelling, demonstrating immense potential for
predictive analysis (Koehler and Kuenzer 2020). High-
resolution global settlement extent maps from satellite
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imagery have revolutionized large-scale urban modelling.
Datasets such as the Global Human Settlement Layer
(GHSL) (Corbane et al. 2019; Florczyk et al. 2019),
Global Annual Impervious Area (GAIA) (Gong et al.
2019, 2020), and Global Impervious Surface Area (GISA)
(Huang et al. 2022) highlight the value of remote sensing-
derived products for urban studies. Notably, the World
Settlement Footprint (WSF) evolution dataset has fur-
ther enriched the field, offering a yearly account of global
settlement extents at 30 m resolution from 1985 to 2015
(Marconcini et al. 2019, 2021).

Urban or settlement growth modelling has become
essential in future flood risk analysis. Simulating future
urban growth scenarios offers a proactive approach to
flood risk management (Li and Gong 2016). A diverse
array of methods has been employed to predict future
urban and built-settlement growth. Approaches such
as the CLUE models (Verburg et al. 2002; Verburg and
Overmars 2009; Srichaichana et al. 2019) and the Future
Land Use Simulation (FLUS) model (Liu et al. 2017,
2022) are widely used for modelling land use and land
cover changes, particularly within multi-class contexts.
For urban development studies, Gao and O'Neill (2019)
introduced the data-driven Spatially-Explicit, Long-
term, Empirical City development (SELECT) model.
Wang et al. (2022) transformed the spatial and tempo-
ral changes derived from annual settlement extent layers
into a Spatio-Temporal Matrix (STM) for growth predic-
tion with a multi-layer perceptron (MLP). Similarly, Wolff
et al. (2020) applied an MLP trained on CORINE land
cover data to map spatial probabilities of future urban
growth in the Mediterranean. They combined a non-spa-
tial urbanization model with GDP and population data
from Shared Socioeconomic Pathways (SSP) scenarios
at 100 m spatial resolution to estimate urbanized pixels
and exposure to sea level rise. Based on this methodol-
ogy, Wolff et al. 2023 analysed the projected urban extent
by 2100 for the European Union member states. Moreo-
ver, cellular automata (CA) modelling (Li and Gong 2016;
Musa et al. 2016; Yeh et al. 2021), known for its spatially
explicit representation of urban growth, is widely applied.
Among rule-based CA models, the SLEUTH model
(Clarke et al. 1996, 1997) has gained widespread adop-
tion in urban growth modelling (Wu et al. 2008; Rafiee
et al. 2009; Feng et al. 2012; Kuo and Tsou 2017; Gon-
calves et al. 2019; Zhou et al. 2019; Clarke and Johnson
2020; Kumar and Agrawal 2022), and is characterized by
its process-based approach and the ability to simulate
policy scenarios. It has been a widely applied tool in the
field of urban planning (Chaudhuri and Clarke 2013) and
increasingly tested for flood exposure projections (Rei-
muth et al. 2023). It derives its name from its input vari-
ables: Slope, Land use, Exclusion, Urban, Transportation,
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and Hillshade (Clarke et al. 1996) and allows to simulate
spatially explicit urbanization patterns through five con-
trol parameters. Unlike models focused on land-use tran-
sitions (e.g., CLUE, FLUS), SLEUTH explicitly captures
growth mechanisms such as edge expansion and road-
influenced development.

1.2 Future socioeconomic scenarios in urban modelling
Projecting urban growth in a rapidly evolving world
requires scenarios that encapsulate varying socioeco-
nomic trajectories. The SSPs, introduced as a frame-
work by the scientific community, provide a spectrum
of plausible narratives for future societal development.
The SSPs outline global trends, ranging from sustainable
to fragmented development, capturing future changes
in energy, population, environment, and land use/land
cover throughout the twenty-first century (Riahi et al.
2017). Based on five qualitative scenarios, quantified data
on population (Kc and Lutz 2017), degree of urbaniza-
tion (Jiang and O’Neill 2017), and gross domestic prod-
uct (GDP) (Leimbach et al. 2017; Crespo Cuaresma 2017;
Dellink et al. 2017) have been developed and projected
to 2100. However, integrating them into urban model-
ling remains a relatively new approach for understanding
future urbanization dynamics.

Jones and O’Neill (2016) introduced a global popula-
tion scenario framework aligned with the SSPs, employ-
ing a gravity-based downscaling model. Their approach
ensures quantitative consistency with national popu-
lation and urbanization projections aligning with SSP
spatial development narratives. Merkens et al. (2016)
introduced spatial projections for global coastal popu-
lation distribution across the five SSPs, developing
coastal-specific narratives that differentiate coastal and
inland population dynamics in urban and rural areas.
Terama et al. (2017) linked SSP-based national popula-
tion projections to population distributions at European
sub-national level. Their method integrates population
allocation as a pivotal driver of residential urban demand,
particularly emphasized in SSP5-based scenarios, influ-
encing regional urban growth. Chen et al. (2020) simu-
lated global urban land expansion under SSPs at a 1 km
resolution in 10-year intervals from 2020 to 2100. Gao
and O'Neill (2020) leveraged a data-science approach
and 15 diverse datasets, including a 40-year global time
series of remote sensing observations, to derive global
urban land projections for the twenty-first century. Their
findings suggest a potential 1.8—5.9fold increase in global
urban land under various SSPs. Chen et al. (2022) utilized
a logistic fitting model for updating global urbanization
projections from 2015 to 2100 under the SSPs. They offer
projected urbanization levels every five years for 204
countries and areas, and annual projections from 2010

Page 3 of 28

to 2100 for 188 countries and areas using historical data
from the World Bank. He et al. (2023) developed a global
dataset of urban fractional changes at 1 km resolution
from 2020 to 2100 under eight SSP-RCP (Representa-
tive Concentration Pathways) scenarios. Their approach
involves characterizing impervious surface area (ISA)
growth patterns using a sigmoid model, integrating these
patterns with a CA model, and calibrating state-specific
urban CA models for projections based on Land Use
Harmonization2 (LUH2) data. Varquez et al. (2017) cali-
brated a SLEUTH urban growth model for Jakarta’s 2050
expansion, incorporating SSPs, population projections,
and empirical relationships between population, night-
time lights, urban parameters, and GDP. They empha-
sized the importance of the Spread and Breed coefficients
in the SLEUTH model, as they affect the growth speeds
and modified these coefficients by optimizing them with
the Monte Carlo simulation of SLEUTH to match the
urbanization trend.

1.3 RCP framework for flood risk assessment

The RCPs describe different greenhouse gas concentra-
tion trajectories and project climate change impacts up
to 2100 (Taylor et al. 2012). They are based on socioeco-
nomic emission assumptions and have been adopted by
the Intergovernmental Panel on Climate Change (IPCC)
(van Vuuren et al. 2011). RCPs serve as inputs for Global
Climate Models (GCMs), such as those used in the Cou-
pled Model Intercomparison Projects (CMIPs), and
Regional Climate Models (RCMs) to simulate future
climate conditions, including changes in temperature,
precipitation, and sea level rise (Eyring et al. 2016). In
CMIP6 (IPCC Sixth Assessment Report), RCPs are
integrated with SSPs to provide a more comprehen-
sive assessment of socioeconomic changes and climatic
effects (O’'Neill et al. 2016).

These climatic factors directly influence flood risk by
altering rainfall intensity, river discharge, and coastal
storm surges. Hydrological models use RCP-driven cli-
mate projections to estimate changes in river runoff, soil
moisture, and groundwater levels (Wang et al. 2024).
These outputs are then used by hydraulic and hydrody-
namic models to simulate water movement through river
networks, floodplains, and urban environments (Schu-
mann et al. 2018; Kumar et al. 2023).

1.4 Study objectives and approach

Balancing the complexity of urbanization dynamics with
diverse socioeconomic narratives and bringing them
together with climatic scenarios necessitates an inno-
vative approach. In response, this paper investigates
the predictive capabilities of the SLEUTH model using
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future-oriented SSP- and RCP-based scenarios and
examines their thematic outcomes.

While previous studies mostly focus on single-city
analyses or consider socioeconomic and climatic drivers
in isolation, there is a lack of integrated, multi-scenario,
and multi-study area assessments that combine SSP-RCP
frameworks with spatially explicit urban growth and
flood exposure modelling. Furthermore, scaling urban
models to larger, heterogeneous areas requires methodo-
logical adaptations, such as spatial tiling and distinguish-
ing between urban and rural growth characteristics, both
underexplored in earlier research.

To address these gaps, this exploratory research applies
a harmonized scenario framework to nine coastal cities
across three continents in the Global South for urban
growth modelling and flood exposure assessment. The
focus on the Global South is particularly relevant, as
these regions are experiencing some of the world’s fast-
est urbanization rates (Randolph and Storper 2022). The
study areas were selected for their diverse geographic,
climatic and environmental contexts, as well as previous
flood experience. This diversity is crucial for understand-
ing how different regions with unique characteristics
respond to urbanization and climate change, highlight-
ing urban growth hotspots in coastal, fluvial and pluvial
flood regimes. Additionally, understanding urban growth
dynamics and their implications for flood risk in the
Global South is critical for sustainable development and
resilience building (Sett et al. 2024), with lessons that can
inform policies and strategies in similar contexts globally
(Pirani et al. 2024).

This study evaluates whether SSP- and RCP-based sce-
narios can be effectively integrated into a SLEUTH-based
urban growth modelling approach through the model-
inherent Breed and Spread coefficients and applied in
subsequent flood exposure analysis to simulate plausible
future urban expansion and associated flood risks.

The study is guided by the following key research
questions:

+ How will future urban growth under different SSP-
RCP scenario combinations affect exposure to
coastal, fluvial, and pluvial flooding in rapidly urban-
izing cities of the Global South?

+ How do urbanization patterns and flood exposure
trends differ across these diverse settings, and what
commonalities emerge from a cross-continental
comparative analysis?

Additionally, the study design enables us to draw con-
clusions about how urban growth modelling approaches
can be further adapted for consistent, high-resolution
application across large and heterogeneous study areas.
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The year 2050 was chosen as a mid-century benchmark
that aligns with global policy targets (UNFCCC 2015)
and offers more reliable projections than longer-term
horizons. This timeframe provides actionable insights for
urban planning and flood risk mitigation in rapidly grow-
ing cities. By producing scenario-based, spatially explicit
insights at 30 m spatial resolution, this study addresses
the challenges and opportunities presented by urbani-
zation, climate change, and flood exposure, offering
insights into current conditions and future scenarios for
risk informed decision-making and resilience building.

2 Data and methodological approach

2.1 Study areas

For this study, the selection of coastal cities aimed to rep-
resent a broad distribution across global ocean coasts
while including only cities in the Global South. We
selected nine coastal or coastal-zone agglomerations in
the Global South based on the following criteria:

1) They already have a large population of at least 2 mil-
lion inhabitants.

2) They are recognized as rapidly growing/dynamically
changing cities.

3) They experienced flood events in the past.

4) They are situated along coastlines, river courses, and/
or are affected by tidal activity, exposing them to
both sea-level rise and riverine flooding due to cli-
mate change in the future.

Hanson et al. (2010) ranked coastal and port cities by
climate extremes, identifying five cities (Lagos, Khulna,
Abidjan, Surat and Ho Chi Minh City) from our selection
among the top 20 with the "highest proportional increase
in exposed population by the 2070s". Nicholls and Caze-
nave (2010) noted that most Asian countries face sea-
level rise (SLR) threats due to densely populated river
deltas with large, fast-growing cities. Similarly, Africa’s
coasts are at risk due to lower levels of development and
assumed rapid population growth (Dasgupta et al. 2010).
Our study, along others (Nicholls et al. 2008; Nicholls and
Cazenave 2010; Rosenzweig et al. 2018), lists cities at risk
in coastal Asia and Africa. Additionally, we included two
South American cities identified in climate reports and
scientific publications (World Bank 2014; Reguero et al.
2015) as being at significant risk.

Each study area encompasses not only the administra-
tive area of the city but also the periurban region and sur-
rounding settlements, including satellite cities, towns,
villages, and rural lands, forming a larger urban agglom-
eration. The administrative units analysed for each city
and further details about population, past growth and
historic flood events can be found with Supplementary
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Table 1. Throughout the following text, city names repre-
sent their entire agglomeration.

Among the selected agglomerations, Abidjan, Lagos,
and Dar es Salaam are among Africa’s largest and fastest-
growing coastal cities (Fig. 1). Abidjan and Lagos situated
along the Atlantic Ocean, are bordered by lagoons fed by
inland tributaries. Abidjan is the largest city in the Ivory
Coast and has faced multiple severe pluvial and river
flooding events in recent years. Lagos is affected mainly
by pluvial floods, but compound flood is an increasing
threat (Nkwunonwo et al. 2016). Dar es Salaam, Tanza-
nia’s largest city and located at the Indian Ocean, is vul-
nerable to coastal, pluvial, and compound fluvial-pluvial
floods (Kebede and Nicholls 2011).

Ho Chi Minh City, Vietnam’s largest city, lies down-
stream of the Dong Nai and Saigon Rivers (Fig. 2). It
experiences flooding caused by extreme monsoon rainfall
and tidal events (Couasnon et al. 2022). Khulna, Bang-
ladesh, is positioned within the Sundarbans/Brahmapu-
tra—Meghna Delta. Even though the city is approximately
100 km from the Bay of Bengal in the Indian Ocean,
its deltaic and low-lying topography makes the region
exposed to pluvial and fluvial, but also cyclonic coastal
flooding (Haque and Nicholls 2018; Bernard et al. 2022).
Surabaya, the capital of East Java Province in Indonesia,
lies on the low-lying northern coast of Java, where sev-
eral river arms make it prone to river and tidal flooding
(Susetyo et al. 2022). Surat, in Gujarat, India, is one of the
world’s fastest growing cities, positioned along the Indian

SHa0s -

= ; 2.90°0 3.20°0

3.50°0
1 I 1

3.80°0
1

Page 5 of 28

Ocean and Tapi River. Since a devastating flood in 2006,
it has faced frequent coastal, fluvial and pluvial flood
events, particularly during the monsoon season (Jamshed
et al. 2023; Jibhakate et al. 2023).

Barranquilla, Colombia’s largest coastal city and the
capital of the Atlidntico Department, is located at the
delta of the Rio Magdalena, where it meets the coast
of the Caribbean Sea and faces multiple flood hazards
(Fig. 3) (Milanes et al. 2021). Guayaquil, the largest city in
Ecuador, lies where the Babahoyo River and Daule River
merge into the Guayas River, forming Latin America’s
largest delta before draining into the Pacific (Pelckmans
et al. 2023). Our analysis included Guayaquil (excluding
Isla Puna and the enclave of Tenguel), along with eight
neighbouring cantons. In early 2023, the study area suf-
fered from severe pluvial and river flooding (IFRC 2023).

2.2 Data

2.2.1 Flood hazard layers

Global flood hazard layers for a variety of scenarios
are available from the Fathom Global Flood Map 3
(Fathom 2023). The flood modelling is based on the FAB-
DEM+ digital elevation model (DEM) with a 30 m spatial
resolution (Hawker et al. 2022). The FABDEM is a global
ground terrain map, derived from the Copernicus DEM
(Airbus 2019), in which tree canopies and building roofs
have been removed. FABDEM+is a composite of FAB-
DEM (Hawker et al. 2022) and publicly available LiDAR
data. The Fathom flood model applies a hydraulic model
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to produce flood hazard maps, based on the inertial for-
mulation of the shallow water equations, adapted for
two-dimensional inundation modelling by Bates (2022).
The size of rivers is simulated using a gradually-varied
flow solver (Neal et al. 2021). Further information about
the Fathom Global 3.0 methodology can be found in
Fathom (2022a, b).

The Global Flood Map data comprise inundation
depths and risk scores for inland flooding (pluvial and
fluvial) and coastal flooding at a 30 m spatial resolution
(Fathom 2023). The flood data are generated for a set of
associated climate dynamics, allowing for flood maps to
be derived under different projected climate conditions.
Future scenarios can be derived selecting year and cli-
mate projection (based on different climate scenarios or
global mean temperature changes) (Fathom 2023). Addi-
tionally, percentile-based flood depth data represent cli-
mate model uncertainty, with the range between the 17th
and 83rd percentiles aligning with the IPCC definition
of ‘likely’ (Fathom 2023), with the 50th percentile repre-
senting the median, meaning half the simulations show

lower magnitudes and half show higher. For this study,
we retrieved Global Flood Map 3 data for the selected
study areas with the specifications: Year: 2050; Scenarios:
RCP2.6, RCP4.5, RCP8.5; Percentiles: 50th, 83rd; Metric:
depth; Flood types: pluvial/fluvial/coastal; Return period:
100-years.

For fluvial and coastal flood scenarios, the dataset
allows the selection of defended and undefended local
conditions. In this study, we intentionally decided for
the defended status, wherein known flood defences are
incorporated and thereby best representing the local situ-
ation best (see Fathom (2022a, b)).

2.2.2 World settlement footprint evolution

The World Settlement Footprint (WSF)-evolution
dataset is an open-access information product that
maps the urbanization process at a global scale (Mar-
concini et al. 2020). The WSF-evolution dataset is
generated using Sentinel and Landsat data and delin-
eates the global settlement extent through annual
binary images at a 30 m resolution for the years 1985
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to 2015. The WSF was selected for this study because
its consistent annual binary classification of settlement
(comprising built-up structures and impervious intra-
urban surfaces) and non-settlement areas over an
extended time period makes it particularly well-suited
as an input for the SLEUTH model. In this study, the
WSE-evolution was used to generate historical urban
extent layers for the calibration and prediction of the
SLEUTH model.

2.3 SSP-RCP scenario integration

This study integrates socioeconomic scenarios from
the SSPs database (IIASA 2018) to predict future
urban growth. O’Neill et al. (2016) applied these SSPs
within the Scenario Model Intercomparison Project
(ScenarioMIP) to assess combinations of SSPs and
RCPs. From the IPCC’s RCP scenarios (van Vuuren
et al. 2011, 2013), we selected three to represent a
broad range of possible futures: low forcing (RCP2.6),
medium stabilization (RCP4.5), and high emission
(RCP8.5). Correspondingly, we focused on three Tier
1 scenarios, combining SSPs and RCPs based on their
plausibility and concurrent occurrence: SSP1/RCP2.6,
SSP2/RCP4.5 and SSP5/RCP8.5 (see Table 1).

2.4 Urban growth modelling

2.4.1 SLEUTH model

The SLEUTH model is a CA-based framework for sim-
ulating urban expansion and land use changes (Clarke
et al. 1997, Clarke et al. 2004). It assumes that urbani-
zation underlies development patterns distinctive to an
urban agglomeration and observable in the historical
development. The SLEUTH model relies on five control
parameters that describe different urban growth patterns:

+ Spread coefficient: Governs the contagious influence
of established urban areas on their surroundings,
impacting the spatial patterns of urban growth.

o Breed coefficient: Represents the probability that
a newly formed detached settlement will initiate its
independent growth cycle.

+ Diftusion: Governs the random selection frequency
of a pixel for potential urbanization.

+ Slope resistance: Acknowledges the topographical
constraints, ensuring that the model considers the
resistance posed by elevated terrains to urban expan-
sion.

+ Road gravity factor: Serves as an attraction force,
drawing new settlements towards existing roads and
guiding the expansion along road networks.
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Based on the control parameters, the behaviour of four
key growth rules is adjusted (Clarke et al. 2004):

+ Spontaneous Growth: This encompasses the random
urbanization of cells or pixels, influenced by diffusion
and slope resistance.

New Spreading Center Growth: Often referred to as
diffusion growth. This aspect governs whether a pixel
or a cluster of pixels evolves into a new urban centre
and is influenced by breed and slope resistance.

Edge Growth: Termed organic growth, representing
urban expansion at the fringes of existing urban cen-
tres. This growth behaviour is influenced by spread
and slope resistance.

Road-Influence Growth: This mechanism accounts
for urban development along road networks or trans-
portation corridors. This aspect is influenced by
breed, road gravity, diffusion and slope gravity.

In addition, the modelling approach allows the exclu-
sion of specific areas that are kept free from future urban
development due to different reasons, such as national
parks or places of religious importance.

2.4.2 Zoning and tiling of the study areas
Urban regions often exhibit varying development speeds
across different zones, particularly when the adminis-
trative planning area encompasses both urban and rural
domains. However, the SLEUTH model applies a single
set of coefficients for the entire study area, leading to uni-
form urban growth patterns that do not account for local
differences in urbanization dynamics. To address this, we
introduced a zonation approach using kernel density esti-
mation (KDE) and k-means clustering (Silverman 1986).
For the KDE calculation, a circular kernel size of 100
pixels was chosen. The resulting kernel image was then

(a)
Fig. 4 Zonation approach using Kernel Density Estimation (KDE) for Ho Chi Minh City (HCM). a WSF-evolution (2015) depicting urban extent;
(b) Kernel density image derived from WSF-evolution; (c) Zonation classification using k-means clustering, with Levels I-V representing different
settlement density zones

(b)
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classified using k-means clustering, differentiating
between urban and rural-dominated areas. Each city was
divided into five clusters, representing different urbaniza-
tion levels (I-V). Clusters I and II exhibited urban char-
acteristics, while levels III, IV, and V were categorized as
"rural” (Fig. 4). Notably, these classifications do not reflect
functional urban-rural distinctions, but rather denote
zones with distinct growth rates and spatial patterns.

To enhance local calibration, SLEUTH coefficients
were adjusted separately for urban and rural zones. To
improve computational efficiency, rural zones were fur-
ther divided into 4 to 9 tiles, depending on the size of
the study area. In the case of Lagos, the urban zone was
also divided into two tiles to allow for more precise cali-
bration. In total, tiling and zonation resulted in 95 tiles
across the 9 cities. The impact of this zonation approach
was evaluated using the Area Under the Curve (AUC)
metric to assess prediction accuracy.

2.4.3 SLEUTH calibration, evaluation and prediction

The SLEUTH model implementation consists of two
phases: 1) calibration and evaluation, and 2) the predic-
tion of urban growth, which is conducted individually
for all 95 obtained tiles (Fig. 5). For calibration, the 1985
urban and settlement extent layers were set as seed lay-
ers, while the layers 1990, 1995, 2000, 2005, and 2010
served as reference data. The input data used to deter-
mine the SLEUTH parameters for each city are listed in
Table 2.

The optimal coefficient combination was determined
through a three-step ’brute-force calibration’ process
(coarse, fine, and final) (Clarke et al. 1996). Instead of
this original grid-search method, we employed a genetic
algorithm-based SLEUTH model to project future urban
expansion based on Clarke (2018). In the genetic algo-
rithm (GA) calibration process, an initial parameter set is




Bachofer et al. Anthropocene Coasts (2026) 9:1

Reference:

Page 10 of 28

WSF 1990 (osM ] (_RrROC )

Seed:

Reference:
WSF 1995

Predicted urban
extent of 2015

Reference:
WSF 2000

Reference:
WSF 2005

Seed:
WSF 1985

Reference:
WSF 2010

Slope

Hillshade

Road network
of 2013

Excluded

I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
I
! areas
1

SLEUTH model

Calibration and Evaluation

WSF 2015

Reference:
WSF 2015

Slope
Hillshade

Prediction Predicted urban
extent of 2050

3

Road network
of 2013

Excluded
areas

Prediction

Fig. 5 SLEUTH model implementation — Calibration and evaluation process (left) and prediction workflow (right)

Table 2 Input layers for SLEUTH model calibration

Layer Name Variables Year Spatial Source/Reference
Resolution

WSF-evolution Historical settlement 1985-2015 30m WSF-evolution (Marconcini et al. 2020)

extent layers
Global Roads Open Traffic networks 2013 - gROADS V1. (Center for International Earth Science Information Net-
Access Data Set work CIESIN et al. 2013)
(gROAD:s)
Copernicus DEM Slope and hillshade - 30m Copernicus DEM (European Space Agency and Airbus 2022)
Sentinel-1/Sentinel-2  Water mask 2020 30m Copernicus Sentinel data 2020)
The World Database Areas excluded Download - The World Database on Protected Areas (UNEP-WCMC and IUCN 2023)
on Protected Areas from settlement version August
(WDPA) development 2022

iteratively mutated and refined, with poorly performing
combinations replaced by new ones based on their per-
formance metrics. This approach yields results compara-
ble to the brute force method while significantly reducing
computation time.

To assess calibration quality and improve prediction
accuracy, we applied the Optimal SLEUTH Metrics
(OSM) (Dietzel and Clarke 2007; Kumar and Agrawal
2022). OSM serves as a composite performance measure
in the SLEUTH model calibration process. It is derived
from the product of seven SLEUTH inherent fit metrics
for calibration: compare, population, edges, clusters,
slope, X-mean, and Y-mean. These metrics collectively
evaluate how well the simulated urban growth aligns with
observed historical patterns in terms of spatial accuracy
and structural characteristics (Dietzel and Clarke 2007).

Beyond OSM, we applied the Lee-Sallee index (Lee
and Sallee 1970) and Receiver Operating Characteristic

(ROC) curve, evaluated using the AUC (Hanley and
McNeil 1982; Park et al. 2004), to assess predicted
urban/settlement growth until 2015 against the WSF
reference dataset. The Lee-Sallee index measures
shape similarity between predictions and reference
data. However, when combined with other indices, it
offers valuable performance insights. Saxena and Jat
(2020) compared various publications and found that a
value of 0.3 (1.0 being a perfect match) is acceptable,
with some models achieving values above 0.6 (Jantz
et al. 2016; Harb et al. 2020). The AUC metric assesses
overall model accuracy, illustrating the relationship
between true-positive false-positive rates across dif-
ferent classification thresholds (Pontius and Schneider
2001; Wu et al. 2008). An AUC of 1 indicates perfect
predictions, while 0.5 suggests random guessing. Typi-
cally, an AUC above 0.75 is considered good (Verburg
et al. 2004). Combining these indices provides a robust
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framework for evaluating urban growth models from
multiple perspectives.

For predicting the 2050 settlement extents, the 2015
urban and settlement extent layers were used as seed lay-
ers, along with the parameter sets derived from calibra-
tion (including adjusted Spread and Breed coefficients)
and additional input layers (Fig. 5, right).

2.4.4 Integration of SSPs into the SLEUTH model

The SSP Database (IIASA 2018) provides long-term
socioeconomic projections (population, urbanization,
and GDP) up to 2100, enabling urban growth analy-
sis under different development trajectories (Riahi et al.
2017; IIASA 2018). In this study, we focus on SSP1, SSP2
and SSP5, which are associated with RCP scenarios 2.6,
4.5 and 8.5, respectively, to cover a full range of future
challenges to climate mitigation from low (SSP1), to
medium (SSP2), to high (SSP5) (O’Neill et al. 2016). The
SSP database provides national and regional urbaniza-
tion projections at 5-year intervals. For our study, we
used the national projections from 2015 and 2050 (Jiang
and O’Neill 2017) and calculated relative trends in urban
population share and population numbers projected by
the SSPs (compare with Supplementary Figs. 1 and 2). We
translated the relative growth of the urban population
into spatial expansion patterns, following the assump-
tion that urbanization is linearly related to increases in
the urban population. To represent the SSP scenarios in
the simulations, the Breed and Spread coefficients of the
SLEUTH model were adjusted to reflect different growth
speeds and patterns in SSP1, SSP2, and SSP5. First, the
set of coeflicients for each city, calibrated from histori-
cal growth, was kept constant, serving as the baseline
for SSP2 — also known as the Business as Usual (BaU)
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scenario. For SSP1 and SSP5, the Spread and Breed coef-
ficients were modified based on their relative differences
from the SSP2 baseline, following Eqgs. (1) and (2):

AUP; = US2050, ® Popaysg; — US2015, ® Popagys,
1)

St, Bt AUP; 2)

Sssp2, Bsspz  AUPsspa

where AUP represents the change in total urban popu-
lation, while US denotes the urban share and Pop the
population number for each SSP scenario ¢. S and B cor-
respond to the Spread and Breed coefficients, respec-
tively. In this way, the relative differences in growth rates
between SSP1 and SSP5, compared to SSP2, are effec-
tively captured.

2.4.5 Future flood exposure analysis

The projected urban and settlement growth under the
three SSP scenarios were overlaid with Fathom flood lay-
ers to assess the potential flood exposure in 2050. For
coastal, fluvial and pluvial flooding, we selected the 50th
and 83rd percentile flood layers. The analysis separately
examined:

— The total urban areas at flood exposure risk in 2050,
and

— New urban/settlement areas projected to be at flood
exposure risk by 2050.

The workflow of the flood exposure estimation is illus-
trated in Fig. 6. Following Wing et al. (2017) and Tate
et al. (2021), flood pixels with depths below 15 cm were
excluded, as such shallow flooding is generally below the

Flood inundation depth
product
(30m resolution)

« return period 100
years

« flood
defence measures
considered

« target year 2050

External dataset

- )
E @ . Urban/settlement gl’owth scenarios Evaluation scheme
35 %—' Predicted future
@ 2| urban/settiement growth / SSP1 7 ssP2 7 SSPs
® *=| 2016 - 2050 (30m resolution) SSP1/RCP26
SSP2/RCP4.5
Climate scenarios Flood perils Percentiles SSP5/RCP8.5

e
~~ Coastal _~
:

18 scenario combinations for
- each of the 9 study cities

Analysis of:
- urban areas under flood
exposure risk (2050)

- projected new urban areas
under flood exposure risk
(2016-2050)

/

Fig. 6 Workflow of future flood exposure risk analysis. Urban and settlement growth projections for 2050 (based on SSP scenarios) are overlaid
with flood inundation data for RCP2.6, RCP 4.5 and RCP8.5 climate scenarios. The analysis considers coastal, fluvial and pluvial flooding with the 50th

and 83rd percentile flood depth estimates
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threshold for significant damage. Only areas with flood
depths exceeding 15 cm were considered as ground flood
plains under exposure.

3 Results

3.1 SLEUTH calibration based on KDE zonation

The SLEUTH model was successfully configured for the
nine coastal agglomerations, capturing the gradients in
growth speeds and patterns for urban and rural zones. To
evaluate the KDE-based zonation approach, SLEUTH-
predicted urban growth (1985-2015) with and without
zonation for Surat and Surabaya was compared with
the 2015 WSF extent. AUC values confirmed improved
accuracy with zonation (Table 3). These two cities were
selected as representative case studies to evaluate the
added value of KDE-based zonation in detail, while the
approach was applied uniformly across all study areas
to support locally calibrated urban growth projections.
Consequently, this approach was adopted throughout the
study.

Model accuracy was assessed using the Lee-Sallee
index and AUC, while OSM was primarily used to fine-
tune SLEUTH parameters. Both AUC and Lee-Sallee
index demonstrated notable modelling accuracies, with
values ranging from 0.73 to 0.94 and 0.56 to 0.82, respec-
tively. The AUC consistently indicated high predictive
performance across all cities, with Khulna nearing the
0.75 threshold, signifying a good predictive outcome
(Verburg et al. 2004). Meanwhile, the Lee-Sallee index
highlighted significant shape similarities, aligning with
findings from previous studies (Saxena and Jat 2020). For
a detailed breakdown of the evaluation results, refer to
Fig. 7. Contrary to the default setting, the Critical-Low
threshold that controls the self-modification component
of the SLEUTH model was reduced from 0.95 to 0.7. This
adjustment improved the model performance by better
reflecting the differing development patterns of neigh-
boring tiles (see Clarke et al. 1997). In a few exceptions,
the value was further lowered after visual control to min-
imize outlier tiles and to ensure more consistent growth
across the tiles of the city.

3.2 Prediction of urban/settlement growth in SLEUTH
During calibration, the Breed and Spread coefficients of
SSP2 for each city were generated from the WSF data.

Table 3 Evaluation of the KDE-based zonation method using
AUC values from the predicted urban probability maps

City Without zonation With zonation
Surat 0.83 0.85
Surabaya 0.84 0.87
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The coefficients for SSP1 and SSP5 were computed using
Egs. (1) and (2). The resulting relative changes in the SSP
scenarios, along with the adjusted SLEUTH parameters,
are listed in Supplementary Tables 2 and 3.

The predicted urban growth (2016-2050) under dif-
ferent SSPs was generated based on the coefficient sets,
with diffusion, road gravity, and slope resistance remain-
ing constant under all the scenarios. Figure 8 illustrates
urban/settlement growth for SSP2, while results for SSP1
and SSP5 are presented in the Supplement (Fig. 3 and
4). All study areas face significant increases in urbanized
area throughout the three scenarios, however with differ-
ent growth dynamics. Urbanization patterns in Abidjan,
Barranquilla and Dar es Salam are mainly characterized
by compact growth, whereas urban sprawl dominates in
Ho Chi Minh City, Khulna and Surat.

Figure 9 presents a quantitative overview of future
urban growth areas and growth rates for select cities.
This visualization highlights four cities experiencing
growth exceeding 50% under SSP1/SSP5: Surat, Khulna,
Ho Chi Minh City in SSP1 and SSP 5, and Dar es Salaam.
Among them, Khulna exhibits the highest growth, reach-
ing 196.9% in SSP2 and surging to 210.8% in SSP1. In
contrast, Abidjan, Surabaya (in SSP2) and Lagos show
relatively lower growth rates compared to other agglom-
erations with less than 25% of urban growth.

3.3 Future flood exposure analysis

3.3.1 Coastal flood exposure

The anticipated coastal flood plains until 2050 under
the SSP2/RCP4.5 scenario are exemplarily illustrated
in Fig. 10, alongside the projected urban extents of
the agglomerations. This provides insight into poten-
tial flood-prone areas and their interactions with future
urban expansion. The results highlight varying impacts
on urban and settlement areas, with Khulna notably
experiencing no impact from exclusive coastal flood-
ing. For Abidjan, Barranquilla, Ho Chi Minh City, and
Guayaquil, flood-exposed areas remain minimal (<1
km? across all scenarios), while Surabaya faces the most
severe impacts, with 74 km? (SSP1/RCP2.6, 83rd percen-
tile), 68 km? (SSP2/RCP4.5), and 83 km? (SSP5/RCP8.5)
affected (Fig. 11).

Future coastal flood exposure remains stable in Abid-
jan, Barranquilla, and Guayaquil, but Dar es Salaam,
Surabaya, and Surat are projected to experience the high-
est absolute increases in flood-prone areas, with addi-
tional extents of 4.18 km?, 16.52 km?, and 5.09 km? (50th
percentile) under SSP5/RCP8.5. Among cities with sig-
nificant inundation, such as Surat, Surabaya, and Lagos,
the SSP5/RCP8.5 scenario consistently projects the high-
est flood exposure. In contrast, the SSP2/RCP4.5 "Middle
of the Road" scenario yields the lowest exposure, except
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Fig. 7 Accuracy assessment results based on OSM, Lee-Sallee Index, and AUC, illustrating model performance across all cities

in Lagos, where SSP1/RCP2.6 predicts the least inunda-
tion (Supplementary Table 4).

3.3.2 Riverine flood exposure

The floodplains of the study agglomerations projected for
2050 under SSP2/RCP4.5 are illustrated in Fig. 12, with
different shades of blue indicating varying inundation
depths. Fluvial flood patterns are strongly influenced by
local topography and hydrology, with Surabaya and Ho
Chi Minh City facing the highest future exposure. For the
83rd percentile, Surabaya’s urban area could potentially
experience 200 km? of flooding, while Ho Chi Minh City
could experience 150 km? of flooding. In Guayaquil, over
18-25% of the total 2050 urban area may be affected by
riverine flooding under all scenarios, with the cantons
of Daule, Samborondén, San Jacinto de Yaguachi, and
Duran being particularly vulnerable. Barranquilla exhib-
its the highest inundation depths (>3 m) in urban areas.

Figure 13 shows the extent of riverine flooding for

each city under SSP1/RCP2.6, SSP2/RCP4.5, and SSP5/

RCP8.5 (see Supplementary Table 5 for detailed projec-
tions). The results reveal stark disparities in exposure
trends. Guayaquil emerges as a critical case, with over
37% of newly developed built-up areas projected to be
flood-exposed by 2050; nearly double the 2015 base-
line (Table 4). Similarly, Ho Chi Minh City is expected
to see over 20% of its new urban zones affected. In
contrast, Abidjan, Barranquilla, and Lagos exhibit rela-
tively low exposure, with built-up areas facing minimal
increases (e.g., Abidjan: < 0.46 km? for the 50th percen-
tile). However, Dar es Salaam and Khulna show more
than a doubling of flood exposure under all scenarios,
underscoring the compounding risks of rapid urbani-
zation and fluvial flooding. Notably, newly developed
areas in Abidjan and Dar es Salaam face dispropor-
tionately higher exposure compared to existing urban
zones, despite their overall lower flood magnitudes.
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Fig. 8 Projected urban expansion (2016-2050) under the SSP2 scenario. For visualization purposes, only a selected portion of the study area
is displayed. Base map: OpenStreetMap & OpenStreetMap-Foundation (CC-BY-SA)

3.3.3 Pluvial flood exposure

Figure 14 depicts the inundation patterns caused by plu-
vial floods under SSP2/RCP4.5 for 2050, with various
shades of blue representing different inundation depths.
Among the nine agglomerations, Khulna and Dar es
Salaam are expected to experience the highest relative

increase, with their flood areas doubling. Pluvial flood-
ing, which affects larger spatial areas than coastal or flu-
vial floods, disproportionately impacts newly developed
urban zones (Fig. 15).

Figure 15 illustrates the projected pluvial flood inun-
dation for a 100-year return period event under SSP1/
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Fig. 9 Quantitative comparison urban growth projections under SSP1, SSP2 and SSP5 scenarios for the study areas of the selected cities. The left
panel illustrates urban area and modelled growth, while the right panel presents the percentual growth forecast until 2050

RCP2.6, SSP2/RCP4.5, and SSP5/RCP8.5, offering
insights into potential flood-prone areas (Supplemen-
tary Table 6). Supplementary Table 7 summarizes the
newly developed built-up areas expected to be exposed
to flooding by 2050. Among the nine agglomerations, the
impact of the SSP/RCP scenarios varies significantly. In
most cities, SSP5/RCP8.5 results in the largest pluvial
flood extents, except for Guayaquil, Abidjan, and Barran-
quilla, where SSP2/RCP4.5 yields higher values under the
83rd percentile. For example, Surabaya sees a doubling
of flood extent under SSP5/RCP8.5 (40.31/44.00 km?
for 50th/83rd percentiles) compared to SSP2/RCP4.5
(20.82/22.11 km?). In contrast, Abidjan and Lagos exhibit
minimal scenario-driven differences, with flood extent
variations remaining below 0.48 km? (50th percentile).

3.3.4 Urban flood contrasts

A comprehensive comparison of flood exposure across
nine different cities under three scenarios (SSP1/RCP2.6,
SSP2/RCP4.5, and SSP5/RCP8.5, all at the 83rd percen-
tile) and three flood types (coastal, fluvial, and pluvial)
highlights key differences in the cities’ level of risk to
potential flood exposure. Table 4 contrasts flood expo-
sure for the 2015 WSF-based urban extent with the

SLEUTH projected urban growth (2016-2050), with
values expressed as a percentage of total urban area.
Detailed breakdowns of flood exposure can be found
in Figs. 11, 13 and 15, as well as in Supplementary
Tables 4-7.

In most coastal flooding scenarios, newly developed
urban areas are less exposed compared to existing 2015
settlements. However, in Dar es Salaam and Surat, the
projected new urban areas will be disproportionately
affected, with exposure 2.5-8 times higher than exist-
ing areas (Table 4), despite lower overall exposure levels.
Surabaya, in particular, is expected to experience a sig-
nificant increase in flood-prone urban areas, with 83 km?
affected under SSP5/RCP8.5 (83rd percentile).

For fluvial flooding, exposure affects larger areas than
coastal flooding. In Guayaquil, over 37% of newly devel-
oped areas (compared to 20% of 2015 urban extents) are
projected to be at risk of flood exposure under all scenar-
ios. Ho Chi Minh City and Surabaya also face substantial
exposure with 16-30% and 23-30% of their respective
2015 extents and new urban areas affected.

Pluvial flooding shows widespread impacts, with
6-23% of urban areas affected across all scenarios and
cities. Disproportionate effects are projected for new
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Fig. 10 Projected coastal flooding for 2050 under the SSP2/RCP4.5 scenario (83rd percentile). The flood extent is overlaid with the urban expansion

predicted under SSP2, highlighting areas at risk of inundation

urban areas in Abidjan (10.59-13.33%), Dar es Salaam
(13.41-13.79%), Guayaquil (20.08-21.16%), and Lagos
(13.83-14.35%) (Table 4). Notably, in Dar es Salaam,
newly developed urban/settlement areas will face greater
flood exposure than existing settlements across all three
flood types.

4 Discussion

This study investigates the interplay between urban
growth and flood exposure in nine coastal cities across
the Global South under different SSP-RCP scenarios. The
findings reveal significant variations in urban expansion
and risk of flood exposure across the study areas, empha-
sizing the critical role of socioeconomic and climatic fac-
tors in shaping future urban resilience.

4.1 Settlement growth projection

The SLEUTH model was used to predict urban/settle-
ment growth for nine selected agglomerations, incorpo-
rating typical input layers historical urban extent data
from the WSE. The utilized metrics assess model fit
within individual study areas rather than allowing direct

comparisons between diverse regions (see Fig. 7). Most
cities surpass 0.6 on the Lee-Sallee index, with Khulna
recording the lowest value at 0.56, which is still within
an acceptable range. Across most cities, AUC values
exceeded 0.8, surpassing the 0.75 threshold for favour-
able simulation accuracy (Verburg et al. 2004; Wu et al.
2008). Khulna, with the lowest AUC (0.73), remains close
to this threshold. The reported metrics not only meet but
often exceed benchmarks from previous studies (e.g. Sax-
ena and Jat 2020; Kumar and Agrawal 2022). This can be
partly attributed to differences in study area characteris-
tics, such as spatial scale and urban morphology. How-
ever, the consistently high-quality input from the WSF
dataset, which is offering harmonized and reliable urban
extent layers, likely played a key role in achieving these
results.

To address the challenge of applying consistent, high-
resolution urban growth models across large and hetero-
geneous urban landscapes, we implemented a KDE-based
zonation approach combined with spatial tiling (Clarke
and Johnson 2020). This methodological adaptation ena-
bled separate calibrations for urban and rural dynamics,
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Fig. 11 Projected urban areas exposed to coastal flooding in 2050 across SSP/RCP scenarios. The total urban area at risk of inundation is shown
alongside the newly developed urban areas (2016-2050) exposed to flooding. The 50th and 83rd percentiles indicate different flood probability

thresholds

improving the SLEUTH model’s accuracy (Table 3). By
distinguishing between urban cores and rural fringes,
the approach captures spatial variability in growth pat-
terns, a critical advancement for scaling urban models
to diverse geographic contexts. While our approach dis-
tinguishes only between two broad zones—urban cores

and rural fringes—this zonation captures a critical spa-
tial dichotomy in growth behavior that improves model
calibration. Future work could extend this by incorporat-
ing transitional or peri-urban categories to further refine
spatial differentiation. For instance, Fig. 8 highlights
faster growth rates for compact "urban" cores, while rural
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regions in Ho Chi Minh City and Surabaya exhibit accel-
erated expansion driven by scattered urban morphology
and dense road networks. Overall, these growth trends
align with the SSP narratives. For Dar es Salaam, Ho
Chi Minh City, Khulna, Surabaya, and Surat SSP2 pro-
jects moderate urban population growth, while SSP1 and
SSP5 depict more rapid growth in the urban population
(Fig. 9). Based on the conducted translation into SLEUTH
parameters, this trend in urban population change could
be translated into the respective urban growth dynamics.
This consistency validates the integration of SSP scenar-
ios into the SLEUTH model (Supplementary Figs. 1 and
2, Jiang and O’Neill 2017). In support of our calibration
approach, Clarke and Johnson (2020) demonstrated that
spatial autocorrelation exists among SLEUTH calibration
coefficients when large datasets are tiled, emphasizing
that local spatial dependencies can propagate into urban
growth forecasts. This insight further reinforces the need
for our zonation approach, as it allows us to account
for spatial variability and improve prediction accuracy.
However, tiling also introduces methodological chal-
lenges. As highlighted by Eyelade et al. (2022), tiling can

Administrative boundaries and

D Analysiciarea Inundation depth base map provided by
[ Urban/settlement [l > 5m OpenStreetMap and the
area 2050 (SSP2) _ OpensStreetMap-Foundation
- 3m - 5m (CC-BY-SA)
B im-3m '
=7 0.15m - 1m

lead to overfitting within individual tiles at the expense
of broader trend recognition across land use categories.
In their study of Ibadan, Nigeria, the use of tiled input
data improved local fit but reduced the model’s ability to
capture overarching dynamics. While this finding under-
scores the need for careful handling of spatial scale and
resolution, its generalizability is limited given the study’s
focus on a single city. Further research is warranted to
systematically evaluate the trade-offs of tiling across
diverse urban contexts, especially within rapidly urban-
izing regions of the Global South.

However, future research is necessary in order to
develop quantitative approaches that describe the future
shifts from the historical mix of development patterns
towards a higher concentration in urban sprawl accord-
ing to SSP5 or compact development as described in
SSP1 in a systematic way.

Four cities — Dar es Salaam, Ho Chi Minh City, Khulna,
and Surat — are projected to grow by more than 50%
under SSP1 and SSP5 by 2050 compared to 2015 (Fig. 9).
Khulna experiences the highest growth, reaching 153.0%
in SSP1, 116.6% in SSP2 and 142.9% in SSP5, consistent
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Fig. 13 Total urban area inundated by riverine flooding in 2050 under selected SSP/RCP scenarios, including newly developed flood-exposed
urban areas (2016-2050) at the 50th and 83rd percentiles

with its recent rapid expansion. For instance, Alam et al.
(2023) report an average annual urban growth of 6.76%
in a similar study area between 2010 and 2020. While
Alam et al. (2023) analyzed a shorter historical period
(2010-2020), their reported annual growth of 6.76%
would, if sustained, result in a cumulative increase
broadly consistent with our projections. This suggests

that our longer-term scenario assumptions remain plau-
sible within the observed urban dynamics. Conversely,
Abidjan and Lagos exhibit comparatively lower growth
rates. While Lagos’ projected growth (10.5% under SSP1,
11.1% under SSP2 and 9.4% under SSP5 between 2016
and 2050) appears low, similar studies confirm this range:
Onilude and Vaz (2021) estimated a 0.45% annual growth
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Table 4 Proportion of urban/settlement areas potentially exposed to flood across study areas under three scenarios by 2050 (83rd
percentile). The table differentiates between pre-existing built-up areas and newly developed areas projected until 2050

City Scenario Coastal in % Fluvial in % Pluvial in %
2015 extent New area 2015 extent New area 2015 extent New area
2016- 2016- 2016-
2050 2050 2050
ABI SSP1/RCP2.6 0.05 0.04 0.13 0.56 6.25 10.59
SSP2/RCP4.5 0.06 0.02 0.13 0.64 6.36 10.93
SSP5/RCP8.5 0.07 0.04 0.15 0.50 6.04 1333
BAQ SSP1/RCP2.6 0.19 0.12 5.68 1.98 9.71 12.85
SSP2/RCP4.5 0.19 0.25 540 3.21 10.26 14.25
SSP5/RCP8.5 0.20 0.14 6.22 254 11.18 14.13
DAR SSP1/RCP26 0.15 1.06 0.66 1.62 7.3 1341
SSP2/RCP4.5 0.19 1.13 067 1.59 7.28 13.57
SSP5/RCP8.5 0.20 1.21 0.70 1.64 745 13.79
GYE SSP1/RCP2.6 0.1 0.03 18.14 3513 16.61 20.08
SSP2/RCP4.5 0.1 0.03 19.30 37.21 17.58 2144
SSP5/RCP85 0.12 0.02 2133 3717 18.01 21.16
HCM SSP1/RCP2.6 041 0.09 16.09 2194 13.25 12.96
SSP2/RCP4.5 047 0.06 17.58 22.39 14.26 13.56
SSP5/RCP85 0.53 0.11 19.51 27.08 15.03 14.57
KHL SSP1/RCP2.6  0.00 0.00 6.67 740 7.10 749
SSP2/RCP4.5 0.00 0.00 7.03 757 7.73 749
SSP5/RCP8.5  0.00 0.00 767 8.89 8.11 8.29
LAG SSP1/RCP2.6 3.28 252 344 262 10.12 13.83
SSP2/RCP4.5 351 2.81 357 2.96 10.32 14.25
SSP5/RCP8.5  3.81 323 357 2.86 10.53 14.35
SBY SSP1/RCP2.6  7.99 583 24.99 23.56 14.39 13.48
SSP2/RCP4.5 823 717 26.62 23.87 15.31 16.54
SSP5/RCP8.5  9.00 6.51 30.06 26.61 16.21 14.92
STV SSP1/RCP2.6  0.68 1.96 11.88 10.89 21.54 17.99
SSP2/RCP4.5 0.74 1.95 13.82 11.67 2232 18.36
SSP5/RCP8.5 0.80 2.23 18.76 15.01 22.99 19.21

Exposure of newly developed area
(%) is more than 10% less than the
exposure of the 2015 extent (%)

Exposure of newly developed
areas (%) within the same range
of exposure (+10%) than the 2015
extent (%)

Exposure of newly developed areas
(%) is between 10% to+100%
higher than the exposure

of the 2015 extent (%)

Exposure of newly developed
areas (%) is more than 100%
higher than the exposure

of the 2015 extent (%)

rate (2010-2030) using a CA Markov Chain model, while
Gilbert and Shi (2023) projected 0.74% annual growth
(2020-2040). For Abidjan, Wang et al. (2022) modelled
an annual growth rate of 1.2% for the period 2016-2025,
although based on a shorter timeframe and somewhat
lower rates, this steady urban expansion trend aligns
qualitatively with our cumulative growth projections of
21.6%, 22.0% and 17.5% by 2050 under SSP1, SSP2, and
SSP5, respectively. The differences may reflect varia-
tion in temporal scope, spatial resolution, and modelling
assumptions.

On a national scale, Wolff et al. (2023) analysed SSP-
based projections of urban extent until 2100 and found

that the highest urban expansion varies across Euro-
pean countries. In most cases, SSP5 results in the largest
urban extent, while SSP1 and SSP2 occupy intermediate
positions. However, the European narratives cannot be
directly compared to our findings, as our study focuses
on cities in the Global South, where urbanization dynam-
ics, socio-economic drivers, and climate vulnerabilities
differ significantly. This underscores the need for region-
specific analyses.

4.2 Flood exposure scenario assessment
To asses urban flood exposure, projected 2050 urban
extents are overlaid onto the flood scenarios for SSP1/
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Fig. 14 Projected pluvial flooding for the SSP2/RCP4.5 scenario (83rd percentile) overlaid with the 2050 SSP2 urban extent

RCP2.6, SSP2/RCP4.5, and SSP5/RCP8.5, considering
both the 50th and 83rd percentiles for a 100-year return
period. The interplay between urban population growth
and climate change creates complex scenario-driven pat-
terns, leading to varying flood extents across different
cities and flood types.

The impact of SSP/RCP scenarios varies significantly
across the nine study areas, reflecting divergent urbani-
zation dynamics and climatic sensitivities. For exam-
ple, Barranquilla and Guayaquil exhibit the lowest flood
exposure under SSP1/RCP2.6 across all flood types, while
Khulna and Surabaya experience reduced flood hazard
exposure under SSP2/RCP4.5 due to slower urban popu-
lation growth and moderate climate forcing. Conversely,
Guayaquil faces the highest fluvial and pluvial flooding
SSP2/RCP4.5, highlighting the non-linear relationship
between urban expansion and flood hazard extent. Nota-
bly, SSP5/RCP8.5 results in the lowest fluvial and plu-
vial flood exposure for Abidjan but the highest for SSP1/
RCP2.6, a divergence attributed to lower total population
projections under SSP5 (Supplementary Table 2). These
findings align with Sun et al. (2022), who emphasize the

critical role of urban growth scenarios in shaping future
flood exposure.

4.3 Implications of SSP/RCP-based flood exposure
assessment

The 2050 flood assessment reveals distinct patterns of
urban flood exposure in the Global South, where rapid
urbanization amplifies exposure to coastal, fluvial and
pluvial flooding. Under all flood types, in several cit-
ies, newly developed urban areas exhibit markedly
higher flood exposure—up to 8 times greater than in
existing areas (e.g., Dar es Salaam, Surat)—underscor-
ing the risks of non-risk-informed expansion (Mahtta
et al. 2022). However, this trend is not consistent across
all study sites, with some cities showing comparable or
lower exposure in new developments, pointing to the
influence of localized topographic and planning fac-
tors. For instance, Dar es Salaam and Surat exhibit 2.5-8
times higher exposure in new developments compared
to existing urban areas, highlighting the urgency of risk-
informed land-use planning. Surabaya’s coastal flood-
ing (up to 83 km? under SSP5/RCP8.5) and Guayaquil’s
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Fig. 15 Total urban area affected by pluvial flooding in 2050 under the selected SSP/RCP scenarios, including newly developed flood-exposed
areas (2016-2050) at the 50th and 83rd percentiles

fluvial exposure (37% of new urban areas) demand tar-
geted interventions. This highlights the urgent need for
strategic urban planning that avoids flood-prone areas
and strengthens long-term urban resilience. Context-spe-
cific resilience strategies are essential to address the var-
ied exposure patterns observed across different cities and
flood types. Pluvial flooding, which affects larger spatial

urban design.

areas (e.g., 10.53-21.16% of new urban areas in Abidjan
and Guayaquil), underscores the importance of consid-
ering rain-induced flooding in future urban planning.
The persistence of high exposure in newly developed
zones highlights the limitations of relying solely on cli-
mate mitigation and emphasizes the role of proactive
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In some cases, newly developed areas may appear
less exposed, which can be explained by several factors:
generally low overall exposure levels, historical settle-
ment patterns that avoided high-risk zones but may face
increasing risk of flood exposure under future climate
conditions, and future urban expansion into inland areas
with lower flood exposure but potentially unfavourable
topography. These variations highlight the case-specific
nature of future exposure and underscore the importance
of spatially explicit, scenario-based assessments.

Ultimately, while high radiative forcing scenarios exac-
erbate flood exposure, socioeconomic pathways shaping
urban expansion are equally critical. These findings align
with Hemmati et al. (2020), who stress the importance of
urban growth management in building flood resilience.
By linking scenario-based assessments to localized strat-
egies, this study provides actionable insights for policy-
makers navigating the dual challenges of urbanization
and climate change.

These findings underscore broader trends across the
Global South: the compounding vulnerabilities of infor-
mal expansion, limited infrastructure investment, and
weak enforcement of spatial planning. The integration of
scenario-based models into local planning frameworks
offers a promising pathway to anticipate risks and design
proactive, climate-resilient urban strategies (Horn 2020).

4.4 Understanding methodological boundaries

This study relies on various assumptions and is subject
to modelling uncertainties. The SSPs, originally designed
at the national scale, lack adaptation to local study areas.
Their integration into the SLEUTH model via Breed and
Spread coefficients is an uncommon approach (Jones and
O’Neill, 2016), introducing potential uncertainties. While
the IIASA urbanization projections primarily focus on
demographic trends rather than spatial land expansion,
their integration into the SLEUTH model provides a
proxy for future urban growth by adjusting the Breed and
Spread coefficients. However, this approach assumes a
correlation between population development and urban
extent, which may not fully capture variations in urban
density, land-use policies, and infrastructure constraints.
Future studies could enhance this framework by incorpo-
rating additional land-use change datasets to refine the
spatial accuracy of urban expansion projections.

Further uncertainties arise from SLEUTH input data,
climate scenarios, the DEM, and the flood defence
parameters in the Fathom flood dataset. For instance,
another widely used tool, the Aqueduct Global Flood
Analyzer projects near-complete inundation of Khulna
by 2050 under a BaU scenario for a 100-year coastal
flood event (WRI Aqueduct 2023). In contrast, this study
did not simulate any coastal flooding for Khulna. This
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discrepancy highlights how strongly model outcomes
depend on the selected input data, assumptions, and
methods, underlining the importance of understand-
ing model limitations when interpreting flood hazard
projections.

This study also relies on the defended-status flooding
datasets, which assume the presence of flood protec-
tion infrastructure. While this approach aims to provide
the most realistic flood exposure assessment given the
available data, the completeness of flood-defence infra-
structure information for the selected cities cannot be
independently verified. This limitation may affect inter-
city comparisons, as some regions might have better-
documented flood defences than others. Additionally,
this study assesses coastal, fluvial, or pluvial floods sepa-
rately, excluding compound flood events, which simpli-
fies, but does not fully capture, the complexity of real
extreme events. However, our study aligns with current
best practices (see Introduction), employing zonation in
SLEUTH modelling to improve predictive accuracy and
integrating SSP/RCP perspectives beyond most existing
studies. Despite these limitations, the study’s methodo-
logical setup effectively addresses the research questions
and provides insights into future urban flood exposure.

Another critical consideration is the levee effect, which
refers to the tendency of populations to concentrate in
areas perceived as protected due to flood defence infra-
structure (Haer et al. 2020; Méard et al. 2018). While
this effect is not incorporated in the flood exposure
scenarios, its influence on future urban expansion pat-
terns remains an important factor. If flood defences fail
or prove insufficient under extreme conditions, these
areas could experience disproportionate flood impacts
due to high population densities. Understanding how
this dynamic shapes settlement patterns will be essential
for refining future flood risk assessments. Future work
should incorporate behavioral modeling to assess how
perceived safety from levees might attract denser settle-
ment in flood-prone areas, potentially amplifying future
exposure. This dynamic is especially critical in rapidly
urbanizing contexts with limited risk communication
and enforcement.

5 Conclusions

This study presents a comprehensive urban growth pre-
diction and future flood exposure assessment for nine
coastal cities across three continents, addressing the
complex interplay of urbanization, climate change, and
flood risk in the Global South. By integrating SSPs into
a refined SLEUTH model enhanced with KDE-based
zonation, we offer a context-specific, spatially explicit
approach to predicting urban expansion and flood
exposure at a high resolution (30 m). The inclusion of
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a diverse set of study areas, spanning varied climatic,
socioeconomic, and geographic contexts, enables a
cross-continental comparative analysis, revealing criti-
cal insights into how urbanization and climate change
jointly shape potential flood exposure.

Notably, in some cities such as Dar es Salaam and
Surat, newly developed urban areas face dispropor-
tionately higher flood exposure than existing settle-
ments — by a factor of 2.5-8 — underscoring the risks
of non-risk-informed planning in those contexts. These
findings highlight that future flood exposure are driven
not only by high radiative forcing scenarios but also by
socioeconomic pathways shaping urban expansion. This
dual dependency emphasizes the need for integrated
strategies combining climate change mitigation with
proactive, scenario-based urban planning.

Central to these findings is the imperative for cit-
ies to be assessed individually, balancing their unique
physical and socioeconomic contexts with projected
development trajectories. For decision-makers, this
underscores the value of localized data and adap-
tive governance. While global datasets provide broad
insights, tailored strategies, which are accounting for
governance structures, topography, and community
vulnerabilities, are critical for resilience.

Ultimately, as cities navigate the challenges of the
Anthropocene, integrating urban modelling with cli-
mate projections can provide a roadmap for more
sustainable and adaptive urban growth. By identify-
ing high-risk areas and potential mitigation pathways,
this study advances a more informed and proactive
approach to urban resilience, ensuring that coastal cit-
ies in the Global South can adapt to both rising seas
and rapid urbanization.
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