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Abstract 

Climate change remains a defining challenge of the twenty-first century, profoundly impacting ecosystems, econo-
mies, and human settlements. Among its consequences, the intensification of flood risks in coastal cities poses a criti-
cal threat to sustainable development, particularly in the Global South. This study bridges climate change-induced 
flooding scenarios with urban growth modelling, integrating Shared Socioeconomic Pathways (SSPs) into the SLEUTH 
model to simulate future urban trajectories and assess flood exposure under varying climate and socioeconomic 
conditions. Leveraging Earth observation information products, flood hazard scenarios based on Representative 
Concentration Pathways (RCPs) and high-resolution (30 m) urban growth projections, this study evaluates coastal, 
fluvial, and pluvial flood exposure for nine coastal agglomerations with diverse socioeconomic and environmental 
contexts. Urban growth projections under SSP1/RCP2.6, SSP2/RCP4.5, and SSP5/RCP8.5 scenarios reveal significant 
variability in urban expansion rates, with four cities projected to expand by over 50% by 2050. Flood exposure assess-
ments for the target year 2050 reveal nuanced spatial and scenario-dependent patterns across all flood types: Sura-
baya (Indonesia) faces severe coastal flooding (up to 83 km2 under SSP5/RCP8.5), while Guayaquil (Ecuador) and Ho 
Chi Minh City (Vietnam) experience extensive risks of fluvial flood exposure, with over 37% of newly developed areas 
inundated in Guayaquil. Notably, the SSP2/RCP4.5 “Middle of the Road” scenario yields the lowest flood exposure 
in Khulna (Bangladesh) and Surabaya, whereas SSP1/RCP2.6 and SSP5/RCP8.5 project 30% to over 70% higher expo-
sure in these cities. Disproportionate exposure to inundation in newly urbanized areas, particularly for Dar es Salaam 
(Tanzania) and Guayaquil, underscores potential risks associated with rapid and uninformed urbanization into flood 
prone regions. These findings emphasize the dual role of high radiative forcing climate scenarios and socioeconomic 
pathways in shaping flood exposure and associated risks, advocating for integrated strategies that combine climate 
mitigation with proactive, scenario-based urban planning.
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1  Introduction
Climate change is one of the most pressing challenges 
of the twenty-first century, with widespread impacts on 
ecosystems, economies, and human settlements (IPCC 
2023). Among its many consequences, the intensification 
of flood risks in coastal cities is a major concern. Coastal 
and pluvial floods, driven by rising sea levels, shift-
ing precipitation patterns, and more frequent extreme 
weather, threaten urban sustainability and resilience, par-
ticularly in the Global South (Glavovic et al. 2022). His-
torically, coastal cities have thrived as hubs of commerce, 
culture, and innovation, attracting populations seeking 
economic opportunities and a higher quality of life (Bar-
ragán and de Andrés 2015). However, rapid urbanization 
and climate change now heighten flood risks, requiring 
urgent attention. Coastal cities, often near seas and river 
estuaries, are at the forefront of climate-induced flooding 
(Hallegatte et al. 2013; Edmonds et al. 2020; Strauss et al. 
2021). The impacts are multifaceted, ranging from imme-
diate threats to life and property to long-term socioeco-
nomic disruptions. Flood events often jeopardize critical 
infrastructure, disrupt supply chains, displace communi-
ties, and are undermining the social fabric of these cit-
ies (Dodman et  al. 2023). Moreover, recurring floods 
perpetuate a cycle of damage and recovery that exacts 
a substantial toll on public finances and exacerbates the 
vulnerability of marginalized populations (Glavovic et al. 
2022).

1.1 � Settlement growth prediction: input data and tools
The scientific community has responded to this chal-
lenge by developing advanced modelling tools and meth-
odologies to assess and predict flood exposure for urban 
environments (Hanson et al. 2010; Edmonds et al. 2020; 
Nicholls et  al. 2021; Strauss et  al. 2021). Integrating 
these tools with scenarios of future urban and settlement 
growth is imperative, as urbanization continues and 
(peri-)urban areas expand into flood-prone zones. These 
tools, along with accompanying research, have been bol-
stered by freely accessible, global, flood-related datasets 
for past events (Tellman et al. 2021), current floodplains 
(Nardi et  al. 2019) and early warning systems (Alfieri 
et al. 2013). Key datasets delineating current and future 
coastal and riverine flood prone areas under integrated 
climate scenarios include the Fathom Global Flood Map 
(30 m resolution) (Hawker et al. 2022; Fathom 2023) and 
the World Resources Institute (WRI) Aqueduct Flood 
Analyzer maps (30 × 30 arc seconds resolution) (Win-
semius et  al. 2015, WRI Aqueduct 2023). In addition, 
Earth observation (EO) products have become vital for 
urban modelling, demonstrating immense potential for 
predictive analysis (Koehler and Kuenzer 2020). High-
resolution global settlement extent maps from satellite 

imagery have revolutionized large-scale urban modelling. 
Datasets such as the Global Human Settlement Layer 
(GHSL) (Corbane et  al. 2019; Florczyk et  al. 2019), 
Global Annual Impervious Area (GAIA) (Gong et  al. 
2019, 2020), and Global Impervious Surface Area (GISA) 
(Huang et al. 2022) highlight the value of remote sensing-
derived products for urban studies. Notably, the World 
Settlement Footprint (WSF) evolution dataset has fur-
ther enriched the field, offering a yearly account of global 
settlement extents at 30 m resolution from 1985 to 2015 
(Marconcini et al. 2019, 2021).

Urban or settlement growth modelling has become 
essential in future flood risk analysis. Simulating future 
urban growth scenarios offers a proactive approach to 
flood risk management (Li and Gong 2016). A diverse 
array of methods has been employed to predict future 
urban and built-settlement growth. Approaches such 
as the CLUE models (Verburg et  al. 2002; Verburg and 
Overmars 2009; Srichaichana et al. 2019) and the Future 
Land Use Simulation (FLUS) model (Liu et  al. 2017, 
2022) are widely used for modelling land use and land 
cover changes, particularly within multi-class contexts. 
For urban development studies, Gao and O’Neill (2019) 
introduced the data-driven Spatially-Explicit, Long-
term, Empirical City development (SELECT) model. 
Wang et  al. (2022) transformed the spatial and tempo-
ral changes derived from annual settlement extent layers 
into a Spatio-Temporal Matrix (STM) for growth predic-
tion with a multi-layer perceptron (MLP). Similarly, Wolff 
et  al. (2020) applied an MLP trained on CORINE land 
cover data to map spatial probabilities of future urban 
growth in the Mediterranean. They combined a non-spa-
tial urbanization model with GDP and population data 
from Shared Socioeconomic Pathways (SSP) scenarios 
at 100  m spatial resolution to estimate urbanized pixels 
and exposure to sea level rise. Based on this methodol-
ogy, Wolff et al. 2023 analysed the projected urban extent 
by 2100 for the European Union member states. Moreo-
ver, cellular automata (CA) modelling (Li and Gong 2016; 
Musa et al. 2016; Yeh et al. 2021), known for its spatially 
explicit representation of urban growth, is widely applied. 
Among rule-based CA models, the SLEUTH model 
(Clarke et  al. 1996, 1997) has gained widespread adop-
tion in urban growth modelling (Wu et  al. 2008; Rafiee 
et  al. 2009; Feng et  al. 2012; Kuo and Tsou 2017; Gon-
calves et al. 2019; Zhou et al. 2019; Clarke and Johnson 
2020; Kumar and Agrawal 2022), and is characterized by 
its process-based approach and the ability to simulate 
policy scenarios. It has been a widely applied tool in the 
field of urban planning (Chaudhuri and Clarke 2013) and 
increasingly tested for flood exposure projections (Rei-
muth et al. 2023). It derives its name from its input vari-
ables: Slope, Land use, Exclusion, Urban, Transportation, 
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and Hillshade (Clarke et al. 1996) and allows to simulate 
spatially explicit urbanization patterns through five con-
trol parameters. Unlike models focused on land-use tran-
sitions (e.g., CLUE, FLUS), SLEUTH explicitly captures 
growth mechanisms such as edge expansion and road-
influenced development.

1.2 � Future socioeconomic scenarios in urban modelling
Projecting urban growth in a rapidly evolving world 
requires scenarios that encapsulate varying socioeco-
nomic trajectories. The SSPs, introduced as a frame-
work by the scientific community, provide a spectrum 
of plausible narratives for future societal development. 
The SSPs outline global trends, ranging from sustainable 
to fragmented development, capturing future changes 
in energy, population, environment, and land use/land 
cover throughout the twenty-first century (Riahi et  al. 
2017). Based on five qualitative scenarios, quantified data 
on population (Kc and Lutz 2017), degree of urbaniza-
tion (Jiang and O’Neill 2017), and gross domestic prod-
uct (GDP) (Leimbach et al. 2017; Crespo Cuaresma 2017; 
Dellink et  al. 2017) have been developed and projected 
to 2100. However, integrating them into urban model-
ling remains a relatively new approach for understanding 
future urbanization dynamics.

Jones and O’Neill (2016) introduced a global popula-
tion scenario framework aligned with the SSPs, employ-
ing a gravity-based downscaling model. Their approach 
ensures quantitative consistency with national popu-
lation and urbanization projections aligning with SSP 
spatial development narratives. Merkens et  al. (2016) 
introduced spatial projections for global coastal popu-
lation distribution across the five SSPs, developing 
coastal-specific narratives that differentiate coastal and 
inland population dynamics in urban and rural areas. 
Terama et  al. (2017) linked SSP-based national popula-
tion projections to population distributions at European 
sub-national level. Their method integrates population 
allocation as a pivotal driver of residential urban demand, 
particularly emphasized in SSP5-based scenarios, influ-
encing regional urban growth. Chen et  al. (2020) simu-
lated global urban land expansion under SSPs at a 1 km 
resolution in 10-year intervals from 2020 to 2100. Gao 
and O’Neill (2020) leveraged a data-science approach 
and 15 diverse datasets, including a 40-year global time 
series of remote sensing observations, to derive global 
urban land projections for the twenty-first century. Their 
findings suggest a potential 1.8–5.9fold increase in global 
urban land under various SSPs. Chen et al. (2022) utilized 
a logistic fitting model for updating global urbanization 
projections from 2015 to 2100 under the SSPs. They offer 
projected urbanization levels every five years for 204 
countries and areas, and annual projections from 2010 

to 2100 for 188 countries and areas using historical data 
from the World Bank. He et al. (2023) developed a global 
dataset of urban fractional changes at 1  km resolution 
from 2020 to 2100 under eight SSP-RCP (Representa-
tive Concentration Pathways) scenarios. Their approach 
involves characterizing impervious surface area (ISA) 
growth patterns using a sigmoid model, integrating these 
patterns with a CA model, and calibrating state-specific 
urban CA models for projections based on Land Use 
Harmonization2 (LUH2) data. Varquez et al. (2017) cali-
brated a SLEUTH urban growth model for Jakarta’s 2050 
expansion, incorporating SSPs, population projections, 
and empirical relationships between population, night-
time lights, urban parameters, and GDP. They empha-
sized the importance of the Spread and Breed coefficients 
in the SLEUTH model, as they affect the growth speeds 
and modified these coefficients by optimizing them with 
the Monte Carlo simulation of SLEUTH to match the 
urbanization trend.

1.3 � RCP framework for flood risk assessment
The RCPs describe different greenhouse gas concentra-
tion trajectories and project climate change impacts up 
to 2100 (Taylor et al. 2012). They are based on socioeco-
nomic emission assumptions and have been adopted by 
the Intergovernmental Panel on Climate Change (IPCC) 
(van Vuuren et al. 2011). RCPs serve as inputs for Global 
Climate Models (GCMs), such as those used in the Cou-
pled Model Intercomparison Projects (CMIPs), and 
Regional Climate Models (RCMs) to simulate future 
climate conditions, including changes in temperature, 
precipitation, and sea level rise (Eyring et  al. 2016). In 
CMIP6 (IPCC Sixth Assessment Report), RCPs are 
integrated with SSPs to provide a more comprehen-
sive assessment of socioeconomic changes and climatic 
effects (O’Neill et al. 2016).

These climatic factors directly influence flood risk by 
altering rainfall intensity, river discharge, and coastal 
storm surges. Hydrological models use RCP-driven cli-
mate projections to estimate changes in river runoff, soil 
moisture, and groundwater levels (Wang et  al. 2024). 
These outputs are then used by hydraulic and hydrody-
namic models to simulate water movement through river 
networks, floodplains, and urban environments (Schu-
mann et al. 2018; Kumar et al. 2023).

1.4 � Study objectives and approach
Balancing the complexity of urbanization dynamics with 
diverse socioeconomic narratives and bringing them 
together with climatic scenarios necessitates an inno-
vative approach. In response, this paper investigates 
the predictive capabilities of the SLEUTH model using 
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future-oriented SSP- and RCP-based scenarios and 
examines their thematic outcomes.

While previous studies mostly focus on single-city 
analyses or consider socioeconomic and climatic drivers 
in isolation, there is a lack of integrated, multi-scenario, 
and multi-study area assessments that combine SSP-RCP 
frameworks with spatially explicit urban growth and 
flood exposure modelling. Furthermore, scaling urban 
models to larger, heterogeneous areas requires methodo-
logical adaptations, such as spatial tiling and distinguish-
ing between urban and rural growth characteristics, both 
underexplored in earlier research.

To address these gaps, this exploratory research applies 
a harmonized scenario framework to nine coastal cities 
across three continents in the Global South for urban 
growth modelling and flood exposure assessment. The 
focus on the Global South is particularly relevant, as 
these regions are experiencing some of the world’s fast-
est urbanization rates (Randolph and Storper 2022). The 
study areas were selected for their diverse geographic, 
climatic and environmental contexts, as well as previous 
flood experience. This diversity is crucial for understand-
ing how different regions with unique characteristics 
respond to urbanization and climate change, highlight-
ing urban growth hotspots in coastal, fluvial and pluvial 
flood regimes. Additionally, understanding urban growth 
dynamics and their implications for flood risk in the 
Global South is critical for sustainable development and 
resilience building (Sett et al. 2024), with lessons that can 
inform policies and strategies in similar contexts globally 
(Pirani et al. 2024).

This study evaluates whether SSP- and RCP-based sce-
narios can be effectively integrated into a SLEUTH-based 
urban growth modelling approach through the model-
inherent Breed and Spread coefficients and applied in 
subsequent flood exposure analysis to simulate plausible 
future urban expansion and associated flood risks.

The study is guided by the following key research 
questions:

•	 How will future urban growth under different SSP-
RCP scenario combinations affect exposure to 
coastal, fluvial, and pluvial flooding in rapidly urban-
izing cities of the Global South?

•	 How do urbanization patterns and flood exposure 
trends differ across these diverse settings, and what 
commonalities emerge from a cross-continental 
comparative analysis?

Additionally, the study design enables us to draw con-
clusions about how urban growth modelling approaches 
can be further adapted for consistent, high-resolution 
application across large and heterogeneous study areas. 

The year 2050 was chosen as a mid-century benchmark 
that aligns with global policy targets (UNFCCC 2015) 
and offers more reliable projections than longer-term 
horizons. This timeframe provides actionable insights for 
urban planning and flood risk mitigation in rapidly grow-
ing cities. By producing scenario-based, spatially explicit 
insights at 30  m spatial resolution, this study addresses 
the challenges and opportunities presented by urbani-
zation, climate change, and flood exposure, offering 
insights into current conditions and future scenarios for 
risk informed decision-making and resilience building.

2 � Data and methodological approach
2.1 � Study areas
For this study, the selection of coastal cities aimed to rep-
resent a broad distribution across global ocean coasts 
while including only cities in the Global South. We 
selected nine coastal or coastal-zone agglomerations in 
the Global South based on the following criteria:

1)	 They already have a large population of at least 2 mil-
lion inhabitants.

2)	 They are recognized as rapidly growing/dynamically 
changing cities.

3)	 They experienced flood events in the past.
4)	 They are situated along coastlines, river courses, and/

or are affected by tidal activity, exposing them to 
both sea-level rise and riverine flooding due to cli-
mate change in the future.

Hanson et al. (2010) ranked coastal and port cities by 
climate extremes, identifying five cities (Lagos, Khulna, 
Abidjan, Surat and Ho Chi Minh City) from our selection 
among the top 20 with the "highest proportional increase 
in exposed population by the 2070s". Nicholls and Caze-
nave (2010) noted that most Asian countries face sea-
level rise (SLR) threats due to densely populated river 
deltas with large, fast-growing cities. Similarly, Africa’s 
coasts are at risk due to lower levels of development and 
assumed rapid population growth (Dasgupta et al. 2010). 
Our study, along others (Nicholls et al. 2008; Nicholls and 
Cazenave 2010; Rosenzweig et al. 2018), lists cities at risk 
in coastal Asia and Africa. Additionally, we included two 
South American cities identified in climate reports and 
scientific publications (World Bank 2014; Reguero et  al. 
2015) as being at significant risk.

Each study area encompasses not only the administra-
tive area of the city but also the periurban region and sur-
rounding settlements, including satellite cities, towns, 
villages, and rural lands, forming a larger urban agglom-
eration. The administrative units analysed for each city 
and further details about population, past growth and 
historic flood events can be found with Supplementary 
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Table 1. Throughout the following text, city names repre-
sent their entire agglomeration.

Among the selected agglomerations, Abidjan, Lagos, 
and Dar es Salaam are among Africa’s largest and fastest-
growing coastal cities (Fig. 1). Abidjan and Lagos situated 
along the Atlantic Ocean, are bordered by lagoons fed by 
inland tributaries. Abidjan is the largest city in the Ivory 
Coast and has faced multiple severe pluvial and river 
flooding events in recent years. Lagos is affected mainly 
by pluvial floods, but compound flood is an increasing 
threat (Nkwunonwo et  al. 2016). Dar es Salaam, Tanza-
nia’s largest city and located at the Indian Ocean, is vul-
nerable to coastal, pluvial, and compound fluvial-pluvial 
floods (Kebede and Nicholls 2011).

Ho Chi Minh City, Vietnam’s largest city, lies down-
stream of the Dong Nai and Saigon Rivers (Fig.  2). It 
experiences flooding caused by extreme monsoon rainfall 
and tidal events (Couasnon et  al. 2022). Khulna, Bang-
ladesh, is positioned within the Sundarbans/Brahmapu-
tra–Meghna Delta. Even though the city is approximately 
100  km from the Bay of Bengal in the Indian Ocean, 
its deltaic and low-lying topography makes the region 
exposed to pluvial and fluvial, but also cyclonic coastal 
flooding (Haque and Nicholls 2018; Bernard et al. 2022). 
Surabaya, the capital of East Java Province in Indonesia, 
lies on the low-lying northern coast of Java, where sev-
eral river arms make it prone to river and tidal flooding 
(Susetyo et al. 2022). Surat, in Gujarat, India, is one of the 
world’s fastest growing cities, positioned along the Indian 

Ocean and Tapi River. Since a devastating flood in 2006, 
it has faced frequent coastal, fluvial and pluvial flood 
events, particularly during the monsoon season (Jamshed 
et al. 2023; Jibhakate et al. 2023).

Barranquilla, Colombia’s largest coastal city and the 
capital of the Atlántico Department, is located at the 
delta of the Rio Magdalena, where it meets the coast 
of the Caribbean Sea and faces multiple flood hazards 
(Fig. 3) (Milanes et al. 2021). Guayaquil, the largest city in 
Ecuador, lies where the Babahoyo River and Daule River 
merge into the Guayas River, forming Latin America’s 
largest delta before draining into the Pacific (Pelckmans 
et al. 2023). Our analysis included Guayaquil (excluding 
Isla Puna and the enclave of Tenguel), along with eight 
neighbouring cantons. In early 2023, the study area suf-
fered from severe pluvial and river flooding (IFRC 2023).

2.2 � Data
2.2.1 � Flood hazard layers
Global flood hazard layers for a variety of scenarios 
are available from the Fathom Global Flood Map 3 
(Fathom 2023). The flood modelling is based on the FAB-
DEM+ digital elevation model (DEM) with a 30 m spatial 
resolution (Hawker et al. 2022). The FABDEM is a global 
ground terrain map, derived from the Copernicus DEM 
(Airbus 2019), in which tree canopies and building roofs 
have been removed. FABDEM+ is a composite of FAB-
DEM (Hawker et al. 2022) and publicly available LiDAR 
data. The Fathom flood model applies a hydraulic model 

Fig. 1  Agglomerations of Abidjan, Lagos and Dar es Salaam in Africa. The modelling was conducted for the rectangular areas, while further analysis 
is based on administrative units. Administrative boundaries and the base map are provided by OpenStreetMap and the OpenStreetMap-Foundation 
(CC-BY-SA)
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to produce flood hazard maps, based on the inertial for-
mulation of the shallow water equations, adapted for 
two-dimensional inundation modelling by Bates (2022). 
The size of rivers is simulated using a gradually-varied 
flow solver (Neal et al. 2021). Further information about 
the Fathom Global 3.0 methodology can be found in 
Fathom (2022a, b).

The Global Flood Map data comprise inundation 
depths and risk scores for inland flooding (pluvial and 
fluvial) and coastal flooding at a 30 m spatial resolution 
(Fathom 2023). The flood data are generated for a set of 
associated climate dynamics, allowing for flood maps to 
be derived under different projected climate conditions. 
Future scenarios can be derived selecting year and cli-
mate projection (based on different climate scenarios or 
global mean temperature changes) (Fathom 2023). Addi-
tionally, percentile-based flood depth data represent cli-
mate model uncertainty, with the range between the 17th 
and 83rd percentiles aligning with the IPCC definition 
of ‘likely’ (Fathom 2023), with the 50th percentile repre-
senting the median, meaning half the simulations show 

lower magnitudes and half show higher. For this study, 
we retrieved Global Flood Map 3 data for the selected 
study areas with the specifications: Year: 2050; Scenarios: 
RCP2.6, RCP4.5, RCP8.5; Percentiles: 50th, 83rd; Metric: 
depth; Flood types: pluvial/fluvial/coastal; Return period: 
100-years.

For fluvial and coastal flood scenarios, the dataset 
allows the selection of defended and undefended local 
conditions. In this study, we intentionally decided for 
the defended status, wherein known flood defences are 
incorporated and thereby best representing the local situ-
ation best (see Fathom (2022a, b)).

2.2.2 � World settlement footprint evolution
The World Settlement Footprint (WSF)-evolution 
dataset is an open-access information product that 
maps the urbanization process at a global scale (Mar-
concini et  al. 2020). The WSF-evolution dataset is 
generated using Sentinel and Landsat data and delin-
eates the global settlement extent through annual 
binary images at a 30 m resolution for the years 1985 

Fig. 2  Agglomerations of Surat, Khulna, Surabaya and Ho Chi Minh City in Asia. The modelling was conducted for the rectangular areas, 
while further analysis is based on administrative units. Administrative boundaries and the base map are provided by OpenStreetMap 
and the OpenStreetMap-Foundation (CC-BY-SA)
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to 2015. The WSF was selected for this study because 
its consistent annual binary classification of settlement 
(comprising built-up structures and impervious intra-
urban surfaces) and non-settlement areas over an 
extended time period makes it particularly well-suited 
as an input for the SLEUTH model. In this study, the 
WSF-evolution was used to generate historical urban 
extent layers for the calibration and prediction of the 
SLEUTH model.

2.3 � SSP‑RCP scenario integration
This study integrates socioeconomic scenarios from 
the SSPs database (IIASA 2018) to predict future 
urban growth. O’Neill et al. (2016) applied these SSPs 
within the Scenario Model Intercomparison Project 
(ScenarioMIP) to assess combinations of SSPs and 
RCPs. From the IPCC’s RCP scenarios (van Vuuren 
et  al. 2011, 2013), we selected three to represent a 
broad range of possible futures: low forcing (RCP2.6), 
medium stabilization (RCP4.5), and high emission 
(RCP8.5). Correspondingly, we focused on three Tier 
1 scenarios, combining SSPs and RCPs based on their 
plausibility and concurrent occurrence: SSP1/RCP2.6, 
SSP2/RCP4.5 and SSP5/RCP8.5 (see Table 1).

2.4 � Urban growth modelling
2.4.1 � SLEUTH model
The SLEUTH model is a CA-based framework for sim-
ulating urban expansion and land use changes (Clarke 
et  al. 1997, Clarke et  al. 2004). It assumes that urbani-
zation underlies development patterns distinctive to an 
urban agglomeration and observable in the historical 
development. The SLEUTH model relies on five control 
parameters that describe different urban growth patterns:

•	 Spread coefficient: Governs the contagious influence 
of established urban areas on their surroundings, 
impacting the spatial patterns of urban growth.

•	 Breed coefficient: Represents the probability that 
a newly formed detached settlement will initiate its 
independent growth cycle.

•	 Diffusion: Governs the random selection frequency 
of a pixel for potential urbanization.

•	 Slope resistance: Acknowledges the topographical 
constraints, ensuring that the model considers the 
resistance posed by elevated terrains to urban expan-
sion.

•	 Road gravity factor: Serves as an attraction force, 
drawing new settlements towards existing roads and 
guiding the expansion along road networks.

Fig. 3  Agglomerations of Guayaquil and Barranquilla in South America. The modelling was conducted for the rectangular areas, 
while further analysis is based on administrative units. Administrative boundaries and the base map are provided by OpenStreetMap 
and the OpenStreetMap-Foundation (CC-BY-SA)
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Based on the control parameters, the behaviour of four 
key growth rules is adjusted (Clarke et al. 2004):

•	 Spontaneous Growth: This encompasses the random 
urbanization of cells or pixels, influenced by diffusion 
and slope resistance.

•	 New Spreading Center Growth: Often referred to as 
diffusion growth. This aspect governs whether a pixel 
or a cluster of pixels evolves into a new urban centre 
and is influenced by breed and slope resistance.

•	 Edge Growth: Termed organic growth, representing 
urban expansion at the fringes of existing urban cen-
tres. This growth behaviour is influenced by spread 
and slope resistance.

•	 Road-Influence Growth: This mechanism accounts 
for urban development along road networks or trans-
portation corridors. This aspect is influenced by 
breed, road gravity, diffusion and slope gravity.

In addition, the modelling approach allows the exclu-
sion of specific areas that are kept free from future urban 
development due to different reasons, such as national 
parks or places of religious importance.

2.4.2 � Zoning and tiling of the study areas
Urban regions often exhibit varying development speeds 
across different zones, particularly when the adminis-
trative planning area encompasses both urban and rural 
domains. However, the SLEUTH model applies a single 
set of coefficients for the entire study area, leading to uni-
form urban growth patterns that do not account for local 
differences in urbanization dynamics. To address this, we 
introduced a zonation approach using kernel density esti-
mation (KDE) and k-means clustering (Silverman 1986).

For the KDE calculation, a circular kernel size of 100 
pixels was chosen. The resulting kernel image was then 

classified using k-means clustering, differentiating 
between urban and rural-dominated areas. Each city was 
divided into five clusters, representing different urbaniza-
tion levels (I-V). Clusters I and II exhibited urban char-
acteristics, while levels III, IV, and V were categorized as 
"rural" (Fig. 4). Notably, these classifications do not reflect 
functional urban–rural distinctions, but rather denote 
zones with distinct growth rates and spatial patterns.

To enhance local calibration, SLEUTH coefficients 
were adjusted separately for urban and rural zones. To 
improve computational efficiency, rural zones were fur-
ther divided into 4 to 9 tiles, depending on the size of 
the study area. In the case of Lagos, the urban zone was 
also divided into two tiles to allow for more precise cali-
bration. In total, tiling and zonation resulted in 95 tiles 
across the 9 cities. The impact of this zonation approach 
was evaluated using the Area Under the Curve (AUC) 
metric to assess prediction accuracy.

2.4.3 � SLEUTH calibration, evaluation and prediction
The SLEUTH model implementation consists of two 
phases: 1) calibration and evaluation, and 2) the predic-
tion of urban growth, which is conducted individually 
for all 95 obtained tiles (Fig. 5). For calibration, the 1985 
urban and settlement extent layers were set as seed lay-
ers, while the layers 1990, 1995, 2000, 2005, and 2010 
served as reference data. The input data used to deter-
mine the SLEUTH parameters for each city are listed in 
Table 2.

The optimal coefficient combination was determined 
through a three-step ’brute-force calibration’ process 
(coarse, fine, and final) (Clarke et  al. 1996). Instead of 
this original grid-search method, we employed a genetic 
algorithm-based SLEUTH model to project future urban 
expansion based on Clarke (2018). In the genetic algo-
rithm (GA) calibration process, an initial parameter set is 

Fig. 4  Zonation approach using Kernel Density Estimation (KDE) for Ho Chi Minh City (HCM). a WSF-evolution (2015) depicting urban extent; 
(b) Kernel density image derived from WSF-evolution; (c) Zonation classification using k-means clustering, with Levels I–V representing different 
settlement density zones
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iteratively mutated and refined, with poorly performing 
combinations replaced by new ones based on their per-
formance metrics. This approach yields results compara-
ble to the brute force method while significantly reducing 
computation time.

To assess calibration quality and improve prediction 
accuracy, we applied the Optimal SLEUTH Metrics 
(OSM) (Dietzel and Clarke 2007; Kumar and Agrawal 
2022). OSM serves as a composite performance measure 
in the SLEUTH model calibration process. It is derived 
from the product of seven SLEUTH inherent fit metrics 
for calibration: compare, population, edges, clusters, 
slope, X-mean, and Y-mean. These metrics collectively 
evaluate how well the simulated urban growth aligns with 
observed historical patterns in terms of spatial accuracy 
and structural characteristics (Dietzel and Clarke 2007).

Beyond OSM, we applied the Lee-Sallee index (Lee 
and Sallee 1970) and Receiver Operating Characteristic 

(ROC) curve, evaluated using the AUC (Hanley and 
McNeil 1982; Park et  al. 2004), to assess predicted 
urban/settlement growth until 2015 against the WSF 
reference dataset. The Lee-Sallee index measures 
shape similarity between predictions and reference 
data. However, when combined with other indices, it 
offers valuable performance insights. Saxena and Jat 
(2020) compared various publications and found that a 
value of 0.3 (1.0 being a perfect match) is acceptable, 
with some models achieving values above 0.6 (Jantz 
et al. 2016; Harb et al. 2020). The AUC metric assesses 
overall model accuracy, illustrating the relationship 
between true-positive false-positive rates across dif-
ferent classification thresholds (Pontius and Schneider 
2001; Wu et  al. 2008). An AUC of 1 indicates perfect 
predictions, while 0.5 suggests random guessing. Typi-
cally, an AUC above 0.75 is considered good (Verburg 
et al. 2004). Combining these indices provides a robust 

Fig. 5  SLEUTH model implementation – Calibration and evaluation process (left) and prediction workflow (right)

Table 2  Input layers for SLEUTH model calibration

Layer Name Variables Year Spatial 
Resolution

Source/Reference

WSF-evolution Historical settlement 
extent layers

1985–2015 30 m WSF-evolution (Marconcini et al. 2020)

Global Roads Open 
Access Data Set 
(gROADs)

Traffic networks 2013 - gROADS v1. (Center for International Earth Science Information Net-
work CIESIN et al. 2013)

Copernicus DEM Slope and hillshade - 30 m Copernicus DEM (European Space Agency and Airbus 2022)

Sentinel-1/Sentinel-2 Water mask 2020 30 m Copernicus Sentinel data 2020)

The World Database 
on Protected Areas 
(WDPA)

Areas excluded 
from settlement 
development

Download 
version August 
2022

- The World Database on Protected Areas (UNEP-WCMC and IUCN 2023)
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framework for evaluating urban growth models from 
multiple perspectives.

For predicting the 2050 settlement extents, the 2015 
urban and settlement extent layers were used as seed lay-
ers, along with the parameter sets derived from calibra-
tion (including adjusted Spread and Breed coefficients) 
and additional input layers (Fig. 5, right).

2.4.4 � Integration of SSPs into the SLEUTH model
The SSP Database (IIASA 2018) provides long-term 
socioeconomic projections (population, urbanization, 
and GDP) up to 2100, enabling urban growth analy-
sis under different development trajectories (Riahi et al. 
2017; IIASA 2018). In this study, we focus on SSP1, SSP2 
and SSP5, which are associated with RCP scenarios 2.6, 
4.5 and 8.5, respectively, to cover a full range of future 
challenges to climate mitigation from low (SSP1), to 
medium (SSP2), to high (SSP5) (O’Neill et al. 2016). The 
SSP database provides national and regional urbaniza-
tion projections at 5-year intervals. For our study, we 
used the national projections from 2015 and 2050 (Jiang 
and O’Neill 2017) and calculated relative trends in urban 
population share and population numbers projected by 
the SSPs (compare with Supplementary Figs. 1 and 2). We 
translated the relative growth of the urban population 
into spatial expansion patterns, following the assump-
tion that urbanization is linearly related to increases in 
the urban population. To represent the SSP scenarios in 
the simulations, the Breed and Spread coefficients of the 
SLEUTH model were adjusted to reflect different growth 
speeds and patterns in SSP1, SSP2, and SSP5. First, the 
set of coefficients for each city, calibrated from histori-
cal growth, was kept constant, serving as the baseline 
for SSP2 – also known as the Business as Usual (BaU) 

scenario. For SSP1 and SSP5, the Spread and Breed coef-
ficients were modified based on their relative differences 
from the SSP2 baseline, following Eqs. (1) and (2):

where ΔUP represents the change in total urban popu-
lation, while US denotes the urban share and Pop the 
population number for each SSP scenario t. S and B cor-
respond to the Spread and Breed coefficients, respec-
tively. In this way, the relative differences in growth rates 
between SSP1 and SSP5, compared to SSP2, are effec-
tively captured.

2.4.5 � Future flood exposure analysis
The projected urban and settlement growth under the 
three SSP scenarios were overlaid with Fathom flood lay-
ers to assess the potential flood exposure in 2050. For 
coastal, fluvial and pluvial flooding, we selected the 50th 
and 83rd percentile flood layers. The analysis separately 
examined:

–	 The total urban areas at flood exposure risk in 2050, 
and

–	 New urban/settlement areas projected to be at flood 
exposure risk by 2050.

The workflow of the flood exposure estimation is illus-
trated in Fig.  6. Following Wing et  al. (2017) and Tate 
et al. (2021), flood pixels with depths below 15 cm were 
excluded, as such shallow flooding is generally below the 

(1)
�UPt = US2050,t • Pop2050,t −US2015,t • Pop2015,t

(2)
St ,Bt

SSSP2,BSSP2
=

�UPt

�UPSSP2

Fig. 6  Workflow of future flood exposure risk analysis. Urban and settlement growth projections for 2050 (based on SSP scenarios) are overlaid 
with flood inundation data for RCP2.6, RCP 4.5 and RCP8.5 climate scenarios. The analysis considers coastal, fluvial and pluvial flooding with the 50th 
and 83rd percentile flood depth estimates
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threshold for significant damage. Only areas with flood 
depths exceeding 15 cm were considered as ground flood 
plains under exposure.

3 � Results
3.1 � SLEUTH calibration based on KDE zonation
The SLEUTH model was successfully configured for the 
nine coastal agglomerations, capturing the gradients in 
growth speeds and patterns for urban and rural zones. To 
evaluate the KDE-based zonation approach, SLEUTH-
predicted urban growth (1985–2015) with and without 
zonation for Surat and Surabaya was compared with 
the 2015 WSF extent. AUC values confirmed improved 
accuracy with zonation (Table  3). These two cities were 
selected as representative case studies to evaluate the 
added value of KDE-based zonation in detail, while the 
approach was applied uniformly across all study areas 
to support locally calibrated urban growth projections. 
Consequently, this approach was adopted throughout the 
study.

Model accuracy was assessed using the Lee-Sallee 
index and AUC, while OSM was primarily used to fine-
tune SLEUTH parameters. Both AUC and Lee-Sallee 
index demonstrated notable modelling accuracies, with 
values ranging from 0.73 to 0.94 and 0.56 to 0.82, respec-
tively. The AUC consistently indicated high predictive 
performance across all cities, with Khulna nearing the 
0.75 threshold, signifying a good predictive outcome 
(Verburg et  al. 2004). Meanwhile, the Lee-Sallee index 
highlighted significant shape similarities, aligning with 
findings from previous studies (Saxena and Jat 2020). For 
a detailed breakdown of the evaluation results, refer to 
Fig.  7. Contrary to the default setting, the Critical-Low 
threshold that controls the self-modification component 
of the SLEUTH model was reduced from 0.95 to 0.7. This 
adjustment improved the model performance by better 
reflecting the differing development patterns of neigh-
boring tiles (see Clarke et al. 1997). In a few exceptions, 
the value was further lowered after visual control to min-
imize outlier tiles and to ensure more consistent growth 
across the tiles of the city.

3.2 � Prediction of urban/settlement growth in SLEUTH
During calibration, the Breed and Spread coefficients of 
SSP2 for each city were generated from the WSF data. 

The coefficients for SSP1 and SSP5 were computed using 
Eqs. (1) and (2). The resulting relative changes in the SSP 
scenarios, along with the adjusted SLEUTH parameters, 
are listed in Supplementary Tables 2 and 3.

The predicted urban growth (2016–2050) under dif-
ferent SSPs was generated based on the coefficient sets, 
with diffusion, road gravity, and slope resistance remain-
ing constant under all the scenarios. Figure  8 illustrates 
urban/settlement growth for SSP2, while results for SSP1 
and SSP5 are presented in the Supplement (Fig.  3  and 
4). All study areas face significant increases in urbanized 
area throughout the three scenarios, however with differ-
ent growth dynamics. Urbanization patterns in Abidjan, 
Barranquilla and Dar es Salam are mainly characterized 
by compact growth, whereas urban sprawl dominates in 
Ho Chi Minh City, Khulna and Surat.

Figure  9 presents a quantitative overview of future 
urban growth areas and growth rates for select cities. 
This visualization highlights four cities experiencing 
growth exceeding 50% under SSP1/SSP5: Surat, Khulna, 
Ho Chi Minh City in SSP1 and SSP 5, and Dar es Salaam. 
Among them, Khulna exhibits the highest growth, reach-
ing 196.9% in SSP2 and surging to 210.8% in SSP1. In 
contrast, Abidjan, Surabaya (in SSP2) and Lagos show 
relatively lower growth rates compared to other agglom-
erations with less than 25% of urban growth.

3.3 � Future flood exposure analysis
3.3.1 � Coastal flood exposure
The anticipated coastal flood plains until 2050 under 
the SSP2/RCP4.5 scenario are exemplarily illustrated 
in Fig.  10, alongside the projected urban extents of 
the agglomerations. This provides insight into poten-
tial flood-prone areas and their interactions with future 
urban expansion. The results highlight varying impacts 
on urban and settlement areas, with Khulna notably 
experiencing no impact from exclusive coastal flood-
ing. For  Abidjan, Barranquilla, Ho Chi Minh City, and 
Guayaquil, flood-exposed areas remain minimal (< 1 
km2 across all scenarios), while Surabaya faces the most 
severe impacts, with 74 km2 (SSP1/RCP2.6, 83rd percen-
tile), 68 km2 (SSP2/RCP4.5), and 83 km2 (SSP5/RCP8.5) 
affected (Fig. 11).

Future coastal flood exposure remains stable in  Abid-
jan, Barranquilla, and Guayaquil, but  Dar es Salaam, 
Surabaya, and Surat are projected to experience the high-
est absolute increases in flood-prone areas, with addi-
tional extents of 4.18 km2, 16.52 km2, and 5.09 km2 (50th 
percentile) under SSP5/RCP8.5. Among cities with sig-
nificant inundation, such as Surat, Surabaya, and Lagos, 
the SSP5/RCP8.5 scenario consistently projects the high-
est flood exposure. In contrast, the SSP2/RCP4.5 "Middle 
of the Road" scenario yields the lowest exposure, except 

Table 3  Evaluation of the KDE-based zonation method using 
AUC values from the predicted urban probability maps

City Without zonation With zonation

Surat 0.83 0.85

Surabaya 0.84 0.87
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in Lagos, where SSP1/RCP2.6 predicts the least inunda-
tion (Supplementary Table 4).

3.3.2 � Riverine flood exposure
The floodplains of the study agglomerations projected for 
2050 under SSP2/RCP4.5 are illustrated in Fig.  12, with 
different shades of blue indicating varying inundation 
depths. Fluvial flood patterns are strongly influenced by 
local topography and hydrology, with  Surabaya and Ho 
Chi Minh City facing the highest future exposure. For the 
83rd percentile, Surabaya’s urban area could potentially 
experience 200 km2 of flooding, while Ho Chi Minh City 
could experience 150 km2 of flooding. In Guayaquil, over 
18–25% of the total 2050 urban area may be affected by 
riverine flooding under all scenarios, with the cantons 
of  Daule, Samborondón, San Jacinto de Yaguachi, and 
Durán being particularly vulnerable. Barranquilla exhib-
its the highest inundation depths (> 3 m) in urban areas.

Figure  13 shows the extent of riverine flooding for 
each city under SSP1/RCP2.6, SSP2/RCP4.5, and SSP5/

RCP8.5 (see Supplementary Table 5 for detailed projec-
tions). The results reveal stark disparities in exposure 
trends. Guayaquil emerges as a critical case, with over 
37% of newly developed built-up areas projected to be 
flood-exposed by 2050; nearly double the 2015 base-
line (Table 4). Similarly, Ho Chi Minh City is expected 
to see over 20% of its new urban zones affected. In 
contrast, Abidjan, Barranquilla, and Lagos exhibit rela-
tively low exposure, with built-up areas facing minimal 
increases (e.g., Abidjan: < 0.46 km2 for the 50th percen-
tile). However,  Dar es Salaam and Khulna  show more 
than a doubling of flood exposure under all scenarios, 
underscoring the compounding risks of rapid urbani-
zation and fluvial flooding. Notably,  newly developed 
areas in Abidjan and Dar es Salaam  face dispropor-
tionately higher exposure compared to existing urban 
zones, despite their overall lower flood magnitudes.

Fig. 7  Accuracy assessment results based on OSM, Lee-Sallee Index, and AUC, illustrating model performance across all cities
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3.3.3 � Pluvial flood exposure
Figure 14 depicts the inundation patterns caused by plu-
vial floods under SSP2/RCP4.5 for 2050, with various 
shades of blue representing different inundation depths. 
Among the nine agglomerations, Khulna and Dar es 
Salaam are expected to experience the highest relative 

increase, with their flood areas doubling. Pluvial flood-
ing, which affects larger spatial areas than coastal or flu-
vial floods, disproportionately impacts newly developed 
urban zones (Fig. 15).

Figure  15 illustrates the projected pluvial flood inun-
dation for a 100-year return period event under SSP1/

Fig. 8  Projected urban expansion (2016–2050) under the SSP2 scenario. For visualization purposes, only a selected portion of the study area 
is displayed. Base map: OpenStreetMap & OpenStreetMap-Foundation (CC-BY-SA)
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RCP2.6, SSP2/RCP4.5, and SSP5/RCP8.5, offering 
insights into potential flood-prone areas (Supplemen-
tary Table  6). Supplementary Table  7 summarizes the 
newly developed built-up areas expected to be exposed 
to flooding by 2050. Among the nine agglomerations, the 
impact of the SSP/RCP scenarios varies significantly. In 
most cities, SSP5/RCP8.5 results in the largest pluvial 
flood extents, except for Guayaquil, Abidjan, and Barran-
quilla, where SSP2/RCP4.5 yields higher values under the 
83rd percentile. For example,  Surabaya  sees a doubling 
of flood extent under SSP5/RCP8.5 (40.31/44.00 km2 
for 50th/83rd percentiles) compared to SSP2/RCP4.5 
(20.82/22.11 km2). In contrast, Abidjan and Lagos exhibit 
minimal scenario-driven differences, with flood extent 
variations remaining below 0.48 km2 (50th percentile).

3.3.4 � Urban flood contrasts
A comprehensive comparison of flood exposure across 
nine different cities under three scenarios (SSP1/RCP2.6, 
SSP2/RCP4.5, and SSP5/RCP8.5, all at the 83rd percen-
tile) and three flood types (coastal, fluvial, and pluvial) 
highlights key differences in the cities’ level of risk to 
potential flood exposure. Table  4 contrasts flood expo-
sure for the 2015 WSF-based urban extent with the 

SLEUTH projected urban growth (2016–2050), with 
values expressed as a percentage of total urban area. 
Detailed breakdowns of flood exposure can be found 
in Figs.  11, 13 and 15, as well as in Supplementary 
Tables 4–7.

In most coastal flooding scenarios, newly developed 
urban areas are less exposed compared to existing 2015 
settlements. However, in Dar es Salaam and Surat, the 
projected new urban areas will be disproportionately 
affected, with exposure 2.5–8 times higher than exist-
ing areas (Table 4), despite lower overall exposure levels. 
Surabaya, in particular, is expected to experience a sig-
nificant increase in flood-prone urban areas, with 83 km2 
affected under SSP5/RCP8.5 (83rd percentile).

For fluvial flooding, exposure affects larger areas than 
coastal flooding. In Guayaquil, over 37% of newly devel-
oped areas (compared to 20% of 2015 urban extents) are 
projected to be at risk of flood exposure under all scenar-
ios. Ho Chi Minh City and Surabaya also face substantial 
exposure with 16–30% and 23–30% of their respective 
2015 extents and new urban areas affected.

Pluvial flooding shows widespread impacts, with 
6–23% of urban areas affected across all scenarios and 
cities. Disproportionate effects are projected for new 

Fig. 9  Quantitative comparison urban growth projections under SSP1, SSP2 and SSP5 scenarios for the study areas of the selected cities. The left 
panel illustrates urban area and modelled growth, while the right panel presents the percentual growth forecast until 2050
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urban areas in Abidjan (10.59–13.33%), Dar es Salaam 
(13.41–13.79%), Guayaquil (20.08–21.16%), and Lagos 
(13.83–14.35%) (Table  4). Notably, in Dar es Salaam, 
newly developed urban/settlement areas will face greater 
flood exposure than existing settlements across all three 
flood types.

4 � Discussion
This study investigates the interplay between urban 
growth and flood exposure in nine coastal cities across 
the Global South under different SSP-RCP scenarios. The 
findings reveal significant variations in urban expansion 
and risk of flood exposure across the study areas, empha-
sizing the critical role of socioeconomic and climatic fac-
tors in shaping future urban resilience.

4.1 � Settlement growth projection
The SLEUTH model was used to predict urban/settle-
ment growth for nine selected agglomerations, incorpo-
rating typical input layers historical urban extent data 
from the WSF. The utilized metrics assess model fit 
within individual study areas rather than allowing direct 

comparisons between diverse regions (see Fig.  7). Most 
cities surpass 0.6 on the Lee-Sallee index, with Khulna 
recording the lowest value at 0.56, which is still within 
an acceptable range. Across most cities, AUC values 
exceeded 0.8, surpassing the 0.75 threshold for favour-
able simulation accuracy (Verburg et al. 2004; Wu et al. 
2008). Khulna, with the lowest AUC (0.73), remains close 
to this threshold. The reported metrics not only meet but 
often exceed benchmarks from previous studies (e.g. Sax-
ena and Jat 2020; Kumar and Agrawal 2022). This can be 
partly attributed to differences in study area characteris-
tics, such as spatial scale and urban morphology. How-
ever, the consistently high-quality input from the WSF 
dataset, which is offering harmonized and reliable urban 
extent layers, likely played a key role in achieving these 
results.

To address the challenge of applying consistent, high-
resolution urban growth models across large and hetero-
geneous urban landscapes, we implemented a KDE-based 
zonation approach combined with spatial tiling (Clarke 
and Johnson 2020). This methodological adaptation ena-
bled separate calibrations for urban and rural dynamics, 

Fig. 10  Projected coastal flooding for 2050 under the SSP2/RCP4.5 scenario (83rd percentile). The flood extent is overlaid with the urban expansion 
predicted under SSP2, highlighting areas at risk of inundation
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improving the SLEUTH model’s accuracy (Table  3). By 
distinguishing between urban cores and rural fringes, 
the approach captures spatial variability in growth pat-
terns, a critical advancement for scaling urban models 
to diverse geographic contexts. While our approach dis-
tinguishes only between two broad zones—urban cores 

and rural fringes—this zonation captures a critical spa-
tial dichotomy in growth behavior that improves model 
calibration. Future work could extend this by incorporat-
ing transitional or peri-urban categories to further refine 
spatial differentiation. For instance, Fig.  8 highlights 
faster growth rates for compact "urban" cores, while rural 

Fig. 11  Projected urban areas exposed to coastal flooding in 2050 across SSP/RCP scenarios. The total urban area at risk of inundation is shown 
alongside the newly developed urban areas (2016–2050) exposed to flooding. The 50th and 83rd percentiles indicate different flood probability 
thresholds
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regions in Ho Chi Minh City and Surabaya exhibit accel-
erated expansion driven by scattered urban morphology 
and dense road networks. Overall, these growth trends 
align with the SSP narratives. For Dar es Salaam, Ho 
Chi Minh City, Khulna, Surabaya, and Surat SSP2 pro-
jects moderate urban population growth, while SSP1 and 
SSP5 depict more rapid growth in the urban population 
(Fig. 9). Based on the conducted translation into SLEUTH 
parameters, this trend in urban population change could 
be translated into the respective urban growth dynamics. 
This consistency validates the integration of SSP scenar-
ios into the SLEUTH model (Supplementary Figs. 1 and 
2, Jiang and O’Neill 2017). In support of our calibration 
approach, Clarke and Johnson (2020) demonstrated that 
spatial autocorrelation exists among SLEUTH calibration 
coefficients when large datasets are tiled, emphasizing 
that local spatial dependencies can propagate into urban 
growth forecasts. This insight further reinforces the need 
for our zonation approach, as it allows us to account 
for spatial variability and improve prediction accuracy. 
However, tiling also introduces methodological chal-
lenges. As highlighted by Eyelade et al. (2022), tiling can 

lead to overfitting within individual tiles at the expense 
of broader trend recognition across land use categories. 
In their study of Ibadan, Nigeria, the use of tiled input 
data improved local fit but reduced the model’s ability to 
capture overarching dynamics. While this finding under-
scores the need for careful handling of spatial scale and 
resolution, its generalizability is limited given the study’s 
focus on a single city. Further research is warranted to 
systematically evaluate the trade-offs of tiling across 
diverse urban contexts, especially within rapidly urban-
izing regions of the Global South.

However, future research is necessary in order to 
develop quantitative approaches that describe the future 
shifts from the historical mix of development patterns 
towards a higher concentration in urban sprawl accord-
ing to SSP5 or compact development as described in 
SSP1 in a systematic way.

Four cities – Dar es Salaam, Ho Chi Minh City, Khulna, 
and Surat – are projected to grow by more than 50% 
under SSP1 and SSP5 by 2050 compared to 2015 (Fig. 9). 
Khulna experiences the highest growth, reaching 153.0% 
in SSP1, 116.6% in SSP2 and 142.9% in SSP5, consistent 

Fig. 12  Projected riverine flooding under the SSP2/RCP4.5 scenario (83rd percentile) overlaid with the 2050 SSP2 urban extent
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with its recent rapid expansion. For instance, Alam et al. 
(2023) report an average annual urban growth of 6.76% 
in a similar study area between 2010 and 2020. While 
Alam et  al. (2023) analyzed a shorter historical period 
(2010–2020), their reported annual growth of 6.76% 
would, if sustained, result in a cumulative increase 
broadly consistent with our projections. This suggests 

that our longer-term scenario assumptions remain plau-
sible within the observed urban dynamics. Conversely, 
Abidjan and Lagos exhibit comparatively lower growth 
rates. While Lagos’ projected growth (10.5% under SSP1, 
11.1% under SSP2 and 9.4% under SSP5 between 2016 
and 2050) appears low, similar studies confirm this range: 
Onilude and Vaz (2021) estimated a 0.45% annual growth 

Fig. 13  Total urban area inundated by riverine flooding in 2050 under selected SSP/RCP scenarios, including newly developed flood-exposed 
urban areas (2016–2050) at the 50th and 83rd percentiles
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rate (2010–2030) using a CA Markov Chain model, while 
Gilbert and Shi (2023) projected 0.74% annual growth 
(2020–2040). For Abidjan, Wang et  al. (2022) modelled 
an annual growth rate of 1.2% for the period 2016–2025, 
although based on a shorter timeframe and somewhat 
lower rates, this steady urban expansion trend aligns 
qualitatively with our cumulative growth projections of 
21.6%, 22.0% and 17.5% by 2050 under SSP1, SSP2, and 
SSP5, respectively. The differences may reflect varia-
tion in temporal scope, spatial resolution, and modelling 
assumptions.

On a national scale, Wolff et  al. (2023) analysed SSP-
based projections of urban extent until 2100 and found 

that the highest urban expansion varies across Euro-
pean countries. In most cases, SSP5 results in the largest 
urban extent, while SSP1 and SSP2 occupy intermediate 
positions. However, the European narratives cannot be 
directly compared to our findings, as our study focuses 
on cities in the Global South, where urbanization dynam-
ics, socio-economic drivers, and climate vulnerabilities 
differ significantly. This underscores the need for region-
specific analyses.

4.2 � Flood exposure scenario assessment
To asses urban flood exposure, projected 2050 urban 
extents are overlaid onto the flood scenarios for SSP1/

Table 4  Proportion of urban/settlement areas potentially exposed to flood across study areas under three scenarios by 2050 (83rd 
percentile). The table differentiates between pre-existing built-up areas and newly developed areas projected until 2050

City Scenario Coastal in % Fluvial in % Pluvial in %

2015 extent New area 
2016–
2050

2015 extent New area 
2016–
2050

2015 extent New area 
2016–
2050

ABI SSP1/RCP2.6 0.05 0.04 0.13 0.56 6.25 10.59

SSP2/RCP4.5 0.06 0.02 0.13 0.64 6.36 10.93

SSP5/RCP8.5 0.07 0.04 0.15 0.50 6.04 13.33

BAQ SSP1/RCP2.6 0.19 0.12 5.68 1.98 9.71 12.85

SSP2/RCP4.5 0.19 0.25 5.40 3.21 10.26 14.25

SSP5/RCP8.5 0.20 0.14 6.22 2.54 11.18 14.13

DAR SSP1/RCP2.6 0.15 1.06 0.66 1.62 7.13 13.41

SSP2/RCP4.5 0.19 1.13 0.67 1.59 7.28 13.57

SSP5/RCP8.5 0.20 1.21 0.70 1.64 7.45 13.79

GYE SSP1/RCP2.6 0.11 0.03 18.14 35.13 16.61 20.08

SSP2/RCP4.5 0.11 0.03 19.30 37.21 17.58 21.44

SSP5/RCP8.5 0.12 0.02 21.33 37.17 18.01 21.16

HCM SSP1/RCP2.6 0.41 0.09 16.09 21.94 13.25 12.96

SSP2/RCP4.5 0.47 0.06 17.58 22.39 14.26 13.56

SSP5/RCP8.5 0.53 0.11 19.51 27.08 15.03 14.57

KHL SSP1/RCP2.6 0.00 0.00 6.67 7.40 7.10 7.49

SSP2/RCP4.5 0.00 0.00 7.03 7.57 7.73 7.49

SSP5/RCP8.5 0.00 0.00 7.67 8.89 8.11 8.29

LAG SSP1/RCP2.6 3.28 2.52 3.44 2.62 10.12 13.83

SSP2/RCP4.5 3.51 2.81 3.57 2.96 10.32 14.25

SSP5/RCP8.5 3.81 3.23 3.57 2.86 10.53 14.35

SBY SSP1/RCP2.6 7.99 5.83 24.99 23.56 14.39 13.48

SSP2/RCP4.5 8.23 7.17 26.62 23.87 15.31 16.54

SSP5/RCP8.5 9.00 6.51 30.06 26.61 16.21 14.92

STV SSP1/RCP2.6 0.68 1.96 11.88 10.89 21.54 17.99

SSP2/RCP4.5 0.74 1.95 13.82 11.67 22.32 18.36

SSP5/RCP8.5 0.80 2.23 18.76 15.01 22.99 19.21

Exposure of newly developed area 
(%) is more than 10% less than the 
exposure of the 2015 extent (%)

Exposure of newly developed 
areas (%) within the same range 
of exposure (± 10%) than the 2015 
extent (%)

Exposure of newly developed areas 
(%) is between 10% to + 100% 
higher than the exposure 
of the 2015 extent (%)

Exposure of newly developed 
areas (%) is more than 100% 
higher than the exposure 
of the 2015 extent (%)
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RCP2.6, SSP2/RCP4.5, and SSP5/RCP8.5, considering 
both the 50th and 83rd percentiles for a 100-year return 
period. The interplay between urban population growth 
and climate change creates complex scenario-driven pat-
terns, leading to varying flood extents across different 
cities and flood types.

The impact of SSP/RCP scenarios varies significantly 
across the nine study areas, reflecting divergent urbani-
zation dynamics and climatic sensitivities. For exam-
ple, Barranquilla and Guayaquil exhibit the lowest flood 
exposure under SSP1/RCP2.6 across all flood types, while 
Khulna and Surabaya experience reduced flood hazard 
exposure under SSP2/RCP4.5 due to slower urban popu-
lation growth and moderate climate forcing. Conversely, 
Guayaquil faces the highest fluvial and pluvial flooding 
SSP2/RCP4.5, highlighting the non-linear relationship 
between urban expansion and flood hazard extent. Nota-
bly, SSP5/RCP8.5 results in the lowest fluvial and plu-
vial flood exposure for Abidjan but the highest for SSP1/
RCP2.6, a divergence attributed to lower total population 
projections under SSP5 (Supplementary Table  2). These 
findings align with Sun et al. (2022), who emphasize the 

critical role of urban growth scenarios in shaping future 
flood exposure.

4.3 � Implications of SSP/RCP‑based flood exposure 
assessment

The 2050 flood assessment reveals distinct patterns of 
urban flood exposure in the Global South, where rapid 
urbanization amplifies exposure to coastal, fluvial and 
pluvial flooding. Under all flood types, in several cit-
ies, newly developed urban areas exhibit markedly 
higher flood exposure—up to 8 times greater than in 
existing areas (e.g., Dar es Salaam, Surat)—underscor-
ing the risks of non-risk-informed expansion (Mahtta 
et al. 2022). However, this trend is not consistent across 
all study sites, with some cities showing comparable or 
lower exposure in new developments, pointing to the 
influence of localized topographic and planning fac-
tors. For instance, Dar es Salaam and Surat exhibit 2.5–8 
times higher exposure in new developments compared 
to existing urban areas, highlighting the urgency of risk-
informed land-use planning. Surabaya’s coastal flood-
ing  (up to 83 km2 under SSP5/RCP8.5) and  Guayaquil’s 

Fig. 14  Projected pluvial flooding for the SSP2/RCP4.5 scenario (83rd percentile) overlaid with the 2050 SSP2 urban extent
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fluvial exposure  (37% of new urban areas) demand tar-
geted interventions. This highlights the urgent need for 
strategic urban planning that avoids flood-prone areas 
and strengthens long-term urban resilience. Context-spe-
cific resilience strategies are essential to address the var-
ied exposure patterns observed across different cities and 
flood types. Pluvial flooding, which affects larger spatial 

areas (e.g., 10.53–21.16% of new urban areas in Abidjan 
and Guayaquil), underscores the importance of consid-
ering rain-induced flooding in future urban planning. 
The persistence of high exposure in newly developed 
zones  highlights the limitations of relying solely on cli-
mate mitigation and emphasizes the role of proactive 
urban design.

Fig. 15  Total urban area affected by pluvial flooding in 2050 under the selected SSP/RCP scenarios, including newly developed flood-exposed 
areas (2016–2050) at the 50th and 83rd percentiles
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In some cases, newly developed areas may appear 
less exposed, which can be explained by several factors: 
generally low overall exposure levels, historical settle-
ment patterns that avoided high-risk zones but may face 
increasing risk of flood exposure under future climate 
conditions, and future urban expansion into inland areas 
with lower flood exposure but potentially unfavourable 
topography. These variations highlight the case-specific 
nature of future exposure and underscore the importance 
of spatially explicit, scenario-based assessments.

Ultimately, while high radiative forcing scenarios exac-
erbate flood exposure, socioeconomic pathways shaping 
urban expansion are equally critical. These findings align 
with Hemmati et al. (2020), who stress the importance of 
urban growth management in building flood resilience. 
By linking scenario-based assessments to localized strat-
egies, this study provides actionable insights for policy-
makers navigating the dual challenges of urbanization 
and climate change.

These findings underscore broader trends across the 
Global South: the compounding vulnerabilities of infor-
mal expansion, limited infrastructure investment, and 
weak enforcement of spatial planning. The integration of 
scenario-based models into local planning frameworks 
offers a promising pathway to anticipate risks and design 
proactive, climate-resilient urban strategies (Horn 2020).

4.4 � Understanding methodological boundaries
This study relies on various assumptions and is subject 
to modelling uncertainties. The SSPs, originally designed 
at the national scale, lack adaptation to local study areas. 
Their integration into the SLEUTH model via Breed and 
Spread coefficients is an uncommon approach (Jones and 
O’Neill, 2016), introducing potential uncertainties. While 
the IIASA urbanization projections primarily focus on 
demographic trends rather than spatial land expansion, 
their integration into the SLEUTH model provides a 
proxy for future urban growth by adjusting the Breed and 
Spread coefficients. However, this approach assumes a 
correlation between population development and urban 
extent, which may not fully capture variations in urban 
density, land-use policies, and infrastructure constraints. 
Future studies could enhance this framework by incorpo-
rating additional land-use change datasets to refine the 
spatial accuracy of urban expansion projections.

Further uncertainties arise from SLEUTH input data, 
climate scenarios, the DEM, and the flood defence 
parameters in the Fathom flood dataset. For instance, 
another widely used tool, the Aqueduct Global Flood 
Analyzer projects near-complete inundation of Khulna 
by 2050 under a BaU scenario for a 100-year coastal 
flood event (WRI Aqueduct 2023). In contrast, this study 
did not simulate any coastal flooding for Khulna. This 

discrepancy highlights how strongly model outcomes 
depend on the selected input data, assumptions, and 
methods, underlining the importance of understand-
ing model limitations when interpreting flood hazard 
projections.

This study also relies on the defended-status flooding 
datasets, which assume the presence of flood protec-
tion infrastructure. While this approach aims to provide 
the most realistic flood exposure assessment given the 
available data, the completeness of flood-defence infra-
structure information for the selected cities cannot be 
independently verified. This limitation may affect inter-
city comparisons, as some regions might have better-
documented flood defences than others. Additionally, 
this study assesses coastal, fluvial, or pluvial floods sepa-
rately, excluding compound flood events, which simpli-
fies, but does not fully capture, the complexity of real 
extreme events. However, our study aligns with current 
best practices (see Introduction), employing zonation in 
SLEUTH modelling to improve predictive accuracy and 
integrating SSP/RCP perspectives beyond most existing 
studies. Despite these limitations, the study’s methodo-
logical setup effectively addresses the research questions 
and provides insights into future urban flood exposure.

Another critical consideration is the levee effect, which 
refers to the tendency of populations to concentrate in 
areas perceived as protected due to flood defence infra-
structure (Haer et  al. 2020; Mård et  al. 2018). While 
this effect is not incorporated in the flood exposure 
scenarios, its influence on future urban expansion pat-
terns remains an important factor. If flood defences fail 
or prove insufficient under extreme conditions, these 
areas could experience disproportionate flood impacts 
due to high population densities. Understanding how 
this dynamic shapes settlement patterns will be essential 
for refining future flood risk assessments. Future work 
should incorporate behavioral modeling to assess how 
perceived safety from levees might attract denser settle-
ment in flood-prone areas, potentially amplifying future 
exposure. This dynamic is especially critical in rapidly 
urbanizing contexts with limited risk communication 
and enforcement.

5 � Conclusions
This study presents a comprehensive urban growth pre-
diction and future flood exposure assessment for nine 
coastal cities across three continents, addressing the 
complex interplay of urbanization, climate change, and 
flood risk in the Global South. By integrating SSPs into 
a  refined SLEUTH model enhanced with KDE-based 
zonation, we offer a  context-specific, spatially explicit 
approach  to predicting urban expansion and flood 
exposure at a high resolution (30  m). The inclusion of 
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a diverse set of study areas, spanning varied climatic, 
socioeconomic, and geographic contexts, enables a 
cross-continental comparative analysis, revealing criti-
cal insights into how urbanization and climate change 
jointly shape potential flood exposure.

Notably, in some cities such as Dar es Salaam and 
Surat, newly developed urban areas face dispropor-
tionately higher flood exposure than existing settle-
ments – by a factor of 2.5–8 – underscoring the risks 
of non-risk-informed planning in those contexts. These 
findings highlight that future flood exposure are driven 
not only by high radiative forcing scenarios but also by 
socioeconomic pathways shaping urban expansion. This 
dual dependency  emphasizes the need for integrated 
strategies combining climate change mitigation with 
proactive, scenario-based urban planning.

Central to these findings is the imperative for cit-
ies to be assessed individually, balancing their unique 
physical and socioeconomic contexts with projected 
development trajectories. For decision-makers, this 
underscores the value of localized data and adap-
tive governance. While global datasets provide broad 
insights, tailored strategies, which are accounting for 
governance structures, topography, and community 
vulnerabilities, are critical for resilience.

Ultimately, as cities navigate the challenges of the 
Anthropocene, integrating urban modelling with cli-
mate projections can provide a roadmap for more 
sustainable and adaptive urban growth. By identify-
ing high-risk areas and potential mitigation pathways, 
this study advances a more informed and proactive 
approach to urban resilience, ensuring that coastal cit-
ies in the Global South can adapt to both rising seas 
and rapid urbanization.
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