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Global Scheduling of Weakly-Hard Real-Time Tasks using
Job-Level Priority Classes
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Real-time systems are intrinsic components of many pivotal applications, such as self-driving vehicles,

aerospace and defense systems. The trend in these applications is to incorporate multiple tasks onto fewer,

more powerful hardware platforms, e.g., multi-core systems, mainly for reducing cost and power consumption.

Many real-time tasks, like control tasks, can tolerate occasional deadline misses due to robust algorithms.

These tasks can be modeled using the weakly-hard model. Literature shows that leveraging the weakly-hard

model can relax the over-provisioning associated with designed real-time systems. However, a wide-range of

the research focuses on single-core platforms. Therefore, we strive to extend the state-of-the-art of scheduling

weakly-hard real-time tasks to multi-core platforms. We present a global job-level fixed priority scheduling

algorithm together with its schedulability analysis. The scheduling algorithm leverages the tolerable continuous

deadline misses to assigning priorities to jobs. The proposed analysis extends the Response Time Analysis

(RTA) for global scheduling to test the schedulability of tasks. Hence, our analysis scales with the number of

tasks and number of cores because, unlike literature, it depends neither on Integer Linear Programming nor

reachability trees. Schedulability analyses show that the schedulability ratio is improved by 40% comparing

to the global Rate Monotonic (RM) scheduling and up to 60% more than the global EDF scheduling, which

are the state-of-the-art schedulers on the RTEMS real-time operating system. Our evaluation on industrial

embedded multi-core platform running RTEMS shows that the scheduling overhead of our proposal does not

exceed 60 nanosecond.

CCS Concepts: • Computer systems organization→ Real-time system specification.

Additional Key Words and Phrases: weakly-hard, multi-core, real-time, global scheduling
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1 Introduction
Enabling more autonomy in the automotive and the aerospace domains requires involving sophisti-

cated control algorithms with real-time requirements. This is the case of CALLISTO (Cooperative
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Fig. 1. CALLISTO project.

(DLR), and the Japan Aerospace Exploration Agency (JAXA) for developing and building a Vertical-

Takeoff/Vertical-Landing rocket that can be reused (Figure 1). The on-board computers in CALLISTO

carry-out the state estimation, based on fusing information of several sensors [16], and the execution

of the control algorithms.

Furthermore, computing hard real-time guarantees for the developed tasks under worst-case

scenarios comes at the cost of exacerbating over-provisioning in such new software-based embedded

systems, which implies, for example, higher power consumption. However, literature [8] shows that

leveraging the weakly-hard model can relax the over-provisioning associated with designed real-

time systems. The weakly-hard real-time model [1] extends the tight region of schedulable tasks,

which is defined by the hard real-time model, by exploiting the tolerable deadline misses. Moreover,

many papers, e.g. [13, 15, 19], demonstrated that the control systems can tolerate occasional deadline

misses with a small amount of performance degradation and they describe the tolerance using the

weakly-hard model. Although CALLISTO operates as a hard real-time system, we are exploring

potential relaxations by permitting tolerable deadline misses.

Recently, weakly-hard real-time systems received a lot of attention, and several schedulability

analyses have been proposed [5, 17, 22]. In general, to compute weakly-hard real-time guarantees,

the analysis should not only consider the job(s) in the worst-case scenario, but also should consider

all possible combinations of jobs within a window of 𝐾 consecutive jobs. That makes computing the

weakly-hard real-time guarantees more complicated and subject to more pessimism. Also, weakly-

hard constraints are effective on the job-level, rather than the task-level. Therefore, satisfying such

constraints presuppose the job-level schedulability as a more efficient approach than task-level

schedulability. Hence, we propose a job-level fixed priority scheduling algorithm.

Furthermore, embedded system developers in the automotive and aerospace industries are

turning to multi-core platforms to meet the growing demand for computational performance, a

trend that also applies to CALLISTO. However, multi-core systems were out of scope in the majority

of papers that address weakly-hard real-time systems. In this work, we fill the gap by proposing a

global job-level scheduling algorithm which exploits the tolerable deadline misses together with a

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2025.
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schedulability analysis to compute weakly-hard real-time guarantees. Our main contributions are

the following:

• We reduce the

(𝑚𝑖

𝐾𝑖

)
constraint to a harder one which defines the maximum tolerable number

of consecutive deadline misses after a minimum number of required deadline hits

• We propose a global job-level fixed priority scheduling using predefined priority classes for

tasks which can tolerate a bounded number of deadline misses

• We prove that satisfying the new constraint for jobs that have the highest priority in the

priority classes is sufficient to guarantee that the task 𝜏𝑖 satisfies the constraint
(𝑚𝑖

𝐾𝑖

)
• We propose a schedulability analysis for the proposed global scheduling. Our schedulability

analysis extends the Response Time Analysis (RTA) [2]

In our proposed analysis, we compromise between pessimism and complexity. Using a harder

constraint instead of

(𝑚𝑖

𝐾𝑖

)
limits the number of deadline sequences that satisfy the weakly-hard

constraint. However, we need neither a reachability tree-based analysis nor an Integer Linear

Programming (ILP) based analysis, e.g., [17]. Therefore, our analysis has less complexity than [4, 5]

and scales with the number of tasks because we use RTA [2]. The proposed scheduling can be

seen as a fault-tolerance mechanism in which the deadline-miss is an error and assigning a higher

priority to the next job as a mitigation mechanism. However, the problem will be studied from

real-time schedulability perspective.

The rest of this paper is organized as follows: the next section recalls the related work. In Section 3,

we present our system model and elaborate our problem statement. Section 4 recalls the Response

Time Analysis (RTA). Our contribution starts in Section 5 by showing the global scheduling

algorithm for weakly-hard real-time tasks. Then, the analysis for the presented scheduling algorithm

is shown in Section 6. Also, we experimentally evaluate our proposed scheduling and present the

results in Section 7. Finally, Section 8 concludes our paper.

2 Related Work
Weakly-hard real-time constraints define the maximum number of deadline misses that a task can

tolerate before going into a faulty state. The term weakly-hard was coined by Bernat et al. in [1]

to describe systems in which tasks have the (𝑚𝐾 ) constraints where𝑚 represents the maximum

number of tolerable deadline misses in a sequence of 𝐾 jobs. The notation (𝑚𝐾 ), though, is a bit
older and was defined in [7] by Hamdaoui et al as (𝑚,𝐾)-firm. Since 2014, the number of papers

addressing the weakly-hard real-time systems has increased significantly.

Pazzaglia et al. [15] researched the performance cost of deadline misses in control systems. They

have shown the performance impact of the distribution of deadline misses within the sequence

of 𝐾 jobs. Liang et al. [12] presented a fault tolerance mechanism for weakly-hard. Recently,

Maggio et al. proposed in [13, 19–21] an approach to analyze the stability of control systems under

different patterns of deadline misses. The proposed approach by Maggio et al. can help in extracting

the weakly-hard constraints, i.e., bounding𝑚 and 𝐾 . The authors considered a system model of

single-core platforms and periodic control tasks.

Sun et al. presented in [17] a weakly-hard schedulability analysis that uses Mixed Integer

Linear Programming (MILP) for computing the maximum bound on𝑚 within a time window of 𝐾

consecutive jobs. The MILP checks all possible scenarios within a time window of 𝐾 consecutive

jobs where tasks are periodically activated. The analysis in [17] can, therefore, provide tight bounds

on𝑚 with reasonable complexity for small 𝐾 ≤ 10 [14].

A Linear Programming (LP) based weakly-hard schedulability analysis has been presented in

[22] for overloaded systems. This approach considers temporarily overloaded systems due to rare

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2025.
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Table 1. Key mathematical notations used in this work.

Notation Description

𝑛𝑐 number of cores in the system

𝑤𝑖 maximum consecutive number of deadline misses to uniformly distribute𝑚𝑖 in a window of 𝐾𝑖
ℎ𝑖 deadline hits required per deadline miss

JC𝑞
𝑖

job-class 𝑞 of task 𝜏𝑖
𝑗𝑙𝑖 job-level variable of task 𝜏𝑖
𝑠𝑖 slack of a task 𝜏𝑖

𝑁𝑖 (𝐿) number of jobs interfering in the time interval 𝐿

𝑂𝑖 (𝐿) number of jobs not interfering in the time interval 𝐿

𝑎𝑖 variable for counting or not the interference of the carry-out job

sporadic jobs. It bounds the impact of sporadic overload jobs on tasks –assumed to be schedulable

in the non-overloaded intervals– in terms of deadline misses. This approach has two features: 1) It

scales with 𝐾 and number of tasks because it depends on an LP relaxation. 2) It is extendable for

more scheduling policies. However, this approach reports a high pessimism for small 𝐾 [6].

Wu and Jin proposed in [18] a global scheduling algorithm for multimedia streams. They applied

the Distance Based Priority (DBP) algorithm [7] to a global scheduler. In their approach, a task that

is close to violate its

(𝑚𝑖

𝐾𝑖

)
constraint is assigned dynamically the highest priority. In [10], Kong

and Cho computed bounds on the probability of not satisfying the

(𝑚𝑖

𝐾𝑖

)
constraint and proposed a

dynamic hierarchical scheduling algorithm to improve the quality of service. The goal of our paper

is different from [18] and [10] because we aim to exploit the weakly-hard constraints to increase

the load that can be scheduled on a multi-core system under job-level fixed priority scheduling.

The job-class-level scheduling presented in [4] and [5] recalled the original concept proposed

by Hamdaoui et al. [7], in which each task is assigned a different priority upon meeting/missing

their deadlines. The proposed scheduling in [4, 5] is dedicated to single-core systems. The authors

showed how to extend the job-class-level scheduling to semi-partitioned multi-core scheduling.

Our work extends the job-class-level scheduling to global multi-core scheduling. However, our

schedulability analysis does not depend on a reachability tree as the one in [4, 5].

3 System Model
This paper considers independent sporadic tasks with constrained deadlines and preemptive

scheduling. A task set is executed on a Symmetric Multi-Processing (SMP) multi-core platform.

Table 1 shows the notations used in this work.

Task model. A task 𝜏𝑖 is described using 5 parameters:

𝜏𝑖 � (𝐶𝑖 , 𝐷𝑖 ,𝑇𝑖 ,
(𝑚𝑖

𝐾𝑖

)
)

• 𝐶𝑖 : The worst-case execution time of 𝜏𝑖 .

• 𝐷𝑖 : The relative deadline of each job of 𝜏𝑖 . Since tasks have a constrained deadline 𝐷𝑖 ≤ 𝑇𝑖 .
• 𝑇𝑖 : The minimum inter-arrival time between consecutive jobs of 𝜏𝑖 .

•
(𝑚𝑖

𝐾𝑖

)
: The weakly-hard constraint of 𝜏𝑖 , where𝑚𝑖 is the number of tolerable deadline misses

in a 𝐾𝑖 window, where𝑚𝑖 < 𝐾𝑖 and𝑚𝑖 ≥ 1. A hard real-time task is characterized by𝑚𝑖 = 0

and 𝐾𝑖 = 1.

In this paper, we use similar weakly-hard constraint notations as in [1]. We use parentheses to

denote deadline misses/hits in any order, angle brackets for consecutive deadline misses/hits, and a

bar to differentiate deadline misses, see Table 2. Please note that according to [1, Theorem 4], there

is no need to specify a window size in case of the consecutive deadline misses notation.
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Table 2. Weakly-hard constraint notations.

deadline hits deadline misses

any order

(𝑚𝑖

𝐾𝑖

) (𝑚𝑖

𝐾𝑖

)
consecutive

〈𝑚𝑖

𝐾𝑖

〉 〈𝑚𝑖

𝐾𝑖

〉
≡ ⟨𝑚𝑖⟩

We classify the tasks based on the deadline misses tolerable in a 𝐾𝑖 window:

Definition 1. Low-tolerance tasks: weakly-hard real-time tasks which require more deadline hits
than tolerable misses in the 𝐾𝑖 window, i.e. tasks with a ratio𝑚𝑖/𝐾𝑖 < 0.5 and𝑚𝑖 > 0.

Definition 2. High-tolerance tasks: weakly-hard real-time tasks which tolerate a bigger or equal
quantity of deadline misses than quantity of deadline hits in the 𝐾𝑖 window, i.e. tasks with a ratio
𝑚𝑖/𝐾𝑖 ≥ 0.5.

Schedulability of weakly-hard tasks.

Definition 3. A deadline sequence is a binary sequence of length 𝐾𝑖 , in which 1 represents a
deadline hit and 0 represents a deadline miss.

Definition 4. A weakly-hard task 𝜏𝑖 with constraint
(𝑚𝑖

𝐾𝑖

)
is schedulable if, in any window of 𝐾𝑖

consecutive invocations of the task, at least𝑚𝑖 deadlines are hits.

Definition 5. A weakly-hard task 𝜏𝑖 with constraint
(𝑚𝑖

𝐾𝑖

)
is schedulable if, in any window of 𝐾𝑖

consecutive invocations of the task, no more than𝑚𝑖 deadlines are missed.

Definition 6. A weakly-hard task 𝜏𝑖 with constraint
〈𝑚𝑖

𝐾𝑖

〉
is schedulable if, in any window of 𝐾𝑖

consecutive invocations of the task, 𝜏𝑖 meets𝑚𝑖 consecutive deadlines.

Definition 7. A weakly-hard task 𝜏𝑖 with constraint ⟨𝑚𝑖⟩ is schedulable if, the maximum number
of consecutive deadlines misses is𝑚𝑖 .

Utilization. The utilization of a task 𝜏𝑖 is defined as the fraction of processor time required by

its execution:

𝑈𝑖 =
𝐶𝑖

𝑇𝑖

Then, the utilization of the task set (also known as total utilization) is defined as the sum of all

task utilizations:

𝑈 =

𝑛∑︁
𝑖=1

𝑈𝑖 =

𝑛∑︁
𝑖=1

𝐶𝑖

𝑇𝑖

where 𝑛 is the number of tasks in the task set.

System-level action for missed deadlines. The proposed scheduling algorithm and schedula-

bility analysis considers the Job-Kill in case of a deadline miss. In this system-level action, the job

missing its deadline is killed to remove load from the processor.

3.1 Problem Statement
In this work, we aim to exploit the weakly-hard constraints for increasing the number of schedulable

tasks on an SMP multi-core platform. Given a task set of independent weakly-hard tasks and an

SMP multi-core platform, our goal is to provide a global scheduling algorithm and a scheduling

analysis for the weakly-hard tasks.
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4 Original Response Time Analysis
Our paper extends the well-established multi-core Response Time Analysis (RTA) [2] in Section 6.

Therefore, we recall it in this section. The response time 𝑅𝑘 of a task 𝜏𝑘 is defined as:

𝑅𝑘 � 𝐶𝑘 + 𝐼𝑘
Where 𝐼𝑘 is the interference from other tasks and it is computed as follows:

𝐼𝑘 =
1

𝑛𝑐

∑︁
𝑖≠𝑘

𝐼𝑖,𝑘

Where 𝑛𝑐 is the number of cores in the system and 𝐼𝑖,𝑘 is the interference of a task 𝜏𝑖 over the

task 𝜏𝑘 . For Task-Level Fixed Priority (TLFP), only the tasks with higher priority than 𝜏𝑘 interfere,

therefore, 𝐼𝑘 is reduced to:

𝐼𝑘 =
1

𝑛𝑐

∑︁
𝑖∈ℎ𝑝 (𝑘 )

𝐼𝑖,𝑘

Where ℎ𝑝 (𝑘) is the set of tasks indices with higher priority than 𝜏𝑘 .

An upper bound on the response time 𝑅𝑢𝑏
𝑘

of a task 𝜏𝑘 can be computed by bounding the

interference 𝐼𝑘 . For computing 𝐼𝑖,𝑘 , we bound the workload 𝑊̂𝑖 imposed from 𝜏𝑖 [2, Equation 4]:

𝑊̂𝑖 (𝐿) = 𝑁𝑖 (𝐿)𝐶𝑖 +min(𝐶𝑖 , (𝐿 + 𝐷𝑖 −𝐶𝑖 ) mod 𝑇𝑖 )
Where 𝑁𝑖 (𝐿) is the maximum number of jobs of 𝜏𝑖 that may execute within the time window of

size 𝐿 [2, Equation 3]:

𝑁𝑖 (𝐿) =
⌊
𝐿 + 𝐷𝑖 −𝐶𝑖

𝑇𝑖

⌋
Hence, RTA iterates over the tasks in priority order to compute upper bounds on their response

times.

𝑊̂𝑖 (𝐿) calculates the workload imposed by 𝜏𝑖 considering the carry-in job, the body jobs and the

carry-out job defined as follow (see Figure 2):

Definition 8. A carry-in job is a job with a deadline within the interval of interest, but its release
time is outside of it.

Definition 9. Body jobs are jobs with both their release time and deadline within the interval of
interest.

Definition 10. A carry-out job is a job with a release time within the interval of interest but a
deadline outside of it.

To conservatively bound the workload of 𝜏𝑖 within the interval of interest 𝐿, we have to consider

the execution of the carry-in job. Therefore, the first term of 𝑊̂𝑖 (𝐿) represents the workload due to

the carry-in job and the body jobs while the second term bounds the workload due to the carry-out

job.

The bound on 𝑊̂𝑖 and 𝑁𝑖 (𝐿) can be tightened by introducing the slack of 𝜏𝑖 . The slack of 𝜏𝑖 is

calculated based on its response time as follows: 𝑠𝑖 = 𝑚𝑎𝑥 (𝐷𝑖 − 𝑅𝑢𝑏𝑖 , 0), where 𝑅𝑢𝑏𝑖 is the upper

bound on the response time of 𝜏𝑖 .

Considering 𝑠𝑖 , 𝑊̂𝑖 and 𝑁𝑖 (𝐿) are computed as follow [2, Equation 8]:

𝑊̂𝑖 = 𝑁𝑖 (𝐿)𝐶𝑖 +min(𝐶𝑖 , (𝐿 + 𝐷𝑖 −𝐶𝑖 − 𝑠𝑖 ) mod 𝑇𝑖 ) (1)

𝑁𝑖 (𝐿) =
⌊
𝐿 + 𝐷𝑖 −𝐶𝑖 − 𝑠𝑖

𝑇𝑖

⌋
(2)
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Fig. 2. Types of jobs within a time interval 𝐿 as proposed in RTA [2]. Blue arrows represent task activation,
while red ones represent deadlines. Gray boxes refer to job executions.

For TLFP, 𝑅𝑢𝑏
𝑘

of the task 𝜏𝑘 can be found by the following fixed point equation, starting with

𝑅𝑢𝑏
𝑘

=𝐶𝑘 , [2, Equation 7]:

𝑅𝑢𝑏
𝑘
← 𝐶𝑘 +


1

𝑛𝑐

∑︁
𝑖∈ℎ𝑝 (𝑘 )

min(𝑊̂𝑖 (𝑅𝑢𝑏𝑘 ), 𝑅
𝑢𝑏
𝑘
−𝐶𝑘 + 1)

 (3)

5 Global Scheduling for Weakly-hard Tasks
In this section, we present a new job-class-level algorithm for global scheduling of weakly-hard

tasks. We start by defining a deadline sequence that satisfies the weakly-hard constraint. Our

algorithm works on enforcing the defined deadline sequence to guarantee the schedulability by

assigning various priorities to released jobs. Then, we show how priorities are assigned to tasks

and to released jobs.

In the next section, we show how the enforced deadline sequence facilitates the schedulability

analysis.

5.1 Critical-sequence

The

(𝑚𝑖

𝐾𝑖

)
constraint does not specify the distribution of the𝑚𝑖 deadline misses, e.g. if they could

happen consecutively or not. Hence, there are different deadline sequences that satisfy the weakly-

hard constraint. We are interested in one sequence that we can enforce in our scheduling algorithm,

such that, we guarantee the satisfiability of

(𝑚𝑖

𝐾𝑖

)
. For that end, we define𝑤𝑖 and ℎ𝑖 .

Definition 11 (𝑤𝑖 ). It represents the maximum number of consecutive deadline misses that may
occur per deadline hit while guaranteeing that the total number of misses within any window of length
𝐾𝑖 does not exceed𝑚𝑖 and it is calculated as follows:

𝑤𝑖 =max

(⌊
𝑚𝑖

𝐾𝑖 −𝑚𝑖

⌋
, 1

)
(4)

Definition 12 (ℎ𝑖 ). It represents the number of deadline hits required per deadline miss and it is
calculated as follows:

ℎ𝑖 =

⌈
𝐾𝑖 −𝑚𝑖

𝑚𝑖

⌉
(5)

𝑤𝑖 , ℎ𝑖 take particular values when we consider low-tolerance or high-tolerance tasks.

Lemma 1. If𝑚𝑖/𝐾𝑖 < 0.5, then𝑤𝑖 = 1. If𝑚𝑖/𝐾𝑖 ≥ 0.5, then ℎ𝑖 = 1.

Proof. 𝑚𝑖/𝐾𝑖 < 0.5 ⇒ ⌊ 𝑚𝑖

𝐾𝑖−𝑚𝑖
⌋ = 0, hence, 𝑤𝑖 = 1. Similarly, 𝑚𝑖/𝐾𝑖 ≥ 0.5 ⇒ ⌈𝐾𝑖−𝑚𝑖

𝑚𝑖
⌉ = 1,

hence, ℎ𝑖 = 1. □
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Fig. 3. Critical-sequence examples for a high-tolerance task (above) and a low-tolerance task (below). Gray
boxes refer to execution finishing before the deadline, i.e., deadline hit. Boxes in pink refer to deadline miss.

Definition 13 (Critical seqence). It is the sequence made up of ℎ𝑖 consecutive deadline hits
followed by𝑤𝑖 consecutive deadline misses.

The critical-sequence allows us to uniformly distribute the deadline misses in a window of 𝐾𝑖 .

Figure 3 shows two critical-sequence examples, one for high-tolerance tasks and the other for

low-tolerance tasks.

Our scheduling algorithm assigns a higher priority to theℎ𝑖 consecutive jobs, i.e. to the jobs which

require to meet their deadline according to the critical-sequence. Therefore, it is vital to prove that

a repeating cycle of instances of the critical-sequence do not violate the deadline-miss constraint

given by

(𝑚𝑖

𝐾𝑖

)
. However, we know that the critical-sequence satisfies the

〈 𝑤𝑖

𝑤𝑖+ℎ𝑖
〉
constraint by

definition. Next, we show that the critical-sequence also satisfies the constraint

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
.

Lemma 2. For low-tolerance and high-tolerance tasks, for which𝑤𝑖 and ℎ𝑖 are defined as in Defini-
tion 11 and Definition 12 respectively, the critical-sequence satisfies the constraint

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
.

Proof. For low-tolerance tasks𝑤𝑖 = 1, hence, the following holds:

〈
1

1+ℎ𝑖
〉
≡
(

1

1+ℎ𝑖
)
. For high-

tolerance tasks ℎ𝑖 = 1, therefore, we focus on the deadline hits instead of misses. From [1, Theorem

3], we have

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
≡ ( ℎ𝑖

𝑤𝑖+ℎ𝑖 ). Hence, the following holds:

〈
1

1+𝑤𝑖

〉
≡
(

1

1+𝑤𝑖

)
. □

The next step is to prove that the critical-sequence satisfies

(𝑚𝑖

𝐾𝑖

)
and not only

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
. Therefore,

we have to prove that

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
is harder than

(𝑚𝑖

𝐾𝑖

)
, i.e. that the repeating cycles of the critical-

sequence do not contains more deadline misses than

(𝑚𝑖

𝐾𝑖

)
.

Definition 14. [1, Definition 10] Given two constraints, 𝜆 and 𝛾 , we say that 𝜆 is harder than 𝛾 ,
denoted by 𝜆 ≼ 𝛾 , if the deadline sequences that satisfy 𝜆 also satisfy 𝛾 .

Lemma 3. The weakly-hard constraint
( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
is harder than the constraint

(𝑚𝑖

𝐾𝑖

)
, formally,( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
≼

(𝑚𝑖

𝐾𝑖

)
.

Proof. Theorem 5 of [1] provides the condition that must be satisfied for one weakly-hard

constraint to be harder than another. In this proof, we show that

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
satisfies the condition to

be harder than

(𝑚𝑖

𝐾𝑖

)
. The detailed proof is in the appendix. □

In the examples of Figure 3, we can count the deadline misses within a 𝐾𝑖 = 3 window. Shifting

the window to the right, we observe that there is no more deadline misses than allowed by

(𝑚𝑖

𝐾𝑖

)
.

Theorem 1. If 𝜏𝑖 fulfills the constraint
( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
, it also fulfills the constraint

(𝑚𝑖

𝐾𝑖

)
.
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Proof. This is proven by Lemma 3, as

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
≼

(𝑚𝑖

𝐾𝑖

)
. □

5.2 Priority Assignment to Job-classes
We assign a group of priorities to every weakly-hard task. Each job of a task is assigned only one

priority from this group, i.e., job-level fixed priority. Jobs which require to meet their deadlines

based on the critical-sequence will receive the highest priority of the task. The other jobs will

receive a lower priority. In this way, a task can reduce its priority after achieving the minimum

number of deadline hits (ℎ𝑖 ) relaxing its interference to other tasks.

The group of priorities of a task is represented by the concept of job-classes coming from [5].

Each task has job-classes and every job-class has a different designated priority.

Definition 15. A task 𝜏𝑖 has JC𝑖 = 𝐾𝑖 −𝑚𝑖 + 1 job-classes. Here, every job-class is denoted by
JC𝑞

𝑖
, where 𝑞 can take values from the range [0, 𝐾𝑖 −𝑚𝑖 ]. Job-classes with lower values of 𝑞 are

assigned with higher priorities, i.e. JC𝑞=0
𝑖

and JC𝑞=𝐾𝑖−𝑚𝑖

𝑖
have the highest and lowest priority of the

task, respectively.

Every job-class has a different priority, i.e. the same priority is not shared between job-classes

of different tasks. Algorithm 1 shows how priorities are assigned to each job-class. First, tasks

are sorted in ascending order of deadline (Line 2). In case of two or more tasks have the same

deadline, the one with lower𝑚𝑖 is ordered first. If tasks have also the same𝑚𝑖 , the order between

them is selected randomly. Then, the total number of priorities is calculated by counting number

of job-classes between all tasks (Line 5). Finally, the priority is assigned to each job-class level by

iterating over them (from Line 8 until Line 12). Table 3 shows an example of three different tasks,

their corresponding 𝑞 range and their job-class priorities after running the priority assignment

algorithm.

Table 3. Example of three tasks, their 𝑞 ranges and their priorities. Note that jobs of 𝜏1 may get the highest
priority among all possible priorities (9) and the lowest possible priority (1).

Tasks (𝐶𝑖 , 𝐷𝑖 ,𝑇𝑖 ,
(𝑚𝑖

𝐾𝑖

)
) 𝑞 range Priorities

𝜏1 = (2, 6, 6,
(
2

5

)
) [0, 3] [9, 6, 3, 1]

𝜏2 = (3, 7, 7,
(
1

3

)
) [0, 2] [8, 5, 2]

𝜏3 = (2, 8, 8,
(
2

3

)
) [0, 1] [7, 4]

5.3 Scheduling Routine: Assigning Priorities to Released Jobs
Every time a job is released, the scheduler assigns it to a job-class based on the previous deadline

misses/hits. For selecting to which particular job-class a job should be assigned, we define job-level:

Definition 16. The job-level 𝑗𝑙𝑖 is a variable of a task 𝜏𝑖 which is used to select the job-class JC𝑞
𝑖

of the released job. The value of 𝑞 is selected according to 𝑞 =𝑚𝑎𝑥 (0, 𝑗𝑙𝑖 ). The initial value of 𝑗𝑙𝑖 is
−(ℎ𝑖 − 1) and every time a job meets its deadline, 𝑗𝑙𝑖 is increased by one until 𝐾𝑖 −𝑚𝑖 . When 𝑤𝑖
deadline misses happened, the value of 𝑗𝑙𝑖 is restored to −(ℎ𝑖 − 1).
Based on how 𝑗𝑙𝑖 is updated, the following consequences can be deduced. For high-tolerance

tasks, the starting value of 𝑗𝑙𝑖 is zero, since for that kind of tasks ℎ𝑖 is one; and for low-tolerance

tasks, every time a deadline is missed, 𝑗𝑙𝑖 is restored to −(ℎ𝑖 − 1), since for those kind of tasks𝑤𝑖 is

one (see Lemma 1).

Figure 4 shows the transitions between job-classes for low-tolerance and high-tolerance tasks.
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Algorithm 1: Priority assignment to job-classes.

1 Input: taskset T
2 𝑠𝑜𝑟𝑡_𝑡𝑎𝑠𝑘𝑠_𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔_𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 (T )
3 for 𝜏𝑖 ∈ T do
4 JC𝑖 ← 𝐾𝑖 −𝑚𝑖 + 1
5 JC ← ∑

∀𝜏𝑖 ∈T JC𝑖
6 𝑝𝑟𝑖𝑜 ← JC
7 JC𝑚𝑎𝑥 ←𝑚𝑎𝑥{JC𝑖 |∀𝜏𝑖 ∈ T }
8 for 𝑞 ← 0;𝑞 < JC𝑚𝑎𝑥 ;𝑞 ← 𝑞 + 1 do
9 for 𝜏𝑖 ∈ T do
10 if 𝑞 < JC𝑖 then
11 JC𝑞

𝑖
← 𝑝𝑟𝑖𝑜

12 𝑝𝑟𝑖𝑜 ← 𝑝𝑟𝑖𝑜 − 1

Fig. 4. Job-classes transitions for low-tolerance and high-tolerance tasks. Solid circles represent the highest
priority. Hence, jobs assigned to the priority represented by the solid circle are guaranteed to meet their
deadlines. Solid transition lines indicate transitions after deadline hits. Jobs of low-tolerance tasks remain ℎ𝑖
times in 𝑞𝑖 = 0 before changing to the next level. Jobs of high-tolerance tasks change of level after the first
deadline hit. Red dashed transition lines indicate possible transition after𝑤𝑖 misses.

6 Response Time Analysis Extension for Weakly-hard Real-time Tasks
This section presents a schedulability analysis for the proposed job-class-level scheduling algorithm

described in the previous section. The analysis is an extension of RTA for weakly-hard real-time

tasks scheduled by our algorithm. As mentioned in Section 4, RTA provides a sufficient condition

for schedulability by proving that the response time of a task is not longer than its deadline. The

response time of a task is prolonged as much as tasks with higher priorities interfere with the

execution of the analyzed task. The extension of RTA presented here bounds the interference over

lower priority tasks by taking into account only jobs belonging to JC𝑞=0
𝑖

. Remember that jobs in

JC𝑞=0
𝑖

have the highest assignable priority to their tasks and are selected based on the minimum

consecutive deadline hits (ℎ𝑖 ) from the critical-sequence. Moreover, considering only jobs in JC𝑞=0
𝑖

reduces the interference to lower priority jobs.
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Lemma 4. For a task 𝜏𝑖 , if the jobs belonging to JC𝑞=0
𝑖

meet their deadlines, then 𝜏𝑖 meets its

constraint
( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
.

Proof. Our proposed scheduling assigns ℎ𝑖 jobs to the JC𝑞=0𝑖
every time 𝜏𝑖 misses𝑤𝑖 deadlines

as Figure 4 illustrates. Hence, if all jobs belonging to JC𝑞=0
𝑖

meet their deadlines, 𝜏𝑖 meets its

constraint

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
regardless whether the other jobs, which belong to other job-classes, meet their

deadlines or not. □

Consequently, this section considers only the jobs in job-classes JC𝑞=0
𝑖

. However, note that the

other job-classes are used as a part of the relaxation mechanism which gives the opportunity to

other tasks be executed with a higher priority temporarily. This relaxation mechanism fairly shares

the priorities among the jobs to enable all tasks meeting their

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
constraints.

This section starts by proving that it is possible to extend RTA for the proposed scheduling

algorithm. Finally, the schedulability condition for a task set is defined.

6.1 Proving RTA Extension
We prove the extension of RTA for our algorithm by showing how to bound the interference over

jobs in job-classes JC𝑞=0
𝑖

. First, we show that only the interference between the highest priority

job-classes have to be considered. Then, we evaluate the interference based on the critical-sequence.

This is done separately for low-tolerance and high-tolerance tasks because of the differences in the

critical-sequences (see Definition 13).

With the following lemma, we show that only the response time of jobs belonging to JC𝑞=0
𝑖

are

of interest.

Lemma 5. A job of a task 𝜏𝑘 in JC𝑞=0𝑘
suffers interference only from the jobs of a task 𝜏𝑖 in JC𝑞=0𝑖

,
if the priority of JC𝑞=0

𝑖
is higher than the priority of JC𝑞=0

𝑘
.

Proof. The Algorithm 1 assigns a priority value to job-classes starting by 𝑞 = 0 and every time

a priority is assigned, the next priority value is reduced by one. In this way, priority values of

job-classes JC𝑞≥1 are always lower than the ones assigned to job-classes JC𝑞=0. From which it

follows that jobs of a task 𝜏𝑘 which belong to job-class JC𝑞=0
𝑘

suffer interference of other jobs in

JC𝑞=0
𝑖

, only if, the priority of JC𝑞=0
𝑖

is higher than the priority of JC𝑞=0
𝑘

. □

To bound the interference induced by 𝜏𝑖 on 𝜏𝑘 , we must bound the maximum number of jobs

in JC𝑞=0
𝑖

. In the worst-case, jobs of 𝜏𝑖 are assigned to JC𝑞=0
𝑖

ℎ𝑖 times every 𝑤𝑖 + ℎ𝑖 jobs. For a
high-tolerance task 𝜏𝑖 , the jobs in JC𝑞=0𝑖

are𝑤𝑖 apart. This allows to consider the workload coming

from such a task as the same workload produced by a task with a longer inter-arrival time that is

equal to (𝑤𝑖 + 1)𝑇𝑖 . Formally writing this:

Lemma 6. The workload of a high-tolerance task 𝜏𝑖 with constraint
(𝑚𝑖

𝐾𝑖

)
is calculated as it were

coming from an equivalent hard real-time task 𝜏𝑒𝑞
𝑖

= (𝐶𝑖 , 𝐷𝑖 , (𝑤𝑖 + 1)𝑇𝑖 ).

Proof. The jobs of the hard real-time task 𝜏
𝑒𝑞

𝑖
= (𝐶𝑖 , 𝐷𝑖 , (𝑤𝑖 + 1)𝑇𝑖 ) have the same worst-case

execution time 𝐶𝑖 as the jobs of 𝜏𝑖 in JC𝑞=0𝑖
, and occur at the same inter-arrival time (𝑤𝑖 + 1)𝑇𝑖 .

Therefore they induce the same interference. □

For low-tolerance tasks, the minimum inter-arrival time between two jobs belonging to JC𝑞=0
𝑖

is 𝑇𝑖 . Therefore, bounding the interference of low-tolerance tasks requires considering 𝑇𝑖 as the

inter-arrival time. However, we need to exclude the jobs that do not belong to JC𝑞=0 from the
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workload bound. Hence, we update the workload bound defined in Equation (1) as follows. In the

first term, the update subtracts the number of jobs with lower priority from 𝑁𝑖 over the interval of

interest 𝐿. For updating the workload coming from the carry-out job, the second term of 𝑊̂𝑖 (𝐿) is
made equal to zero when a carry-out job has a lower priority than JC𝑞=0

𝑖
.

For updating the first term, the number of lower priority jobs is defined by the following lemma:

Lemma 7. The minimum number of jobs of a low-tolerance task 𝜏𝑖 that have lower priorities than
JC𝑞=0

𝑖
during the interval 𝐿 is given by:

𝑂𝑖 (𝐿) =
⌊
𝐿 + 𝐷𝑖 −𝐶𝑖 − 𝑠𝑖
𝑇𝑖 (ℎ𝑖 + 1)

⌋
(6)

Proof. The critical-sequence for a low-tolerance task allows one deadline miss after ℎ𝑖 deadline

hits. This means that the maximum distance between two jobs of 𝜏𝑖 with a priority less than JC𝑞=0
𝑖

is 𝑇𝑖 (ℎ𝑖 + 1). □

Lemma 8. According to the critical-sequence, only 𝑁𝑖 (𝐿)−𝑂𝑖 (𝐿) jobs contribute with an interference
of 𝐶𝑖 to lower priorities classes JC𝑞=0𝑘

over the interval 𝐿.

Proof. 𝑁𝑖 (𝐿) jobs may contribute with a interference of 𝐶𝑖 . However, the (ℎ𝑖 + 1)𝑇𝑖 job does
not contribute because, according to the critical-sequence, it is assigned with a lower priority than

JC𝑞=0
𝑘

. Hence, only 𝑁𝑖 (𝐿) −𝑂𝑖 (𝐿) jobs contribute with an interference of 𝐶𝑖 . □

For removing the contribution of carry-out jobs, we introduce a variable that enables the second

term in 𝑊̂𝑖 (𝐿) only if the carry-out jobs are in JC𝑞=0
𝑖

.

Definition 17. The variable 𝑎𝑖 equals one by default and zero when carry-out jobs are not in
JC𝑞=0

𝑖
.

𝑎𝑖 = 1 −
⌊
𝑁𝑖 (𝐿) mod (ℎ𝑖 + 1)

ℎ𝑖

⌋
(7)

The value of 𝑁𝑖 (𝐿) mod (ℎ𝑖 +1) gives the number of jobs of the current critical-sequence. When

this value is ℎ𝑖 , the next carry-out job belongs to a lower priority job-class. Furthermore, the result

of the floor is one when: 𝑁𝑖 (𝐿) mod (ℎ𝑖 + 1) = ℎ𝑖 . It follows that the value of 𝑎𝑖 is zero when the

carry-out job belongs to a different job-class than JC𝑞=0
𝑖

.

Then, we update the workload bound equation as follows:

Lemma 9. The workload bound function of a low-tolerance task 𝜏𝑖 is updated for removing non-
interfering jobs as follow:

𝑊̂𝑖 (𝐿) = (𝑁𝑖 (𝐿) −𝑂𝑖 (𝐿))𝐶𝑖 + 𝑎𝑖 .min(𝐶𝑖 , (𝐿 + 𝐷𝑖 −𝐶𝑖 − 𝑠𝑖 ) mod 𝑇𝑖 ) (8)

Proof. The proof is given by Lemma 8 and Definition 17. □

Algorithm 2 shows the function for calculating 𝑊̂𝑖 which is used in the fixed point iteration of

Equation (3).

Lemma 10. 𝑅𝑢𝑏
𝑘

as given in (3) is a safe upper bound on the response time of jobs in JC𝑞=0
𝑘

, where
𝑊̂𝑖 is bounded as in (8).

Proof. From Algorithm 2, the workload contribution of high-tolerance tasks uses the approach

proven in Lemma 6 and for low-tolerance tasks, it uses the approach proven in Lemma 9. □
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Algorithm 2:Workload computation.

1 Input: Length L, task 𝜏𝑖

2 Output:Workload 𝑊̂𝑖

3 𝑠𝑖 ←𝑚𝑎𝑥 (𝐷𝑖 − 𝑅𝑢𝑏𝑖 , 0) // Slack
4 if 𝑚𝑖/𝐾𝑖 >= 0.5 then
5 // High-tolerance task

6 𝑇𝑖 ← (𝑤𝑖 + 1)𝑇𝑖
7 𝑂𝑖 ← 0

8 𝑎𝑖 ← 1

9 else
10 // Low-tolerance task

11 𝑂𝑖 ←
⌊
𝐿+𝐷𝑖−𝐶𝑖−𝑠𝑖
𝑇𝑖 (ℎ𝑖+1)

⌋
// Equation (6)

12 𝑎𝑖 ← 1 −
⌊
𝑁𝑖 mod (ℎ𝑖+1)

ℎ𝑖

⌋
// Equation (7)

13 𝑁𝑖 ←
⌊
𝐿+𝐷𝑖−𝐶𝑖−𝑠𝑖

𝑇𝑖

⌋
// Equation (2)

14 𝑊̂𝑖 ← (𝑁𝑖 −𝑂𝑖 )𝐶𝑖 + 𝑎𝑖 .min(𝐶𝑖 , (𝐿 + 𝐷𝑖 −𝐶𝑖 − 𝑠𝑖 ) mod 𝑇𝑖 ) // Equation (8)

15 return 𝑊̂𝑖

6.2 Schedulability Analysis
We introduce the following theorem for schedulability of a weakly-hard real-time task 𝜏𝑖 scheduled

by our algorithm:

Theorem 2. For a task 𝜏𝑖 with the constraint
(𝑚𝑖

𝐾𝑖

)
, meeting the deadlines of the jobs belonging to

JC𝑞=0
𝑘

is a sufficient condition for the schedulability of 𝜏𝑖 .

Proof. It follows directly from Theorem 1 and Lemma 4. □

Then, the schedulability of a task set is defined as follows:

Corollary 1. A task set is schedulable by our scheduling algorithm if for every task, the sufficient
condition given in Theorem 2 is satisfied.

7 Evaluation
Our global scheduling depends on the transformation of the weakly-hard constraint

(𝑚𝑖

𝐾𝑖

)
to the( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
constraint, which has a smaller window. In this section, we study first the limitations

introduced by adopting a harder constraint than

(𝑚𝑖

𝐾𝑖

)
.

We also evaluate our global scheduling for weakly-hard real-time tasks in this section. To the

best of our knowledge, there is no other global scheduling analysis for weakly-hard real-time tasks.

Furthermore, since we are interested in RTEMS and the available global schedulers are EDF and

RM, we compare the proposed scheduling algorithm against the results of RTA (Section 4) for RM

and EDF. The experiments are based on the analysis of task sets randomly generated using the

UUnifast algorithm [3]. For a given total utilization, we calculate the percentage of schedulable

task sets, known as schedulability ratio. Additionally, we ran our experiments for different values

of 𝐾𝑖 and measured the computation times for different number of tasks.

Furthermore, in order to analyse the scalability of our approach, we also compare our analysis

(here labeled as RTA WH) against the Integer Linear Programming (ILP) approach proposed in [17]

and the Job-Class Level (JCL) proposed in [5]. However, note that the comparison of a multi-core
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scheduling analysis against another for single-core is not fair. In single-core scheduling analysis,

the condition for schedulabilty (known as critical instant) considers that all higher priority tasks

are released simultaneously with the analyzed task. However, the critical instant cannot be used

in multi-core. Moreover, the sufficient schedulability condition used in multi-core is pessimistic

for single-core. Therefore, the schedulability ratio results of comparing against the single-core

approaches are only for illustration.

Finally, at the end of this section, we show the execution time distribution for assigning priorities

to released jobs. This last experiment runs on the same hardware platform used in CALLISTO.

7.1 Transformation Cost
For analyzing the limitation introduced by transforming

(𝑚𝑖

𝐾𝑖

)
to

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
, where

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
is harder

than

(𝑚𝑖

𝐾𝑖

)
, we count the possible deadline sequences which satisfy both constraints. Algorithm 3

counts these possible solutions based on a given

(𝑚𝑖

𝐾𝑖

)
. It starts by calculating ℎ𝑖 and𝑤𝑖 for a given(𝑚𝑖

𝐾𝑖

)
(Lines 3 and 4). Then, it creates a table with 𝐾𝑖 columns (Line 5). Every row of the table

represents a sequence of deadlines, in which 1 is a deadline hit and 0 is a deadline miss, see Table 4.

In Lines 7 and 8, the solutions for

(𝑚𝑖

𝐾𝑖

)
and

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
are counted from the rows.

Algorithm 3: Algorithm for counting possible solutions.

1 Input: constraint
(𝑚𝑖
𝐾𝑖

)
2 Output: relation between solutions for the harder and the original constraints

3 𝑤𝑖 ← max

( ⌊
𝑚𝑖

𝐾𝑖−𝑚𝑖

⌋
, 1

)
// Definition 11

4 ℎ𝑖 ←
⌈
𝐾𝑖−𝑚𝑖

𝑚𝑖

⌉
// Definition 12

5 𝑡𝑎𝑏𝑙𝑒 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑡𝑎𝑏𝑙𝑒 (𝐾𝑖 )
6 𝑟𝑜𝑤𝑠 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑟𝑜𝑤𝑠 (𝑡𝑎𝑏𝑙𝑒)
7 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← 𝑐𝑜𝑢𝑛𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 (

(𝑚𝑖
𝐾𝑖

)
, 𝑟𝑜𝑤𝑠)

8 ℎ𝑎𝑟𝑑𝑒𝑟_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← 𝑐𝑜𝑢𝑛𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 (
( 𝑤𝑖
𝑤𝑖+ℎ𝑖

)
, 𝑟𝑜𝑤𝑠)

9 return ℎ𝑎𝑟𝑑𝑒𝑟_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠/𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

Results for different values of

(𝑚𝑖

𝐾𝑖

)
are shown in Table 5. For low-tolerance tasks, the omitted

deadline sequences can be very high when𝑚𝑖/𝐾𝑖 is near to 0.5. On the other hand, there are less

omitted sequences for high-tolerance. For both kind of tasks, the number of omitted sequences

increases when considering a constraint which is multiple of another, e.g.

(𝑚𝑖

𝐾𝑖

)
=
(
8

20

)
and

(𝑚𝑖

𝐾𝑖

)
=

Table 4. Table created for counting deadline sequences. Every row represents a possible deadline sequence.

𝑑0 𝑑1 · · · 𝑑𝐾𝑖−2 𝑑𝐾𝑖−1
0 0 · · · 0 0

0 0 · · · 0 1

0 0 · · · 1 0

0 0 · · · 1 1

...
...

. . .
...

...

1 1 · · · 1 0

1 1 · · · 1 1
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Table 5. Limitation for harder constraints.

(𝑚𝑖

𝐾𝑖

) ( 𝑤𝑖

𝑤𝑖+ℎ𝑖
) ( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
solutions /

(𝑚𝑖

𝐾𝑖

)
solutions(

1

5

) (
1

5

)
1.0(

2

5

) (
1

3

)
0.5625(

3

5

) (
1

2

)
0.5(

4

5

) (
4

5

)
1.0(

4

10

) (
1

3

)
0.1554(

8

10

) (
4

5

)
0.9003(

8

20

) (
1

3

)
0.01040(

16

20

) (
4

5

)
0.7511

Fig. 5. Schedulability ratio for 2 cores.

(
2

5

)
. This happens because specific deadline sequences with consecutive deadline misses are not

accounted when the harder constraint is used. Despite this limitation, our experiments show better

results than traditional hard real-time scheduling analysis. Furthermore, the results obtained here

are theoretical since not all the uncounted deadline sequences will also mean schedulable solutions.

7.2 Scheduling Analysis Setup
Task sets are generated for a list of desired total utilization values using UUnifast. For every total

utilization value, 1000 sets are generated. The utilization of the generated tasks is not higher than

one. The inter-arrival times are randomly generated within the interval [10, 100), with a uniform

probability distribution. The generated tasks have implicit deadlines, i.e. their deadlines are equal

to their inter-arrival time (𝐷𝑖 =𝑇𝑖 ). Furthermore, all scheduling analysis were developed in Python

3 and executed on parallel for each total utilization value.
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Fig. 6. Schedulability ratio for 4 cores.

Fig. 7. Schedulability ratio for 8 cores.

For every generated task set, the schedulability ratio is calculated and the computation time is

measured. In case of the global scheduling comparison, RTA verifies its schedulability for RM, EDF

and the extension of RTA for weakly-hard real-time tasks considering two scenarios. In the first

scenario, all tasks are low-tolerance tasks and in the second, all tasks are high-tolerance tasks. The

values for𝑚𝑖 are chosen randomly between the values that fulfill the desired𝑚𝑖/𝐾𝑖 . For example,

given 𝐾𝑖 = 5,𝑚𝑖 can be 1 or 2 for low-tolerance tasks; and 3 or 4 for high-tolerance tasks.
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Fig. 8. Schedulability ratio for 20, 50 and 100 tasks (4 cores).

For the comparison against the other weakly-hard scheduling approaches, the value of𝑚𝑖 is

either 1 or 𝐾𝑖 − 1 because the ILP analysis [17] only permits the same weakly-hard constraint for

the tasks in the set. Additionally, only 𝐾𝑖 = 5 was used for ILP due to the scalability issues [14].

Nevertheless, further experiments compare against JCL using 𝐾𝑖 = 10 and 𝐾𝑖 = 20.

Finally, we used a desktop computer with a Intel(R) Core(TM) i7-8700 processor (6 cores, 2

threads per core) and 32GB of RAM running Ubuntu to run the experiments.

7.3 Scheduling Analysis Experiments
Figure 5, Figure 6, and Figure 7 show the schedulability ratio using a set of 20 tasks for 2, 4 and 8

cores, respectively. The plots for EDF show a worst schedulability ratio in comparison with RM.

This is due to RTA calculates a higher interference for EDF than for RM (remember that in RM only

tasks with higher priority are considered). Furthermore, it is observed that the schedulability ratio

for the weakly-hard tasks is much better than for RM. Additionally, high-tolerance tasks seem to

be schedulable even after the practical limit (𝑈 = number of cores). This is explained by Lemma 6,

which allows us to consider the workload coming from the high-tolerance tasks as it were coming

from a task with longer inter-arrival time, reducing the utilization of the task. This also explains

why this behavior is not seen for low-tolerance tasks.

Figure 8 shows the schedulability ratio for 20, 50 and 100 tasks in the set when scheduled on

4 cores. Here, it is observed that sets with more tasks have a better schedulability. The reason is

that having more tasks, while keeping the same total utilization, makes the tasks more lightweight

which reduces the interference. On the other hand, the computation time is increased with the

number of tasks. This is observed in Figure 9 which shows the computation time distribution using

box plots (the blue curve represents the average duration for RM). Also, note that computation

time decreases with the schedulability ratio because the scheduling analysis ends when the first no

schedulable task is found.

Figure 10 shows the schedulability ratio of tasks scheduled on 4 cores when 𝐾𝑖 is 5, 50 and 500.

There are no significant changes in the schedulability ratio when the value of 𝐾𝑖 is changed. Also,
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Fig. 9. Computation time for 20, 50 and 100 tasks (4 cores). Box plots show the distribution of computation
times and the blue curve indicates the average for RM. The first column shows computations times for
low-tolerance tasks and the second column for high-tolerance tasks. Every row shows results for different
amount of tasks in the set.
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Fig. 10. Schedulability ratio for 𝐾𝑖 equals to 5, 50 and 500 (4 cores).

we highlight that the theoretical results shown in Table 5 are pessimistic in comparison with the

results of this experiment. In terms of the computation time, no significant changes were observed,

see Figure 11.

7.4 Comparison Against Single-Core Scheduling Approaches
Figure 12 shows the schedulability ratio comparison between ILP, JCL and RTA WH using task

sets with 30 tasks and the same 𝐾 = 5 for all tasks (due to the scalability of the ILP approach for

larger 𝐾 ). For experiments with𝑚𝑖 = 1, JCL is the best of the three while ILP is the worst of them.

The bad results of the ILP approach are explained by remembering that the ILP approach works at

task-level while the other approaches work at job-level. In case of RTA WH, there is pessimism

introduced by using a multi-core scheduling analysis for single-core (as mentioned before).

When 𝐾𝑖 = 10 and 𝐾𝑖 = 20, Figure 13 and Figure 14 show that the schedulability ratio is also

better for JCL than for RTA WH. Again, this is explained similar as before, i.e. using RTA for

single-core introduces pessimism. However, the schedulability ratio curves for𝑚𝑖 = 𝐾𝑖 − 1 are
similar for JCL and RTA WH until a total utilization equals to 1.

Figure 15 shows the computation times for ILP, JCL and RTA WHA. For ILP, the computation

time increases with the utilization. However, for JCL and RTAWH, the computation time decreases

together with the schedulability ratio because unschedulable sets are found faster. In addition, the

JCL approach is faster than the others when 𝐾𝑖 = 5. Moreover, JCL is still faster when 𝐾𝑖 = 10 and

𝐾𝑖 = 20 but only for high-tolerance tasks. The reason is that the sufficient condition used in RTA

WH takes longer than the analysis used in JCL which considers the critical instant. Nevertheless,

for low-tolerance tasks, while increasing 𝐾𝑖 to 10, the computation times of JCL are in the same

range than those for RTAWH (see Figure 16). Furthermore, when 𝐾𝑖 = 20, RTAWH becomes faster

than JCL for low-tolerance tasks due to the iteration of JCL over a recheabilty tree, see Figure 17.

In fact, RTA WH does not variate too much while changing the value of 𝐾𝑖 . This was also observed

in Figure 11.
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Fig. 11. Computation time for 𝐾𝑖 equals to 5, 50 and 500 (4 cores, 20 tasks in the set). Box plots show the
distribution of computation times and the blue curve indicates the average for RM. The first column shows
computations times for low-tolerance tasks and the second column for high-tolerance tasks. Every row shows
results for different values of 𝐾𝑖 .

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2025.



981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Global Scheduling of Weakly-Hard Real-Time Tasks using Job-Level Priority Classes 1:21

Fig. 12. Schedulability ratio for ILP, JCL and RTA WH (K = 5).

Fig. 13. Schedulability ratio for JCL and RTA WH (K = 10).

7.5 Priority Assignment Overhead
In order to know the scheduling overhead due to the priority assignment algorithm defined in

Definition 16, we have conducted an experiment for measuring its execution time considering

only the transition among job classes in isolation, i.e. no OS system overhead is considered. This

experiment was executed on the same processor architecture used in the on-board computers of

CALLISTO, i.e. Intel Atom Quad-Core with core frequency of 1.91𝐺𝐻𝑧. The real-time operating

system used in this experiment is RTEMS 5.1 and the code was compiled with optimization level 2.
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Fig. 14. Schedulability ratio for JCL and RTA WH (K = 20).

Figure 18 shows the execution time distribution for executing the priority assignment in case of

both low and high-tolerance tasks. The algorithm execution was repeated 1000 times for every type

of task. Results show an overhead below 60 nanoseconds which is negligible overhead comparing

to the execution time of the tasks. Low-tolerance tasks show a higher median than high-tolerance

tasks. This behavior is related with the fact that high-tolerance tasks tolerate more deadline misses

before going back to the JC0𝑖 , making some part of the algorithm be executed more often.

8 Conclusion
In centralized embedded system architectures, multi-core processors are utilized to consolidate

multiple tasks leveraging the high computational power and the low power-consumption of multi-

core platforms. In real-time systems, if few deadline misses are tolerable, leveraging the weakly-hard

model can reduce the over-provisioning, hence, consolidating more real-time tasks on to the multi-

core platform. This paper proposed a job-class based global scheduling for weakly-hard real-time

tasks, appended with a schedulability test to compute the needed guarantees. The scheduling

algorithm exploits the tolerable deadlinemisses by assigning different priorities to jobs upon urgency

of meeting their deadline. Such job-level priority assignment reduces the interference with low-

priority tasks and helps them to satisfy their weakly-hard constraints. The proposed schedulability

analysis utilizes neither ILP nor reachability tree-based analysis, as similar approaches in the

literature. Rather, it focuses on verifying the schedulability of the maximum tolerable consecutive

deadline misses. Our experiments show that the proposed analysis is schedulable where through

all the synthetic test cases, the computation time for the proposed analysis does not exceed 1.6

seconds for 100 tasks and 4 cores. Also, results illustrates that the improvement on the schedulability

ratio is up to 40% over the global Rate Monotonic (RM) scheduling and up to 60% over the global

EDF scheduling. Furthermore, our future work will contemplate a reduction in the limitations for

low-tolerance tasks, the exploration of the priority assignment in the context of job-class-level

scheduling and the interference between tasks due to shared resources.
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Fig. 15. Computation time for ILP, JCL and RTA WH (K = 5). Box plots show the distribution of computation
times. The first column shows computations times for (𝑚𝑖 = 1, 𝐾𝑖 = 5) tasks and the second column for
(𝑚𝑖 = 4, 𝐾𝑖 = 5) tasks. The first row shows results for ILP, the second for JCL and the third one for RTA WH.
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A Lemma 3 Proof
Theorem 5 of [1] states that a weakly-hard constraint

(
𝑎
𝑏

)
is harder than (denoted as ≼) other

constraint

( 𝑝
𝑞

)
if: (

𝑎

𝑏

)
≼

(
𝑝

𝑞

)
⇔ 𝑝 ≤𝑚𝑎𝑥

{ ⌊𝑞
𝑏

⌋
𝑎, 𝑞 +

⌈𝑞
𝑏

⌉
(𝑎 − 𝑏)

}
(9)

According to Theorem 3 in [1] we have ( ℎ𝑖
𝑤𝑖+ℎ𝑖 ) ≡

( 𝑤𝑖

𝑤𝑖+ℎ𝑖
)
. Hence, replacing the variables for

our case, we get:(
ℎ𝑖

𝑤𝑖 + ℎ𝑖

)
≼

(
𝐾𝑖 −𝑚𝑖

𝐾𝑖

)
⇔ 𝐾𝑖 − 𝑚𝑖 ≤ 𝑚𝑎𝑥

{⌊
𝐾𝑖

𝑤𝑖 + ℎ𝑖

⌋
ℎ𝑖 , 𝐾𝑖 −

⌈
𝐾𝑖

𝑤𝑖 + ℎ𝑖

⌉
𝑤𝑖

}
(10)

For proving the theorem, we need to show that 𝐾𝑖 −𝑚𝑖 is always less or equal than the following

terms: ⌊
𝐾𝑖

𝑤𝑖 + ℎ𝑖

⌋
ℎ𝑖 (11)

𝐾𝑖 −
⌈

𝐾𝑖

𝑤𝑖 + ℎ𝑖

⌉
𝑤𝑖 (12)

We prove this theorem separately for low-tolerance and high-tolerance tasks. Summarizing, the

steps are the following:

(1) We show Equation (11) is greater or equal than Equation (12) for high-tolerance tasks.

(2) We verify that Equation (11) is greater or equal than 𝐾𝑖 −𝑚𝑖 for high-tolerance tasks.

(3) We show Equation (11) is also greater or equal than Equation (12) for low-tolerance tasks.

(4) Then, for simplicity, we start by verifying that Equation (12) is greater or equal than 𝐾𝑖 −𝑚𝑖

for low-tolerance tasks. Showing this last is valid, we conclude that for low-tolerance tasks

Equation (11) is also greater or equal than 𝐾𝑖 −𝑚𝑖 .

Step 1. From Lemma 1, we know that ℎ𝑖 = 1 for high-tolerance tasks. Replacing ℎ𝑖 = 1 and

assuming that Equation (11) ≥ Equation (12), we get:⌊
𝐾𝑖

𝑤𝑖 + 1

⌋
≥ 𝐾𝑖 −

⌈
𝐾𝑖

𝑤𝑖 + 1

⌉
𝑤𝑖 (13)

We consider the following relation between a real number 𝑥 and a integer number 𝑛 for removing

the floor.

⌊𝑥⌋ ≥ 𝑛 ⇔ 𝑥 ≥ 𝑛 (14)

By removing the floor and then clearing 𝐾𝑖 in Inequation (13), we get the assumption

Equation (11) ≥ Equation (12) holds.

𝐾𝑖

𝑤𝑖 + 1
≥ 𝐾𝑖 −

⌈
𝐾𝑖

𝑤𝑖 + 1

⌉
𝑤𝑖 ⇒ 𝐾𝑖 ≥

(
𝐾𝑖 −

⌈
𝐾𝑖

𝑤𝑖 + 1

⌉
𝑤𝑖

)
(𝑤𝑖 + 1) ⇒

⌈
𝐾𝑖

𝑤𝑖 + 1

⌉
(𝑤𝑖 + 1) ≥ 𝐾𝑖

Step 2.We need to prove: ⌊
𝐾𝑖

𝑤𝑖 + 1

⌋
≥ 𝐾𝑖 −𝑚𝑖 (15)

Using Relation 14 for removing the floor:

𝐾𝑖

𝑤𝑖 + 1
≥ 𝐾𝑖 −𝑚𝑖
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Next, clearing𝑤𝑖 and replacing it for its value for high-tolerance tasks, i.e.𝑤𝑖 =

⌊
𝑚𝑖

𝐾𝑖−𝑚𝑖

⌋
:

𝑤𝑖 ≤
𝑚𝑖

𝐾𝑖 −𝑚𝑖

=⇒
⌊

𝑚𝑖

𝐾𝑖 −𝑚𝑖

⌋
≤ 𝑚𝑖

𝐾𝑖 −𝑚𝑖

Inequation (15) holds and we prove Equation (10) for high-tolerance tasks.

Step 3. From Lemma 1, we know that 𝑤𝑖 = 1 for low-tolerance tasks. Replacing 𝑤𝑖 = 1 and

assuming that Equation(11) is greater or equal than Equation(12), we get:⌊
𝐾𝑖

1 + ℎ𝑖

⌋
ℎ𝑖 ≥ 𝐾𝑖 −

⌈
𝐾𝑖

1 + ℎ𝑖

⌉
(16)

For converting from ceiling to floor, we use the following identity:⌈𝑎
𝑏

⌉
=

⌊
𝑎 + 𝑏 − 1

𝑏

⌋
(17)

Hence: ⌊
𝐾𝑖

1 + ℎ𝑖

⌋
ℎ𝑖 ≥ 𝐾𝑖 −

⌊
𝐾𝑖 + ℎ𝑖
1 + ℎ𝑖

⌋
=⇒

⌊
𝐾𝑖 + ℎ𝑖
1 + ℎ𝑖

⌋
≥ 𝐾𝑖 −

⌊
𝐾𝑖

1 + ℎ𝑖

⌋
ℎ𝑖

Using Relation 14 for removing the floor in

⌊
𝐾𝑖+ℎ𝑖
1+ℎ𝑖

⌋
and then clearing 𝐾𝑖 :

𝐾𝑖 + ℎ𝑖
1 + ℎ𝑖

≥ 𝐾𝑖−
⌊
𝐾𝑖

1 + ℎ𝑖

⌋
ℎ𝑖 ⇒ 𝐾𝑖+ℎ𝑖 ≥

(
𝐾𝑖 −

⌊
𝐾𝑖

1 + ℎ𝑖

⌋
ℎ𝑖

)
(1+ℎ𝑖 ) ⇒ (1+ℎ𝑖 )

⌊
𝐾𝑖

1 + ℎ𝑖

⌋
+1 ≥ 𝐾𝑖

We see that assumption Equation (11) ≥ Equation (12) holds.

Step 4. As we mentioned before, here we start by showing that Equation (12) is greater or equal

than 𝐾𝑖 −𝑚𝑖 :

𝐾𝑖 −
⌈
𝐾𝑖

1 + ℎ𝑖

⌉
≥ 𝐾𝑖 −𝑚𝑖 =⇒𝑚𝑖 ≥

⌈
𝐾𝑖

1 + ℎ𝑖

⌉
(18)

We now use the following relation between a real number 𝑥 and a integer number 𝑛 to remove

the ceiling from Inequation (18).

⌈𝑥⌉ ≤ 𝑛 ⇔ 𝑥 ≤ 𝑛

𝑚𝑖 ≥
⌈
𝐾𝑖

1 + ℎ𝑖

⌉
=⇒𝑚𝑖 ≥

𝐾𝑖

1 + ℎ𝑖

Next step is clearing ℎ𝑖 and replacing it for its value, i.e. ℎ𝑖 =

⌈
𝐾𝑖−𝑚𝑖

𝑚𝑖

⌉
:

ℎ𝑖 ≥
𝐾𝑖 −𝑚𝑖

𝑚𝑖

=⇒
⌈
𝐾𝑖 −𝑚𝑖

𝑚𝑖

⌉
≥ 𝐾𝑖 −𝑚𝑖

𝑚𝑖

We see the assumption Equation (12) ≥ 𝐾𝑖 −𝑚𝑖 holds and since also Equation (11) ≥ Equation (12),
we get also Equation (11)≥ 𝐾𝑖−𝑚𝑖 . This proves Equation (10) for low-tolerance tasks which finalizes

the proof of Theorem 5 of [1] for ( ℎ𝑖
𝑤𝑖+ℎ𝑖 ) ≼

(
𝐾𝑖−𝑚𝑖

𝐾𝑖

)
.
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