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Real-time systems are intrinsic components of many pivotal applications, such as self-driving vehicles,
aerospace and defense systems. The trend in these applications is to incorporate multiple tasks onto fewer,
more powerful hardware platforms, e.g., multi-core systems, mainly for reducing cost and power consumption.
Many real-time tasks, like control tasks, can tolerate occasional deadline misses due to robust algorithms.
These tasks can be modeled using the weakly-hard model. Literature shows that leveraging the weakly-hard
model can relax the over-provisioning associated with designed real-time systems. However, a wide-range of
the research focuses on single-core platforms. Therefore, we strive to extend the state-of-the-art of scheduling
weakly-hard real-time tasks to multi-core platforms. We present a global job-level fixed priority scheduling
algorithm together with its schedulability analysis. The scheduling algorithm leverages the tolerable continuous
deadline misses to assigning priorities to jobs. The proposed analysis extends the Response Time Analysis
(RTA) for global scheduling to test the schedulability of tasks. Hence, our analysis scales with the number of
tasks and number of cores because, unlike literature, it depends neither on Integer Linear Programming nor
reachability trees. Schedulability analyses show that the schedulability ratio is improved by 40% comparing
to the global Rate Monotonic (RM) scheduling and up to 60% more than the global EDF scheduling, which
are the state-of-the-art schedulers on the RTEMS real-time operating system. Our evaluation on industrial
embedded multi-core platform running RTEMS shows that the scheduling overhead of our proposal does not
exceed 60 nanosecond.
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1 Introduction

Enabling more autonomy in the automotive and the aerospace domains requires involving sophisti-
cated control algorithms with real-time requirements. This is the case of CALLISTO (Cooperative
Action Leading to Launcher Innovation for Stage Tossback Operation) [9, 11]; a joint project
between the French National Center for Space Studies (CNES), the German Aerospace Center
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Fig. 1. CALLISTO project.

(DLR), and the Japan Aerospace Exploration Agency (JAXA) for developing and building a Vertical-
Takeoff/Vertical-Landing rocket that can be reused (Figure 1). The on-board computers in CALLISTO
carry-out the state estimation, based on fusing information of several sensors [16], and the execution
of the control algorithms.

Furthermore, computing hard real-time guarantees for the developed tasks under worst-case
scenarios comes at the cost of exacerbating over-provisioning in such new software-based embedded
systems, which implies, for example, higher power consumption. However, literature [8] shows that
leveraging the weakly-hard model can relax the over-provisioning associated with designed real-
time systems. The weakly-hard real-time model [1] extends the tight region of schedulable tasks,
which is defined by the hard real-time model, by exploiting the tolerable deadline misses. Moreover,
many papers, e.g. [13, 15, 19], demonstrated that the control systems can tolerate occasional deadline
misses with a small amount of performance degradation and they describe the tolerance using the
weakly-hard model. Although CALLISTO operates as a hard real-time system, we are exploring
potential relaxations by permitting tolerable deadline misses.

Recently, weakly-hard real-time systems received a lot of attention, and several schedulability
analyses have been proposed [5, 17, 22]. In general, to compute weakly-hard real-time guarantees,
the analysis should not only consider the job(s) in the worst-case scenario, but also should consider
all possible combinations of jobs within a window of K consecutive jobs. That makes computing the
weakly-hard real-time guarantees more complicated and subject to more pessimism. Also, weakly-
hard constraints are effective on the job-level, rather than the task-level. Therefore, satisfying such
constraints presuppose the job-level schedulability as a more efficient approach than task-level
schedulability. Hence, we propose a job-level fixed priority scheduling algorithm.

Furthermore, embedded system developers in the automotive and aerospace industries are
turning to multi-core platforms to meet the growing demand for computational performance, a
trend that also applies to CALLISTO. However, multi-core systems were out of scope in the majority
of papers that address weakly-hard real-time systems. In this work, we fill the gap by proposing a
global job-level scheduling algorithm which exploits the tolerable deadline misses together with a
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schedulability analysis to compute weakly-hard real-time guarantees. Our main contributions are
the following:

e We reduce the ( }?; ) constraint to a harder one which defines the maximum tolerable number
of consecutive deadline misses after a minimum number of required deadline hits

e We propose a global job-level fixed priority scheduling using predefined priority classes for
tasks which can tolerate a bounded number of deadline misses

e We prove that satisfying the new constraint for jobs that have the highest priority in the

priority classes is sufficient to guarantee that the task ; satisfies the constraint (" )
e We propose a schedulability analysis for the proposed global scheduling. Our schedulability
analysis extends the Response Time Analysis (RTA) [2]

In our proposed analysis, we compromise between pessimism and complexity. Using a harder

constraint instead of ( %’ ) limits the number of deadline sequences that satisfy the weakly-hard
constraint. However, we need neither a reachability tree-based analysis nor an Integer Linear
Programming (ILP) based analysis, e.g., [17]. Therefore, our analysis has less complexity than [4, 5]
and scales with the number of tasks because we use RTA [2]. The proposed scheduling can be
seen as a fault-tolerance mechanism in which the deadline-miss is an error and assigning a higher
priority to the next job as a mitigation mechanism. However, the problem will be studied from
real-time schedulability perspective.

The rest of this paper is organized as follows: the next section recalls the related work. In Section 3,
we present our system model and elaborate our problem statement. Section 4 recalls the Response
Time Analysis (RTA). Our contribution starts in Section 5 by showing the global scheduling
algorithm for weakly-hard real-time tasks. Then, the analysis for the presented scheduling algorithm
is shown in Section 6. Also, we experimentally evaluate our proposed scheduling and present the
results in Section 7. Finally, Section 8 concludes our paper.

2 Related Work

Weakly-hard real-time constraints define the maximum number of deadline misses that a task can
tolerate before going into a faulty state. The term weakly-hard was coined by Bernat et al. in [1]
to describe systems in which tasks have the (%) constraints where m represents the maximum
number of tolerable deadline misses in a sequence of K jobs. The notation ( %), though, is a bit
older and was defined in [7] by Hamdaoui et al as (m, K)-firm. Since 2014, the number of papers
addressing the weakly-hard real-time systems has increased significantly.

Pazzaglia et al. [15] researched the performance cost of deadline misses in control systems. They
have shown the performance impact of the distribution of deadline misses within the sequence
of K jobs. Liang et al. [12] presented a fault tolerance mechanism for weakly-hard. Recently,
Maggio et al. proposed in [13, 19-21] an approach to analyze the stability of control systems under
different patterns of deadline misses. The proposed approach by Maggio et al. can help in extracting
the weakly-hard constraints, i.e., bounding m and K. The authors considered a system model of
single-core platforms and periodic control tasks.

Sun et al. presented in [17] a weakly-hard schedulability analysis that uses Mixed Integer
Linear Programming (MILP) for computing the maximum bound on m within a time window of K
consecutive jobs. The MILP checks all possible scenarios within a time window of K consecutive
jobs where tasks are periodically activated. The analysis in [17] can, therefore, provide tight bounds
on m with reasonable complexity for small K < 10 [14].

A Linear Programming (LP) based weakly-hard schedulability analysis has been presented in
[22] for overloaded systems. This approach considers temporarily overloaded systems due to rare
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Table 1. Key mathematical notations used in this work.

Notation | Description

ne number of cores in the system
w; maximum consecutive number of deadline misses to uniformly distribute m; in a window of K;
h; deadline hits required per deadline miss
JCI | job-class q of task 7;
Jjl; job-level variable of task r;
Si slack of a task 7;

N;(L) | number of jobs interfering in the time interval L
O;(L) | number of jobs not interfering in the time interval L
a; variable for counting or not the interference of the carry-out job

sporadic jobs. It bounds the impact of sporadic overload jobs on tasks —assumed to be schedulable
in the non-overloaded intervals— in terms of deadline misses. This approach has two features: 1) It
scales with K and number of tasks because it depends on an LP relaxation. 2) It is extendable for
more scheduling policies. However, this approach reports a high pessimism for small K [6].

Wu and Jin proposed in [18] a global scheduling algorithm for multimedia streams. They applied
the Distance Based Priority (DBP) algorithm [7] to a global scheduler. In their approach, a task that

is close to violate its (' ) constraint is assigned dynamically the highest priority. In [10], Kong

and Cho computed bounds on the probability of not satisfying the ( '}(11’ ) constraint and proposed a
dynamic hierarchical scheduling algorithm to improve the quality of service. The goal of our paper
is different from [18] and [10] because we aim to exploit the weakly-hard constraints to increase
the load that can be scheduled on a multi-core system under job-level fixed priority scheduling.

The job-class-level scheduling presented in [4] and [5] recalled the original concept proposed
by Hamdaoui et al. [7], in which each task is assigned a different priority upon meeting/missing
their deadlines. The proposed scheduling in [4, 5] is dedicated to single-core systems. The authors
showed how to extend the job-class-level scheduling to semi-partitioned multi-core scheduling.
Our work extends the job-class-level scheduling to global multi-core scheduling. However, our
schedulability analysis does not depend on a reachability tree as the one in [4, 5].

3 System Model

This paper considers independent sporadic tasks with constrained deadlines and preemptive
scheduling. A task set is executed on a Symmetric Multi-Processing (SMP) multi-core platform.
Table 1 shows the notations used in this work.

Task model. A task 7; is described using 5 parameters:

7 = (C, Dy, T, (,1?,1 )

C;: The worst-case execution time of z;.
D;: The relative deadline of each job of ;. Since tasks have a constrained deadline D; < T;.
T;: The minimum inter-arrival time between consecutive jobs of z;.

(%' ): The weakly-hard constraint of 7;, where m; is the number of tolerable deadline misses
in a K; window, where m; < K; and m; > 1. A hard real-time task is characterized by m; = 0
and K; = 1.

In this paper, we use similar weakly-hard constraint notations as in [1]. We use parentheses to
denote deadline misses/hits in any order, angle brackets for consecutive deadline misses/hits, and a
bar to differentiate deadline misses, see Table 2. Please note that according to [1, Theorem 4], there
is no need to specify a window size in case of the consecutive deadline misses notation.
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Table 2. Weakly-hard constraint notations.

deadline hits deadline misses
any order (%) (%)
consecutive ('I?l’ ) X ) = (m;)

We classify the tasks based on the deadline misses tolerable in a K; window:

DEFINITION 1. Low-tolerance tasks: weakly-hard real-time tasks which require more deadline hits
than tolerable misses in the K; window, i.e. tasks with a ratio m;/K; < 0.5 and m; > 0.

DEFINITION 2. High-tolerance tasks: weakly-hard real-time tasks which tolerate a bigger or equal
quantity of deadline misses than quantity of deadline hits in the K; window, i.e. tasks with a ratio
m;/K; > 0.5.

Schedulability of weakly-hard tasks.

DEFINITION 3. A deadline sequence is a binary sequence of length K;, in which 1 represents a
deadline hit and 0 represents a deadline miss.

DEFINITION 4. A weakly-hard task t; with constraint ('I?l’ ) is schedulable if, in any window of K;
consecutive invocations of the task, at least m; deadlines are hits.

DEFINITION 5. A weakly-hard task t; with constraint ('Knl’ ) is schedulable if; in any window of K;

consecutive invocations of the task, no more than m; deadlines are missed.

DEFINITION 6. A weakly-hard task t; with constraint < %’ > is schedulable if, in any window of K;
consecutive invocations of the task, t; meets m; consecutive deadlines.

DEFINITION 7. A weakly-hard task t; with constraint (m;) is schedulable if, the maximum number
of consecutive deadlines misses is m;.

Utilization. The utilization of a task z; is defined as the fraction of processor time required by
its execution:
Gi
U,' = -
T;

Then, the utilization of the task set (also known as total utilization) is defined as the sum of all

task utilizations:
n n C
U=)> U=)» —

where n is the number of tasks in the task set.

System-level action for missed deadlines. The proposed scheduling algorithm and schedula-
bility analysis considers the Job-Kill in case of a deadline miss. In this system-level action, the job
missing its deadline is killed to remove load from the processor.

3.1 Problem Statement

In this work, we aim to exploit the weakly-hard constraints for increasing the number of schedulable
tasks on an SMP multi-core platform. Given a task set of independent weakly-hard tasks and an
SMP multi-core platform, our goal is to provide a global scheduling algorithm and a scheduling
analysis for the weakly-hard tasks.
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4 Original Response Time Analysis

Our paper extends the well-established multi-core Response Time Analysis (RTA) [2] in Section 6.
Therefore, we recall it in this section. The response time Ry of a task i is defined as:

Ry = Cr + I

Where I is the interference from other tasks and it is computed as follows:

1
I = - Z Lik

¢ izk
Where n. is the number of cores in the system and I;; is the interference of a task 7; over the
task 7i. For Task-Level Fixed Priority (TLFP), only the tasks with higher priority than 7, interfere,
therefore, I is reduced to:

1
I =— Z Lik

e ichp (k)
Where hp(k) is the set of tasks indices with higher priority than .
An upper bound on the response time R}C‘b of a task 7x can be computed by bounding the
interference Ii. For computing I; ., we bound the workload W; imposed from 7; [2, Equation 4]:

Wi(L) = N;(L)C; + min(C;, (L + D; = C;) mod T;)

Where N;(L) is the maximum number of jobs of 7; that may execute within the time window of
size L [2, Equation 3]:
L+D;-C;
w-[12226

Hence, RTA iterates over the tasks in priority order to compute upper bounds on their response
times.

W;(L) calculates the workload imposed by 7; considering the carry-in job, the body jobs and the
carry-out job defined as follow (see Figure 2):

DEFINITION 8. A carry-in job is a job with a deadline within the interval of interest, but its release
time is outside of it.

DEFINITION 9. Body jobs are jobs with both their release time and deadline within the interval of
interest.

DEFINITION 10. A carry-out job is a job with a release time within the interval of interest but a
deadline outside of it.

To conservatively bound the workload of 7; within the interval of interest L, we have to consider
the execution of the carry-in job. Therefore, the first term of W; (L) represents the workload due to
the carry-in job and the body jobs while the second term bounds the workload due to the carry-out
job.

The bound on W; and N;(L) can be tightened by introducing the slack of 7;. The slack of ; is
calculated based on its response time as follows: s; = max(D; — R;"’ ,0), where R;"’ is the upper
bound on the response time of z;.

Considering s;, W; and N;(L) are computed as follow [2, Equation 8]:

W; = Ni(L)C; + min(Cy, (L + D; = C; —s;) mod T;) (1)
L+ Dl' - Ci - SiJ

T @)

Ni(L) = {
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carry-in job body jobs carry-out job
r

Fig. 2. Types of jobs within a time interval L as proposed in RTA [2]. Blue arrows represent task activation,
while red ones represent deadlines. Gray boxes refer to job executions.

For TLFP, RZ” of the task 7; can be found by the following fixed point equation, starting with
sz = Ck, [2, Equation 7]:

1 N
R e+ |— > min(Wi(R®), R - G + 1) 3)
¢ iehp(k)

5 Global Scheduling for Weakly-hard Tasks

In this section, we present a new job-class-level algorithm for global scheduling of weakly-hard
tasks. We start by defining a deadline sequence that satisfies the weakly-hard constraint. Our
algorithm works on enforcing the defined deadline sequence to guarantee the schedulability by
assigning various priorities to released jobs. Then, we show how priorities are assigned to tasks
and to released jobs.

In the next section, we show how the enforced deadline sequence facilitates the schedulability
analysis.

5.1 Critical-sequence

The (% ) constraint does not specify the distribution of the m; deadline misses, e.g. if they could
happen consecutively or not. Hence, there are different deadline sequences that satisfy the weakly-
hard constraint. We are interested in one sequence that we can enforce in our scheduling algorithm,

such that, we guarantee the satisfiability of ( ';l’ ) For that end, we define w; and h;.

DEFINITION 11 (w;). It represents the maximum number of consecutive deadline misses that may
occur per deadline hit while guaranteeing that the total number of misses within any window of length
K; does not exceed m; and it is calculated as follows:

mi
wizmax({—J,l) (4)
Ki —m;
DEFINITION 12 (h;). It represents the number of deadline hits required per deadline miss and it is
calculated as follows:
K — m;
h; = {l—mﬂ 5)
m;

wy, h; take particular values when we consider low-tolerance or high-tolerance tasks.
LemMa 1. Ifm;/K; < 0.5, then w; = 1. If m;/K; > 0.5, then h; = 1.

Proor. m;/K; < 0.5 = Lﬁj = 0, hence, w; = 1. Similarly, m;/K; > 0.5 = f%:"ﬂ =1,
hence, h; = 1. O
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(m=2,K=3)->h=1, w=2

.
o
.

(=R

Fig. 3. Critical-sequence examples for a high-tolerance task (above) and a low-tolerance task (below). Gray
boxes refer to execution finishing before the deadline, i.e., deadline hit. Boxes in pink refer to deadline miss.

DEFINITION 13 (CRITICAL SEQUENCE). It is the sequence made up of h; consecutive deadline hits
followed by w; consecutive deadline misses.

The critical-sequence allows us to uniformly distribute the deadline misses in a window of K;.
Figure 3 shows two critical-sequence examples, one for high-tolerance tasks and the other for
low-tolerance tasks.

Our scheduling algorithm assigns a higher priority to the h; consecutive jobs, i.e. to the jobs which
require to meet their deadline according to the critical-sequence. Therefore, it is vital to prove that
a repeating cycle of instances of the critical-sequence do not violate the deadline-miss constraint

given by (¢ ' ). However, we know that the critical-sequence satisfies the < w,»w+ih,» > constraint by
definition. Next, we show that the critical-sequence also satisfies the constraint ( w,-wfh,- ).

LEMMA 2. For low-tolerance and high-tolerance tasks, for which w; and h; are defined as in Defini-

tion 11 and Definition 12 respectively, the critical-sequence satisfies the constraint ( w:—ihi ).

Proor. For low-tolerance tasks w; = 1, hence, the following holds: < 1 +1hi > = (4 +1hi ). For high-
tolerance tasks h; = 1, therefore, we focus on the deadline hits instead of misses. From [1, Theorem

3], we have (w+h ) = (w+h ). Hence, the following holds: <1+wl> = (144 )- O

The next step is to prove that the critical-sequence satisfies (%' ) and not only ( "}, ). Therefore,

we have to prove that (.}, ) is harder than ('), i.e. that the repeating cycles of the critical-

. . m;
sequence do not contains more deadline misses than (! ).

DEFINITION 14. [1, Definition 10] Given two constraints, A and y, we say that A is harder thany,
denoted by A < y, if the deadline sequences that satisfy A also satisfyy.

LEMMA 3. The weakly-hard constraint ( "}, ) is harder than the constraint ( '), formally,

wi (miy
(Wi+hi) < (Ki )

Proor. Theorem 5 of [1] provides the condition that must be satisfied for one weakly-hard
constraint to be harder than another. In this proof, we show that ( w,.‘:ihi ) satisfies the condition to

be harder than ( '). The detailed proof is in the appendix. i

In the examples of Figure 3, we can count the deadline misses within a K; = 3 window. Shifting

the window to the right, we observe that there is no more deadline misses than allowed by ( 'I?l' ).

THEOREM 1. If7; fulfills the constraint ( '}y, ), it also fulfills the constraint ('¢').
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Proo¥. This is proven by Lemma 3, as (14, ) < (& )- i

5.2 Priority Assignment to Job-classes

We assign a group of priorities to every weakly-hard task. Each job of a task is assigned only one
priority from this group, i.e., job-level fixed priority. Jobs which require to meet their deadlines
based on the critical-sequence will receive the highest priority of the task. The other jobs will
receive a lower priority. In this way, a task can reduce its priority after achieving the minimum
number of deadline hits (h;) relaxing its interference to other tasks.

The group of priorities of a task is represented by the concept of job-classes coming from [5].
Each task has job-classes and every job-class has a different designated priority.

DEFINITION 15. A task t; has J C; = K; — m; + 1 job-classes. Here, every job-class is denoted by
JCY, where q can take values from the range [0,K; — m;]. Job-classes with lower values of q are
assigned with higher priorities, i.e. jC?:O and [fC;FK"fm" have the highest and lowest priority of the
task, respectively.

Every job-class has a different priority, i.e. the same priority is not shared between job-classes
of different tasks. Algorithm 1 shows how priorities are assigned to each job-class. First, tasks
are sorted in ascending order of deadline (Line 2). In case of two or more tasks have the same
deadline, the one with lower m; is ordered first. If tasks have also the same m;, the order between
them is selected randomly. Then, the total number of priorities is calculated by counting number
of job-classes between all tasks (Line 5). Finally, the priority is assigned to each job-class level by
iterating over them (from Line 8 until Line 12). Table 3 shows an example of three different tasks,
their corresponding g range and their job-class priorities after running the priority assignment
algorithm.

Table 3. Example of three tasks, their g ranges and their priorities. Note that jobs of 7; may get the highest
priority among all possible priorities (9) and the lowest possible priority (1).

Tasks (C;, D;, T;, @) q range | Priorities
0 =(266(2)) [0,3] |[9631]
n=(377(})) [0,2] | [85,2]
5= (2,8,8,(2)) [0,1] [7, 4]

5.3 Scheduling Routine: Assigning Priorities to Released Jobs

Every time a job is released, the scheduler assigns it to a job-class based on the previous deadline
misses/hits. For selecting to which particular job-class a job should be assigned, we define job-level:

DEFINITION 16. The job-level jl; is a variable of a task t; which is used to select the job-class [TC?
of the released job. The value of q is selected according to q = max(0, jl;). The initial value of jl; is
—(h; — 1) and every time a job meets its deadline, jl; is increased by one until K; — m;. When w;
deadline misses happened, the value of jl; is restored to —(h; — 1).

Based on how jl; is updated, the following consequences can be deduced. For high-tolerance
tasks, the starting value of jl; is zero, since for that kind of tasks h; is one; and for low-tolerance
tasks, every time a deadline is missed, ji; is restored to —(h; — 1), since for those kind of tasks w; is
one (see Lemma 1).

Figure 4 shows the transitions between job-classes for low-tolerance and high-tolerance tasks.
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Algorithm 1: Priority assignment to job-classes.

1 Input: taskset 7~

2 sort_tasks_ascending_deadline(T")

3 forr; € 7 do

i | JCi—Ki-mi+1

5 JC « Zvﬁe']’jci

6 prio — JC

7 JC"*™ — max{JC;|Vr; € T}

8 for g — 0,9 < JC™;q —q+1do
9 for 7; € 7 do

10 if ¢ < JC; then
11 jC? « prio
12 prio « prio—1

low-tolerance tasks

Fig. 4. Job-classes transitions for low-tolerance and high-tolerance tasks. Solid circles represent the highest
priority. Hence, jobs assigned to the priority represented by the solid circle are guaranteed to meet their
deadlines. Solid transition lines indicate transitions after deadline hits. Jobs of low-tolerance tasks remain h;
times in g; = 0 before changing to the next level. Jobs of high-tolerance tasks change of level after the first
deadline hit. Red dashed transition lines indicate possible transition after w; misses.

6 Response Time Analysis Extension for Weakly-hard Real-time Tasks

This section presents a schedulability analysis for the proposed job-class-level scheduling algorithm
described in the previous section. The analysis is an extension of RTA for weakly-hard real-time
tasks scheduled by our algorithm. As mentioned in Section 4, RTA provides a sufficient condition
for schedulability by proving that the response time of a task is not longer than its deadline. The
response time of a task is prolonged as much as tasks with higher priorities interfere with the
execution of the analyzed task. The extension of RTA presented here bounds the interference over
lower priority tasks by taking into account only jobs belonging to JC ?:0. Remember that jobs in
JC ;FO have the highest assignable priority to their tasks and are selected based on the minimum

consecutive deadline hits (h;) from the critical-sequence. Moreover, considering only jobs in JC ?:0
reduces the interference to lower priority jobs.
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LEMMA 4. For a task t;, if the jobs belonging to jC?zO meet their deadlines, then t; meets its
. w;
constraint ( vy, ).

Proor. Our proposed scheduling assigns h; jobs to the ' C;FO every time 7; misses w; deadlines
as Figure 4 illustrates. Hence, if all jobs belonging to JC ?:O meet their deadlines, 7; meets its

constraint ( wiw+ihi ) regardless whether the other jobs, which belong to other job-classes, meet their
deadlines or not. O

Consequently, this section considers only the jobs in job-classes JC ?:O. However, note that the
other job-classes are used as a part of the relaxation mechanism which gives the opportunity to
other tasks be executed with a higher priority temporarily. This relaxation mechanism fairly shares
the priorities among the jobs to enable all tasks meeting their ( w,-w+ih,- ) constraints.

This section starts by proving that it is possible to extend RTA for the proposed scheduling
algorithm. Finally, the schedulability condition for a task set is defined.

6.1 Proving RTA Extension

We prove the extension of RTA for our algorithm by showing how to bound the interference over
jobs in job-classes J° C?zo. First, we show that only the interference between the highest priority
job-classes have to be considered. Then, we evaluate the interference based on the critical-sequence.
This is done separately for low-tolerance and high-tolerance tasks because of the differences in the
critical-sequences (see Definition 13).

With the following lemma, we show that only the response time of jobs belonging to JC ?:0 are
of interest.

LEMMA 5. A job of a task 7y in jCZ:O suffers interference only from the jobs of a task t; in JC;.FO,
if the priority ofj’C’?=0 is higher than the priority oijZZO.

Proor. The Algorithm 1 assigns a priority value to job-classes starting by ¢ = 0 and every time
a priority is assigned, the next priority value is reduced by one. In this way, priority values of
job-classes JC7*! are always lower than the ones assigned to job-classes JC9~". From which it
follows that jobs of a task 7 which belong to job-class JC ZZO suffer interference of other jobs in

gc ?:0, only if, the priority of JC ;.FO is higher than the priority of JC Z:o' O

To bound the interference induced by 7; on 74, we must bound the maximum number of jobs
in jC?:O. In the worst-case, jobs of 7; are assigned to JC?ZO h; times every w; + h; jobs. For a
high-tolerance task 7;, the jobs in JC ?:O are w; apart. This allows to consider the workload coming
from such a task as the same workload produced by a task with a longer inter-arrival time that is
equal to (w; + 1)T;. Formally writing this:

LEMMA 6. The workload of a high-tolerance task t; with constraint (?: ) is calculated as it were
coming from an equivalent hard real-time task Tl.eq = (C;, D;, (w; + 1)T;).
ProoF. The jobs of the hard real-time task Tl.eq = (C;, D;, (w; + 1)T;) have the same worst-case

execution time C; as the jobs of 7; in J C?:O, and occur at the same inter-arrival time (w; + 1)T;.
Therefore they induce the same interference. O

For low-tolerance tasks, the minimum inter-arrival time between two jobs belonging to JC ?:0
is T;. Therefore, bounding the interference of low-tolerance tasks requires considering T; as the
inter-arrival time. However, we need to exclude the jobs that do not belong to JC 970 from the
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workload bound. Hence, we update the workload bound defined in Equation (1) as follows. In the
first term, the update subtracts the number of jobs with lower priority from N; over the interval of
interest L. For updating the workload coming from the carry-out job, the second term of W;(L) is
made equal to zero when a carry-out job has a lower priority than J C?ZO.

For updating the first term, the number of lower priority jobs is defined by the following lemma:

LEMMA 7. The minimum number of jobs of a low-tolerance task t; that have lower priorities than

jC;FO during the interval L is given by:

Oi(L) = (6)

L+Di—Ci—Si
Ti(hi + 1)

Proor. The critical-sequence for a low-tolerance task allows one deadline miss after h; deadline

hits. This means that the maximum distance between two jobs of 7; with a priority less than J C;FO
is T;(h; +1). )

LEMMA 8. According to the critical-sequence, only N;(L) —O;(L) jobs contribute with an interference
of C; to lower priorities classes J C ZZO over the interval L.

ProoF. N;(L) jobs may contribute with a interference of C;. However, the (h; + 1)T; job does
not contribute because, according to the critical-sequence, it is assigned with a lower priority than
gc ZZO. Hence, only N;(L) — O;(L) jobs contribute with an interference of C;. O

For removing the contribution of carry-out jobs, we introduce a variable that enables the second
term in W;(L) only if the carry-out jobs are in J° C?ZO.

DEFINITION 17. The variable a; equals one by default and zero when carry-out jobs are not in
q=0
JC; .
NI(L) mod (hl + 1)

i=1-
a I (7)

The value of N;(L) mod (h; +1) gives the number of jobs of the current critical-sequence. When
this value is h;, the next carry-out job belongs to a lower priority job-class. Furthermore, the result
of the floor is one when: N;(L) mod (h; + 1) = h;. It follows that the value of a; is zero when the
carry-out job belongs to a different job-class than JC ?ZO.

Then, we update the workload bound equation as follows:

LEMMA 9. The workload bound function of a low-tolerance task t; is updated for removing non-
interfering jobs as follow:

Wi(L) = (Ni(L) = 0i(1)C; + a;. min(Cy, (L + D; = Ci = s;)  mod T;) ®)
Proor. The proof is given by Lemma 8 and Definition 17. O

Algorithm 2 shows the function for calculating W; which is used in the fixed point iteration of
Equation (3).

LEmMA 10. sz as given in (3) is a safe upper bound on the response time of jobs in jCZZO, where
W; is bounded as in (8).

Proor. From Algorithm 2, the workload contribution of high-tolerance tasks uses the approach
proven in Lemma 6 and for low-tolerance tasks, it uses the approach proven in Lemma 9. O
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Algorithm 2: Workload computation.

-

Input: Length L, task ;

2 Output: Workload W;

3 s; < max(D; — R;‘b, 0) // Slack
4 if m;/K; >= 0.5 then

5 // High-tolerance task

6 T, — (wi + 1)T;

7 Oi «—0

8 a; — 1

9 else

10 // Low-tolerance task

11 O; « {%J // Equation (6)

12 a; —1- l%f}“ﬂw // Equation (7)

13 N; {%J // Equation (2)
u W — (N; = 0;)C; + a;. min(C;, (L + D; — C; — s;) mod T;) // Equation (8)
15 return W,

6.2 Schedulability Analysis

We introduce the following theorem for schedulability of a weakly-hard real-time task 7; scheduled
by our algorithm:

THEOREM 2. For a task ; with the constraint ('), meeting the deadlines of the jobs belonging to
jCZ:O is a sufficient condition for the schedulability of 7; .

Proor. It follows directly from Theorem 1 and Lemma 4. O
Then, the schedulability of a task set is defined as follows:

COROLLARY 1. A task set is schedulable by our scheduling algorithm if for every task, the sufficient
condition given in Theorem 2 is satisfied.

7 Evaluation

Our global scheduling depends on the transformation of the weakly-hard constraint ( ’;: ) to the

(yin, ) constraint, which has a smaller window. In this section, we study first the limitations

introduced by adopting a harder constraint than ().

We also evaluate our global scheduling for weakly-hard real-time tasks in this section. To the
best of our knowledge, there is no other global scheduling analysis for weakly-hard real-time tasks.
Furthermore, since we are interested in RTEMS and the available global schedulers are EDF and
RM, we compare the proposed scheduling algorithm against the results of RTA (Section 4) for RM
and EDF. The experiments are based on the analysis of task sets randomly generated using the
UUnifast algorithm [3]. For a given total utilization, we calculate the percentage of schedulable
task sets, known as schedulability ratio. Additionally, we ran our experiments for different values
of K; and measured the computation times for different number of tasks.

Furthermore, in order to analyse the scalability of our approach, we also compare our analysis
(here labeled as RTA WH) against the Integer Linear Programming (ILP) approach proposed in [17]
and the Job-Class Level (JCL) proposed in [5]. However, note that the comparison of a multi-core
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scheduling analysis against another for single-core is not fair. In single-core scheduling analysis,
the condition for schedulabilty (known as critical instant) considers that all higher priority tasks
are released simultaneously with the analyzed task. However, the critical instant cannot be used
in multi-core. Moreover, the sufficient schedulability condition used in multi-core is pessimistic
for single-core. Therefore, the schedulability ratio results of comparing against the single-core
approaches are only for illustration.

Finally, at the end of this section, we show the execution time distribution for assigning priorities
to released jobs. This last experiment runs on the same hardware platform used in CALLISTO.

7.1 Transformation Cost
For analyzing the limitation introduced by transforming (%’ ) to (5, ), where (", ) is harder

than (r;(ll‘ ), we count the possible deadline sequences which satisfy both constraints. Algorithm 3

counts these possible solutions based on a given (’;: ). It starts by calculating h; and w; for a given

(%‘ ) (Lines 3 and 4). Then, it creates a table with K; columns (Line 5). Every row of the table
represents a sequence of deadlines, in which 1 is a deadline hit and 0 is a deadline miss, see Table 4.
m;

In Lines 7 and 8, the solutions for (%! ) and ( w;vfh,- ) are counted from the rows.

Algorithm 3: Algorithm for counting possible solutions.

1 Input: constraint (')
2 Output: relation between solutions for the harder and the original constraints

3 w; < max ({ i J ,1) // Definition 11

Ki—-m;

4 hj «— [K’%lm’w // Definition 12
5 table « create_table(K;)
6 rows <« extract_rows(table)

7 solutions « count_solutions(( g ), rows)

8 harder_solutions « count_solutions((wiwjh ), rows)

i

9 return harder_solutions/solutions

Results for different values of ( %’ ) are shown in Table 5. For low-tolerance tasks, the omitted
deadline sequences can be very high when m;/K; is near to 0.5. On the other hand, there are less
omitted sequences for high-tolerance. For both kind of tasks, the number of omitted sequences

increases when considering a constraint which is multiple of another, e.g. ( 'I?l‘ ) = (%) and ( TI?; ) =

Table 4. Table created for counting deadline sequences. Every row represents a possible deadline sequence.

do | dy | - | di;—2 | dx;—1
0 0] 0 0
0 0 0 1
0 0 1 0
0 0 1 1

1 1 1

1 1 |- 1 1
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Table 5. Limitation for harder constraints.

(E) (wlel) (yyun, ) solutions / (') solutions
@ @ 1.0

(%) (3) 0.5625

@ @ 1.0

() | (3) 0.1554

@) & 0.9003

[ e 0.01040

)| & 0.7511

1.0 —e— RTA RM (tasks=20)
RTA EDF (tasks=20)
—— RTA WH low (tasks=20)
—>— RTA WH high (tasks=20)
0.8
.0
i
&
= 0.6
=
=
1
3
S04
5]
[ —
(9]
%)
0.2
0.0 —

1.0 15 2.0 2.5 3.0 35 4.0
Total Utilization

Fig. 5. Schedulability ratio for 2 cores.

(2). This happens because specific deadline sequences with consecutive deadline misses are not
accounted when the harder constraint is used. Despite this limitation, our experiments show better
results than traditional hard real-time scheduling analysis. Furthermore, the results obtained here
are theoretical since not all the uncounted deadline sequences will also mean schedulable solutions.

7.2 Scheduling Analysis Setup

Task sets are generated for a list of desired total utilization values using UUnifast. For every total
utilization value, 1000 sets are generated. The utilization of the generated tasks is not higher than
one. The inter-arrival times are randomly generated within the interval [10, 100), with a uniform
probability distribution. The generated tasks have implicit deadlines, i.e. their deadlines are equal
to their inter-arrival time (D; = T;). Furthermore, all scheduling analysis were developed in Python
3 and executed on parallel for each total utilization value.
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10 —e— RTA RM (tasks=20)
~#— RTA EDF (tasks=20)
~+= RTA WH low (tasks=20)
> RTA WH high (tasks=20)
0.8
.2
5
©
=06
£
=
o
S 04
[
=
19
%)

0.2

0.0

1 2 3 4 5 6 7
Total Utilization
Fig. 6. Schedulability ratio for 4 cores.

1.0 —e— RTA RM (tasks=20)
—#— RTA EDF (tasks=20)
—+— RTA WH low (tasks=20)
== RTA WH high (tasks=20)

0.8

.2
5
<
- 06
£
=
o
S04
[
=
19
(%]
0.2
0.0

2 4 6 8 10
Total Utilization

Fig. 7. Schedulability ratio for 8 cores.

For every generated task set, the schedulability ratio is calculated and the computation time is
measured. In case of the global scheduling comparison, RTA verifies its schedulability for RM, EDF
and the extension of RTA for weakly-hard real-time tasks considering two scenarios. In the first
scenario, all tasks are low-tolerance tasks and in the second, all tasks are high-tolerance tasks. The
values for m; are chosen randomly between the values that fulfill the desired m;/K;. For example,
given K; = 5, m; can be 1 or 2 for low-tolerance tasks; and 3 or 4 for high-tolerance tasks.
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1.0
0.8
o
=
a{:“
- 0.6
=
=
iy
3
=04
(]
=
194
) —e— RTA WH low (tasks=20)
0.2 RTA WH: high (tasks=20)
—+— RTA WH low (tasks=50)
—>~ RTA WH high (tasks=50)
—A— RTA WH low (tasks=100)
0.0 —4— RTA WH high (tasks=100)
1 2 3 4 5 6 7

Total Utilization

Fig. 8. Schedulability ratio for 20, 50 and 100 tasks (4 cores).

For the comparison against the other weakly-hard scheduling approaches, the value of m; is
either 1 or K; — 1 because the ILP analysis [17] only permits the same weakly-hard constraint for
the tasks in the set. Additionally, only K; = 5 was used for ILP due to the scalability issues [14].
Nevertheless, further experiments compare against JCL using K; = 10 and K; = 20.

Finally, we used a desktop computer with a Intel(R) Core(TM) i7-8700 processor (6 cores, 2
threads per core) and 32GB of RAM running Ubuntu to run the experiments.

7.3 Scheduling Analysis Experiments

Figure 5, Figure 6, and Figure 7 show the schedulability ratio using a set of 20 tasks for 2, 4 and 8
cores, respectively. The plots for EDF show a worst schedulability ratio in comparison with RM.
This is due to RTA calculates a higher interference for EDF than for RM (remember that in RM only
tasks with higher priority are considered). Furthermore, it is observed that the schedulability ratio
for the weakly-hard tasks is much better than for RM. Additionally, high-tolerance tasks seem to
be schedulable even after the practical limit (U = number of cores). This is explained by Lemma 6,
which allows us to consider the workload coming from the high-tolerance tasks as it were coming
from a task with longer inter-arrival time, reducing the utilization of the task. This also explains
why this behavior is not seen for low-tolerance tasks.

Figure 8 shows the schedulability ratio for 20, 50 and 100 tasks in the set when scheduled on
4 cores. Here, it is observed that sets with more tasks have a better schedulability. The reason is
that having more tasks, while keeping the same total utilization, makes the tasks more lightweight
which reduces the interference. On the other hand, the computation time is increased with the
number of tasks. This is observed in Figure 9 which shows the computation time distribution using
box plots (the blue curve represents the average duration for RM). Also, note that computation
time decreases with the schedulability ratio because the scheduling analysis ends when the first no
schedulable task is found.

Figure 10 shows the schedulability ratio of tasks scheduled on 4 cores when K; is 5, 50 and 500.
There are no significant changes in the schedulability ratio when the value of K; is changed. Also,
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RTA WH low (tasks=20) RTA WH high (tasks=20)

—— RTA RM (tasks=20) —— RTA RM (tasks=20)

5

5
Computation time (Seconds)

Computation time (Seconds)

1 2 3 5 6 7 1 2 3 5 6 7

1
Total Utilization

1
Total Utilization

RTA WH low (tasks=50) RTA WH high (tasks=50)
—— RTARM (tasks=50) —— RTA RM (tasks=50)

Computation time (Seconds)
Computation time (Seconds)

1 2 3 4 5 6 7 1 2 3 4 5 6 7
Total Utilization Total Utilization
RTA WH low (tasks=100) RTA WH high (tasks=100)
—— RTA RM (tasks=100) —— RTA RM (tasks=100)

Computation time (Seconds)
Computation time (Seconds)

3 4 5 3 4 5
Total Utilization Total Utilization

Fig. 9. Computation time for 20, 50 and 100 tasks (4 cores). Box plots show the distribution of computation
times and the blue curve indicates the average for RM. The first column shows computations times for
low-tolerance tasks and the second column for high-tolerance tasks. Every row shows results for different
amount of tasks in the set.
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Fig. 10. Schedulability ratio for K; equals to 5, 50 and 500 (4 cores).

we highlight that the theoretical results shown in Table 5 are pessimistic in comparison with the
results of this experiment. In terms of the computation time, no significant changes were observed,
see Figure 11.

7.4 Comparison Against Single-Core Scheduling Approaches

Figure 12 shows the schedulability ratio comparison between ILP, JCL and RTA WH using task
sets with 30 tasks and the same K = 5 for all tasks (due to the scalability of the ILP approach for
larger K). For experiments with m; = 1, JCL is the best of the three while ILP is the worst of them.
The bad results of the ILP approach are explained by remembering that the ILP approach works at
task-level while the other approaches work at job-level. In case of RTA WH, there is pessimism
introduced by using a multi-core scheduling analysis for single-core (as mentioned before).

When K; = 10 and K; = 20, Figure 13 and Figure 14 show that the schedulability ratio is also
better for JCL than for RTA WH. Again, this is explained similar as before, i.e. using RTA for
single-core introduces pessimism. However, the schedulability ratio curves for m; = K; — 1 are
similar for JCL and RTA WH until a total utilization equals to 1.

Figure 15 shows the computation times for ILP, JCL and RTA WHA. For ILP, the computation
time increases with the utilization. However, for JCL and RTA WH, the computation time decreases
together with the schedulability ratio because unschedulable sets are found faster. In addition, the
JCL approach is faster than the others when K; = 5. Moreover, JCL is still faster when K; = 10 and
K; = 20 but only for high-tolerance tasks. The reason is that the sufficient condition used in RTA
WH takes longer than the analysis used in JCL which considers the critical instant. Nevertheless,
for low-tolerance tasks, while increasing K; to 10, the computation times of JCL are in the same
range than those for RTA WH (see Figure 16). Furthermore, when K; = 20, RTA WH becomes faster
than JCL for low-tolerance tasks due to the iteration of JCL over a recheabilty tree, see Figure 17.
In fact, RTA WH does not variate too much while changing the value of K;. This was also observed
in Figure 11.
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1021
1022 7.5 Priority Assignment Overhead
1023 In order to know the scheduling overhead due to the priority assignment algorithm defined in
1024 Definition 16, we have conducted an experiment for measuring its execution time considering
1025 only the transition among job classes in isolation, i.e. no OS system overhead is considered. This
1026 experiment was executed on the same processor architecture used in the on-board computers of
1027 CALLISTO, i.e. Intel Atom Quad-Core with core frequency of 1.91GHz. The real-time operating
1028 system used in this experiment is RTEMS 5.1 and the code was compiled with optimization level 2.
1029
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Figure 18 shows the execution time distribution for executing the priority assignment in case of
both low and high-tolerance tasks. The algorithm execution was repeated 1000 times for every type
of task. Results show an overhead below 60 nanoseconds which is negligible overhead comparing
to the execution time of the tasks. Low-tolerance tasks show a higher median than high-tolerance
tasks. This behavior is related with the fact that high-tolerance tasks tolerate more deadline misses
before going back to the JCY, making some part of the algorithm be executed more often.

8 Conclusion

In centralized embedded system architectures, multi-core processors are utilized to consolidate
multiple tasks leveraging the high computational power and the low power-consumption of multi-
core platforms. In real-time systems, if few deadline misses are tolerable, leveraging the weakly-hard
model can reduce the over-provisioning, hence, consolidating more real-time tasks on to the multi-
core platform. This paper proposed a job-class based global scheduling for weakly-hard real-time
tasks, appended with a schedulability test to compute the needed guarantees. The scheduling
algorithm exploits the tolerable deadline misses by assigning different priorities to jobs upon urgency
of meeting their deadline. Such job-level priority assignment reduces the interference with low-
priority tasks and helps them to satisfy their weakly-hard constraints. The proposed schedulability
analysis utilizes neither ILP nor reachability tree-based analysis, as similar approaches in the
literature. Rather, it focuses on verifying the schedulability of the maximum tolerable consecutive
deadline misses. Our experiments show that the proposed analysis is schedulable where through
all the synthetic test cases, the computation time for the proposed analysis does not exceed 1.6
seconds for 100 tasks and 4 cores. Also, results illustrates that the improvement on the schedulability
ratio is up to 40% over the global Rate Monotonic (RM) scheduling and up to 60% over the global
EDF scheduling. Furthermore, our future work will contemplate a reduction in the limitations for
low-tolerance tasks, the exploration of the priority assignment in the context of job-class-level
scheduling and the interference between tasks due to shared resources.
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Fig. 15. Computation time for ILP, JCL and RTA WH (K = 5). Box plots show the distribution of computation
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A Lemma 3 Proof

Theorem 5 of [1] states that a weakly-hard constraint () is harder than (denoted as <) other
constraint (%) if:

a p q q _
(b)ﬁ(q)(:)pﬁmax{{EJa,q+[ﬂ(a b)} 9)
According to Theorem 3 in [1] we have ( w,-}zh,- ) = (+n, )- Hence, replacing the variables for

our case, we get:

hi 1(} —m; 1(} 1(}
(Wi+hi) < ( X ) © Ki-m < max“wi+hiJhi’Ki_{wi+hzlwi} (10)

For proving the theorem, we need to show that K; — m; is always less or equal than the following
terms:

K;
h; 11
w; + lli J ( )
K; - ’VWi +l I Wi (12)

We prove this theorem separately for low-tolerance and high-tolerance tasks. Summarizing, the
steps are the following:

(1) We show Equation (11) is greater or equal than Equation (12) for high-tolerance tasks.

(2) We verify that Equation (11) is greater or equal than K; — m; for high-tolerance tasks.

(3) We show Equation (11) is also greater or equal than Equation (12) for low-tolerance tasks.

(4) Then, for simplicity, we start by verifying that Equation (12) is greater or equal than K; —m;
for low-tolerance tasks. Showing this last is valid, we conclude that for low-tolerance tasks
Equation (11) is also greater or equal than K; — m;.

Step 1. From Lemma 1, we know that h; = 1 for high-tolerance tasks. Replacing h; = 1 and
assuming that Equation (11) > Equation (12), we get:
i
w;+1

= K;

Ki }w,» (13)

w;+1
We consider the following relation between a real number x and a integer number n for removing
the floor.
x| >nex>n (14)
By removing the floor and then clearing K; in Inequation (13), we get the assumption
Equation (11) > Equation (12) holds.

Ki Ki Ki Ki
>Ki—|——|w; > K; > |K; - Wi (Wi+1): (Wi+1)2Ki
w;+1 w;+1 w;+1 w;+1
Step 2. We need to prove:
K;
> K —-m; 15

\;Wi " lJ i~ mi (15)

Using Relation 14 for removing the floor:
d >Ki—m;

w; +1
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Next, clearing w; and replacing it for its value for high-tolerance tasks, i.e. w; = {ﬁJ

i i m;
wj < —— <
1(} —m; I(i —m; I(i - m;

Inequation (15) holds and we prove Equation (10) for high-tolerance tasks.

Step 3. From Lemma 1, we know that w; = 1 for low-tolerance tasks. Replacing w; = 1 and
assuming that Equation(11) is greater or equal than Equation(12), we get:

K; K;
\‘1+hi‘|hi2Ki_’71+hi“ (16)

For converting from ceiling to floor, we use the following identity:

a a+b-1
AT 17
M { b (17)
Hence:
Ki Ki +hi K +h; K;
—_— hi Z Ki - 2 P = hi
1+h 1+h; 1+ h; 1+ h;
Using Relation 14 for removing the floor in lf’:h}zi J and then clearing K;:
1l+ hil y i_L +lh‘iJ hi = Ki+h; > (Ki - {—1 +lh,~J h,-) (1+h;) = (1+h;) L +lh,- +12K;

We see that assumption Equation (11) > Equation (12) holds.
Step 4. As we mentioned before, here we start by showing that Equation (12) is greater or equal
than K; — m;:

K; K;
Ki—’V szi—mizmiz{ “ (18)

1+ hi 1+ hi
We now use the following relation between a real number x and a integer number n to remove
the ceiling from Inequation (18).

[xX]<noex<n

> 1<} —1 > 1(}
m; > | —— m; > ——
! 1+ h; ! 1+ h;

Ki—m; |.
mj

Next step is clearing h; and replacing it for its value, i.e. h; = [— :

h; >

1(} —m; {}(} — n1i} 1(} —m;
= >

m; mi m;
We see the assumption Equation (12) > K; —m; holds and since also Equation (11) > Equation (12),
we get also Equation (11) > K; —m;. This proves Equation (10) for low-tolerance tasks which finalizes

the proof of Theorem 5 of [1] for ( Wi}:fhi) < (K"I}m" ).

i
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