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Abstract: This paper presents a numerical function optimization framework designed for
constrained optimization problems in robotics. The tool is designed with real-time considerations
and is suitable for online trajectory and control input optimization problems. The proposed
framework does not require any analytical representation of the problem and works with
constrained block-box optimization functions. The method combines first-order gradient-
based line search algorithms with constraint prioritization through nullspace projections onto
constraint Jacobian space. The tool is implemented in C4++ and provided online for community
use, along with some numerical and robotic example implementations presented in the end.
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1. INTRODUCTION

Numerical optimization (Nocedal and Wright (1999)) is
one of the most fundamental backbones of robotics. Nu-
merical optimization methods emerge to address prob-
lems that have no analytical solutions and are subject
to constraints. Such problems constitute a vast variety of
applications, some examples can be listed as mechanical
design topology optimization for the best jumping perfor-
mance (Haldane et al. (2017)), behavioral optimizations to
perform certain tasks with the least energy consumption
(Mei et al. (2004); Paes et al. (2014)), a control input
optimization that also accounts for multiple tasks, limits,
contact constraints, and closed kinematic chains (Sovukluk
et al. (2023a); Khatib et al. (2022)), motion planning for
complex robotic systems (Dai et al. (2014); Sovukluk et al.
(2023b); Westervelt et al. (2018)), apex-to-apex periodic
behavior optimization for nonlinear and underactuated
systems (Sovukluk et al. (2024)), path planning optimiza-
tions for autonomous devices (Gasparetto et al. (2015)),
and so on.

Convex optimization of linear(ized) robotic system prob-
lems are studied and explored extensively (Nocedal and
Wright (1999); Lewis et al. (2012)). Such problems can
scale up to thousands of parameters and still be solved in
real-time (Stellato et al. (2020); Bambade et al. (2022);
Pandala et al. (2019)). On the other hand, nonlinear sys-
tem optimization problems are less straightforward to gen-
eralize and do not scale as such due to the numerical com-
plexities and computational costs. Such problems are ad-
dressed by nonlinear programming (Bertsekas (1997)) and
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are also covered extensively. Some well-known community-
available tools, such as CasADi (Andersson et al. (2019))
and IPOPT (Wéchter and Biegler (2006)) are available for
analytically representable nonlinear problems.

Robotic optimization problems, on the other hand, are
usually not analytically representable due to the high
dimensionality and nonlinearities. Let

M)+ Clavw +n(a = 2] + 2@ fe (1)

be a floating base robot dynamics, where q is a set of
configuration variables and v = (v, v;) are the general-
ized velocity where v, = (vp,wp) € R® is the linear and
angular velocity of the floating base and v; € R™ is the
generalized velocity of the joints. Due to their complex-
ity and nonlinearity, such system dynamics are usually
calculated through rigid body algorithms (Featherstone
(2014)). Some community available tools are Pinocchio
(Carpentier et al. (2015-2021, 2019)), MuJoCo (Todorov
et al. (2012)), and RBDL (Felis (2016)). As a result,
the analytical representation of gradients and Hessians of
optimization problems that include system dynamics and
kinematics such as
mmin f(x, System Dynamics(x), Kinematics(x))

such that 2)
geq(, System Dynamics(x), Kinematics(x)) = 0
Gineq (X, System Dynamics(x), Kinematics(x)) < 0

is not possible. As numerical Hessian estimation of such
nonlinear and high dimensional problems is too expensive,
a simple gradient-descent based numerical optimization
method that can still take account of equality and inequal-
ity constraints may become preferable for performance and
real-time implementation purposes.
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This paper proposes a numerical function optimization
framework that is specialized for constrained nonlin-
ear robotic problems. The method combines first-order
gradient-based line search algorithms with constraint pri-
oritization through nullspace projections of constraint Ja-
cobian space. The framework does not require any analytic
representation of the problem and works fully numeri-
cally. Hence, it can also be referred to as a black-box
optimizer. As it is too costly to compute the Hessian
matrix numerically, this method employs only gradient-
based search algorithms. This selection results in slower
convergence but reduces the iteration cost greatly. The
framework also provides a set of special update routines to
update the system dynamics and kinematics either every
inner iteration or once per outer iteration for performance
considerations. The authors also provide the precompiled
C++ libraries (ENFORCpp) for community use along
with multiple numerical and one three-link robotic arm
optimization implementation examples:

https://github.com/ssovukluk/ENFORCpp (%)
2. METHOD

2.1 Optimization Problem

Let

min f(x)

x

such that (3)

Gec(x) =0

gic(z) <0
be an optimization problem as described in (2), where
f(®) : R® = Rsq, gec(®) : R* — R™c, and gic.(x) :
R™ — R™ec are the cost, equality constraint, and inequality
constraint functions, respectively. Furthermore, n € Ny,
nee € Ng, and n;. € Ny represent the number of opti-
mization parameters, number of equality constraints, and
number of inequality constraints, respectively.

2.2 Nullspace Projection

The optimization problem requires finding the parameter
set that both minimizes the cost function f(x) and satisfies
the equality and inequality constraints. Such problems
cannot be solved simply by iterating through a gradient
estimation. First, the constraints should be satisfied, and
then the cost function should be iterated in the allowed
directions that do not disturb any constraints but still
reduce the cost. Let g¢; be the k** active constraint
function. Furthermore, let a Jacobian matrix J,, € R™ac*™
collect gradient transpose of all active constraint functions,

8g1/8ac

Jac _ (992./833

; (4)
OGn,. /0T

where n,. represent the number of the active constraints,

which may differ from the total constraint number (ng. +

n;.) as not all inequality constraints may be active if they

are far from the boundary. Also, let

Vi =projy V=T —-J (JI)'I)Vf  (5)

be a nullspace projection (orthogonal projection onto
nullspace) of the constraint Jacobian space such that

moving towards the —V f* direction reduces the cost
function without disturbing the active constraints of the
problem. Such projections will be used for hierarchical
optimization between the constraint and cost functions.

2.8 Optimization Strategy

The optimization strategy is built on a hierarchical frame-
work. First, all constraint functions are optimized one by
one, in the nullspace of previous ones such that they do not
disturb the previous constraints. Then the cost function is
optimized in the nullspace of all active constraints to look
for a minimal solution that satisfies all active constraints.

An example optimization sequence:  Assume an opti-
mization problem with two constraints all of which are
active, i.e., Nac = Nec + Nic = 2. A solution sequence for
such a problem can be summarized as:

(1) Estimate Vg1, gradient of the first constraint.

(2) Optimize for g; through Vg;.

(3) Estimate Vgs.

(4) Project Vgo onto the nullspace of the constraint
Jacobian, ie., Vg3 = projy(s,)Vge, where J; =

Vo]

) Optimize for g, through Vgs.

6) Estimate V f, the cost function gradient.

) Project Vf onto the nullspace of the constraint
Jacobian, ie., Vf* = projy, VS, where Jo =

Vg1, Vge] "
(8) Optimize for the cost function through V f*.

2.4 Equality Constraint Optimization Subroutine

Solving for the equality constraints is a similar procedure
to solving for the cost function. As described in the pre-
vious subsection, each equality constraint is solved in the
nullspace of the previous equality constraint Jacobian. The
details of the equality constraint optimization algorithm
are provided in Alg. 1.

2.5 Inequality Constraint Optimization Subroutine

The inequality constraints are less straightforward to han-
dle than the equality constraints due to two reasons. First,
they may not always be active. Second, they are direc-
tional. As a result, these constraints should be checked
continuously and activated when necessary. Furthermore,
if the iteration direction aligns with the inequality con-
straint’s gradient direction, the constraint should not be
activated as any iteration in the given optimal direction
would not violate the constraint. The activation conditions
are summarized through an example in Fig. 1. A direction
check between two vectors can be easily done through the
dot operator. Let @ € R be an angle between two arbitrary
vectors vy and v1, then

vo-v1 >0, 0<a<m/2
vo-v1 <0, 7w/2<a<m
vo-v1 =0, vl v

The details of the inequality constraint optimization algo-
rithm are provided in Alg. 2.
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Algorithm 1 Optimizing for equality constraints.
Require: £ € R™, ne. > 0
1: Jeq.empty()

2: Ny <0
3: for (k+ 1; k <ne; ++k) do
4: Nac = Nac + 1
5: cost = goc (@)
6: Vec, 1 = sign(cost) x numericalGradient(gec,r())
7: if ||V gec,k|| = 0 then
8: Continue > Zero gradient, skip to the next.
9: end if
10: Joq-rowAppend (Vg ;)
11: if |cost| =~ 0 then
12: Continue > No need to solve, skip to the next.
13: end if
14: if nye > 1 then > Perform projection if necessary.
15: Vg* = projn(g.,)Vec,k
16: else
17 V9" = Vgeer
18: end if
19: if ||Vg*|| = 0 then
20: Continue > Empty nullspace, skip to the next.
21: end if
22: stepLength < initial_step_length
23: while true do
24: x* = x — stepLength x Vg*
25: cost™ = gec k(*)
26: if |cost*| > |cost| then
27: Break > Minimal point has reached.
28: end if
29: if sign(cost*) # sign(cost) then
> Zero crossing, reverse gradient direction.
30: Vg* =-Vg*
31: end if
32: T
33: stepLength = stepLength x step_multiplier
34: end while
35: end for

2.6 Cost Function Optimization Subroutine

The cost function has the least priority in the optimization
problem. The cost is reduced only if there is still any
freedom or additional dimension left in the nullspace of the
constraint Jacobian space. The cost function optimization
algorithm is provided in Alg. 3.

2.7 Owerall Framework and Termination Conditions

The proposed overall framework combines Alg. 1-3 along
with some set of termination conditions. These conditions
are iteration number, step tolerance, and cost tolerance, re-
spectively. Each conditions are checked per outer iteration,
that is one iteration of the overall framework altogether
with Alg. 1-3. Similarly, the gradient descent iteration in
each algorithm loop is called inner iteration.

The step tolerance checks the norm of the optimization
parameter vector difference per outer iteration steps. If
the parameter change is smaller than a given tolerance, the
optimizer terminates. The same approach is also followed
for the cost function return value check per outer iteration.
The overall framework is provided in Alg. 4.

min f(z) = (z — 5)°

min f(z) = (z - 5)°

s.t. s.t.
glz)=—2x+7<0,| g(z)=—2+7<0,
1’0:0 1’0:7
4—3’ X > | < X0—>

0 r* =5
r="7

g(z) remains less than zero.
Constraint is not active.

9(wo) = 0, but =V f(zo)

and —Vg(zo) are in the
same direction.

Constraint is not active.

405

min f(z) = (z — 9)°
s.t.
glz) =—x+7<0,
To — 7

«— >

g(w0) =0, and —V f(z0)
and —Vg(zo) are in
reverse directions.
Constraint is active.

Fig. 1. Inequality constraint activation conditions where
the red dot, yellow star, and red region represent
the initial condition, desired position, and constraint,
respectively. The left problem never reaches the ac-
tivation point. The middle problem starts from the
zero crossing point, but the cost function gradient
is already in the same direction as the constraint
gradient. Hence, the cost function iteration will not
exceed the constraint. The right problem also starts
from the zero crossing point, and the cost function
and constraint gradients are in reverse directions. The
constraint is activated. The cost function gradient
should be projected onto the nullspace of the con-
straint gradient, which results in a zero vector in this
case. As a result x remains at .

3. SOFTWARE INTERFACE

The numerical function optimization tool proposed in this
paper is provided as a C++ dynamic library for com-
munity use. The software interface requires the users to
write their optimization problems inside a given Prob-
lemDescription object template. There are four predefined
functions, whose declaration and name cannot be changed,
but only the content. These functions are costFunction,
equalityConstraint Function, inequalityConstraint Function,
and interimFunction, respectively. The first three are used
for cost and constraint function iterations and calcula-
tions. These functions are repeatedly called every per inner
iteration for numerical iterations and numerical gradient
estimations. Even though the users are free to implement
whatever they desire inside these functions’ bodies, they
should also consider the performance outcomes. An ex-
pensive computation inside these functions results in high
computational cost. The interimFunction, on the other
hand, is called once per outer iteration and does not go
into numerical gradient estimation. This function is placed
to allow users to do less occasional parameter updates for
performance considerations. For details and implementa-
tions, refer to “NFO.hpp” and “ProblemDescription.hpp”
provided in *.

4. NUMERICAL RESULTS

This section analyses five different problems with a param-
eter set given in Table. 1. Three of these are numerical,
and two are robotic system examples. The implementa-
tion codes for the first four examples are provided in *.
The optimization times correspond to a daily use desktop
computer with AMD Ryzen 7 5800X CPU.
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Algorithm 2 Optimizing for inequality constraints.

Algorithm 3 Optimizing for the cost function.

Require: x € R™ > From equality constraint algorithm.
Require: J.y, nce > From equality constraint algorithm.

1: Jineq-empty()
2: for (k+ 1; k <mny; ++k) do

3 Jactive — Jeq

4 cost = gic(x)

5: if cost < 0 then

6: Continue > No need to solve, skip to the next.
7 end if

8 V gic,,, = numericalGradient(gic x())

9: if ||V gic,x|| = 0 then

10: Continue > Zero gradient, skip to the next.
11: end if

12: Nac = Nac + 1

13: Jineq.rowAppend(VgiI’k)

> Check previous active constraints’ grad directions.

14: if rowNumber(Jineq) > 1 then

15: for (i < 1;i < rowNumber(Jineq); ++i) do
16: if Jineq-row (i) - Vgic,x < 0 then
17: Jactive LowAppend(Jineq.row (7))
18: end if
19: end for
20: end if
> Then initiate the projection operation.
21: if n,. > 1 then
22: V" = PIOJN (Jyersee) VGick
23: else
24: Vg* = Vgeca
25: end if
26: if ||Vg*|| = 0 then
27: Continue > Empty nullspace, skip to the next.
28: end if
29: stepLength < initial_step_length
30: while true do
31: x* = & — stepLength x Vg*
32: cost™ = gic k(")
33: if cost* < 0 then
34: Break > Zero crossing has reached.
35: end if
36: T —x*
37: stepLength = stepLength x step_multiplier
38: end while
39: end for

Table 1. List of given optimization parameters.

Parameter Name Value
initial_step_length 106
step-multiplier 2
step_tol 10~4
cost_tol 10—4

4.1 Ezample 1: A Simple Conver Optimization Problem

Assume the following optimization problem,

5
min f(x) = Y (o — k)
k=1
such that

$1+5:07 1’2—5:07
r34+3<0, z40—3<0, £¢g=0

Require: x € R” > From inequality constraint alg.
Require: J.q, Nce > From inequality constraint alg.
Require: Jineq > From inequality constraint alg.
Jactive <~ Jeq
cost = f(x)
V f = numericalGradient(f(x))
if ||Vf]| = 0 then
Continue

end if

> Check previous active constraints’ grad directions.
7. if rowNumber(Jipeq) > 0 then
8: for (i < 1;4 < rowNumber(Jineq); +-+1) do

> Zero gradient, skip.

9: if Jineq.row(i) - Vf < 0 then

10: Jactive-LowAppend(Jineq.row (7))
11: end if

12: end for

13: end if

> Initiate the projection operation if necessary.
14: if n,. > 0 then
15: V" =projn(,) V.f
16: if ||V f*|| = 0 then

17: Continue > Empty nullspace, skip.
18: end if
19: end if

20: stepLength < initial_step_length
21: while true do
22: x* = x — stepLength x V f*
23: cost* = f(x*)
24: if cost® > cost then
25: Break
26: end if

> Check if * violates any inequality constraint.
27: for (i + 1;i <my;i=1i+1) do

> Minimal point has reached.

28: if gineq(z*) > 0 then

29: Break the while loop.
30: end if

31: end for

32: T —x*

33: stepLength = stepLength x step_multiplier
34: end while

Algorithm 4 The overall optimization framework.

Require: x > Initial condition.
Require: max_iter
Require: step_tol
Require: cost_tol
1: & < X9
2: for (iter <— 1; iter < max_iter; ++iter) do
3: T <— T
4: Call Alg. 1
5: Call Alg. 2
6: costy « f(x)
7: Call Alg. 3
8: if || — z|| < step-tol then
9: Exit
10: end if
11: if |cost — costg| < cost_tol then
12: Exit
13: end if
14: end for
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where the unconstrained solution is obvious and equal
to [1,2,3,4,5]. The constrained optimization solution is
x* = [-5,5,-3,3,5] . The first two parameters are equal-
ity constrained. Hence, the orthogonal projection of the
cost function gradient onto the nullspace of the equality
constraint Jacobian space results in zero in the direction of
z1 and x5. The third and fourth parameters approach their
unconstrained values as much as the inequality constraint
allows. The fifth parameter, on the other hand, does not
have any constraint and converges into its unconstrained
optimal value. The optimization problem takes 8us and is
solved in 6 iterations.

4.2 Ezample 2: Rosenbrock’s Function

Rosenbrock’s function is a standard test function in op-
timization. Finding the minimum is a challenge for some
algorithms because the function has a shallow minimum
inside a deeply curved valley. Assume the following nonlin-
ear constrained optimization problem with Rosenbrock’s
function,

min f(x) = 100(zy — 27)? + (1 — x1)?
x
such that
23+ 25 <1 and xy = [0,0].

The minimum is found at «* = [0.7864,0.6177] " in 201
iterations which takes 35us.

4.8 Ezample 3: Number 71 From the Hock-Schittkowsky
Test Suite (Hock and Schittkowski (1980))

A more challenging optimization problem can be found in
the Hock-Schittkowsky test suite. Problem HS071 includes
a high number of constraints that continuously disturb
each other. For the given problem,

min f(x) = z1x4(x1 + 22 + 23) + 23
€T

such that
L1X2X3X4 Z 25
o a2 42k i =40
1< T1,T2,T3,T4 <5
o = (1, 5, 5, 1)
the minimum is found at x* ~ [1.00,4.74,3.82,1.38] " in
100 iterations which takes 139us.

4.4 Ezample 4: A 3-link Arm Configuration Optimization

Assume a three-link planar robotic arm system as shown
in Fig. 2. The end effector position p(x) is a nonlinear
function of optimization parameters:

| |cos(z1) + cos (x1 4+ x2) + cos (x1 + z2 + x3)
py| — | sin(z1) +sin (1 + x2) + sin (1 + z2 + 3)

Similarly, the gravity vector of the system dynamics is
given as

1.5¢cos (1 + z2) + 0.5cos (1 + x2 + x3)
0.5cos (z1 + 2 + x3)

The gravity vector is equivalent to the amount of joint

torques required to hold the robot in a static configuration.

Hence, an optimization problem can be defined such that

the end effector is placed at a desired position with a

Ty(z) =

{2.5 cos (z1) + 1.5cos (21 + x2) + 0.5cos (z1 + z2 + z3)
g.

Fig. 2. Left: A three-link planar robot arm system, where
the red dot and yellow star represent the initial con-
dition and the desired position, respectively. Right:
The result of the optimization problem where the
arm folds onto itself to minimize the static torque
requirement while satisfying the equality constraint.

configuration that requires a minimum amount of torque
to remain stationary. The problem formulation follows

min f(x) = TgTTg
such that
pe(x) = 1.0, py(x) =0.0, and xo = [7/4 7/4 w/4]" .

The optimized robot configuration is shown in Fig. 2. The
minimum is found at z* ~ [1.647,3.141,-1.647]7 in 8
iterations which takes 42us.

4.5 Humanoid Robot Posture Optimization

A high dimensional nonlinear robotic optimization prob-
lem that is solved with the proposed function optimiza-
tion framework can be found in Sovukluk et al. (2025).
The optimization problem covers finding a set of joint
trajectories which results in a proper running motion.
More specifically, the optimization problem covers how a
running humanoid robot should swing its limbs during the
flight phases such that at the next landing, the feet are at
desired locations and the torso is kept upright. The snap-
shots of the optimized trajectories are shown in Fig. 3. The
optimization problem includes 32 optimization parameters
along with 14 nonlinear constraints and takes 1.92ms to
solve (Sovukluk et al. (2025)). In the implementation, the
interimFunction is used effectively for performance con-
siderations, such that, during the trajectory optimization,
the system dynamics are updated at the beginning of every
outer iteration rather than the inner iterations.

Liftoff Touchdown

Initial Cond.

Fig. 3. The snapshots of the optimized trajectory.



408 Sait Sovukluk et al. / IFAC PapersOnLine 59-18 (2025) 403—408

5. CONCLUSION

This paper proposes a numerical function optimization
framework designed to solve constrained nonlinear robotic
problems in real-time. The proposed framework does not
require any analytical representation of the problem and
can also be referred as a constrained black-box opti-
mization tool. The method combines first-order gradient-
based line search algorithms with constraint prioritiza-
tion through nullspace projections of constraint Jacobian
space. Consequently, it usually has a slower convergence
rate per iteration as the Hessian is ignored. On the other
hand, the computational cost per iteration is much less as
it only requires basic numerical gradient calculations. The
capability of the framework is proven through numerous
complex numerical and robotic problems ranging from a
simple robotic arm to a complex humanoid robot.
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