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Abstract:

Pushing large and heavy objects while walking is an important skill for humanoid robots to
effectively assist humans with daily tasks. However, friction, high interaction forces, and the
robot’s intrinsic limitations make performing this task challenging. This paper presents a DCM-
based walking planning algorithm designed to account for the external forces the robot must
exert while pushing a heavy object along a desired trajectory. The proposed algorithm is then
combined with an inverse dynamics whole-body control to allow the humanoid robot to perform
the task. Results obtained in simulation on the humanoid BRUCE prove the effectiveness of the

proposed framework.
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1. INTRODUCTION

Humanoid robots allow for more natural movement and
adaptability due to their human-like design. They have
the potential to replicate human skills in both locomo-
tion and manipulation tasks. They can help humans do
repetitive and exhausting work, not only in industrial
applications, but also in domestic settings, healthcare,
and rescue missions. One of the most common tasks ex-
pected to be left to humanoids is moving large and heavy
objects. While humans effortlessly master this kind of
task in everyday situations, easily adapting their skills to
handle different objects, replicating this ability in robots
is still an open challenge due to the high interaction
forces between the robot and the environment involved.
Balancing these forces requires advanced and demanding
control algorithms to achieve the desired motion. Indeed,
the dynamics of pushing are highly non-linear and sensitive
to external factors such as friction. It plays a crucial role
and is often difficult to predict or measure accurately. In
addition, the robot’s limitations in sensing and physical
constraints should be considered, such as inaccurate feed-
back from sensors or restricted range of motion, strength,
and actuator precision.

Many researchers have focused on developing frameworks
for walking and multi-contact pushing, i.e., Xie et al.

(2020). In literature, loco-manipulation is seen as a spe-
cial case of multi-contact motion. Previous research has
focused on controlling the pushing locomotion by using a
built-in walking pattern generator to produce the desired
Center of Mass (CoM) trajectory that follows the spec-
ified Zero Moment Point (ZMP) trajectory and using a
stabilizer to follow the target ZMP with a force-feedback
method which uses data from state sensor measurements
or estimators, as in Takubo et al. (2005). Murooka et al.
(2015) proposed the use of the ZMP to generate different
key postures for manipulation. Instead, Li and Nguyen
(2023) suggested combining kinodynamics-based pose op-
timization and loco-manipulation Model Predictive Con-
trol (MPC) to track the optimal pose for pushing without
limiting only to hands. Nozawa et al. (2012) introduced a
dual-arm force controller to account for friction and com-
pensate for the ZMP by controlling reaction forces. Other
approaches used the ZMP-control strategy for pushing
heavy loads on a cart (see Vaz and Oh (2020)). However,
it is a common practice to use a cart-table or a Linear In-
verted Pendulum (LIP) model to approximate the robot’s
dynamics.

Recent advancements have shifted toward Divergent Com-
ponent of Motion (DCM)-based methods as suggested by
Takenaka et al. (2009), and Englsberger et al. (2013).
These DCM-based approaches allow to use the exact
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robot’s CoM dynamics and not a simplified model, leading
to more efficient control strategies in dynamic environ-
ments, as shown by Mesesan et al. (2019), and Vedadi et al.
(2021). Morisawa et al. (2019) proposed to modify the de-
sired ZMP with the position of the DCM error with respect
to the CoM motion to locomote while leaning to a non-flat
surface. A more recent work made by Murooka et al. (2021)
presented a DCM control strategy that considers external
forces resulting from humanoid-object contact interactions
and a DCM feedback control to compensate for the error
between desired and actual manipulation forces. Addition-
ally, Kobayashi et al. (2022) implemented a force-reactive
walking controller where the interaction forces are included
in the definition of the Virtual Repellent Point (VRP) and,
consequently, of the DCM. These interaction forces were
estimated using robotic skin covering the whole humanoid
body. However, this leads to computational complexity
of the algorithm and data overload. Moreover, with the
rise of machine learning, Deep Reinforcement Learning
has been explored for humanoid loco-manipulation tasks,
enabling robots to learn optimal policies for complex tasks
through trial and error, i.e., Sacedvand et al. (2021). Be-
sides, the lack of data and long training times make using
machine learning approaches challenging. However, all the
presented methods rely on knowing a priori the weight of
the object to push and, thus, the minimum force to apply
during the pushing task or use sensors to estimate it.

In this context, this paper aims to develop a new frame-
work that combines a dynamic walking algorithm based
on VRP and DCM concepts with inverse dynamics Whole-
body Control (WBC) to enable the robot to push heavy
objects while it is walking. No force sensors were used to
estimate the force the robot should apply in the pushing
task. For the validation, the proposed framework is tested
on the kid-size humanoid robot BRUCE, Liu et al. (2022).

2. BACKGROUND

Here, we provide some key concepts used in bipedal walk-
ing and an overview of the planning algorithm employed to
generate reference trajectories that the robot can follow.

2.1 Fundamentals of Bipedal Walking

The DCM separates the second order CoM dynamics into
two linear first order dynamics, one naturally stable and
the other unstable. The DCM £ € R? is defined as
§E=x+ b, (1)
where £ € R? and & € R? are the CoM position and
velocity, respectively, and b > 0 is the time-constant of
the DCM dynamics. Note that (1) is a general linear
transformation, and all the equations derived from the
DCM theory hold for general free-floating base models
and are not restricted to the cart-table, LIP, or other
simplified models. Defining F; € R3 as the gravity force
and Fleg € R3 as the leg force, the total force Fror € R?
acting on the CoM results as Fror = Fles + F5 and the
DCM dynamics can be computed by differentiating (1)
and substituting & obtained by reordering (1), i.e.,
s, . 1 1 b b
E=%+bk = ba:—{—bE—i—mFng—l—mFg, (2)
with m the robot’s total mass. Hence, equation (2) high-
lights that the external forces directly influence the DCM

dynamics. To decouple the DCM dynamics from the
CoM dynamics, the enhanced Centroidal Moment Pivot
(eCMP) 7ocmp is introduced as a three-dimensional point
that encodes all the external forces acting on the CoM
except for gravity. Additionally, the VRP v is defined as
a tridimensional point obtained by translating vertically
recmp Of Az, (the average CoM height relative to the
ground surface), i.e.,

]T

v=recmp + [0 0 b%g] =7Tecup + 1[0 0 Azt (3)

where b = ,/% > 0. Consequently, the VRP encodes

the total force Fror acting on the CoM as

m
FTOT:b—Z(iL'—V). (4)
By substituting (4) in (2), the DCM dynamics becomes
1
€= (6-v) Q

showing that it is unstable and the DCM diverges away
from the VRP.

2.2 DCM Planning Algorithm for Walking

Since the CoM automatically follows the DCM, the focus
of the DCM planning algorithm proposed by Englsberger
et al. (2013) for bipedal walking is to generate a desired
DCM trajectory from a set of chosen feasible steps. The
planned DCM trajectory can then be transformed into
a reference CoM trajectory that the robot follows while
maintaining stable and trackable motions. To reduce com-
plexity, the following assumptions are made:

e robot’s feet are point feet corresponding to foot
centers

e zero changes in angular momentum

e instantaneous transitions between left and right feet,
i.e., no double support phase (both feet in contact
with the ground)

e no impact during support transitions.

With these hypotheses, r.cyp can be designed to coincide
with the foot point r, and the trajectory planning is
reduced to choosing N reference foot-positions. Conse-
quently, (3) is rewritten as v = ry +[00 Azwp]T and
a backward recursive iteration is used to compute the
desired DCM locations at the end of each step &, 4
assuming that in the final step the robot will stop, i.e.,
€d.cos,N—1 = Va,n and from (1) and (4) both coincide with
the final CoM position. Hence, the desired DCM trajectory
in time £,(t) is computed by integrating (5) w.r.t. time ¢,
with t € [0,ts.p) so that time is reset at the beginning
of each step. Summarizing, the final DCM algorithm to
generate reference trajectories includes the following steps:

(1) Define a set of N reference foot-positions ry; €
{1,...N};

(2) Set a desired VRP height Az,,, and compute the
desired VRP as vq; =74, +[0 0 sz,lp]T;

(3) Assuming v constant, calculate the desired DCM at
the end of each step as

seos,d,i—l = gini,d,i =Vq,;+ e ° (Eeos,d,i - Vd#i)

starting from the final step until the first one;
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(4) Known the DCM end of step, compute the whole
DCM trajectory as

t—tstep

Ei(t) =va;+e 7
where t < tsep-

(Eeos,d,i - Vd:’i)

From the planned DCM trajectory, the CoM reference
trajectory xy(t) is computed by integrating its velocity
& obtained by reordering (1). Both DCM and CoM tra-
jectories thus obtained have been proven to be convex by
Mesesan et al. (2018).

3. PROPOSED METHOD
3.1 Problem Definition

During the pushing task, an interaction force Fj,, € R?
is generated between the robot that is pushing and the
object being pushed. If F, is known, it can be explicitly
included in the robot’s CoM dynamics and, hence, in its
DCM dynamics as follows

£ 1 Fe Fin
5=i+bfé=-(€—w)+b<g+£+—t):
b m m

2 2

= 1 (5 -+ b2g + b_Fleg +b_Fint>a (6)

b m m
—U

where & is the VRP computed if no interaction forces
would act on the CoM (named from now on the unshifted
VRP). Explicitly including Fi, in (3), the VRP can be
adjusted accordingly

]T b? _ b

U =r.Mp + [O 0 AZUT}) - EFint =V - EFint’ (7)

where the negative sign in front of F'j,; implies that the
VRP is shifted towards the interaction force while the
DCM is pushed in the same direction as Fi,;. Conse-
quently, the CoM will move on the back of the robot, as
shown in Figure 1a.

3.2 DCM Planning Algorithm with Interaction Forces

To obtain the robot’s desired behavior, the DCM must be
placed in front of the actual CoM position, with the DCM
dynamics pointing in the desired moving direction. To this
end, a desired force Faes € R? with ||Faes|| > || Fintl| is
introduced to compensate the effects of the interaction
force so that the VRP shifts again on the back of the
robot’s torso. Thus, the desired DCM can be redefined
as

. 1 b2

€a = 5(£_Vd+ EFint)a (8)
where vg = U + Vg is the desired VRP computed as the
sum of the unshifted VRP, i.c. o = x — b?g — (b*/m) Feg,
and the VRP-shift

2
Vshift = _b_Fdesv (9)
m

which encodes the effect of the desired force. Note that to
exactly compensate the interaction force, F'yes should be
chosen to be equal but opposite to F',,. However, extra
forces can be added to consider the desired motion of
the object. Figure 1b shows the robot’s behavior once the
desired force is introduced.

. 0 v .
,,g,_g ;'EFtoI """" ] ¥ i -F‘totﬂ'j 5—6
== ] <EE 2=
z(t) £ F z [, BE
F szrp AZ“”’ F
- “Teempl/y

(a) Without Fgeg (b) With ||Fyes|| > || Fint||

Fig. 1. Effects on VRP, DCM, and CoM of the interaction
force (a) and relative compensation through the in-
troduction of the desired force (b).

The desired force Faes can be considered directly inside
the DCM planning algorithm by vgnirr. The new DCM
algorithm follows:

(1) Define a set of N reference foot-positions rys; €
{1,...,N}
(2) Set a desired VRP height Az,,, and compute the
desired VRP as
b2
Vgi =Tf; + [0 0 szrp]T _chsv
m

and || Faes|| > || Fint][;
(3) Assuming the VRP constant, from (8), calculate the
desired DCM at the end of each step as

£eosvd7i—1 = Eini,d,i =
b2 _ tstep b2
=Vgqi— aFint +e Tt (Eepsai — Vit EFint)

starting from the final step until the first one;

(4) Known the DCM end of step, compute the whole
DCM trajectory as

2 t*tslep

Sd(t) =Vq,i— EFint +e b (geos,d,i -

2
+ _Fiut)7
m

Vg

where t < tep.
3.3 Empirical Estimation of the Interaction Force

The proposed method requires the knowledge of the min-
imum force the robot should apply to the object in order
to compute the VRP-shift. Since the object’s weight is not
always known in advance, the following approach estimates
the minimum force needed to push the object without
relying on a sensor, but by taking inspiration from human
behavior. When humans push a heavy object, they initially
place both feet some distance away from the object and try
to push. If the object does not move after trying to push
it, humans will take steps backward to gain mechanical
advantage and be able to apply more force, repeating
this process until the object starts to move. To replicate
this human behavior, the algorithm is shown in the flow
diagram presented in Figure 2.

According to the latter, once the robot’s hands come in
contact with the object, the current VRP position vg ipni
is saved and the algorithm plans to do two steps on the
back. Then, the robot tries to push the object by moving
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Starting
Configuration

Robot Hands Contact the
Object

| —

Take Two Steps Back

Move CoM Toward the
No Obiject (Push)

Does the Object

Move? ooy

Compute Vshift

Proposed DCM
Trajectory Planing

Fig. 2. Flow diagram for wg, empirical computation,
extended with online DCM trajectory planning.

its DCM and, consequently, its CoM, towards the object.
If the object does not move, it means that the robot
has not yet reached the force needed to push so its CoM
position is reset to the previous one. Two more steps are
taken backward, and then the robot tries to push again.
This human-like procedure is repeated iteratively until the
heavy object starts to move. Since the ground projection
of the VRP is always on the feet, the VRP-shift vy is
then computed considering the offset between the saved
starting VRP v 4 ;,; and the last VRP obtained as soon as
the object started to move, Vg opj_move-

4. VALIDATION

To validate the proposed approach, the framework is ap-
plied to BRUCE, a kid-size humanoid robot with an ap-
proximate height of 0.7m and a weight of 4.8kg, developed
by Westwood Robotics. Tests were conducted in simula-
tion in the physics engine MuJoCo created by Todorov
et al. (2012).

4.1 BRUCE Implementation

First, we implemented the inverse dynamics WBC algo-
rithm to compute the torques commanded to the actuated
joints to accomplish the tasks presented below. Inspired
by Englsberger (2016), instead of requiring the WBC to
track the desired acceleration of the CoM as typically
done, the DCM has been used to compute the reference
quantity to track. In particular, the DCM Task commands
Frordes = g5(@ — Vrep — (1 + bke)(§ — §,.5)) as the
reference desired total force acting on the CoM and aims
at reducing the error between the contact forces expressed
in the world frame and Fror,q4es- The other desired tasks
we considered are:

(1) Angular Momentum Task, to keep the angular mo-
mentum equal to zero;

(2) Arm Task, which is formulated in the joint-space if
the contact has not yet occurred to track reference

joint positions and velocities that bring the robot’s
hands into contact with the object to push, and in the
Cartesian-space to track the desired hand positions
and velocities (py, 4o, and vy, ges, respectively) if arms
are no longer in free motion;

(3) Base-Link Rotation Task, to maintain robot’s orien-
tation constant;

(4) Contact Task, that requires zero velocity to be ap-
plied to the feet contacting point;

(5) Swing Leg Position, which tracks the planned swing
foot trajectory;

(6) Swing Leg Orientation, which keeps the orientation
of the foot constant during the execution of the step.

Note that along the z-axis, the desired motion of the
object being pushed is used as the reference quantity to
be tracked by the controller in the arm task when hands
are in contact. Thus, assuming that the hands are always
in contact with the object during the push, v, 45 is equal
to the constant velocity vopj,qes We would like the object
to have and pj, 4., is obtained by translating the desired
position of the middle of the object in the point in which
the hand is in contact.

Since the robot interacts with its surrounding environ-
ment, feet are modeled as two-point contacts, correspond-
ing to the robot’s toe and heel, whereas hands are defined
as single-point contacts. For each contact point, unilateral
contact ((f,, - £;) > 0) and friction constraints were con-
sidered (|f,. & < 11(f,, - 2:) and |f,, @i < 1 (£, - 2:).

Additionally, to ensure that the robot can follow a feasible
trajectory even if the whole-body control does not per-
fectly track the one planned before, the planner presented
in Section 3.2 is executed online at each iteration, i.e., the
N foot placement references are updated at each iteration
starting from the current foot position and all the steps of
the algorithm are executed again.

4.2 Results

In this simulation, we tested the framework considering
all the phases of the pushing while walking task from the
moment when BRUCE makes contact with the object until
it stops pushing and balances in the final configuration. As
shown in Figure 3a, in the beginning, BRUCE stands in
front of the object. Then, a desired arm’s joint trajectory is
commanded to the whole-body controller in order to bring
the hand in contact with the object. Once the contact is
reached (Figure 3b), the robot tries to push the object by
moving its CoM toward it (Figure 3c). Since the robot can
not move the object, it takes two steps backward, each of
length lsep, = 0.038m, and tries to push again. Thus, the
object moves and the VRP-shift is empirically computed
as described in Section 3.3. Consequently, by reordering
(9), the desired force is equal to Fqes = 10N considering
that both hands push the object and the DCM algorithm
starts to compute the references for the WBC considering
N = 4 footsteps at each iteration. With this method,
the robot is successfully able to push the heavy object
for a total of 12 steps (Figures 3d and 3e show the first
and last steps taken, respectively). Afterward, considering
both friction and the fact that the WBC controller is
performing multiple tasks simultaneously, the robot does
not execute all the required tasks perfectly. Therefore, to
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(a) (b) (c)
(d) (e) ®)
Fig. 3. Snapshot of the simulation in which BRUCE robot
makes contact with the object and tries to push (a)-
(c), pushes (first step, d)-(last step, e), and stops in
the current safe configuration (f). The object is 0.7mx
0.5m x 0.5m with mg; = 1.6kg. Friction coefficient

is set to © = 0.5. Robot’s mass is m = 4.8kg with
lstep = 0.04m and zgpe, = 0.03m.
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Fig. 4. Top view (XY-plane) of the DCM (blue line)
and CoM (green line) trajectories generated. Here,
lstep = 0.0lm, weep = 0.07M, zZgpexz = 0.01m,
Azyrp = 0.386m, and tsep = 0.05s.

prioritize its balancing, the robot is unable to move the
DCM forward and make it follow its reference exactly,
causing the DCM to shift 0.03m backward relative to the
CoM position. For this reason, the planning algorithm
is forced to stop, and the WBC will stabilize the robot
in the current safe configuration (Figure 3f). To improve
this limitation, the DCM could be brought in front of the
robot CoM again with a footstep adaptation or a reactive
replanning approach. We leave this to future work.

Figure 4 shows the results of the implementation in the
XY plane, and Figure 5a displays the time trajectories
of DCM and CoM, where a distance of 0.128m is covered.
Note that at each step taken, the DCM reference is paused
for 0.2s to simulate a double-support step phase. Figure
5b shows the z trajectories of the actual and desired
robot hand positions over time. The latter is calculated
considering vopj,qes = 0.2m/s and is re-planned at every
footstep, considering the current hand position as the

___________________ 0.35

03

Position (m)
5 B =
S B &

Hand Pasition (m)

0.1
124 13 0 5 10 15
Time (s)

(a) (b)

74 84 94 104 114
Time (s)

Fig. 5. (a) DCM (solid lines) and CoM (dashed lines)
trajectories over time generated by the proposed
method where the red, green, and blue lines indicate
the x, y, and 2 components, respectively; (b) Actual
(blue line) and desired (from the object, red line) a-
trajectories of the robot’s right hand over time.

Hand Force (N)

Time (s)

(a)

Fig. 6. (a) Torque control inputs of the robot’s three
actuators of the right arm over time. The black dashed
line indicates the actuator’s torque limit of 1.4Nm;
(b) Total force exerted by the robot’s right hand on
the heavy object over time in the z (red line), y (green
line), and z (blue line) directions.

starting point for the reference trajectory for the robot’s
hands. The plot shows that the desired hand trajectory
is well tracked in terms of root mean square error with
€hand,z = 0.0022m in the first 7 steps. After that, the
computed control torques exceed the arm actuators’ limit
of 1.4Nm and the BRUCE’s DCM begins not to follow
perfectly its reference since the robot can exert less thrust.
Figures 6a and 6b display, respectively, the evolution of
the right arm control input and the total force exerted
by the robot’s right hand on the heavy object throughout
the task. The hand contact is achieved at ¢t = 3s, and
the object starts to move from ¢t > 7.4s. Note that the
maximum force that the hands can exert is set to 30N to
prevent any damage to the arm actuators. The x-axis has
a negative force value due to the way the hand reference
system has been chosen.

5. CONCLUSION

This paper presents a new framework that allows hu-
manoids to push a heavy object while walking by combin-
ing the concepts of DCM and VRP with Inverse Dynamics
WBC. The key innovation of this method is to include
the required pushing force directly into the trajectory
planning algorithm, allowing for smoother movements and
better adaptation to changing conditions during motion.
Additionally, the proposed framework is capable of both
empirically estimating the desired force for pushing from
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the VRP and re-planning the desired generated DCM tra-
jectory online considering the current feet positions. The
proposed method is versatile and adaptable to different
robots since it is DCM-based and uses the exact CoM
dynamics. The algorithm was validated in simulation in
the MuJoCo environment on the humanoid robot BRUCE.
Results show the proposed method’s efficiency in pushing
the object, although the robot did not know the mass or
friction parameter of it.

Future works aim at improving algorithm robustness with
reinforcement learning by training in simulation various
object masses, friction coefficients, and external distur-
bances, or with step and timing adaptation during online
DCM trajectory generation as proposed by Egle et al.
(2023), enabling empirical re-computation of the VRP-
shift when the robot can no longer push in the current
configuration, and validating the proposed algorithm by
conducting experiments with the real-life BRUCE robot.
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