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Abstract: To handle the complex nature of robots built from soft material, the data-based
Koopman operator theory recently has been proposed as an alternative to model-based controller
designs. In this paper we investigate the use of this theory for articulated soft robots, in which
the elasticity is concentrated at the joints. In particular, we propose to apply the Koopman
operator theory to the residual dynamics of an underlying model-based controller. For the inner
loop control we utilize the Elastic Structure Preserving (ESP) control approach that has been
successfully applied to a wide range of articulated soft robots. However, the control performance
of the ESP control is clearly limited by the accuracy of the model, which motivates the
combination with an outer data-based control approach. The concept is experimentally verified
using antagonistically-driven elastic actuators with highly nonlinear stiffness characteristics.
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1. INTRODUCTION

The control of robotic systems with elasticity is a classical
topic in robotics, which has drawn the attention of both
robotics and control engineers. Originally, elastic robots
have been broadly classified as flexible link robots and
flexible joint robots depending on the main source of
elasticity stemming from the robot links or from elastic
components (e.g. gears) in the robot drive train (De Luca
and Book (2016)). In both cases, traditional robot control
approaches such as computed torque control are insuffi-
cient due to the underactuated nature of the dynamics,
which motivated the development of a wide scope of cus-
tomized model-based control approaches for different types
of elastic robots (Spong (1987); De Luca (2000)).

Early works on elastic robot control typically consid-
ered the joint elasticity as a disturbance to the rigid-
body dynamics. Instead, in articulated soft robots such as
robots equipped with variable impedance actuators (Van-
derborght et al. (2013)), the elasticity is introduced in the
mechanic design deliberately and thus should not be com-
pensated by the control (Albu-Schaeffer et al. (2008)). This
type of robots motivated the development of the Elastic
Structure Preserving (ESP) control framework (Keppler
et al. (2018)), which aims to provide an additional virtual
control input for the underactuated system coordinates
in order to implement effective link side damping and
other control actions. The ESP control approach has been
successfully applied to various elastic joint technologies
(Pollayil et al. (2022); Moyrén et al. (2025)).

Modeling robots with links made of soft material re-
quires more complex modeling approaches based on con-
tinuum mechanics. For control purposes these models

are often simplified by finite dimensional approximations
(Della Santina et al. (2023)). Besides the increased com-
putational complexity, challenges arise from the highly
underactuated nature of these systems and the problem
to obtain precise system parameters for the soft mate-
rial components. In order to address these challenges,
several works resort to data-based modeling and control
approaches for robots based on soft material (Chen et al.
(2024)) using concepts such as neural networks, reinforce-
ment learning, or statistical approaches.

Recently, Koopman operator theory has been proposed as
an effective tool to model and control robots based on
soft material (Shi et al. (2023); Bruder et al. (2021a);
Chen et al. (2022)). In this approach a finite dimensional
approximation of the Koopman operator, describing the
system dynamics, is learned from measured data. This
finite dimensional model can be effectively used for a
controller design based on linear control theory. In par-
ticular, optimization based approaches such as LQR or
model predictive control (MPC) can be directly applied.
This theory has been successfully applied for end-effector
control of continuum robots under varying load conditions
(Bruder et al. (2021b)) demonstrating that the require-
ment to collect measurement data in all relevant operating
conditions in advance can be relaxed in certain cases.

While articulated soft robots with concentrated elasticity
can be handled by model-based control approaches, model
uncertainties and unmodelled dynamics clearly affect the
achievable accuracy. One way to cope with this problem
is to incorporate integral actions into the control (Keppler
et al. (2022)). In this paper we propose a different strategy.
Motivated by the successful application of the Koopman
operator theory for handling the modeling challenges in
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soft robots (Bruder et al. (2021a)), we propose to use
a data-based controller derived from Koopman operator
theory for the residual dynamics of a model-based ESP
controller (see Fig. 1).

The main contribution of this work, thus, is the for-
mulation of a cascaded control approach for articulated
soft robots combining the benefits of a robust model-
based inner loop controller (ESP) and a data-based outer
loop controller based on Koopman operator theory for
improving the accuracy. We compare this solution with a
straightforward application of a Koopman based controller
for the open loop system dynamics and with a pure model-
based ESP controller.

2. BACKGROUND
2.1 ESP Control of articulated soft robots

The Elastic Structure Preserving (ESP) control approach
is a model-based control framework for articulated soft
robots (Keppler et al. (2018)). Consider a robot with n
joints modeled by the the system dynamics
M(q)q +h(q,q) = K(6 —q) + Tear (1a)
BO+KO—-q)=7,+7T7s, (1b)
with the joint q € R™ and motor angles 8 € R", the rigid
body inertia matrix M(q) € R™*™, the nonlinear velocity
dependent and gravity term summarized in h(q, q) € R™.
Motor and link dynamics are coupled by the joint stiffness
K € R"*™. External forces act on the rigid-body part via
Tewt € R™, while on the motor side we have the motor
torques T, € R™ as the control input as well as some
friction terms 7y € R™ acting as a disturbance.

The dynamics (1) is under-actuated, since only the motor
side has a direct control input via 7,,. The core idea of
the ESP control framework is to utilize a state and input
transformation, which transforms (1) in a quasi-fully-
actuated ' form, while preserving the system structure as
an elastic robot with its intrinsic inertial properties and
joint stiffness (Keppler et al. (2018)). As a desired closed
loop dynamics we chose
M(q)4 +h(q,q) = K(n — q) + ug + Text (2a)
Bi) +K(n—q) =uy , (2b)
with a virtual motor angle n € R™ and two virtual control
inputs u, € R™ and u,, € R" acting on the link and motor
side, respectively. Comparing (1a) and (2a) we obtain the
state transformation
n=60+K'u,, (3)
while comparing (1b) and (2b) we can derive the input
transformation

Tm =Tf+ Wy + Uy +BK i, (4)
which represents the final control law.

Based on this framework, the two virtual control inputs
u, and u,, can be utilized in a straight-forward way
for implementing damping injection and other stabilizing
control actions (Keppler et al. (2022)). Some care has to be
made in the choice of u, due to the necessity to compute
its second time derivative in (4).

1 We call this a quasi-fully-actuated dynamics, since the control in-
put ug in (2) can not be chosen arbitrarily, but must be continuously
differentiable twice.
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Fig. 1. Overview of the proposed control structure.

2.2 Koopman Operator Theory

Consider a discrete nonlinear dynamical system with input
u € R™ and output y € RP described by

yli + 1] = F (y[j], ulj]) , (5)
where F denotes the flow map of the system. The Koop-
man operator theory states that every system (5) can
be exactly represented by an infinite dimensional linear
dynamical system (Williams et al. (2015)). For that first
the measured output is lifted to an infinite dimensional
linear function space F with a lifting function called ob-
servable ¢ (y[j], ufj]) € F. The Koopman operator C then
is defined as an operator that advances the observable
according to (5), i.e. K¢p =) o F, namely

K (ylil uli]) = ¢ (ylj + 1), ulj + 1]). (6)

For practical use, a finite dimensional approximation of
the Koopman operator is necessary, which can be ob-
tained, e.g., by the Extended Dynamic Mode Decompo-
sition (EDMD) (Williams et al. (2015)). For that a finite
dimensional subspace Fp € F spanned by the linearly in-
dependent observables v; € F is considered. By definition
every function 1 € Fp can then be written as
N
G (vl ulil) = Y e (vlil uli]) = " (i, uls)) (7)
i=1
with the weights ¢ € RY and the dictionary of observables
¥ (y[jl.ulj]) € BY.
For control design a model of the form
z[j + 1] = Az[j] + Bulj] (8a)
yli] = Czlj] (8b)
is desired. Herein, z[j] = W (y[j]) represents the dictio-
nary. The choice of the dictionary is important to obtain
a good approximation of the original system. To make the
reconstruction of the measured output y easier later on,

the first n entries to the dictionary can be chosen as the
components of the measured output y, i.e.

C(y)=[ Y Ypr1 () - Un(¥)] €eRY . (9)
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Note that, to learn a model where the input appears
linearly, the dictionary does not contain the input at the
jth time step, but, in general, it can contain inputs of
previous time steps.

Next, a set of K measurements is needed to find an
approximation of the Koopman operator. The EDMD
method uses a data set that is ordered into snapshot pairs

ap =yljel, br =F (yljrl,ulje]) =yljx +1],  (10)
where a; € RP is the measurement at time j; and by € R?
is the measurement at the next time step ji + 1. Unlike ay
and by, the snapshot pairs themselves do not have to be
from the same time series or be of any particular order. The
snapshot pairs are then lifted into a higher dimensional
space using the dictionary (9). With regards to (8) we aim
to obtain a Koopman operator in the form
A B
K = [O ! } , (1)
where I € R™*™ denotes the identity matrix and 0 €
R™*N denotes a zero matrix. This is achieved by the
minimization

K
. 12 / _ 2
min kgl |A'® (a;) + B'uy, — ¥ (by)[l,.  (12)

which gives best approximation in the L?-norm sense
(Korda and Mezi¢ (2018)).

Since in (9) the components of the measured output are
the first p elements of the dictionary, the reconstruction of
the states becomes trivial and C € RP*¥ is given by

c=[10]. (13)

Projection  Evolving the lifted output ¥ (y[j]) with the
approximated model (8a) does not give exact results.
Given an output space, the dictionary defines a manifold
in the lifted space. However, the evolved state z[j + 1]
obtained from W (y[j]) with the learned linear model (8a)
does not necessarily belong to the manifold. To increase
the accuracy, a projection operator can be used (Bruder
et al. (2021a)). Ideally, it projects z[j + 1] to the lifted
measured output at time step j + 1, and thus on the
manifold. Writing this in terms of snapshot pairs, yields
P (A¥ (ax) + Buy) = ¥ (by) (14)
with projection operator P. In general, this operator must
be approximated. For that, at first, the matrix
(A¥ (a;) + Bu;)"
Q, = : € REXN (15)
(A® (ag) + Bug)"
is constructed and the lifted snapshots ¥ (by) are com-
piled into the matrix

W, = [¥(by) ... ¥ (bg)]" € REXN, (16)

With these matrices, the best approximation in the
L?-norm sense of the projection operator is given by

Pr = (%) (17)

with P* € RN¥*Y where  denotes the Moore-Penrose
pseudoinverse. The model used for the learning process
can then be modified with the projection operator to

z[j + 1] = Az[j] + Bulj],
where A = P*A and B = P*B.

(18)
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Fig. 2. Control structure of the two methods that are
compared in this work. For the open loop case a model
of the uncontrolled robot is learned, whereas for the
closed loop case a model is learned for the robot that
is controlled with an ESP controller.

3. PROPOSED CONTROL APPROACH
3.1 Considered experimental target system

In this study, we utilize a soft robot consisting of two
motor position-controlled antagonistic variable stiffness
actuators gbmove advanced (see Fig. 1). Each actuator
is equipped with two servo motors, which are connected
to the shaft via highly nonlinear springs. The equilibrium
position 0 4 of the shaft in each actuator is determined
by the average of the motor positions. The overall stiffness
can be adjusted via the difference g between the motor
positions. In the following, we set a constant relative motor
distance, thus operating the actuators as nonlinear series
elastic actuators with the control input 0g 4.

Notice that the original ESP control theory as summarized
in Sec. 2.1 was developed for articulated soft robots with
torque-controlled actuators. However, in (Moyrén et al.
(2025)) it was shown that an application to position con-
trolled actuators is possible. This is achieved by replacing
the motor control action (4) by a motor side admittance
controller. The virtual motor dynamics (2b) thus is utilized
as the desired admittance. In this case, the motor angle
is treated as a control input and it is computed from
0,=n—-Klu,

3.2 Control structure

In this work we compare the performance of two ap-
proaches to design a controller using the Koopman opera-
tor theory. In the first approach (which we denote by open
loop case), we learn a linear Koopman model of the robot
dynamics and then design a linear Koopman controller.
For the second approach (which we call closed loop case)
we combine the Koopman-based control with an under-
lying model-based (ESP) controller. A linear model thus
is learned for the residual dynamics of the ESP-controlled
robot and a linear Koopman controller is designed for that
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learned model. Figure 2 shows the control structure for
these two approaches.

3.8 Selection of observables

The accuracy of the learned model highly depends on
the choice of the dictionary. Table 1 gives an overview
of the different dictionaries which we compare. The first
four variations of the dictionary consist of only the output
and time delays of the output and input. These signals
represent terms of a Taylor series of the unknown dynamics
function. Some variations include entries that are inspired
by the physics of the system. For those, nonlinear functions
that are known to be part of the system dynamics can be
included as entries to the dictionary, e.g. the dynamics
components of a rigid 2-DOF robot arm and the nominal
elastic torque of the actuators. To make the modeling
independent of constant values that are not exactly known,
the first three nonzero terms of a Taylor series of those
functions are chosen as entries to the dictionary.

Table 1. Overview of the used dictionaries.

Step size Number Physics

Dictionary of delays of delays inspired ReLU Size
Woi410 1 10 - - 86
W.1d30 1 30 - - 246
W.s3d10 3 10 - - 86
3430 3 30 - - 246
v, 3 10 v - 171
¥r 3 10 - v 206
Y,r 3 10 v v 231

Initial measurements of step responses of the robot suggest
that the system behavior varies depending on its direction
of movement. To incorporate this observed behavior in
the model, the angular velocities of the output are split
into two entries to the dictionary in some variations.
Each of them should only represent the movement in
one direction. To guarantee that, the rectified linear unit
(ReLU) function, defined as R (x) = max (0, z), is used.
Equation (19) shows as an example all the entries to the
dictionary ¥g. Note that this dictionary will be the one
used for the final control design. Therein, the vector ¥ p
contains the angular velocities Ag; and A6; of the output
that are each split into a positive and a negative part using
the ReLU function. The full dictionary then consists of
the output, time delays of the output, the vector ¥ 5, time
delays of 1, and time delays of the input:
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Fig. 3. Block diagram of the simulation that is used to
verify the learned models.

Table 2. Average RMSE for the models with
different dictionaries. All values are in radian.

Dictionary open loop closed loop
Y1410 0.0269 0.0193
W 1430 0.0251 0.0161
w3410 0.0215 0.0148
W 3430 0.0211 0.0154
v, 0.0302 0.0141
vr 0.0219 0.0150
YR 0.0273 0.0137

4. KOOPMAN-BASED SYSTEM IDENTIFICATION

Learning  To learn a model, a data set of multiple
measured step responses is utilized. To train the model,
the ksysid.m class provided by Bruder et al. (2021a) is
used. This class is further modified to support the use of
custom dictionaries.

Sitmulation  One way to simulate the learned models
is to initialize their states by lifting the initial output
using the dictionary and simulating them as LTI models.
However, in this way an asymmetrical behavior, like the
one expected from the models with ReLU functions in the
dictionary, can not be obtained. To address this, we utilize
a projection as shown in Fig. 3. At every time step the state
z[j] is projected back on a manifold that is defined by the
dictionary. This is done by first reconstructing the output

y[j] from the state z[j] and then lifting the output to the
new state z[j] with the dictionary (Bruder et al. (2021a)).

Model Validation  To validate the learned model corre-
sponding to the different dictionaries a new measurement
of the system response to sequential steps, including the
step back to the original position, is used. To compare
the performance of the different models, the root mean
squares error (RMSE) between the simulation and the
measurements is calculated for each component of the
output and averaged over all outputs. Table 2 shows the
resulting RMSEs for the different models and the different
cases. For control design the model with the dictionary
W is chosen. This shows good results in the validation
and allows to address the directional dependent behavior
via the ReLU functions.

5. KOOPMAN-BASED CONTROL
For the linear controller (see Fig. 2), three different con-

trollers are compared, namely an LQR, an LQR extended
by an integrator (denoted LQR-I), and an MPC controller.
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LQR The cost function for the LQR design is given as

o0
J = 2l " Wezlj] +ulj*W,ulj).  (20)
j=0
The weights W,, and W, are chosen as diagonal matrices.
In the open loop case the input weights are chosen as
W, =diag (10,50) and the state weights are chosen to be
w, ;=1 for the joint angles and w, ; = 102 for the velocities.
In the closed loop case the input weights are chosen as
W, =diag (1, 10) and the state weights are w, ;=1 for the
joint angles, w, ;=5 - 10% for the velocity of the first joint
angle, and w, ; =107 for the second joint angle.

LQR-I For the LQR-I controller, the model is extended
by an integrator of the joint angles. Again, the cost (20)
is used. In the open loop case the input weights are
W, = diag(100,100), the weights corresponding to the
joint angles are w, ; =1, the ones for the velocity of the
first joint angle are w,; =10%, for the second joint angle
they are w, ; =103, and for the integrated joint angles they
are w, ; = 1072, For the closed loop case they are chosen
as W, = diag (10, 10) for the input weights, w,; =1 for
the joint angles, w, ;=5 - 103 for the velocity of the first
joint, w, ; =5-10% for the velocity of the second joint, and
w,,;=1072 for the integrated joint angles.

MPC To guarantee an integral action for the MPC, the
state space model is formulated in the differential state
and augmented by the output, i.e.

] (A 58] 8w
The cost function is given by
J ({u[z]}fv;gl) —UTW2U + AUTWZ AU
(Y —Yy) " W2(Y - Y,),

where W, Wa, € R™NeXmNp and W, € RPNy xpNp
denote the diagonal weighting matrices for the input, the
change of the input, and the error between the output
and the reference, respectively. Further, U € R™V»| Y €
RPN>and Y4 € RPY» denote the vectors containing all
predicted inputs, predicted outputs, and desired outputs.
The sampling time of the prediction horizon is chosen as
N, =30. In the open loop case the input weights are chosen
as W, ; =diag (10, 20) and W a,,; =diag (300, 300). In the
closed loop case the input weights are chosen as W, ; =
diag (10,10) and Wa,,; = diag(1,1). These weights are
held constant over the whole prediction horizon. Therefore,
the weighting matrices in (21) are composed of a repetition
of those weights. In both cases, the weights for the output
are chosen as wy, = 1 for each entry corresponding to a
joint angle.

(21)

Step response  The first experiment evaluates the step
response to a step from an initial position q = 0 to a
desired joint position qq = [0.3rad, —0.3rad])”. To show a
dependency of the direction of movement, a step in the
reverse direction back to q = 0 is also included. The
resulting behavior of the first joint angle can be seen in
Fig. 4 for all controllers in the open loop case and in Fig. 5
for the controllers in the closed loop case.
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Fig. 4. Comparison of step responses of the different con-
trollers in the open loop case. The blue line represents
the reference (r) and the magenta line shows the pure
open loop (ol) behavior.
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Fig. 5. Comparison of step responses of the different
controllers in the closed loop case.

Trajectory Tracking In the second experiment, trajec-
tory tracking is addressed. Two trajectories for the TCP
of the robot are defined describing an 78" like and a
rectangular shape. These should be tracked over a total
time of T' = 40s for one cycle and with a constant velocity.
Since the LQR shows a considerable steady state error in
the step response it is excluded for this experiment. The
resulting trajectories for all remaining controllers can be
seen in Fig. 6.

Discussion  The results of the step response suggest that
most controllers designed for the closed loop case improve
the performance compared to the ESP controller itself.
Further, the performance of all controllers designed for
the open loop case can be improved by combining them
with the ESP controller to the closed loop case. Also
the damping of the robot that is imposed by the ESP
controller is upheld for all linear controllers designed for
the closed loop case. For trajectory tracking it can be seen
that mainly the inclusion of an integrating behavior in the
control design improves the performance. The outer loop
Koopman controller thus can augment the missing integral
action to the ESP control.

6. CONCLUSIONS

In this paper we propose a combination of data-based
Koopman operator theory with an underlying model-
based controller for articulated soft robots, whose accu-
racy clearly is affected by the quality of the used system
model. This combination allows to incorporate additional
control actions like integral actions to the residual dy-
namics. We compare this approach experimentally with a
direct application of the Koopman operator theory to the
open loop dynamics of the same system. The experimental
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Fig. 6. Trajectory following performance of the different controllers: TCP position in red and reference in blue.

results confirm that this approach allows to improve the
control performance. However, the resulting performance
is limited by the accuracy of the Koopman model for the
residual dynamics. In this work the observables were cho-
sen based on physical reasoning and the observed system
behavior. Further improvements may be obtained by the
use of machine learning techniques for finding a different
set of observables, which gives a better representation of
the residual dynamics.
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