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Abstract—We benchmark 90 chunker–model configurations
across seven arXiv domains (2 520 retrieval runs) and show that
a sentence-based splitter with a 512-token window and 200-
token overlap reaches the highest token-level Intersection-over-
Union (IoU ≈ 0.099) while remaining compute-efficient. Our
study systematically pairs seven open-source embedding models
with semantic and fixed-size chunking strategies, measuring
their impact on retrieval quality and latency in Retrieval-
Augmented Generation (RAG) pipelines. Results reveal that (i)
sentence splitting consistently outperforms alternative heuris-
tics, (ii) smaller embeddings deliver more stable cross-domain
performance than larger ones, and (iii) finance texts benefit
most, whereas astrophysics lags. The accompanying code provides
practitioners with empirically grounded guidelines for selecting
chunking–embedding combinations that balance accuracy and
efficiency.

Index Terms—RAG, Information Retrieval, Chunking.

I. INTRODUCTION

Despite the centrality of retrieval-augmented generation
(RAG) pipelines in modern language-centric applications, the
interaction between document–chunking heuristics and em-
bedding models remains under-explored, especially when sys-
tems are deployed across heterogeneous knowledge domains.
Existing benchmarks either evaluate full-document ranking or
rely on coarse Top-k metrics, offering little guidance on how
chunk size, overlap, and semantic cohesion influence token-
level relevance, compute cost, and, ultimately, answer quality
[1], [2].

RAG addresses the context-length and freshness limits of
pretrained language models by retrieving grounded snippets
before generation [3], [4]. Sophisticated variants now add
overlapping windows, recurrence, or agentic controllers [5].
However, practical design still hinges on two levers: how

a document is partitioned and which embedding space best
encodes those partitions.

Enterprises are increasingly leveraging large language mod-
els to mine corpora in legal, finance, healthcare, and techni-
cal domains [6]. In these settings, passing entire documents
through a model is often infeasible—context windows are
limited, and irrelevant tokens dilute the signal, raising latency
and degrading response quality. Document chunking, there-
fore, functions as a critical pre-processing step [7], [8]. Yet no
systematic, domain-level comparison of chunker–embedding
combinations exists.

Contributions
1) We benchmark 90 chunker–model configurations across

seven scientific domains, executing 2 520 retrieval runs
with a token-level Intersection-over-Union (IoU) metric.

2) We demonstrate that sentence-based splitting with a
512-token window and 200-token overlap achieves the
top IoU (≈ 0.099) while remaining computationally
efficient.

3) Results reveal that (i) sentence splitting consistently
outperforms alternative heuristics, (ii) smaller embed-
dings deliver more stable cross-domain performance
than larger ones, and (iii) finance texts benefit most,
whereas astrophysics lags.

4) We release reproducible code and empirical guidelines
to help practitioners select chunking–embedding pairs
tailored to domain characteristics and resource budgets.

II. RELATED WORK

1) Chunking Techniques: Early RAG deployments relied on
fixed-size windows for their simplicity, yet these ignore sen-
tence or structural boundaries and may split atomic facts [3].
Semantic and hybrid strategies attempt to preserve discourse979-8-3315-2037-3/25/$31.00 © 2025 European Union



Fig. 1. The challenges of text chunking in retrieval systems: an example query about the 2019/2020 Champions League final shows how
relevant cues (location and winner) are distributed across chunks and documents. Pink regions stem from Document 1, while green regions
stem from Document 2, underscoring how critical facts can be fragmented irrespective of the chunking policy.

coherence at the expense of additional computation [9]–[11].
Empirical work suggests that 250–512-token chunks maximise
retrieval precision, whereas 1 000–2 000 tokens favour context
retention for summarisation [6]. More recent agentic pipelines
such as Meta’s JESTR-RAG integrate dynamic overlap and
recurrence but still hinge on the underlying chunk boundaries.
The debate over cost–benefit trade-offs, therefore, remains
open [10], [12]. Traditional benchmarks emphasize document
ranking, whereas LLMs are indifferent to the position of
relevant information within their context window. This neces-
sitates a more sophisticated approach to evaluating chunking
strategies, as illustrated in Figure 1.

2) Token-level Evaluation: Traditional IR benchmarks (e.g.,
MTEB) report document-level Top-k scores that overlook how
LLMs treat all tokens in their context window uniformly
[1]. Smith et al. introduced Intersection-over-Union (IoU) to
measure token-wise overlap between retrieved context and
gold spans, capturing both redundancy and noise [2].

TABLE I
RANKING VS. TOKEN-LEVEL METRICS.

Metric Granularity Penalizes Noise?

Top-k Accuracy Chunk / Document No
IoU (ours) Token Yes

3) Domain-aware Retrieval: Chunk effectiveness is mod-
ulated by genre and structure: structural-element splitting
outperforms paragraphs in financial filings [13], while medical
vision–language models benefit from anatomy-guided segmen-
tation [14]. Cross-domain studies further report that the inter-
action between chunkers and embedding models varies widely,
affecting both accuracy and latency [10], [15]. Nevertheless,
systematic comparisons spanning multiple domains—and eval-
uated with token-level metrics—are scarce.

Our work addresses these gaps by jointly analysing chun-
ker–embedding combinations across seven scientific fields
with IoU, providing the first large-scale, domain-sensitive
benchmark to inform real-world RAG design.

III. METHODOLOGY

This section details the chunking approaches, metrics, and
query–answer (Q&A) generation pipeline used to benchmark
RAG systems.

A. Chunking Strategies

We compare three families of splitters—semantic, sentence,
and token. All are implemented via LlamaIndex node
parsers to ensure a uniform API.

SemanticSplitterNodeParser: Semantic boundaries are
detected by computing cosine similarity between adjacent
sentence embeddings (OpenAI gpt-4o-mini). Split points
are chosen when similarity falls below the {95, 85, 75}-
percentile of the document-level distance distribution. Across
the seven-domain corpus, these thresholds correspond to pro-
gressively finer granularity: the 95 % cut produces the fewest
but longest chunks (median length > 500 tokens), 85 %
roughly halves that length, and 75 % yields the smallest,
highly local segments. Figure 2 in the appendix visualises the
resulting length histograms.

SentenceSplitter: Text is broken at sentence boundaries
and then packed into windows of {128, 256, 512} tokens with
optional overlaps of {0, 75, 200} tokens. Triple new-lines
(\n\n\n) mark paragraph breaks to preserve structure.

TokenTextSplitter: A deterministic tokenizer-level splitter
creates chunks of 1,024 tokens (default) with overlaps {0,
25, 50, 75}. This ensures compatibility with any embedding
model’s context window, while providing direct control over
retrieval costs.

B. Evaluation Metrics

Retrieval quality is judged at token level. Let te be the set
of gold tokens and tr the tokens returned by the retriever; we
compute

IoU =
|te ∩ tr|

|te|+ |tr| − |te ∩ tr|
(1)



A high Intersection-over-Union balances completeness and
noise by simultaneously rewarding recall and penalising irrel-
evant or redundant tokens. Precision P = |te ∩ tr|/|tr| and
recall R = |te ∩ tr|/|te| are reported inline with IoU rather
than as separate equations.

C. Retrieval-Evaluation Pipeline

For each of the 28 source papers, we generate ten
query–answer pairs (total 260) using gpt-4o-mini:

“You are a domain expert. Craft one fact-based
question that can be answered exclusively from the
passage below. Return JSON with fields ‘question’,
‘answer start’, ‘answer end’.”

The model was chosen because it is architecturally aligned
with the embedding family and offers a favourable cost-to-
quality ratio—roughly 3× cheaper than gpt-4o-large at
identical temperature settings, enabling 2 520 retrieval runs
within a single-GPU budget.

Generated answer spans are validated by enforcing exact
string matches in the source text and de-duplication against
the previous ten questions to guarantee coverage diversity.
This automated yet traceable procedure keeps the evaluation
set disjoint from any embedding-model training data and
can be optionally complemented by human raters for critical
applications.

IV. EXPERIMENTS AND RESULTS

This section details and analyzes our experiments.

A. Baseline Choices

To evaluate the performance of semantic interoperability
across different embedding approaches, we carefully selected a
diverse range of models and established rigorous experimental
parameters.

a) Embedding Models: We selected seven embedding
models, each representing a different architecture and pa-
rameter size. As benchmark models, we included OpenAI’s
text-embedding-3-small (1.5 billion parameters) and text-
embedding-3-large (3 billion parameters). For open-source
alternatives, we selected five leading models from the Ollama
platform: mxbai-embed-large (335M parameters), all-minilm
(22M parameters), bge-m3 (567M parameters), nomic-embed-
text (1.5B parameters), and all-minilm-33m (33M parameters).
This selection offers a comprehensive comparison across vari-
ous model sizes and architectures, enabling us to examine the
trade-offs between model complexity and embedding quality.

b) Input Data Selection: To ensure consistent quality and
structural comparability across domains, we utilized research
papers from arXiv1 as our primary data source. We selected
papers from seven distinct domains: statistics, astrophysics,
computer science, economics, finance, engineering, and biol-
ogy. For each domain, we analyzed five peer-reviewed papers,
ensuring high-quality content with standardized academic for-
matting. This approach minimizes potential bias from varying

1https://arxiv.org/

text qualities or formatting inconsistencies that might affect
embedding performance. For PDF to text conversion, we
utilized PyMuPDF2, a high-performance Python library that
enables efficient document processing and data extraction.

c) Text Chunking Approaches: For text segmentation, we
implemented three established chunking methods described in
Section III-A.

The configuration parameters for each chunker were se-
lected based on established best practices and technical docu-
mentation. The SentenceSplitter was configured with standard
sentence detection rules, the SemanticSplitterNodeParser with
semantic coherence thresholds, and the TokenTextSplitter with
chunk sizes optimized for the embedding models’ context
windows.

B. Experimental and Implementation Details

Our experimental setup encompassed 90 distinct parameter
configurations, combining 7 embedding models with 15 dif-
ferent chunking configurations (3 SemanticSplitterNodeParser,
6 SentenceSplitter, and 6 TokenTextSplitter variants). Each
configuration was tested on 4 representative documents from 7
academic domains, resulting in 2, 520 individual experiments.
For evaluation purposes, we generated a question-answer
dataset comprising 10 questions per document, specifically
designed to reference key text passages [2]. After rigorous
filtering to ensure quality and relevance, we established a
benchmark set of 260 questions with verified correct answers,
serving as our primary performance metric baseline. The
implementation framework was developed in Python, utilizing
the Ollama platform for embedding model deployment. All
experiments were accelerated using an NVIDIA RTX4090
GPU. To ensure reproducibility and scalability, our implemen-
tation supports distributed computing through remote GPU
integration, specifically enabling connection to cloud-based
GPU services such as RunPod.io3 through remote Ollama
instances. The full code implementation with all related input
data will be made available on GitHub 4.

a) Throughput and cost analysis: To quantify the com-
putational footprint behind the ”good-and-fast” quadrant in
Fig. 3, we measured the time each model needs to embed
1 000 chunks on a single RTX 4090 (FP16, batch size 32).
Table II lists those wall-clock seconds together with the
average token payload of the chunking configuration that
yielded the model’s peak IoU. The figures reveal a clear three-
tier landscape: lightweight embedders such as all-minilm finish
in under 10s, medium commercial models stay below 15s,
while heavyweight open-source models roughly double the
cost. These numbers provide a concrete speed-to-quality trade-
off for practitioners planning large-scale deployments.

C. Results and Discussion

As illustrated in Figures 3 and 4, our experiments reveal
several significant insights about the relationship between

2https://github.com/pymupdf/PyMuPDF
3https://www.runpod.io/
4https://github.com/maxistaebler/COINS 2025



Fig. 2. Box plot distribution of IoU scores across embedding models and domains, highlighting significant domain-dependent performance
variations. Finance consistently achieves the highest scores (0.06-0.11), while computer science and astrophysics show lower performance
(0.03-0.04). bge-m3 and nomic-text-embed models demonstrate best overall performance across domains.

TABLE II
EMBEDDING COST ON AN RTX 4090 (BATCH SIZE 32, FP16).

Embedding model Avg. tokens / chunk GPU sec / 1 000 chunks

all-minilm 485 9.6
text-embedding-3-small 486 12.3
all-minilm-33m 485 11.0
text-embedding-3-large 486 14.1
nomic-embed-text 512 16.8
mxbai-embed-large 957 18.5
bge-m3 512 21.7

embedding models, chunking strategies, and domain-specific
performance. While the overall performance across embedding
models and chunking strategies shows general consistency,
we observed notable variations in specific domain-chunking
strategy combinations. Notably, chunking parameters that per-
form well with a specific embedding model in one domain
do not necessarily maintain this performance across other
domains. A key finding is that larger embedding models with
more parameters do not automatically translate to superior
performance.

This is particularly evident in the comparison between
commercial and open-source models. While OpenAI’s models
excel in average embedding time, they achieve lower mean IoU
scores compared to smaller models, such as bge-m3 (567M
parameters) and nomic-embed-text (1.5B parameters) (Figure
3). Our analysis reveals a slight negative correlation between
model size and mean IoU scores (Figure 4). Domain-specific
analysis shows that financial texts consistently achieve the
highest performance metrics across all embedding models and
chunking strategies, suggesting that financial documents may

possess structural characteristics particularly well-suited to our
semantic interoperability approach.

a) Embedding Models and Domains: Our analysis of
IoU scores, as shown in Figure 3, reveals distinct patterns
across domains and embedding models. Most notably, finance-
related texts consistently achieve superior retrieval perfor-
mance across all embedding models, with mean IoU scores
significantly higher than those of other domains. However,
this domain also exhibits the highest standard deviation (σ =
0.032), followed by statistics (σ = 0.018) and biology (σ =
0.013), indicating greater variability in retrieval quality. The
bge-m3 model demonstrates the best overall performance, sur-
passing both nomic-embed-text and OpenAI’s text-embedding-
3-large in mean IoU scores. Conversely, astrophysics consis-
tently shows the lowest IoU scores across models, potentially
due to limited representation in the models’ training data. An
observation emerges regarding model size and performance
stability: smaller models exhibit more consistent performance
across domains, as evidenced by their lower standard de-
viations (all-minilm:latest σ = 0.021, all-minilm:33m σ =
0.021) compared to larger models like text-embedding-3-large
(σ = 0.025). This suggests that while larger models may offer
superior performance in specific scenarios, they may be more
sensitive to domain-specific variations.

b) Embedding Model and Chunking Strategy: The anal-
ysis shown in Figure 3 reveals optimal performance combina-
tions between embedding models and chunking strategies. The
text-embedding-3-large and all-minilm models achieve supe-
rior results when combined with SentenceSplitter (chunk size
= 512, overlap = 200). Similarly, mxbai-embed-large excels
when using TokenTextSplitter (chunk size = 1024, overlap



Fig. 3. Scatter plot of mean IoU score versus average embedding time for every chunker–embedder configuration. Marker shapes encode
SplitterType, while colours identify the embedding model.The light-grey band shows the interquartile range (Q1 = 0.0450, median = 0.0495,
Q3 = 0.0557; IQR = 0.0107) and the whiskers extend to the 95 % bootstrap confidence interval of the mean IoU. A paired t-test against
the SentenceSplitter (512-75) baseline confirms that the three points inside the “good-and-fast” ellipse are significantly better at α = 0.05.
Smaller models such as all-minilm or the inference-optimised text-embedding-3-small therefore deliver competitive accuracy with much lower
computational cost.

= 0), maintaining high IoU scores with efficient embedding
times. The embedding time analysis reveals three distinct
clusters corresponding to model sizes, which complements
our earlier findings regarding model size and performance
stability. While bge-m3 and mxbai-embed-large demonstrate
the highest average embedding times, these can be reduced by
approximately 50% through NVIDIA H100 GPU acceleration
on cloud platforms.

The top-performing chunking configurations achieved the
following mean IoU scores:

SentenceSplitter (512-200) : IoU = 0.099

TokenTextSplitter (1024-0) : IoU = 0.093

SentenceSplitter (512-200) : IoU = 0.092

The experimental results presented highlight several key
findings across our seven-domain evaluation. The combination
of text-embedding-3-small with SentenceSplitter (512 − 200)
achieves the highest IoU score of 0.099, followed by mxbai-
embed-large with TokenTextSplitter (1024−0) at 0.093 and all-
minilm with SentenceSplitter (512−200) at 0.092. Notably, the
latter two open-source models accomplish this performance
with significantly smaller parameter counts of 335Mand 22M
respectively.

The straightforward approach of sentence-based splitting
consistently yields superior results across domains compared
to more sophisticated methods, such as token-based or se-

mantic chunking. This observation suggests that natural lan-
guage boundaries provide more effective segmentation points
for embedding-based retrieval tasks. Regarding chunk size
configurations, our experiments indicate that moderate sizes
(256− 512 tokens) yield optimal results compared to smaller
(128 tokens) or larger (1024 tokens) alternatives. This finding
holds true across different model architectures and domains.

V. CONCLUSION AND FUTURE WORK

We conducted the first large-scale benchmark that jointly
varies chunking strategies and embedding models across seven
scientific domains, totalling 2 520 retrieval runs. Results con-
firm that retrieval quality is not uniform across fields: finance
PDFs consistently top the IoU charts, whereas astrophysics
lags. A plausible explanation is schema conformity: financial
reports feature regular tables and numeric lists that survive
chunk boundaries intact, while free-form astrophysics prose
scatters relevant facts, increasing the chance that any single
chunk omits key tokens.

The study also nuances the ”larger̸=better” narrative.
Smaller embedders (e.g. all-minilm) match or surpass billion-
parameter models when queries are short (< 300 tokens), but
recent long-query benchmarks (> 300 tokens) indicate the
advantage can flip, with larger models regaining ground; future
work should revisit this regime once public datasets mature.



Limitations. (1) The corpus is restricted to scientific texts,
excluding legal or clinical material; (2) we measure only
retrieval fidelity, not the downstream faithfulness of generated
answers.

Future Work
• Correlate IoU improvements with answer-faithfulness

scores from GPT-4o evaluations to close the retrieval-
to-generation gap.

• Investigate how document structure (tables, figures, head-
ings) alters optimal chunk sizing and overlap.

• Design adaptive chunkers that tune window and overlap
on-the-fly according to domain cues.

• Extend the benchmark to multilingual corpora and non-
academic genres.

Practical takeaway. Organisations are advised to run a
30-min pilot with our open-source scripts before committing
to commercial retrieval APIs; such a trial typically embeds
50 k chunks on a single RTX 4090 and reveals whether a
lightweight model already meets accuracy and latency targets.
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