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Abstract—There exist numerous ways to achieve multi-tasking
control in kinematically redundant robots to accomplish sev-
eral goals simultaneously. In all approaches, regardless of the
specific type of controller, one has to make a choice about the
closed-loop inertia and consequently the dynamic task couplings.
Here, we introduce a new control strategy which combines two
fundamentally different properties that have not been brought
together yet. First, we fully dynamically decouple all individual
subtasks, which cannot be achieved with classical passivity-based
or hierarchical approaches. Second, we provide high robustness
in practice which is structurally not possible with any inverse-
dynamics approaches enforcing a decoupled but constant closed-
loop inertia. Beside formal proofs of stability and passivity,
we compare our approach with the other categories in various
simulations and experiments. Since the proposed controller is
grounded on the fundamental property of full natural task-
space decoupling, this underlying strategy and its benefits can
also be transferred to other design methods such as quadratic
programming, MPC, or learning-based approaches.

I. INTRODUCTION

A kinematically redundant robot such as the one illustrated
in Fig. 1 is characterized by a larger number of actuated
degrees of freedom (DOF) than actually necessary to per-
form a specific task. This redundancy makes it possible to
execute additional tasks in parallel, commonly known as multi-
tasking. The first works in kinematic and dynamic multi-
tasking control date back to the 1980s utilizing nullspace
projections to achieve a hierarchical decoupling of the subtasks
[1]-[4]. In the seminal operational space formulation (OSF),
linear closed-loop dynamics are enforced by the controller to
decouple the task-level dynamics [4]. As investigated later in
[5] one can even show that this approach and its numerous
extensions such as [6]-[9] are in fact equivalent to a feedback
linearization or inverse dynamics, respectively. Besides, [10]
has investigated such equivalence properties, namely between
projection-based dynamics and the OSF.

Over the years, multi-tasking has been addressed from
several perspectives. Among others, quadratic programming
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Fig. 1. Kinematically redundant humanoid robot Rollin’ Justin with seven
parallel control tasks. The setup in the background belongs to the Surface
Avatar project [11], in which the robot has been commanded from astronauts
located on the International Space Station (ISS).

(QP) has been deployed for a stack of tasks in hierarchical
order which brings along the major advantage of the insertion
of inequality constraints [12]-[16]. In parallel, nullspace-based
approaches have been significantly advanced with the focus on
high robustness in practice! and formal proofs of stability for
safety reasons [17]-[19]. Beside the use of learning methods
[20], a new track applies model predictive control (MPC) to
handle multi-tasking scenarios [21]-[23].

Irrespective of the control strategy or approach, a deliberate
choice for the closed-loop inertia has to be made in all
cases. In order to dynamically decouple the multiple task-
space dynamics, the structure of the inertia matrix has to
be modified actively. Figure 2 outlines the basic categories
multi-tasking controllers typically aim for. The most natural
case on the left is characterized by a fully occupied matrix
expressing the real, physical inertial couplings. Classical con-
trollers such as the task-space version of PD+ control [24] or
the superposition of individual subtask control actions [25]-
[29] belong to this category. These controllers modify the
natural dynamics as little as possible which typically leads
to high robustness in practice. Moreover, they are either not
affected by singularities (PD regulation controller) or they
are at least less prone to stability problems when crossing
singularities (PD+). However, all tasks dynamically interfere
with and disturb each other. The lower triangular closed-loop

"Note that the term robustness in practice does not refer to a formal ro-
bustness analysis here. Rather, it refers to the intuitive notion that a controller
exhibits decent control performance and stable behavior in experiments



inertia matrix in the second category comprises all hierarchical
control approaches where tasks with lower priority may not
disturb any higher-priority tasks. Among others, this includes
concepts based on nullspace projections [30], particularly the
ones ensuring dynamic consistency [4]. In recent years, the
major step from multi-tasking regulation to tracking control
has been taken in this research direction [17]-[19], [31], [32],
the inclusion of inequality constraints has been addressed
in hierarchical schemes [33], and adaption laws to manage
modeling uncertainties have been proposed [34]. The structure
on the right side of Fig. 2, namely the full artificial decoupling,
represents the wide field of inverse dynamics and computed-
torque approaches [35, p. 429]. Herein, all tasks are dynami-
cally decoupled and constant values are enforced in the closed-
loop inertia matrix. While these methods usually aim for the
identity matrix as closed-loop inertia [36], one can in general
also choose any other constant values instead. Full artificial
decoupling is basically equivalent to feedback linearization [5]
and represents the most drastic control intervention because
the natural dynamics of the robot are altered to large extent.
Evidently, the controlled robot will feature the best possible
behavior in theory (linear closed-loop dynamics, dynamically
decoupled tasks, exponential convergence) but at the cost
of restrictions on the control parameter selection or severe
stability issues in practice [37]. An alternative approach with
full artificial decoupling has been proposed in [38]. Although
the block-diagonal entries in the closed-loop inertia matrix are
not constant, the choice is still artificial because configuration-
dependent, physically motivated terms are introduced which
do not represent the natural inertial behavior. The IDA-PBC
approach [39] suggests to shape the total energy in a system,
which also includes the kinetic energy involving the inertia
or mass matrix, respectively. For example, the authors in [40]
apply the IDA-PBC methodology to an underwater vehicle and
enforce a constant diagonal mass matrix in the target dynamics
which is built with the entries of the main diagonal of the
original mass corresponding to a specific state.

The remaining category in Fig. 2, full natural decoupling
(FND), represents the connecting link between the partial
preservation of the natural dynamics and the full artificial de-
coupling of all subtasks, to be addressed in this paper. We will
propose a control approach that manages this balancing act:
fusing the practical robustness of passivity-based approaches
(left side in Fig. 2) with the full dynamic decoupling of the
subtasks (right side in Fig. 2). In detail, the main features and
contributions of FND control are:

o The FND controller features low effective feedback gains
which are comparable with passivity-based approaches
such as PD+ or nullspace control. That confirms the
advantages over inverse dynamics solutions in practice,
which require high effective feedback gains instead.

o FND control adopts the feature of full task-space de-
coupling from inverse dynamics, separating the dynamic
behaviors of all individual subtasks completely. That
confirms the advantages over approaches such as PD+
or nullspace controllers.

o Formal proofs of stability and passivity for FND control
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Fig. 2. Structure of the closed-loop inertia matrix. Blocks with X denote
non-constant, non-zero elements. Blocks with 1 represent constant, non-zero
elements.

form the theoretical basis for the application in safety-
critical scenarios and human-robot interaction.

o The comparison of the proposed approach with four
alternative concepts in various simulations and experi-
ments verifies the theoretical claims and highlights the
advantages over the state of the art.

The article is organized as follows: after the introduction of
the fundamentals and notations in Section II, the controller is
developed in Section III and investigated in terms of stability
and passivity in Section IV. Simulations and experiments are
presented in Section V and Section VI, respectively. After
the discussion in Section VII, the conclusions are outlined
in Section VIII.

II. FUNDAMENTALS

This section reviews the dynamics formulations and no-
tations used in this work, taking into account the classical
assumptions made.

A. Joint-Space Dynamics

The rigid-body dynamics of a robot with n actuated degrees
of freedom (DOF) can be formulated as

M(q)g+C(q.q)a+g(q) =7+ 7 (1

with g,q,qg € R" representing the joint positions, veloc-
ities, and accelerations. The positive definite, symmet-
ric term M (q) € R™*™ describes the inertia matrix, and
C(q,q) € R™*" relates to the Coriolis/centrifugal matrix. The
generalized gravity forces, control forces, and external forces
are given by g(q), T, 7" € R", respectively. The following
standard assumptions are made for (1):

Assumption 1. The quantities M (q) and C(q,q) are uni-
Sormly bounded for all possible values of q, and C(q,q) is
linear in q [41], [42].

Assumption 2. The matrix C(q,q) is formulated in a
way such that M(q,q) = C(q,q) + C(q,q)" holds and
M(q, q) — 2C(q, q) is skew-symmetric [43], [35, p. 279].

Remark 1. While there exist various ways to express the
Coriolis and centrifugal matrix, Assumption 2 is beneficial
in terms of Lyapunov-based analyses because it allows for the



straightforward cancellation of terms related to M (q,q) in
the time derivative of the storage function [35, p. 433].

B. Task-Space Dynamics and Task Definitions

A total number of » € IN independent, simultaneous tasks
are defined through the task-space positions, velocities, and
accelerations

z; = fi(q) . )
& =Ji(q)d . 3)
& =Jil@)qg+ Ji(q,q)q , )

for ¢=1,...,r with the dimension m; € N of the
i-th task and the continuously differentiable function
fi(@) : R™ — R™i. The corresponding Jacobian matrix is
defined as J;(q) := 0f,;(q)/0q. All tasks are equally impor-
tant and their total task dimension matches the dimension
of the configuration space, that is, 21:1 m; = n. The de-
sired/reference task-space trajectories for these tasks depend
on time ¢ and are described by xq;(t) € R™ fori =1,...,r
Their time derivatives @4 ;(t) and &4 ;(f) are continuous and
uniformly bounded in ¢. Accordingly, the task-specific errors
are defined as

L, = T; —

xq,:(t) )

for i =1,...,r with the respective time derivatives Z; and
;. To unify the notations in the following, the stacked terms
fl@) =" Fr @) (6)
x=(z],....z;)" (7)

= (wdTl, ag,)” 8)

z :( Lo @)! )

J =7, JT> (10)

= (FT,...,F)T (11)

cht ((cht) . (ngt)T)T (12)

are introduced, where F' and F°** contain the control inputs
and external forces related to the r tasks. As @ and F** are
collocated and define the power port (&, F***) for physical
interaction with the robot in the task space, the mappings

T = J(q)TF™ |, r=J(q)'F (13)

hold. Analogous to Section II-A, the following assumptions
shall be stated:

Assumption 3. The Jacobian matrices J;(q) are uniformly
bounded in q for all tasks i = 1,...,r [44].

Assumption 4. The function f(q) : R" — R"™ is a local C*-
diffeomorphism, and the augmented Jacobian matrix J(q)
features rank(J(q)) = n and is consequently invertible.

Remark 2. Assumption 4 implies that no singularities are
crossed in the considered workspace. While this is a com-
mon assumption that is required for, e.g., many feedback-
linearization-based controllers such as in most inverse dynam-
ics approaches, it strongly depends on the proper choice of the
desired task-space trajectories to avoid the singularities.

For the sake of readability, as of now the dependencies on
q and ¢ in the notations are omitted wherever not strictly
necessary for the understanding. Combining (1)-(10), one can
perform the coordinate transformation into the task space and
obtain

+(IM'C-0)J e+ IM g

= JM (T + 1) (14)
with the fully-coupled total task-space inertia matrix
Q1 Q1
Q=M N =] : (15)
Qr,l Qr,r

which involves the block elements £2; ; € R™*™J for all
t=1,...,7and 5 =1,...,r. Multiplying (14) by (15) from
the left yields the classical task-space dynamics

Qi+ pe+QIM g =F + F™ (16)
with the new Coriolis and centrifugal matrix p(q, g) € R™*"
featuring a similar block structure as in (15):

Hi1 M1
p=QUMI'C-J)J =] : A7)
u‘r,l ll’r,r

Due to the specific formulation of the Coriolis and centrifugal
matrix according to Assumption 2, the relation

Q=ptpu” (18)

still holds after the coordinate transformation.

III. CONTROLLER DESIGN

The task-space dynamics (16) is naturally coupled as can be
seen in the structures of €2 and p in (15) and (17), respectively.
Since the objective here is to dynamically decouple all r
tasks, the inertia matrix has to be decoupled through active
control feedback. Yet, in contrast to the classical procedure in
inverse dynamics, where a feedback linearization is targeted,
the desired inertia will not be set as a constant, diagonal matrix
but it will be aligned with the natural term (15) as best as
possible. Therefore, the desired closed-loop inertia

Qd = diag(ﬂl’h...,ﬂm) . (19)

is specified which both conserves the natural blockdiagonal
elements and decouples the r tasks. Multiplying (14) by €24
from the left yields

Quid + o + QeI M g = QuQ T T (r + ) (20

with

p=QqJMC-J)J! (21)

It has to be noted that the essential condition for power
conservation between the time derivative of the inertia matrix



and the Coriolis/centrifugal matrix, such as represented by

(18), does not hold for (20) anymore,” that is,
Qu#ptp . (22)

However, one can split (17) into two parts, namely the block-

diagonal component

(23)

pg = diag(py 1, py )

and the remaining outer-blockdiagonal elements contained in
©— pg. Since 4 has been originally extracted from (15),
the condition for power conservation naturally holds for py
instead of fi:

Qa = pg+pd - (24)
In other words, (24) is the reduced version of (18) which only
includes the blockdiagonal components.

Based on these considerations, the following control law
can be chosen:

T =a(J Q' F - 7o) 1 g

+JTQQ" (i — pq®)

+J7Q0;" (Qa#q + pyza — Dz — Kz)  (25)
The binary value o € {0,1} enables feedback of external
forces (o« =1) or disables it (o =0), depending on the
availability and quality of the respective measurements or
estimates. Beside the compensation of gravitational effects, the
control law performs a dynamics modification in the second
line of (25), namely the annihilation of fa from (20) and
the introduction of pu, & to recover the condition for power
conservation stated in (24). The third line in (25) comprises
the standard components of PD+ (or augmented PD) control
[24]. The PD+ error feedback involves the blockdiagonal, sym-
metric, and positive definite stiffness and damping matrices

K = diag(Kl,l, ey Kr,r) s
D(q) = diag(D1,1(q), -, Dy(q)) ,

with the task-specific components K ;, D; ;(q) € R™ <™
fori =1,...,r. The configuration dependency in the damping
matrix is optional and can be used to locally realize specific
damping ratios, for example. Applying (25) to (20) yields the
closed-loop dynamics

(26)
27

a=0:
a=1:

Quz + (g + D)z + K& = QquQ ' F™" | (28)
Qi + (py + D)z + Ki = F (29)

IV. STABILITY AND PASSIVITY

In this section, formal proofs of exponential stability (Sec-
tion IV-A) and passivity (Section IV-B) are presented and
intuitively visualized (Section I'V-C).

2Note that (20) is equivalent to (16) but just an alternative representation.
Since the actual inertia and power conservation are intrinsic physical proper-
ties of the system dynamics and independent of the mathematical representa-
tion, one cannot straightforwardly extend (18) to the new formulation.

Due to the decoupled structures on the left-hand sides of
(28)—(29), one can define Lyapunov candidate functions for
all individual tasks ¢ = 1,..., 7.

A .1
> <2:cTQ:c + 2wTK:c>

i=1

56 @ a6

Note that the explicit time dependency in (30) originates
from the change of coordinates from (q, ¢) to the error states
(2,2).3 The time derivatives can be computed as

V(t, &, %)

(30)

a=0:

V(t, @, &, F*) = 2"QuQ ' F - > "2l D,

=1
A ~
_ AT —1 gpext SE 0 0 :B
mare (2)' (8 5) ()
3D
and
a=1
V(t, @, &, F) =Y (] F{ — 2] D ;)

=1

T .
_ T pext _ (;) <8 g) (g) , (32)

inheriting the task decoupling in the damping terms in (31)-
(32) and additionally in the physical interaction for & = 1 in
(32). The dependency on ¢ and  arises from the configuration
dependency D(q) and the subsequent change of coordinates.
Since the analysis is performed in error coordinates, D(q) is
expressed as D(t, &).

A. Proof of Stability

In the following, exponential stability is formally proven.

Proposition 1. Consider the robot dynamics (1) con-
trolled via (25) under the Assumptions 1-4. Then the state
(&,2) = (0,0) is uniformly exponentially stable in free mo-
tion (T°%* = 0).

Remark 3. The proof of stability is valid for both o« = 0 and
a = 1 because Proposition 1 requires 7% = 0.

Proof. Since 24 and K are symmetric and positive definite,
(30) is positive definite in the error states (Z, ). For 7' = 0
one can straightforwardly conclude

V(t,z,z) = &' Dz (33)

which is, however, only negative semi-definite in (&, ). Yet,
(33) makes it possible to conclude uniform stability (US)
of (&,z)=(0,0) and thus boundedness of (&,z). Since
the reference trajectories &4, 2q are bounded by definition,

3Under Assumption 4 one can rewrite Q4(q) as Qq(t, ).



see Section II-B, boundedness of (x, &) directly follows and
consequently also boundedness of (g, ¢) due to Assumption 4.

In the following, the storage function (30) will be slightly
modified, motivated by [43, pp. 186—187] where the level sets
have been skewed. However, instead of only introducing outer-
diagonal elements in (30), the auxiliary term €2§2q is added

to the stiffness matrix, that is,
GQd x

T
oS 1 /x K-i-GQQd
‘/€(t7$137.’13) - 5 <i> ( eQq
with the small positive constant value € > 0. In contrast to
[43], positive definiteness of Py, € R?"*?" becomes inde-
pendent of € as the Schur complement conditions show:*

Py,

Q4-0
(K + Q) — 2049, 'Q =K = 0

(35)
(36)

The time derivative of (34) yields

T 1 .2¢ 1 -
. . eK — 5¢°Q2 seW
K(t7iai)<;) 1 2T ¢ § (?)
5w D — ey T

Py

€

37
with

U=D-pul—eQq. (38)

In order to show negative definiteness of (37) w.r.t. (Z, 5:) (or

positive definiteness of Py, , respectively) the Schur comple-
ment conditions

eK — %EQQd =0

D —¢(Qq+ 107 (K — 1e§2q) ') - 0

(39)
(40)

must hold. Evidently a small, positive value for € exists which
ensures validity of (39) as long as Qq is proven bounded.
Inserting (24) into (39) under Assumptions 1, 3, and 4, the re-
quired boundedness is guaranteed for bounded values of (q, q)
or (x, &), respectively. The latter requirement has already been
shown by means of US w.r.t. (33). Similarly, one can proceed
to ensure validity of (40). The already established boundedness
of the states can be consulted to prove boundedness of the
terms 4, ¥, 4. Consequently, a small, positive value for
€ exists such that (40) holds. Since both (39) and (40) set
requirements for € > 0, using the smaller value will ensure
that (39)—(40) equally hold true. In consequence of that, va
in (37) is proven positive definite.
One can further conclude that V,(¢, %, ) is decrescent:

T T
T T
where A\(A) and \(A) describe the minimum and maximum

eigenvalues of the matrix A, respectively.

2
<Vilt,#,2) <

2

AP A(Py.)

4Notably, this novel choice (34) for the analysis can be interpreted as
a change of coordinates from (&,z) to (&,s) with the sliding variable
s = & + ex [45]. That way, one can obtain a fully decoupled structure such
as in (30) when rewriting (34) through (&, s) instead of (&, Z).

Now Theorem 1 from the Appendix can be applied
[46]. Specifically, with z = (&7, 27)7, S(t,z) = V.(t, &, &),
a1 = AA(Py,.), as = LX(Py,), and B =2, one can show
(46). Since the left-hand side of (47) is given by Ve(t,:i, :i)
from (37), one can choose a3 = A(Py; ) such that (47) finally
holds true.

Consequently, Theorem 1 enables to conclude uniform
exponential stability (UES) of (&,z) = (0, 0) for the case of
free motion (7¢** = 0) to complete the proof for Proposition 1.

O

Remark 4. As with all task-space controllers, no global
stability statements are possible in general. Therefore, the
extension to global UES, as mentioned in Theorem I, cannot
be made. Among others, this is due to existing singularities
based on the definition of the subtasks or Cartesian tasks.

Remark 5. Note that € is not a design parameter in the
controller but it is only necessary for the analysis of the closed-
loop stability. Moreover, explicit knowledge of the upper bound
of € is not required but merely its existence suffices to conduct
the above proof for Proposition 1.

B. Proof of Passivity

In the following, a formal proof of passivity is derived.

Proposition 2. Consider the robot dynamics (1) controlled
via (25) for o« =1 under the Assumptions 1-4 and for the
regulation case defined by xq = 0. Then the system is strictly
output passive for the input F*, the output &, and the storage
Sfunction (30).

Proof. The time derivative (32) with & = & results for the
storage function (30) when feedback of external forces and
torques is activated (ov = 1) and the regulation case is consid-
ered. While V (t, &, &, F°*") is only negative semi-definite in
(z, ), the inequality

V+AD) ||| < &t Fet (42)

holds with A(D) > 0, which is always true due to the def-
inition of D in (27). Therefore, for the regulation case, the
controlled robot dynamics (29) obtained through the applica-
tion of (25) with aw =1 to (1) lead to strict output passivity
for the input F°**, the output @, and the storage function
V [47, Definition 2.2.8]. The power port (&, F***) defines
the mechanical power &7 F*** transmitted between the robot
and its environment. Hence, the respective passivity statement
relates to the real power flows. O

C. Bond Graph

The power flows of the closed-loop dynamics (29) are
sketched in Fig. 3 using bond graph methodology [48],
[49]. The source of effort on the left-hand side injects the
generalized interaction forces F*** exerted on the controlled
robot by its environment. Naturally, the virtual power flow
T F°* related to the depicted port is not equal to the mechan-
ical/physical power & F°** transmitted between robot and
environment during the tracking of time-dependent reference
trajectories (4 # 0). However, when the reference trajectories
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Fig. 3. Bond graph of the closed-loop system (29). The used graph elements are: capacitance (C), inductance (Z), resistance (R), Dirac structure (D),

1-junction, and source of effort (SE).

are stopped (q = 0), the simplification &7 F** = &7 F¢
holds such that Fig. 3 represents the real power flows. The
Dirac structure 3 conserves the power following the relation

CLC Fext
fF?Xt o I z

: - (—I 0) : (43)
—F z,

It splits F'*** according to (12). As one can see in the bond
graph and the respective boundaries (green/dashed boxes),
the behaviors for all r tasks are decoupled. The detailed
structure of each task block is exemplified by means of task
i, see the particularized block on the right-hand side. Beside
the modification of the energy through the ports (Z;, F¢*")
for : =1,...,r, each block involves dissipation via active
damping (27). The Dirac structure ®; describes the relation

<_%Qi:i;$i) _ (—é(Q”T— 20, ;)

K i Zi K

—H;

. i:/i
Qi —2n]) \&
(44)

for ¢ =1,...,r which is equivalent to (24).

The bond graph in Fig. 3 serves to intuitively visualize both
the stability properties from Section IV-A and the proof of
passivity in Section IV-B. For the condition of an undisturbed
system (7% = 0) in the stability analysis, all power flows
involving F*™" and F$** for i = 1,...,r disappear. Accord-
ingly, all task blocks in the graph are fully decoupled and
isolated, which represents (28)—(29) for the case of free mo-
tion. In terms of the passivity analysis for the regulation case
(xq = 0, which implies Z = &) under external disturbances
(T7°%% £ 0), the requirement for strict output passivity (42)
can be identified by means of the power flows which cross
the boundaries of the task blocks, namely through the ports
(a5, F) for i =1,...,r and the dissipation in the task-
specific dampers.

D. Feedback scaling matrix

Beside control parameters such as K and D that influence
the control feedback, there are further quantities which do not

appear in the closed-loop dynamics (29), but they are at least as
important for the closed-loop stability. The effective feedback
gains involve additional terms which determine the relation
between fed-back measurements/estimations (e. g., g, ¢, F*")
and the resulting, commanded joint forces and torques. Table I
summarizes five different controllers which will be used in
the simulations and experimental comparisons in Section V
and Section VI. The third column shows the above-mentioned
feedback scaling matrices. As essential components of the con-
trol laws, they significantly affect the overall system stability
on the hardware. If a lower-level torque control loop, which
provides the joint torque interface 7, cannot handle elements
which are too high in terms of the absolute values, then
instability occurs, although this effect is not visible when only
looking at the closed-loop dynamics such as (29). Therefore,
it is of particular interest to consider those terms and ensure
that the elements do not attain excessively high values.

One can see that the task-space version of the classical
PD+ controller [24] in the fourth row only involves J T
which describes the required, natural mapping from general-
ized task-space to generalized joint-space forces. This is due
to the fact that PD+ control entirely preserves the natural
inertia matrix, as already discussed on the basis of Fig. 2.
If any means are taken to modify the closed-loop inertia,
the feedback scaling matrix will reflect that. Examples are
inverse dynamics approaches but also FND control, where
the additional component ﬂﬂgl appears. The subsequent
simulations and experiments will showcase that this term can
lead to excessively high control actions and even instability,
particularly if a constant desired inertia is aimed at such as in
inverse dynamics approaches.

V. SIMULATIONS

The controller evaluation and the comparison with alterna-
tive approaches are conducted on a planar 6-DOF manipulator
as illustrated in Fig. 4, with the depicted five individual
tasks further specified in Table II. All of them are physically
compatible but they feature dynamic couplings among each
other as will be demonstrated in this section. The comparison



TABLE I

OVERVIEW OF THE CONTROL LAWS COMPARED IN THE SIMULATIONS, FOR THE CASE OF FREE MOTION (‘l'ext =0)

Controller H Control law ‘ Feedback scaling matrix | Implementation
END control JTQQT ! (Qada + pea — D& — K& + ju — paz) +g | JTQQ7" Qg from (19)
Inverse dynamics #1 || J7Q (&4 + p&z — Dz — K&) + g JTQ Qq = I, [35, p. 429]
Inverse dynamics #2 JTQQ;1 (Qdid + p& — DE — K:i:) +g JTQQ(;1 Q4 = Q4(to) from (19)
PD+ control JT (Q#4 + piq — Dz — K&) +g JT Task-space version of [24]
Nullspace control S NJITF cn+Tu+g (N JT, .. NJID) Based on [18]
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mass of 1kg. Joint 2 is located at a height of 0.25 m.

TABLE I
DESCRIPTION OF THE TASKS AND GAINS IN THE SIMULATIONS

[ Task [| Description | K, D in Sim.#1

K,D in Sim.#2 |

T1 TCPin X and Y [ 200 X, 40 = 150 X 30 Xs

T2 TCP about Z 50 S 5 Nms 40 Tm 4 Nms

. Nm Nms Nm Nms

T3 Joint 3 100 B 10 Mms T gp B g M.

T4 || Joint | 300 2, 30 3= 100 X 10 88
T5 Joint 4 50 N 5 Nms 25 N "5 5 Nms
rad rad rad rad

between the controllers includes five approaches depicted in
Table I: FND control, inverse dynamics with 24 = I, inverse
dynamics with the desired inertia matrix taken from (19) but
being fixed at ¢ = %, classical task-space PD+ control, and the
hierarchical version of task-space PD+ control using nullspace
projections with descending order of priority from task T1
down to T5.

Simulation #1 in Section V-A addresses trajectory track-
ing with initial task-space errors, whereas simulation #2 in
Section V-B treats the regulation case or step response, re-
spectively. Finally, Section V-C elaborates on the effective
feedback gains required to implement the individual closed-
loop dynamics of the five control approaches. The latter aspect
relates to the quantities in the third column of Table I which
pre-multiply all feedback terms such as —K & or —Dz.

Fig. 5. Desired task-space trajectories for simulation #1. The translational
tasks are displayed in the upper diagram (T1, T4), and the rotational tasks are
depicted in the bottom chart (T2, T3, T5). The shown trajectories describe
the time-dependent deviation from the initial desired joint configuration
[Om,(1,-1,-1,-1,-1) 27 rad]” at t = 0s.

A. Trajectory tracking control (Simulation #1)

The tracking scenario starts with the joint configuration
displayed in Fig. 4, which includes small initial task-space
position errors. The time-dependent desired reference trajec-
tories shown in Fig. 5 have to be tracked using the controller
gains K and D from Table II (third column).

The storage functions for all tasks are plotted in Fig. 6 which
involve the elastic potential and a velocity-error dependent
term similar to (30). While all values converge to zero as ex-
pected, the charts illustrate the individual dynamic properties
of the different solutions. In T1, T2, T3, and T5, one can ob-
serve the natural dynamic couplings across the task spaces in
case of PD+ control. In T5, which describes the lowest priority
level for the hierarchical approach, the top-down disturbance is
also visible in the beginning. Interestingly, the classical inverse
dynamics solution #1 with 4 = I is partially faster (T1, T4)
and partially slower (T2, T3, T5) than the other ones. This
behavior can be intuitively explained by means of the natural
inertia, for example, when investigating €24 (to).> In T2, the
natural inertia at o = Os is about 0.41kgm?. Since inverse

5Note that the natural inertia changes during trajectory tracking. Neverthe-
less, investigating the values at ¢t = o roughly indicates whether the task-
specific inertias are actively scaled up or down by inverse dynamics #1.
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Fig. 6. Simulation #1: Storage functions for all five tasks for the tracking
case with small initial task-space errors.

dynamics #1 actively enforces an inertia of 1kgm?, this leads
to a slower convergence, and the controlled system behaves
overly conservative. Similarly, in T3 and TS5 the natural inertias
at to amount to 0.22kgm? and 0.16kgm? such that the
inverse dynamics #1 features inferior performance in those two
tasks as well. In contrast, the convergence in T4 is superior
because the natural inertia of 2.21kg at ¢y is actively scaled
down to 1kg by the controller. The corresponding task-space
errors during the tracking phase, shown in the complementary
Fig. 7, consistently confirm the argumentation above. While
FND control and inverse dynamics #2 feature decent and
decoupled behaviors in all task spaces, the feedback scaling
matrices in the controllers vary. That can be analyzed by means
of the terms in the third column of Table I with the respective
implementation described in the fourth column. Since they pre-
multiply all feedback terms in the control laws they directly
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Fig. 7. Simulation #1: Tracking performance with small initial task-space
errors for time-dependent, desired reference trajectories.

influence the effective feedback gains for the implementation
of the commanded force/torque. The maximum absolute values
of the matrices of dimension n x n are presented in Fig. 8.°
As expected, PD+ control yields the lowest values due to
the sole appearance of J”. Similar to the natural limitation
of the scaling through the dynamically consistent nullspace
projectors in the hierarchical controller, also FND control
results in low values. On the contrary, both inverse dynamics
solutions feature higher maximum values in general. Large
values imply that the actual control parameters such as K

®Even a single element in the n X n matrix can cause instability although
the other elements might have low absolute values. Therefore, the maximum
absolute values are chosen instead of the average ones or alternative metrics.
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Fig. 8. Simulation #1: Maximum absolute values of the (n x n) feedback
scaling matrices (third column in Table I) during trajectory tracking.

and D have to be chosen more carefully and tendentially
smaller to ensure stable and safe operation when implementing
the inverse dynamics controllers on real hardware. While
Fig. 8 enables an initial assessment of the effective feedback
gains, the considered case only represents a rather limited
subset of the configuration space. Section V-C will later on
examine this aspect further by means of 100,000 random
joint configurations and their effect on the feedback scaling
matrices, to present a more expressive analysis.

B. Regulation control (Simulation #2)

The step response is investigated using the smaller controller
parameters in the fourth column of Table II due to the larger
initial task-space errors: -0.17 m and -0.24 m for T1, 34° for
T2, -12° for T3, -0.28 m for T4, and -25° for T5.

In Fig. 9, the respective storage functions are plotted which
demonstrate the specific dynamic properties of the different
control approaches similar to the tracking case. Top-down
disturbances in the hierarchical control can be observed in
several task spaces (T2, TS) as well as the natural dynamic
couplings in classical PD+ control (T1-T5). Analogous to Sec-
tion V-A, the choice 24 = I for inverse dynamics #1 affects
the transients, depending on the individual up- or down-scaling
of the respective elements of the inertia matrix. Analogous
to the tracking case, FND control and inverse dynamics #2
show a decent behavior. The maximum absolute values of the
feedback scaling matrices are shown in Fig. 10. As inverse
dynamics #2 enforces the initial natural inertia matrix of FND
control fixed at ¢t =ty, the curves start at the same point
and deviate from each other over time. However, the same
trend as in simulation #1 can be observed for the five control
approaches. The maximum (absolute) commanded joint forces
and torques for all controllers are listed in Table III, being
directly influenced by the feedback scaling matrices. One
can see that high values, particularly in the joints 1 and
2 are attained for inverse dynamics #1. Indeed, this result
complies with the conclusions drawn from Fig. 10. Since the
largest control actions are usually commanded at the beginning
of a step response, the comparable values of FND control
and inverse dynamics #2 can be straightforwardly explained
because the effective feedback gains of both methods are
identical at t = .
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Fig. 9. Simulation #2: Storage functions for all five tasks for the regulation
case with large initial task-space errors.

C. Feedback scaling matrix (Simulation #3)

The case studies in Section V-A and Section V-B indicate
that inverse-dynamics-based approaches tend to scale the feed-
back actions to larger extent than the other methods. Yet,
due to the restriction to specific joint configurations, only
a small subset of the workspace has been covered so far.
Here, the configuration space of the planar robot will be
sampled with 100,000 random joint position values in all six
joints. Although this numerical analysis does not enable a
generalization, the expressiveness of the results is strength-
ened. Naturally there exist various singularities in the whole
configuration space w.r.t. the tasks T1-T5 which no task-
space controller can actually handle in its original formulation
without any additional measures for singularity treatment such
as [50]-[54]. Therefore, those joint configurations are excluded
from the computations whose minimum singular value of the
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Fig. 10. Simulation #2: Maximum absolute values of the (n x n) feedback
scaling matrix (third column in Table I) for the regulation case.

TABLE III
MAXIMUM ABSOLUTE JOINT FORCE AND TORQUE COMMANDS IN
SIMULATION #2

J1 12 I3 J4 J5 J6

[N] | [Nm] | [Nm] | [Nm] | [Nm] | [Nm]
FND control 164 120 33 62 38 9
Inv. dyn. #1 238 166 54 30 37 14
Inv. dyn. #2 164 120 38 62 38 9
PD+ 67 38 28 37 21 5
Nullspace control 143 102 37 53 51 26

Jacobian matrix (10) is below a given threshold. In the top
chart of Fig. 11, the number of valid joint configurations is
plotted against this minimum allowed singular value of J,
starting with a lower bound of 0.01. As the diagram reveals,
the analysis starts with approximately 96.7% of the 100,000
random joint configurations (strictly speaking, 96,731). With
growing threshold of the minimum allowed singular value,
the number of valid configurations continuously decreases.
One can summarize that the entire usable workspace of the
planar manipulator is roughly covered by the depicted range
up to a minimum singular value of 0.3. The second chart in
Fig. 11 shows the maximum absolute values of the feedback
scaling matrices. Notably, PD+, nullspace control, and FND
control do not feature any problematic scaling in the whole
range with maximum values of 2.5 (PD+), 6.5 (nullspace
control), and 6.4 (FND control), see zoomed-in area in the
center diagram. As opposed to this, both inverse dynamics
solutions, which represent the active enforcement of a constant
desired closed-loop inertia, result in high effective feedback
gains. At a minimum singular value of 0.1, the maximum gains
still amount to 12.5 and 31.5 although more than 66 % of the
joint configurations are left. That clearly indicates that inverse-
dynamics solutions, which enforce a constant inertia matrix,
can potentially cause problems even in the normal workspace
far away from singularities. In consequence, either the spec-
ified parameters such as K and D have to be deliberately
chosen low in order to account for those effective feedback
gains in inverse-dynamics methods, or the system stability is
jeopardized due to the risk of excessively high feedback gains
implemented in the torque control loop. This conclusion is in
accord with recent studies on the consequences of active inertia
shaping in order to enforce constant values in the closed-
loop dynamics [37]. The bottom chart in Fig. 11 displays
the median absolute values of the feedback scaling matrices

=100
= T 66,251 configurations left

2 80 ~_
2 X

g 00F T~ 29,719 configurations left

on ~
£ 400 \\\
5 20f ~__

0.01 0.05 0.1 0.15 0.2 0.25 0.3
Minimum singular value of J

20 10 FND control

; i — contro
E isol ! g /6'5 (Nullspace ctrl) | | Inv. dyn. #1

; ! [N 2.5 (PD+) ——— Inv. dyn. #2
%a 100l \\_\ 3 64 ‘(FND)‘ ¥ ; PD-+ control
E TR N 001002 003 004 005 Nullspace ctrl

3 50p '
2

0.01 0.05 0.1 0.15 0.2 0.25 0.>3

£
g

on
k=
E

g
k|

] 0 N N N N N
= %01 005 0.1 0.15 0.2 0.25 03

Minimum singular value of J

Fig. 11. Simulation #3: Analysis of the feedback scaling matrices (3rd column
in Table I). With growing threshold of the minimum singular value of J and
consequently larger distance to singularities, the maximum gains decrease.

which imply that not all of the n? elements are affected in
the same way, but severe outliers cause the problem which
can neither be identified nor predicted easily. Interestingly, for
well-conditioned setups with minimum singular value of 0.3,
FND control, inverse dynamics and hierarchical control feature
median values in the range of 3—4 [m, 1/m], with continuously
increasing values for the FND and hierarchical control cases
up to this point. Nevertheless, these values do not appear to
be problematic since the corresponding maximum absolute
values stay low at the same time (center diagram). These
results suggest that controllers enforcing a constant closed-
loop inertia, such as inverse dynamics approaches, should
be parametrized considerably more conservative due to these
unpredictable, configuration-dependent effects. Consequently,
these methods do not allow to effectively exploit the actual
hardware capabilities of a robot.

VI. EXPERIMENTS

The experimental validation of the controller is performed
on the kinematically redundant humanoid robot depicted
in Fig. 1. The implemented control tasks are detailed and
parametrized in Table IV. The entire task space spans all
available torque-controlled DOF of the upper body. In the first
experiment the tracking case is addressed, and the second one
deals with the effects of external forces and torques.



TABLE IV
DESCRIPTION OF THE TASKS AND GAINS IN THE EXPERIMENTS

—— Right TCP in x —— Left TCPin x
-~ Right TCPiny = =------ Left TCPiny
----------------- Right TCP in z —— Left TCPinz

| Task [| Description K, D in Exp.#1 | K,D in Exp.#2

Tl Right TCP transl. 400 X go Ns 200 X, 50 Ns

. Nm ; Nms Nm 5 Nms

™ Right TCP rot. 40 Nm 4 N, 20 Nm o N
T3 Left TCP transl. 400 &, 8o Ns 200 X, 50 s
1 1 1 1

T4 || Left TCP rot. 40 fm 4 Nms 20 Sm o Nms
Ia Ira. Ia Ira.

50 Nm 20 Nms 50 Nm 20 Nms

rad’ rad rad’ rad

100 Nm 20 Nms 20 Nm 5 Nms

rad’ rad rad’ rad

100 Nm 20 Nms 50 Nm 12 Nms

rad’ rad rad’ rad

TS Torso joints
T6 Right shoulder joint
T6 Left shoulder joint

A. Tracking control (Experiment #1)

The desired task-space trajectories are illustrated in Fig. 12,
with a maximum absolute translational velocity at the right
TCP of about 1 m/s. Initial errors are intentionally introduced
at the right TCP and at the right shoulder. All task track-
ing errors, represented using Euclidean norm, are plotted in
Fig. 13. Since inverse dynamics #1 leads to instability right at
the start of the experiment, the emergency stop is triggered at
t ~ 0.15s. As one can observe, all of the remaining controllers
lead to a decent performance.” However, inverse dynamics
#2 is tendentially inferior as can be observed particularly in
the right and left TCP behaviors, both in terms of translation
and rotation. As discussed before, the strict enforcement of
a constant desired inertia matrix in feedback-linearization-
based approaches facilitates instability (inverse dynamics #1)
or overly conservative control behavior (inverse dynamics #2).
Since experiment #1 describes the case of undisturbed track-
ing, it is not surprising that the classical PD+ control performs
quite well, which confirms previous analyses for joint-space
control such as [37]. The reason that FND control does not
clearly outperform PD+ and nullspace control might lie in the
fact that the dynamic model of the robot is too imprecise to
leverage the theoretical advantages of FND control here. Aside
from that, the used hardware does not enable more dynamic
motions than the ones shown in Fig. 12. A more modern robot
could allow faster movements and consequently make the
effects of undesired task-space interference more dominant in
the case of PD+ control. Furthermore, more modern humanoid
robots would typically feature more hip DOF with larger
motion range. That would introduce distinct inertial couplings
between the arms which PD+ would not be able to handle
properly, in contrast to FND control. Despite the large initial
errors, no significant dynamic couplings are observed in case
of PD+. The coupling effects may be suppressed by joint
friction on the real robot, which is not considered in the
simulations presented in Section V.

B. Interaction control (Experiment #2)

In order to provide fair and reproducible conditions for
the comparison under F*** £ 0, artificial external forces and
torques are applied at the right TCP and the right shoulder

"Note that the comparatively low stiffness gains in Table IV result in a
compliant behavior, which can be observed in non-negligible steady-state
errors (e. g., almost 0.1 rad Euclidean norm for torso joints). Such a behavior
is expected for impedance-based control.
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Fig. 12. Experiment #1: Desired trajectories for the subtasks. The curves
related to all TCP motions describe the deviations from the initial positions
and orientations, respectively. The desired orientation at the right TCP is
described by the Euler angles of type x-y-z.

joint, respectively, by means of feedforward actions superim-
posing the nominal torques of the respective control laws. A
slow up-and-down reference trajectory is assigned to the right
TCP translational task, while all other tasks should maintain
their initial states. Moreover, those controllers which require
feedback of F**' to generate the control action do not have
direct access to these quantities but only to their estimations
obtained through a common momentum-based disturbance
observer [55], [56]. The first two diagrams in Fig. 14 show
the applied disturbances and their estimations used in the
control laws. Since the hierarchical null space based controller
[18] can also be implemented using feedback of external
forces and torques, both versions are shown in the following
for the sake of completeness. The lower four diagrams in
Fig. 14 depict the relevant task-space errors.® For the right TCP
translational task and the right shoulder task, which involve
artificial interactions, the difference between the actual task
errors and the expected deviations is shown instead of task
errors. The expected deviation is computed via the artificial
external forces/torques FZ’r‘ttl and contact stiffness, based on
the desired impedance in the quasi-static case ( = & = 0), as
K, IFZ’r‘ttl This evaluation is justified by the slow reference
trajectory of the right TCP translational task. Note that inverse
dynamics #1 is not presented in the diagrams because severe
instability occurs immediately after the controller is switched
on. The blue-shaded areas highlight the regions in which there
should be ideally zero errors. These areas refer to task spaces
in which no external force or torque is applied. The plots
clearly reveal that any controller omitting feedback of external

8The task-space errors related to the left arm are omitted. They do not
feature noteworthy differences since the arms are physically decoupled to a
large extent because of the limited motion/dynamic capabilities of the torso.
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Fig. 13. Experiment #1: Tracking errors in all task spaces. Since inverse
dynamics #1 destabilizes the closed-loop system, the emergency stop is
triggered at ¢ =~ 0.15s.

forces and torques (PD+ control and nullspace control without
feedback of F°*') suffers from the natural couplings across
the subtask dynamics related to these external interactions.
Comparing the two nullspace controllers with each other also
illustrates this fundamental aspect: using feedback of F*
results in demonstrably lower errors during interaction.

VII. DISCUSSION

A direct comparison with reference to the fundamentally
different concepts sketched in Fig. 2 is made. Table V elab-
orates on the various ways to treat the closed-loop inertia on
the basis of the discussed approaches and strategies. While
such a rating is subjective to a certain extent, the relative
differences and tendencies are clear and confirm the initial
claim that FND control properly manages the compromise
between practice/implementation on the one side and theo-
retical/convergence properties on the other side. Regarding
the behavior in singularities, two aspects require explanation.
Firstly, a majority of control approaches experience severe
stability problems when crossing singularities. This is evident
when examining the control laws in Table I. Quantities like
Q, p, 1, N; require the inversion of the Jacobian matrix, thus
leading to problems when applying the control law. Therefore,
all controllers have been marked with (—-) except for PD+
control (=) because it does not involve a pre-multiplication
by € for the position and velocity error variables. Moreover,
when a task-space PD controller (+) is used, no excessive
control actions result. Although the classical PD regulation
controller is unable to achieve the control goals in singular
configurations as well, no instabilities occur. Secondly, in
general it is possible to modify all control methods in a way
such that singularity crossing becomes possible [50]-[54].

Equation (28) has revealed that a modified closed-loop
inertia (2q # Q) requires feedback of F*' and 7% in
the controller. Otherwise, the desired stiffness K will not
be perceived during physical interaction with the robot. It
is well known that this limitation is problematic in inverse
dynamics approaches [37]. Setting @ = 1 in (25) shows the
consequences of this necessity. Beside the complete anni-
hilation of 7%, the introduction of F°** implies the pre-
multiplication by J Tﬂﬂgl or by the feedback scaling matrix
in Table I (third column), respectively. As a matter of fact,
the same relations as already analyzed before come into play
and justify that the proposed FND control does not cause
problems during interaction because of small elements in
the feedback scaling matrix, see Fig. 11 (second diagram).
In contrast, large matrix elements (inverse dynamics #1 and
#2) can potentially destabilize the controlled robot if one
aims at a correct interaction stiffness K in inverse dynam-
ics approaches, because a similar annihilation of 7°** and
reintroduction of F** has to be implemented accordingly.
This is a particularly serious issue because the signal quality
of F*' is often poor due to identification or estimation
algorithms which introduce delays and other classical observer
effects. For this reason, full artificial decoupling approaches
are marked with —— in Table V regarding the feedback of
F°*. The implementation of a desired contact stiffness in



a feedback-linearized system is structurally problematic and
always carries the risk of instability. This conclusion is in line
with recent insights from hybrid motion-force control [57],
where the authors state that it is “preferable to choose the
shaped inertia as close to the natural inertia as possible” for
the decoupling of motion- and force-subspaces, in order to
reduce the amplification of disturbance forces. This discussion
raises the controversial question: Why should one enforce a
constant closed-loop inertia at all, if dynamic task decoupling
can also be achieved through FND control while implementing
considerably lower effective feedback gains and thus getting
the chance to better exploit the hardware capabilities?

As shown in (25), the effects of modeling errors in the
estimated F°*" are scaled by the same factor as for the PD
gains. This, however, makes it difficult to observe and isolate
the influence of erroneous F** feedback through task errors
in practice, as shown in Fig. 14, since the increased PD
gains suppress a portion of the task errors contributed by the
erroneous F*' feedback as well. Consequently, the effects of
modeling errors in F*** can only, or at least most reliably,
be validated using force-torque sensor data (i.e., the ground
truth of Fe"t). However, this is not possible on our hardware.
Because an analysis of the effects of further modeling errors,
such as those in the inertia matrix, lies beyond the scope of
this article, we refer the reader to the relevant literature [58],
[59].

While the validation parts (and particularly the 100.000
simulations in Section V-C) clearly indicate that the feedback
scaling matrices feature lower elements if the natural inertia
is preserved or naturally decoupled by FND, in contrast to
inverse dynamics approaches, a mathematical proof for this
hypothesis is difficult to find. Why does the full natural
decoupling such as illustrated in Fig. 2 not cause similar
problems as the full artificial decoupling although the closed-
loop inertia matrix is also modified? In fact, there exists a
physically intuitive explanation. The step from full natural
coupling to full natural decoupling requires the annihilation
of outer-blockdiagonal elements of the inertia matrix. These
matrix elements are physically bounded, cf. the assumptions
in Section II, and they represent well-defined power flows
between the subsystems. The removal of those terms to obtain
the block-diagonal structure of FND consequently requires
well-defined and bounded control actions only. Actually, up
to this point the same applies to inverse dynamics approaches
as well. However, the difference arises in the subsequent
step, where inverse dynamics additionally requires to remove
the blockdiagonal elements and add artificial, constant terms
instead. These new terms may require excessive control actions
because they may not have any physical connection with the
original system anymore. These terms may look unproblem-
atic in the closed-loop dynamics but they potentially require
excessively large feedback gains to install. In other words, the
problems do not arise from the removal of natural terms but
from the introduction of non-natural terms instead.

Regarding the passivity analysis, the approach presented
here employs methods from passivity- and energy-based con-
trol [47], [49]. Consequently, it exploits similar features as the
well-established IDA-PBC framework [39]. In particular, the

beneficial property stated in Assumption 2 is used as well as
the design choice to decouple the inertia matrix [40].

While the particular control law (25) provides beneficial
properties in terms of stability and passivity, its superior
features basically ground on the main principle of natural task-
space decoupling. Consequently, it is expected that the adop-
tion of this way to treat the closed-loop inertia is transferable to
other control design methods straightforwardly. Among others,
that might include MPC, numerical concepts utilizing QP
formulations, or learning-based approaches. Irrespective of the
chosen method, the enforcement of a closed-loop inertia will
inevitably (and possibly implicitly) result in a scaling action
such as shown in the third column of Table I. The presented
results clearly indicate that choosing (19) combines the prefer-
able full task-space decoupling from inverse dynamics with
practically low effective feedback gains to be implemented in
the lower-level control loops.

VIII. CONCLUSIONS AND FUTURE WORK

A new multi-tasking control framework for kinematically
redundant robots has been presented, which combined two fun-
damentally different features. First, the task-space dynamics
of all subtasks could be fully dynamically decoupled such as
known from classical inverse dynamics. Second, the superior
practical robustness of passivity-based approaches has been
adopted due to the application of low effective feedback gains.
The provided theoretical analysis included proofs of stability
and passivity and was then confirmed by simulations and
comparative experiments.

In the future, the focus will be put on the improved feedback
of external forces and torques. As discussed in Section VII,
the quality of the respective estimations and measurements is
often poor, which impedes its active feedback during highly
dynamic motions. However, new hardware setups exploiting a
redundant arrangement of sensors [60] have recently shown to
be capable of solving this problem.

IX. APPENDIX

The following stability theorem is taken from [46, p. 147
and p. 154] to conduct the proof of stability in Section I'V-A.

Theorem 1. [46] Consider the non-autonomous system

%= hit,2) (45)

where h :[0,00) x Z — R*" is piecewise continuous in t
and locally Lipschitz in z on [0,00) X Z, and Z C R*"
is a domain that contains the origin z =0. Let z =0 be
an equilibrium point for (45) and S : [0,00) X Z — R be a
continuously differentiable function such that

alz]|? < S(t,2) < asl|2||? (46)
8S oS

_ _ < — B

ey + aZh,(t,z) < —asl|z]| 47)

Vt>0and ¥V z € Z, where a1,as,as3, and [ are positive
constants. Then z =0 is exponentially stable. If the as-
sumptions hold globally, then z = 0 is globally exponentially
stable.



TABLE V

QUALITATIVE COMPARISON OF THE DIFFERENT APPROACHES SKETCHED IN FIG. 2 WITH FIVE RATINGS (= —/=/0/+/+ +)

H Full natural coupling

Hierarchical decoupling

Full natural decoupling

Full artificial decoupling

Dynamic task decoupling - + ++ ++

Effective feedback gains ++ ——

Robustness due to F°*' feedback ++ + + -

Behavior in singularities + (PD), — (PD+) - —_— ——

Theoretical convergence properties - 0 + ++

Implementation examples Task-space PD or PD+ Nullspace controllers FND control Inv. dynamics, computed
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Fig. 14. Experiment #2: Effect of external interactions on the task spaces.
Inverse dynamics #1 is not shown since it causes instability immediately.



