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Abstract

This paper extends the ATC-FWI implementation on Nvidia Jetson Orin Nano Super with CUDA utilising
DevitoPRO. A decentralised multi-agent network is designed such that each agent manages its local
model, computes gradients from its own receivers, and exchanges information with neighbours in a
two-phase Adapt-Then-Combine (ATC) structure. Four variations of ATC-FWI network are enforced
by agents’ distributing strategy and neighbouring strategy. These variations illustrate the effect of the
seismic array and non-sequential wave propagation. To exploit parallelisation capabilities, Dask was
integrated into the Python-level code in two different ways, per-shot and per-agent, enabling accelerated
CPU runtime, in addition to HPC support. After stabilising the ATC network in terms of both result
quality and runtime efficiency, the ATC-FWI has been ported to Jetson with CUDA utilising DevitoPRO’s
streamed CPU-GPU execution. Although 2D CUDA runs show longer wall-times than CPU due to
data-movement overheads at small problem sizes, the results confirm correctness and pave the way for 3D,
where higher arithmetic intensity should better utilise the Graphics Processing Unit (GPU). Overall, the
proposed ATC-FWI pipeline enables in-situ seismic imaging on resource-constrained agents and supports
scalable, cooperative subsurface exploration without a central node.

1 Introduction

The exploration of the Moon and Mars has long interested scientists due to their potential to be the future
destinations for human missions beyond Earth’s orbit [1]. One primary goal of exploration is target
science, which determine a body’s physical properties, history, origin, and suitability for future human
bases. Several types of equipment with different configurations have been used in previous planetary
missions addressing target science.

The Apollo 14, 16 and 17 missions deployed small arrays of geophones on the moon, which documented
a globally uniform, highly porous, brecciated regolith with very low near-surface P-wave velocities [2].
Despite their large scientific value, these data were constrained by the sparse distribution of the deployed
geophones. Alternatively, InSight mission deployed a single broadband seismometer placed on the surface,
enabling interior mapping of Mars [3,4]. However, the single seismic station limits lateral resolution and
source localisation.

The limitations of Apollo and InSight missions highlight the need for long-duration recording from
more spatial coverage in future planetary landers. However, crewed missions imply high cost, risk,
and communication delays, which are unsustainable for long-duration missions [5,6]. One solution
is swarm based systems [7], a multi-agent robotic network with a decentralised wireless system that
serves both communication and localisation via radio signal. In this network, the agents can share
resources, process data, and make inferences over the network mimicking biological swarms behaviour in
nature. The decentralised, multi-agent approach is an instance of distributed sensing, where a spatially
dispersed network of sensors collaborates to achieve higher resolution, redundancy, and autonomy
than a single station could provide [8]. Beyond planetary science, multi-agent networks are already
deployed in search-and-rescue [9] and cooperative autonomous driving simulations and decision-making
frameworks [10].

By distributing multiple agents across the planetary surface, the network can expand the local spatial
coverage, improve lateral resolution, and reduce the risk of single-point failures [11]. Mainly since the
decentralised scheme of the network eliminates dependence on a single central node: if one agent fails, the
network can continue functioning. This fault tolerance is particularly important since planetary missions’
environments might be uncertain and face the difficulty of on-site repair. Similar to crewed missions,
communication delays influence the Earth-based control negatively with such a network; therefore,
autonomous subsurface imaging techniques are important as onboard autonomy mitigates the impact of
these delays, while allowing mission continuity without constant human oversight [12].



Seismic imaging methods are used to explore the subsurface [13]. One widely used technique is Full
Waveform Inversion (FWI), an iterative computational data-fitting scheme that produces high-resolution
models of physical properties using the full wavefield [14]. FWI was initially introduced in [15] using the
acoustic wave approximation to solve the non-linear inverse problem of seismic imaging. FWI generates
synthetic data with an initial guess model, then iteratively minimises the misfit between the synthetic and
observed data with respect to specific model parameters m [14]. FWI uses the entire wavefield data rather
than just the first arrival time as in the travel-time tomography [16]. This enable higher resolution and the
recovery of fine-scale structures, showing potential targets such as caves or lava tubes, mineral reserves
and hydrocarbon reservoirs. Thus, FWI is one of the most powerful and increasingly dominant imaging
techniques. A typical choice of the misfit function in FWI is the least-squares L, norm.

1
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Where d,ps 1s the observed data and dy, is the generated synthetic data from the initial guess model.
The gradient of the misfit function using the adjoint-state methood is then:
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Where ug(x,t) is the forward wavefield, at time ¢ and position x, generated by injecting shot s that travels
through a subsurface with using the velocity model m and ¢ (x, 7) is the adjoint wavefield generated by
injecting the residual at the receiver position x per shot s. The model update is then:
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Where @ > 0 is the step size. This gradient-descent update with « is usually used to simplify the Newton
methood [14, 17].

The applications of FWI are not limited to geophysics [18-20]; it is also used in medical ultrasound
imaging of the human brain [21] and breast [22]. Notably, FWI relies on a centralised scheme, which
conflicts with the decentralised scheme of multi-agent robotic systems. Therefore, a decentralised and
distributed subsurface imaging technique is required.

[23] proposed ATC-FWI to fulfil this requirement by combining the ATC approach from [24] with the
FWI. Instead of relying on a central node to collect all agents’ data, hold the subsurface model, and
perform FWI, the ATC-FWTI allows each agent to hold a local subsurface model, perform FWI, and then
exchange information with its neighbours. The algorithm consists of two phases: a partial local model
update performed by each agent, and a combination step with its neighbouring agents, in detail:

* Adapt Phase: This phase is a partial update of the agent’s local model with the neighbouring
agents’ models. It is very similar to the FWI equation (3), except that a weighted average of the
neighbouring gradients is incorporated, hence, the partial update. In detail, an intermediate model

fﬁj?“, per agent j and iteration k, holds the agent’s local model mf update with the weighted
average of the neighbouring gradients multiplied by the step size @ > 0.
ﬁf” = mf +ak Z cl-ja)f.‘ 4)
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The misfit here considers the agent’s receivers only. [23] has a single-receiver as an agent; therefore,
the misfit function is:

1
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Where d,;,; is the observed data per agent j, dyy,, ; is the generated synthetic data from the initial
guess model per agent j.



Subsequently, [23] compute the gradient by the adjoint-state methood, similar to the FWI equation (2)
as:
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Where u; ¢(x, ) is the agent’s j receiver-specific forward-solved wavefield, at time ¢ and position x,
generated by injecting shot s that travels through a subsurface with using the velocity model m and
qj,s(x,t) is the agent’s j receiver-specific adjoint wavefield generated by injecting the local agent
receiver-specific residual at the receiver position x; per shot s.

* Combine Phase: This phase is where the actual update of the agents takes place by a weighted
average of the intermediate model .
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The coefficients a and ¢ determine how the agent neighbours are weighted in the adopt and combine
phases. In [23] case, a;; = ¢;; m — i€l

Moreover, [23] demonstrate that the gradient of FWI is theoretically similar to the sum of locally computed
gradients at each agent in multi-agent networks. However, each agent has a unique subsurface model
that simulate a specific region of the domain. This produce a similar inversion results as a centralised
approach, yet localised to agents’ receiver coordinates only. This In the context of planetary exploration, a
decentralised multi-agent system can achieve high-resolution seismic imaging autonomously and at scale,
without requiring centralisation or Earth-based communication.

This finding is further supported by [25], which demonstrates how a Hardware-in-the-Loop (HIL) system
conducts a 3D seismic exploration. In this system, a network of rovers, each of which carries a Raspberry
Pi 4 (RPi4), collaboratively reconstructs the subsurface image using the 3D ATC-FWI. Such a distributed
design demonstrates the potential of swarm-based geophysical exploration, where a number of low-cost
instruments collaborate to perform a computationally demanding task. Compared to 2D imaging, this 3D
approach enables broader data acquisition while supporting real 3D wave physics, such as out-of-plane
scattering and diffraction by including the third spatial dimension; thus, resulting in a more detailed
subsurface image [22]. The RPi4 is highly affordable and power-efficient, with 5 V/3 A specifications,
making it suitable for general embedded projects, prototyping, and low-power applications. However, the
RPi4’s quad-core Cortex-A72 CPU handles all calculations, resulting in slow performance when handling
the computationally demanding 3D ATC-FWL

One solution is the utilisation of a GPU to handle 3D ATC-FWI calculation. The GPU is a parallel
hardware accelerator originally designed for rendering graphics, with early general-purpose computing
capabilities introduced through CUDA [26,27]. In seismic modelling methoods such as FWI and
ATC-FWI, the iterative wavefield propagation and gradient updates involve large-scale operations which
are inherently data-parallel, considering the finite-difference kernels methood in the propagation and
gradient: the same stencil-based update is applied repeatedly across a spatial grid [28,29]. Therefore,
a GPU can accelerate the wavefield propagation and gradient updates by executing the identical tasks
in parallel. This acceleration in gradient calculation is crucial for future planetary missions that utilise
autonomous rovers or distributed sensor networks, as heavy computational tasks, primarily ATC-FWI, are
performed locally under strict power and resource constraints in an edge environment. Additionally, the
fast computation implies expedited decision-making, thus increasing data collection within the mission
time window

The recent demand from machine learning and deep learning, which rely on parallelisable heavy
computation as matrix and vector operations, has been leading the innovation of powerful GPU processors,



making them equally valuable for scientific applications such as FWI. One of the recent GPU developments
is the Nvidia Jetson Orin Nano Super [30], a heterogeneous system-on-chip designed with a wide range of
computing capabilities to fulfil a variety of applications, such as modern robotics, autonomous vehicles,
drones, and IoT systems [31]. These applications often demand cloud resources that are constrained by
latency and limited bandwidth; thus, the requirement for fast local computation at the edge is increasingly
common [32]. Unlike RPi4, Jetson Orin integrates an Ampere GPU with CUDA and Tensor Cores,
resulting in higher performance according to [32]. The low power consumption of Jetson Orin Nano
Super compared to Jetson NX and AGX [31], along with the fact that the same CUDA software ecosystem
and TensorRT are utilised, makes it suitable for deployment in distributed, power-constrained field settings
as rovers and multi-agent networks.

This paper’s objective is to extend the ATC-FWI implementation on Nvidia Jetson Orin Nano Super
processors within the Devito framework. The aim is to exploit Jetson’s computation and parallelisation
features so that agents could process seismic data in situ, supporting autonomous decision-making and
broader data collection in future planetary missions that utilise multi-agent networks.

2 Methodology

To perform FWI computation for wave propagation and gradient, Devito is utilised. It is domain-
specific language and compiler for finite difference computations. The compiler performs stencil-based
computation on structured grids by converting the symbolic specification SymPy of the mathematical
problem, e.g. isotropic-acoustic wave equation and gradient, into optimized C-level code [33,34].

2.1 Experiment Description and Domain Setup

According to [23], FWI and ATC-FWI global convergence are expected to be comparable. Thereby,
several experiments were defined to evaluate the ATC-FWI implementation under a controlled, yet
geophysically meaningful synthetic setting. There are three main experiments:

¢ FWI and ATC-FWI network variations on CPU with Devito.
* CPU parallelisation via Dask for ATC-FWI.
¢ FWI and best CPU ATC-FWI variation on Jetson with DevitoPRO.

These experiments set up is motivated by mimicking realistic exploration surveys, while maintaining an
reasonably inversionable ground-truth velocity as the primary focus of this paper is the implementation of
ATC-FWI on Jetson rather than reproducing accurate geophysical properties.

The domain is defined as a 3 kmx1 km subsurface area discretised with a uniform grid spacing of 10 m in
both dimensions and absorbing boundaries with 20 grid cells. This wide-aperture setup for the domain
allows recovering of medium-to-long wavelength structure, while the highest frequency caps fine detail at
about half a wavelength according to [14,35]. Since [23] results form a base for the ATC-FWI, it was also
considered during the domain setup to facilitate comparison.

The ground truth background velocity model consists of five horizontal layers, with P-wave velocities
ranging 2km/s to 4km/s in increments of 0.5km/s per layer. This is a simple layer medium with
increasing velocities, motivated by the generic planetary interior of the Earth, Moon, or Mars. To add
some complexity to the model, two irregular anomalies are embedded at the centre of the model, each
assigned a velocity 50% higher than the background mean. The initial velocity model smooths the
ground truth model by applying a Gaussian filter with standard deviation oo = 10. The space order for
discretisation is 16 and the time order for discretisation is 2.

For the exploration survey, the sources and receivers are evenly distributed on a line 10 m below the
surface. This setup prevents false reflection with the absorbing layers, while keeping both receivers and



sources at the same depth. The sources are a Ricker wavelet with peak frequency f = 15Hz, and the
total observation time is 7 = 1 s. Additionally, most experiments used shots § = 40 and receivers R = 80
geometry. Since the higher number of sources/receivers implies better results. If the experiment involved
fewer or extra sources/receivers, it is mentioned within its detailed subsection.

Figure 1 shows the ground truth and smooth models, with red dots denoting sources and green diamonds
representing receivers.

Ground Truth Velocity Model
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Figure 1: Ground Truth Velocity Model and Smooth Velocity Model

2.2 Generating Ground True Data

To ensure a fair comparison between FWI and ATC-FWI, a True Shots class was implemented, specifically
to encapsulate the true data generation. This class consist of the following:

* A dynamic horizontal layered velocity function to mimic the planet’s layered structure by generating
the background model velocity. It constructs velocity layers based on the number of layers, an
initial P-wave velocity (v,), and a specified step size. These variables are editable, hence aiding in
generating different ground truth models.

* Three functions were implemented to embed different irregular anomalies into the v, model. The
main function eventually chosen for this study places two relatively small anomalies at the model
centre with higher velocity relative to the background mean (positive velocity contrast). The small
anomalies minimise surface reflections, therefore allowing the wave to propagate and reflect from
deeper layers. The anomalies’ integration was initially motivated by the idea of lava tubes; however,
the typical lava tubes are low-velocity voids or bounded structures which hinder FWI convergence.
Therefore, it was replaced with this simple convention of high-velocity anomalies, as the primary
focus of this paper is the implementation of ATC-FWI on Jetson rather than reproducing accurate
geophysical properties.

* A function was implemented to uniformly distribute sources\shots s = 40 and receivers J = 80 just
below the surface by 10 m to minimise false reflection with the absorbing layers. These acquisition



geometries are used for both FWI and ATC-FWI experiments.

* A true shot generator was implemented to generate and export the simulated wave fields into NumPy
arrays for reuse in both FWI and ATC-FWI experiments.

2.3 FWI Implementation Specifications

The FWI serves as a benchmark for evaluating the performance of ATC-FWI since the global convergence
of FWI and ATC-FWI are expected to be comparable [23]. To ensure a correct implementation, the
Devito tutorials and examples were extensively consulted, resulting in the following setup:

¢ A smooth model creator that takes the TrueShots v ,, which include the horizontal layered background
and two small fixed anomalies with higher velocity than the background mean, and smooths it using
a Gaussian filter with standard deviation o = 10.

 Take the TrueShots sources and receivers coordinate and initialise the Acquisition Geometry and
Solver.

* A true-shot interpolator to align the true shots with the smooth model time step.

* A gradient computation function that loops over the shots to compute the forward wavefield, the
residual (misfit), and the residual back-propagation to obtain the gradient w(x).

* FWI function that update the model iteratively based on equation 3.

0.08
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with each iteration, which implies more stable convergence.

* The step size is adaptively scaled according to @ = min (a/ ), ensuring smaller gradients

2.4 AGENT Implementation Specifications

In [23], each agent is a single receiver; however, seismic arrays are advantageous since the summation of
the individual array recordings improves the signal-to-noise ratio, enabling the study of seismic phases
and small-scale structure of the interior, which is usually challenging to achieve with single receiver
convention [36]. Also, the seismic array reduces overall computational cost for ATC-FWI on a given
number of receivers. Therefore, in this paper, each agent consists of successive blocks of receivers based
on the network split distribution (more detail are provided in Section 3.1).

The ATC-FWI network gives each agent a unique identifier (ID), an initial guess model, a receiver
collection, and the corresponding true shots. Then, each agent performs the gradient computation w(x),
the adapt phase and the combine phase.

In [23], each agent exchanges its gradient with a set of 3-6 neighbours. Accordingly, in this paper each
agent defines its neighbours using one of the following strategies:

* Non-Random neighbouring: each agent sets a successive block of neighbours based on its ID,
clipped at the domain edges without wrap-around. Since the agents neighbours are assigned
sequentially, the network will be connected.

* Random neighbouring: each agent sets a randomly sampled block of neighbours from the agent’s
pool, clipped at the domain edges with wrap-around. Since receivers are evenly distributed on a
line, the previous neighbour to the agent is always included to ensure network connectivity. The
motivation of this function is to investigate the randomness effect of ATC-FWI network.

2.5 ATC-FWI Network Implementation Specifications

The ATC-FWI network class defines the network of agents. Before initialising any agent, a graph is built
by linking all receivers to ensure network connectivity. Then, the number of agents is chosen using one of



the following strategies:

» Balanced distribution: distribute the receivers R evenly among agents J while minimising the
difference between the number of agents and the number of receivers per agent |J — (R/J)|. The
motivation is to expedite the FWI iteration computation by decreasing the number of agents, while
examining the seismic array effect by increasing the number of receivers per agent.

* Maximum agents distribution: distribute the receivers R evenly among the maximum possible
number of agents J such that R is divisible by J without remainder. The motivation is to minimise
the computational effort per agent while maintaining a nearly single-receiver distribution.

The base ATC-FWI iteration consists of three loops over the agents; the first loop computes each

agent’s gradient w(x), the second loop perform the adopt phase using the same step size of FWI as

0.08
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a = min (a ) and a final loop to perform the combine phase.

Dask, a Python library for parallel and distributed computing, was intergraded to reduce the run-
time at python codes level [37] Dask was utilised in two different ways, resulting in the following
modifications:

* Instead of having a loop over the shots to compute the gradient, a distributed submit- wait
workflow was implemented with Dask. The submit schedule a separate task for each shot, then
these tasks compute the agent’s gradient simultaneously for multiple shots based on half of the CPU
cores. The wait ensure all the shots gradient are computed before moving forward with next agent.

* Instead of having a loop over the agents to compute their respective gradient, a distributed scatter-
map gather workflow was implemented with Dask to evaluate the gradient. First the network
is broadcast over the number of workers by scatter, then map compute the agent’s gradient
simultaneously for multiple agents based on half of the CPU cores, finally a gather to get back the
gradient to the client.

2.6 Jetson Implementation Modifications

Data streaming means efficient data movement between computation nodes. Usually, a node consists
of a host, a disk, and a device, which is the case with the Jetson. Data streaming is critical to utilise
the node computation capabilities by overlapping data transfer with computation, therefore, keeping the
GPU busy and enabling efficient, real-time processing without idle cycles [38] Until this point, the FWI
and ATC-FWI utilised Devito utilities, although different compilers and architectures are supported by
Devito package, the data streaming is not taking into consideration. Alternatively, DevitoPRO utilities
was used to extend the FWI and ATC-FWI on the Jetson, which supports data streaming. The following
modifications were necessary to enable DevitoPRO utilisation:

* The Acquisition Geometry and Acoustic Wave Solver of Devito were replaced with Acoustic
Isotropic. This modification implied a sign change in residual computation.

* For better utilisation of DevitoPRO utilities, the Seismic Model of Devito changed to Wave Model,
keeping the buoyancy b = 1 for constant density, since density is not the focus of this paper.

3 Results and Discussion

Experiments and domain setup described in Section ?? ran for k = 20 iterations each. The results are
presented in the following subsections.

It is worth mentioning that the analyses in Subsections 3.1, ??, and 3.2 are based on Devito implementation
on CPU; however, this analysis is still valid even after porting to the Jetson with the DevitoPRO utilities
due to the following:



* The neighbouring and agents’ distribution strategies are based on the agents’ IDs and the number of
agents. None of these functions uses any utilities from Devito; therefore, the analysis remains valid
when utilising DevitoPRO on the Jetson.

* Dask supports both CPU and GPU clusters; therefore, theoretically speaking, the analysis regarding
which strategy is suitable for long-term runs and investigations is still valid, although the computation
time might differ.

3.1 Agents Distribution and Neighbouring Strategy

As detailed in Section 2.4 and 2.5, four strategy were implemented that prompt four variations of ATC-FWI
network:

* ATC-FWI with balanced agents distribution and non-random neighbouring.
* ATC-FWI with balanced distribution and random neighbouring.

* ATC-FWI with maximum agents distribution and non-random neighbouring.
* ATC-FWI with maximum agents distribution and random neighbouring.

The balanced distribution sets ATC-FWI network with J = 8 agents, each with R = 10 receivers. In
comparison, the maximum agents distribution sets it to J = 40 agents, each with R = 2 receivers.

Figure 2 shows the convergence of FWI alongside the global convergence of ATC-FWI networks. The
balanced distribution follows a similar global gradient trend to FWI, outperforming the maximum agents
distribution. Across both neighbouring strategies, non-random neighbouring outperformed the random
strategy quantitatively in terms of global convergence. Interestingly, the neighbouring strategies have a
minimal effect on balanced distribution convergence. This behaviour is mostly attributed to the large
number of receivers per agent, which considers a higher number of wave propagation corresponding to
the agent’s receivers, mimicking seismic array behaviour, where the signal-to-noise ratio enhances global
convergence and stacks out the source-receiver imprint.

Convergence FWI vs ATC

— FwiI
ATC Balanced Distribution
—— ATC Balanced Distribution & Random Neighbours
—— ATC Maximum Agents
—— ATC Maximum Agents & Random Neighbours

105_

Misift value Phi

10° 10!
Iteration number

Figure 2: FWI vs. ATC-FWI network global converging

Figure 3 shows the convergence of each agent in different ATC-FWI networks. The balanced distribution
starts from a relatively high objective value but converges rapidly in fewer than 10 iterations, whereas the
maximum agents distribution starts from a lower objective value but converges more slowly. As it is the
case with the global convergence, the neighbouring strategy has minimal effect on the local convergence
trend on both distributions.
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Figure 4 shows that all ATC-FWI variation resulted in sharpened layered, particularly, the first layer.
The balanced distribution variation, generally produced a more comprehensive final models despite the
neighbouring strategy. The upper anomaly is more framed while few to no artefacts are produced around
the edge agents as annotated by red circles on the same figure. The improved models quality in the
variation can again be attributed to the higher receivers number per agent, which mimics the seismic array
effect and enhances robustness.

However, the maximum agent distribution shows different final models based on the neighbouring strategy
as the green boxes shows in Figure 4. The non-random neighbouring resulted in more detailed, yet skewed,
final models compared to random neighbours, which led to some artefacts between the agents. This
behaviour can be attributed to the allowance of sequential data propagation between the neighbours with
the non-random strategy. Particularly noticeable with edge agents that have fewer neighbours, typically
three, resulting in more localised skewed area-specific reflections <= the number of agents is high and
the number of receivers per agent is low. Subsequently, this requires more iteration to achieve global
convergence, similar to the FWI, which explains the high trend in the maximum agents’ distribution.

The runtime comparison in Figure 5 shows that the fewer number of agents in balanced distribution
required generally shorter runtime, despite neighbouring strategy, in comparison to maximum agents
distribution; therefore, theoretically speaking, less computational effort. This is an expected behaviour, as
a fewer number of agents imply less gradients loop; therefore, shorter runtime. However, maximum agent
distribution with the non-random neighbouring strategy was slower than the random. One reason for such
unexpected behaviour might the sequential data propagation over the network.

After evaluating the strategies effects, the balanced distribution produced high-resolution final models
with minimal artefacts in relatively short runtime with a global convergence similar to FWI therefore it is
selected as the default option when initialising ATC-FWI network.

As for the neighbouring, the non-random strategy outperformed the random methood in global convergence,
especially with maximum agent distribution. However, when the number of receivers per agent is large,
as in the balanced distribution, the neighbouring strategy effect is minimal due to seismic array behaviour.
Therefore, to serve both distributions, the non-random strategy is adopted as the default option since it
resulted in more detailed final models.

Therefore, the best variation of ATC-FW1 is balanced distribution with non-random neighbouring. Figure 6
shows the FWI vs. agent 1, 4, and 8 of ATC-FWI network best variation. As expected, the results are
very similar even within the different agents of ATC-FWI network. Table 1 quantifies this similarity using
the L2 norm and SSIM between the ATC-FWI agents and FWI. Notably, the L2 norm difference between
FWI and agents of ATC-FWI is very small L2 norms range from 2.64-3.30 and SSIM values consistently
exceed 0.992 across agents 1, 4, and 8. This also support the observation of seismic array effect.

Comparison L2 SSIM

ATC-FWI Balanced Agent 1 vs Ground Truth | 537.657737 | 0.695587
ATC-FWI Balanced Agent 1 vs FWI 3.299054 | 0.992639
ATC-FWI Balanced Agent 4 vs Ground Truth | 537.286409 | 0.695977
ATC-FWI Balanced Agent 4 vs FWI 3.047676 | 0.993259
ATC-FWI Balanced Agent 8 vs Ground Truth | 536.813918 | 0.696669
ATC-FWI Balanced Agent 8 vs FWI 2.639143 | 0.994325
FWI CPU vs Ground Truth 501.308569 | 0.719331
FWI CUDA vs Ground Truth 552.393185 | 0.690589
FWI CPU vs FWI CUDA 4.350088 | 0.991572

Table 1: L2 error and SSIM comparison between CPU, CUDA, and ATC-FWI Balanced Agents against
the ground truth and baseline FWI.
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Figure 4: ATC-FWI final models of Agent ID 6. Annotated by red circles on balanced distribution edges
vs. green boxes on maximum agents distribution skewed reflection
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Comparison of Runtime of ATC-FWI different strategises
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Figure 5: FWI and ATC-FWI Runtime comparison

3.2 Dask Integration

Before discussing Dask integration, it worth mentioning that OpenMP was utilised to expedite Devito’s
under-the-hood low-level C kernels. OpenMP is an API supporting C/C++ and Fortran multi-platform
shared-memory parallel programming. Additionally, Dask was integrated to expedited gradient computa-
tion at python level as described in Section 2.5.

All computations were performed on a MacBook Air (M1, 2020) equipped with an Apple M1 chip (8-core
CPU: 4 performance and 4 efficiency cores, 7-core integrated GPU) and 16 GB unified memory, running
macOS Sequoia 15.6.1.

The default type of ATC-FWI network was chosen to test Dask effect on the runtime, which was ATC-FWI
with balanced distribution and non-random neighbouring. Figure 7 shows a 1 iteration runtime comparison
between the dask integration strategises, OpenMP, and regular FWI with OpenMp. As the figure show,
the per-shot Dask integration was found to be 2.05 slower than the base ATC-FWI. This indicates that the
gradient loop over the shots is most likely not the reason for the long runtime. In fact, the Dask produce
unnecessary overhead when distributing the per-shot misfit and gradient computation.

In contrast, the per-agent Dask integration is 1.7 times faster than the base ATC-FWI, and of course
3.0 times faster than the per-shot interrogation due to parallelising gradient computation over the agents
network. This resulted in improved CPU utilisation and reduced Python scheduling overhead. Therfore,
the integration of Dask over agents was utilised in CPU implementation of ATC-FWL.

It worth mentioning that since Jetson has a single GPU, Dask parallelisation might conflict with DevitoPRO
data streaming between the CPU and GPU, therefore, it was deduced from ATC-FWI implementation on
Jetson.

3.3 Porting to Jetson with CUDA

After stabilising the ATC-FWI network in terms of both result quality and runtime efficiency, the
implementation was further extended to run on the Jetson platform with CUDA backend, enabling GPU
parallelisation. The Jetson device integrates a 6-core Arm Cortex-A78 AE CPU, an Ampere-architecture
GPU with 1024 CUDA cores and 32 Tensor Cores, and 8 GB of LPDDRS memory with a bandwidth of
102 GB/sec. With NVMe storage and a power envelope of only 25 W, the system is capable of delivering
up to 67 INT8 TOPS of Al performance, making it suitable for rovers limited power and high demanding
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Comparison of Runtime of ATC-FWI with and without Dask
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Figure 7: With vs. Without Dask Integration

computation with ATC-FWI. As described in Section 2.6, DevitoPRO was employed to streamline data
movement between CPU and GPU, aiming to improve GPU utilisation.

Figure 8 and Figure 9 represent the CPU vs GPU results for FWI and ATC-FWI respectively. It worth
mentioning that the slow runtime of ATC-FWI force the decrease of iteration to k = 12, specificallyfor
this experiment. Although results convey less comprehensive final models with CUDA implementation
since the upper anomaly is less framed (see also Table 1). It prove that ATC-FWI can run successfully on
Jetson with CUDA utilising streamline data movement by DevtioPRO. The 2D domain structure runtime
was much longer compared to the CPU implementation, however, it allows debugging and comparison to
the CPU result. The slow runtime may be attributed to data movement overhead between CPU and GPU,
as 2D problems are relatively small in compare to 3D.

It is worth noting that a 3D domain was implemented for generating ground-truth data and initial FWI
experiments. However, due to time constraints, the ATC-FWI extension to the 3D case was not fully
realised.
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Figure 8: FWI CPU vs. GPU (Jetson)

4 Conclusion and Future Work

In conclusion, this paper began by generating ground truth data, motivated by the layered structure of
the planet’s interiors, with added complexity due to anomaly integrations. A novel implementation of
FWI and ATC-FWI with Devito on the CPU was achieved, utilising various strategies for ATC-FWI to
investigate the seismic array effect and convergence speed. Additionally, Dask was integrated on two
different levels to expedite the runtime and explore parallelisation capabilities. Finally, ATC-FWI has been
successfully extended on NVIDIA Jetson with CUDA utilising DevitoPRO. Although the implementation
is limited to a 2D domain, the successful run implies the possibility of a 3D extension. The 3D domain
will primarily result in better GPU utilisation and less data movement overhead, which is contributed to
the fact that the computation of a 3D wave is more demanding than that of a 2D wave. Additionally, Dask
integration over multiple Jetson will imply more realistic set up simulating multiple agents carrying their
own hardware.

Al Acknowledgment Statement: ChatGPT-40 and 5 by OpenAl (https://chatgpt.com) were consulted with
concepts clarifications, code debugging and plotting. All submitted work is my own interpretation
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