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Abstract. Atmospheric inversions are widely used to evaluate and improve inventories of methane (CH4) emis-
sions across scales from global to local, combining observations with atmospheric transport models. This study
uses the dense network of in situ stations of the Integrated Carbon Observation System (ICOS) to explore how
well in situ data can constrain European CH4 emissions. Following the concept of inter-comparison studies of
the atmospheric tracer transport model inter-comparison Project (TransCom), a CH4 inverse inter-comparison
modeling study has been performed, focusing on Europe for the period 2006–2018. The aim is to investigate
the capability of inverse models to deliver consistent flux estimates at the national scale and evaluate trends in
emission inventories, using a detailed dataset of CH4 emissions described and presented here for first time.

Study participants were asked to perform inverse modelling computations using a common database of a priori
CH4 emissions and in-situ observations as specified in a protocol. The participants submitted their best estimates
of CH4 emissions for the 27 European Union (EU-27) member states, the United Kingdom (UK), Switzerland,
and Norway. Results were collected from 9 different inverse modelling systems, using 7 different global and
regional transport models. The range of outcomes allows us to assess posterior emission uncertainty, account-
ing for transport model uncertainty and inversion design decisions, including a priori emission and model-data
mismatch uncertainty.

This paper presents inversion results covering 15 years, that are used to investigate the seasonality and trends
of CH4 emissions. The different inversion systems show a range of a posteriori emission adjustments, pointing
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to factors that should receive further attention in the design of inversions such as optimising background mole
fractions. Most inverse models increase the seasonal cycle amplitude, by up to 400 Gg month−1, with the largest
adjustments to the a priori emissions in Western and Eastern Europe. This might be due to underestimation
of emissions from wetlands during summer or the importance of seasonality in other microbial sources, such
as landfills and waste water treatment plants. In Northern Europe, absolute flux adjustments are comparatively
small, which could imply that the emission magnitude is relatively well captured by the a priori, though the lower
station density could contribute also.

Across Europe, the inverse models yield a similar decreasing trend in CH4 emissions compared to the a
priori emissions (−12.3 % instead of −9.1 %) from 2006 to 2018. While both the a priori and the a posteriori
trend for the EU-27 are statistically significant from zero, their difference is not. On a subregional scale, the
differences between a posteriori and a priori trends are more statistically significant over regions with more
in-situ measurement sites, such as over Western and Southern Europe.

Uncertainties in the a priori anthropogenic emissions, such as in the agriculture sector (cows, manure), or waste
sector (microbial CH4 emissions), but also in the a priori natural emissions, e.g. wetlands, might be responsible
for the discrepancies between the a priori and a posteriori emission shift in the trends in Western, Eastern and
Southern Europe.

Our results highlight the importance of improving the inversion setup, such as the treatment of lateral boundary
conditions and the model representation of measurement sites, to narrow the uncertainty ranges further. The refer-
enced dataset related to the analysis and figures are available at the ICOS portal: https://doi.org/10.18160/KZ63-
2NDJ (Ioannidis et al., 2025).

1 Introduction

Methane (CH4) is the second-most important anthropogenic
greenhouse gas (GHG), after carbon dioxide (CO2), and
has a significant contribution to global warming and cli-
mate change (IPCC, 2021). In the last two decades, CH4
emissions increased by 20 %, with mole fractions reach-
ing 1923 parts per billion (ppb) in 2023 (European En-
vironment Agency, 2022; World Meteorological Organiza-
tion (WMO), 2024). According to a comprehensive recent
assessment, annual global CH4 emissions are around 575
[553–586] Tg yr−1 (Saunois et al., 2025). More specifically,
global anthropogenic CH4 emissions constitute 369 [350–
391] Tg yr−1, or around 60 %, of the total CH4 emissions
(Saunois et al., 2025). The largest anthropogenic CH4 emis-
sions originate from agriculture (e.g., livestock production,
rice cultivation), followed by the energy sector (fossil fuel
production and use) and waste disposal (IPCC, 2021). How-
ever, CH4 is also emitted from various natural sources (248
[159–369] Tg yr−1, Saunois et al., 2025), with natural wet-
lands contributing up to 40 % of the total CH4 emissions
(Yusuf et al., 2012; Zhang et al., 2025). The Paris Agree-
ment commits countries to implement mitigation measures
to reduce GHG emissions. In addition, 150 countries have
signed the Global Methane Pledge, launched in November
2021 at the Conference of the Parties (COP 26) with the aim
of reducing global CH4 emissions by 30 % in 2030 relative
to 2020 levels (Global Methane Pledge, 2023).

Anthropogenic emission reporting is based on “bottom-
up” inventories, and there are several bottom-up process-
based models to estimate natural emissions and sinks. How-

ever, these anthropogenic and natural CH4 emissions have
large uncertainties (Brandt et al., 2014; Zavala-Araiza et al.,
2015; Deng et al., 2022; Arora et al., 2023). Uncertainties
in anthropogenic emissions are caused primarily by uncer-
tain emission factors used in bottom-up inventories (Chee-
waphongphan et al., 2019; Solazzo et al., 2021). Some
sources of anthropogenic emissions, such as fossil fuel,
might also be missing from bottom-up inventories, as shown
in a recent study by Yu et al. (2023). Process-based models
of natural CH4 sources and sinks are uncertain for many rea-
sons, including uncertain sensitivities to climatological con-
ditions, small-scale variability that is difficult to scale up,
and important processes that may still be missing (Aalto
et al., 2025). It is critical for countries to accurately quan-
tify CH4 emissions, as there is a growing demand from
policy makers, reinforced by the Paris Agreement, for effi-
cient methods to reduce CH4 emissions. Therefore, in ad-
dition to these bottom-up emission inventories and process-
based models, “top-down” methods have been developed us-
ing inverse modeling techniques (Bergamaschi et al., 2018a;
Steiner et al., 2024) to bring emission inventories into agree-
ment with atmospheric measurements. The measurements
provide independent information on emissions that can be
used to evaluate emission inventories, through the use of in-
verse modelling, in support of the transparency framework
of the Paris agreement (World Meteorological Organization,
2016; Calvo Buendia et al., 2019).

The top-down approach, using inversion techniques, yields
an optimised “a posteriori” estimate of the emissions. This is
done by relating observed atmospheric dry air mole fractions
to emissions using an atmospheric transport model, and by
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minimizing a Bayesian cost function with an inversion al-
gorithm, starting from “a priori” information on emissions
and their uncertainties (Jacob, 2007). Different techniques
have been developed to solve the inverse problem, such as
the Kalman smoother (Bruhwiler et al., 2005), the ensemble
Kalman filter (EnKF) (Peters et al., 2005), and the 4D vari-
ational inversion (Chevallier et al., 2005). Both EnKF and
variational methods have advantages and disadvantages and
are widely used today (e.g. Bergamaschi et al., 2022; Saunois
et al., 2019; Steiner et al., 2024).

Previous studies used the inverse modeling technique to
estimate European CH4 emissions, using regional (Berga-
maschi et al., 2018a, 2022; Petrescu et al., 2023, 2024) or
global (Wang et al., 2019; Deng et al., 2022; Petrescu et al.,
2023) transport models, based on in situ (e.g. Bergamaschi
et al., 2022 or Steiner et al., 2024) and satellite observations
(e.g. Bergamaschi et al., 2013, Wang et al., 2019). Bergam-
aschi et al. (2018b) used different inverse models to estimate
European CH4 emissions for a period of six years (2006–
2012). They showed a strong seasonality of CH4 emissions
in Europe due to wetland emissions. In a more recent study,
Bergamaschi et al. (2022) focused on 2018 using three high
resolution inverse models that showed the a posteriori emis-
sions were higher in Germany and the Benelux than the emis-
sions reported to the United Nations Framework Convention
on Climate Change (UNFCCC).

Here, we present a new inverse modelling inter-
comparison study, using a detailed dataset of posterior CH4
emissions, which was prepared as part of the CoCO2 project
and WMO-IG3IS. Using this dataset we aim to evaluate and
compare the performance of the nine inverse models partic-
ipating in the inter-comparison, as well as to estimate Eu-
ropean CH4 emissions over the period 2005–2019. We used
a combination of in situ measurement databases, most im-
portantly from the Integrated Carbon Observation System
(ICOS) network. This study uses the extended measurement
time series to estimate trends in total CH4 emissions in Eu-
rope until 2019. In addition, we try to address the systematic
difference in emission seasonality reported by Bergamaschi
et al. (2018b). Previous studies have shown large discrep-
ancies between inversion-estimated emissions of CH4 (Pe-
trescu et al., 2021, 2023). To better understand these differ-
ences and to identify some of the potential causes, our exper-
imental protocol (Florentie and Houweling, 2021), presented
in Sect. 2, prescribes the a priori emissions and observations
to be used. The a priori emissions, the observations used for
the different simulation experiments, the validation dataset,
the participating models, and information about the modelled
output database are described in Sect. 3. The simulations car-
ried out are also described in Sect. 3. The results and a discus-
sion of our findings are presented in Sect. 4. The implications
of our findings are presented in Conclusions (Sect. 5).

2 Inversion Protocol

To assess European CH4 emissions using an ensemble of in-
versions, a protocol has been formulated by Florentie and
Houweling (2021), which the participants are required to
use. It closely follows a protocol established in the EU
H2020 VERIFY project (https://verify.lsce.ipsl.fr/, last ac-
cess: 1 January 2020) and utilizes datasets that were collected
as part of it. The participants have been instructed to use
only atmospheric observations from common datasets (see
Sect. 3.1) and a common set of a priori CH4 emissions (see
Sect. 3.2). The protocol also provides climatological radon
(222Rn) fluxes (Karstens et al., 2015) for simulating 222Rn,
to assess the performance of the atmospheric transport mod-
els that are used. The groups running regional models are
required to use initial and lateral boundary conditions from
the Copernicus Atmosphere Monitoring Service (CAMS)
CH4 reanalysis v19r1 (Agustí-Panareda et al., 2023), based
on assimilated surface observations. Two inversion systems
use the Rodenbeck 2-step inversion approach (Rödenbeck
et al., 2009), for which consistent baseline conditions are
made available as part of the protocol. However, the proto-
col does not specify the meteorological boundary conditions,
the uncertainties to be used for the background mole frac-
tions (concentrations), observations, and a priori emissions,
and whether or not to optimise background mole fractions.
The participants are requested to provide monthly gridded
CH4 fluxes at 0.25°× 0.25° grid spacing, a priori and a pos-
teriori national total emissions, CH4 mole fraction time se-
ries at the measurement sites and the observation uncertain-
ties. National total emissions are to be provided for at least
the European Union (EU-27) countries, the United Kingdom
(UK), Norway, and Switzerland. Regional inversions should
cover at least the area from 15° W to 35° E and 35 to 70° N.
The inversions should cover as many years as possible from
2005 to 2019. In case it is not possible to provide results for
the full period, the groups are asked to submit results for a
selection of years, chosen to cover the full period as well as
possible, including at least the years 2008, 2013 and 2018.
This study focuses on total CH4 emissions, i.e. without sec-
torial separation of the a posteriori fluxes.

3 Methodology

3.1 Atmospheric measurements

The European monitoring stations used in this study are
shown in Fig. 1 and additional information is provided in
Table A1. The observations are made available by the Inte-
grated non-CO2 Greenhouse gas Observing System (InGOS)
project (2005–2018) (INGOS, 2018), the National Oceanic
and Atmospheric Administration (NOAA) flask sampling
network in Europe (2005–2018) (Lan et al., 2023), the Ad-
vanced Global Atmospheric Gases Experiment (AGAGE)
(Prinn et al., 2018), the ICOS network (ICOS RI, 2021), the
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Figure 1. Map showing the locations of in-situ atmospheric moni-
toring stations used in this study. The map shows the observations
used in the different simulations: “Core” is shown as read cycle, and
the “Other”, shown as blue cycle, while in green are shown the sites
used for validation. Flask stations are shown in diamond. The dif-
ferent hatching patterns highlight the different sub-regions over the
domain: “///” is used to define Northern Europe, “\\” for Western
Europe, “–” for Eastern Europe and “++” for Southern Europe. See
text for more details.

World Data Centre for Greenhouse Gases (WDCGG) (World
Data Centre for Greenhouse Gases (WDCGG)), the EBAS
database hosted by the Norwegian Institute for Air Research,
and from the Laboratory for Climate and Environmental
Sciences (LSCE). Two sets of observations (“Core” and
“Other”) are used in different experiments (see Sect. 3.4),
and one set of observations is reserved for validation. The
“Core” data set consists of 36 stations, the “Other” data set
has 19 stations, while the “Validation” data set includes 5
stations (see Fig. 1).

The in situ measurements are reported as hourly average
dry-air mole fractions (in units of nmol mol−1, abbreviated
as ppb), including the standard deviation (measurement un-
certainty) which are used in the inversions. In the inver-
sions, only daytime (12:00 to 16:00 local time) and nighttime
(00:00 to 04:00 local time) observations are used for surface
and mountain sites, respectively.

Figure 1 highlights the sub-regions in Europe used in the
analysis of our results. We are using the same region classi-
fication as in Bergamaschi et al. (2018a), namely Northern
Europe (Sweden, Finland, Estonia, Latvia, Lithuania, Nor-

way and Denmark), Western Europe (United Kingdom, Ire-
land, Netherlands, Belgium, Luxembourg, France, Germany,
Switzerland, and Austria), Eastern Europe (Poland, Czech
Republic, Slovakia, and Hungary), and Southern Europe
(Portugal, Spain, Italy, Slovenia, Croatia, Cyprus, Greece,
Romania, and Bulgaria). The UK and Switzerland are in-
cluded in Western Europe, but not in the EU-27. Norway is
included in Northern Europe, but not in the EU-27.

3.2 A priori emissions

A priori CH4 emissions used in this study are summarised
in Table 1 including information on their spatial and tempo-
ral resolutions. The same bottom-up inventories and process-
based models for generating natural emissions are used here
as in the EU H2020 VERIFY project. More specifically,
for anthropogenic CH4 emissions, the Emissions Database
for Global Atmospheric Research (EDGAR) v6.0 is used,
which provides emissions for different anthropogenic sec-
tors (Monforti et al., 2021). Year 2018 is repeated for 2019
and 2020. For the anthropogenic emissions, the protocol does
not provide information on monthly, daily, or hourly factors
to scale the emissions, so all models used temporally con-
stant values. Natural CH4 emissions from peatlands and min-
eral soils derived from the JSBACH-HIMMELI model (Pe-
trescu et al., 2023), prepared as part of the EU H2020 CoCO2
project and do account for seasonality. Climatological CH4
emissions from inland water, termites, ocean, and geological
sinks/sources are used as shown in Table 1. Monthly climato-
logical emissions from ocean and inland water are repeated
for all years. The ULB emissions for inland water are pro-
vided by the VERIFY project. Global geological emissions
are scaled down to 15 Tg yr−1 for this study, as geological
emissions have high uncertainties as discussed for example
by Thornton et al. (2021). This value is based on a pre-
industrial estimate derived from ice core measurements of
14C/12C in CH4 (Petrenko et al., 2017). Finally, the Global
Fire Emissions Database (GFED)-4.1s inventory (Randerson
et al., 2018) is used for biomass burning emissions. The emis-
sions are provided at their original resolution, and at a re-
gridded resolution of 0.25°× 0.25°, where the total mass has
been conserved upon regridding.

3.3 Atmospheric and inverse models

All inverse models used in this study vary on the type of
transport model and resolutions, as well as inversion tech-
niques and uncertainty specifications. The atmospheric and
inverse models are listed in Table 2, including information
on the resolution of the transport model, model type, back-
ground meteorological conditions and inversion technique.
Table 3 summarises the inversion setups of the different in-
verse models. Note that all inverse model results presented
here and made publicly available are re-gridded to a common
0.25°× 0.25° resolution. Further details on the atmospheric
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Table 1. A priori CH4 emissions used in this study.

Category Data source Original Resolution Time period

Peatlands, Mineral soils JSBACH- 0.1°× 0.1° daily 2005–2020
(emissions & uptake), HIMMELI
inundated

Inland water ULB 0.1° ×0.1° monthly Climatology

Termites Saunois et al. (2019) 1.0°× 1.0° annually Climatology

Ocean Weber et al. (2019) 0.25°× 0.25° monthly Climatology

Geological Etiope et al. (2019) 1.0°× 1.0° annually Climatology

Fossil Fuels EDGAR v6.0 0.1°× 0.1° monthly 2005–2018

Agriculture and waste EDGAR v6.0 0.1°× 0.1° monthly 2005–2018

Biofuels & biomass GFED-4.1s 0.25°× 0.25° monthly 2005–2020
burning

Table 2. Inversion systems and atmospheric models used in this study.

Inversion model Institution Atmospheric model Resolution of transport model Model type Meteorology Inversion

Horizontal Vertical technique

LUMIA LUND FLEXPART 0.25°× 0.25° – Lagrangian ERA5 Variational

CSR MPI-Jena STILT 0.25°× 0.25° 90 Lagrangian ECMWF Variational
DWD IFS

CTE-CH4 FMI TM5 6°× 4° global, 25 Eulerian ERA5 EnKF
1°× 1° zoom Europe

NTFVAR NIES NIES-TM NIES-TM: 3.75°× 3.75°, 42 Coupled Eulerian- ERA5 Variational
FLEXPART FLEXPART: 0.1°× 0.1° Lagrangian JRA-55

CIF-CHIMERE LSCE CHIMERE 0.5°× 0.5° over vertical levels Eulerian ECMWF Variational
EUROCOM domain from surface forecast

to 200hPa

CIF-FLEXPART NILU FLEXPART 0.25°× 0.25° – Lagrangian ERA5 Variational

ICONDA EMPA ICON-ART 0.26°× 0.26° 60 Eulerian ERA5 EnKF

NTLB NIM WRF-STILT 0.27°× 0.27° 35 Coupled Eulerian- NCEP FNL Matrix
Lagrangian multiplication

CTDAS-WRF VUA WRF 0.25°× 0.25° 50 Eulerian ERA5 EnKF

transport models and inversion techniques that are used can
be found in Appendix B.

3.4 Output database

The output dataset consists of CH4 gridded fluxes, country
totals, and CH4 mole fractions that cover the years from 2006
to 2019, or part of this period, and includes results from 9
different inverse models and two experiments, as defined in
the protocol. More specifically, the two experiments are: the
baseline inversion (BASE from now on) using “Core” obser-
vations (see Table A1), and a test inversion (TEST from now
on) in which “Other” observations are used in addition to
the “Core” observations (see Table A1). Table 4 summarises

the information about the output dataset and simulations per-
formed per inverse model. In the following sections we make
use of the dataset to evaluate the performance of the 9 inverse
models, as well as to provide insights on the CH4 emission
seasonal cycle and trends in Europe.

4 Results and Discussion

This section presents the averaged a priori and a posteriori
CH4 fluxes from all the inverse models and for the common
years 2008, 2013 and 2018. The performance of the inver-
sions is tested at the measurement sites used in the optimisa-
tion as well as the validation observation sites, focusing on
the common years. This section also discusses CH4 emission
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Table 3. Summary of the inversions setups for the different inverse models.

Inversion model a priori Correlation Background Model-data Lag/ Optimised
uncertainties Length Uncertainty mismatch Window fluxes

length

LUMIA 5 TgCH4 yr−1 500 km/30 d None 10–90 ppb depending none/none sum of anthropogenic
distributed proportionally to background is on the site and natural
the net prior prescribed

CSR 50 % 300 km none 8–40 ppb depending none/none anthropogenic
domain wide 30 d on the site and natural

CTE-CH4 80 % on flux over land 100 km over Europe none 10 to 60 ppb 5 weeks anthropogenic
and 20 % over ocean depending on sites 7 d & natural

NTFVAR 30 % of anthropogenic 50 km none 4.5 to 75 ppb 2 weeks anthropogenic
and 50 % of natural depending on sites & natural

CIF-CHIMERE 100 % at pixel scale 200 km over land 10 % depending on site 1 year total fluxes
and 1000 km over sea

CIF-FLEXPART 50 % 200 km 0.26 % 9 ppb 14 d total fluxes

ICONDA 100 % on anthropogenic 200 km 0.5 % 10 pbb+ 30 % of the yearly 2 anthropogenic
and natural fluxes mean anthropogenic signal 10 d & natural

NTLB 30 % 500 km none 28 ppb 1 month sum of anthropogenic
and natural

CTDAS-WRF 100 % on anthropogenic 200 km 2 ppb 20 and 75 ppb 2 anthropogenic
and natural fluxes depending on the site 10 d & natural

Table 4. List of inverse models, available datasets and years for which they provided outputs.

Inverse model Gridded Country CH4 mixing Validation Experiment Years
Fluxes totals ratios data

LUMIA X X X – BASE/TEST 2006–2019
CSR X X X X BASE/TEST 2006–2019
CTE-CH4 X X X X BASE 2005–2019
NTFVAR X X X X BASE 2005–2019
CIF-CHIMERE X X X – BASE 2005–2018
CIF-FLEXPART X X X – BASE 2005-2019
ICONDA X X X X BASE/TEST 2008, 2013, 2018
NTLB X X X X BASE/TEST 2008, 2013, 2018
CTDAS-WRF X X X X BASE 2008, 2013, 2018

seasonality and trends over Europe and selected sub-regions,
as defined and shown in Sect. 3.1, and for the full common
period (2006–2018). The results discussed here are mostly
from the BASE run, while results from the TEST run are
discussed briefly at the end of each section. Detailed results
from the TEST run are shown in the appendices.

4.1 European CH4 fluxes

4.1.1 BASE results

Figure 2 shows the common a priori (Fig. 2a) CH4 total (the
sum of anthropogenic and natural fluxes) fluxes over Europe,
as well as the increments (Fig. 2b–j), calculated as the dif-
ference between the a posteriori and a priori fluxes for each
model, using results from the BASE run averaged over the
common years 2008, 2013, and 2018.

Figure C1 shows the a posteriori CH4 fluxes for all the in-
verse models. The spatial distribution of the a posteriori CH4
fluxes is similar for all the inverse models and the a priori
fluxes over the Benelux region, south of Poland, Finland, the
UK and Bretagne. The spatial patterns between the a priori
and a posteriori fluxes are similar also over Romania and Po
Valley for all inverse models except for CIF-FLEXPART and
in the North Sea except for CSR. However, the enhancement
or diminishment of the a posteriori compared to the a priori
fluxes can be seen in detail by calculating their differences.

Figure 2 shows a large variability in the spatial distribution
of flux increments between the different inversion systems.
Despite this variability, some common patterns can also be
seen. All the inverse models show a strong flux enhancement
over the Netherlands. Similarly, a common enhancement is
shown over southern UK and Bretagne, although the strength
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Figure 2. CH4 emission fluxes, in mg m−2 h−1, over Europe averaged for the common years 2008, 2013 and 2018, and the BASE simulation.
The different panels show (a) the common a priori fluxes, (b–j) the differences between the a posteriori and the a priori fluxes for LUMIA,
CSR, CTE-CH4, NTFVAR, CIF-CHIMERE, CIF-FLEXPART, NTLB, ICONDA, and CTDAS-WRF inverse models, respectively. Panel (a)
also shows the location of the observations (“Core”), as white triangles, used in the BASE simulation.
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Figure 3. Differences in the a posteriori CH4 fluxes, in mg m−2 h−1, between BASE (“Core” observations) and TEST (“Core” and “Other”
observations) runs, averaged for the common years 2008, 2013 and 2018. The different panels show results for the different inverse models:
(a) ICONDA, (b) CSR, (c) NTLB, and (d) LUMIA.

of this enhancement varies among the different inverse mod-
els.

All inverse models, except NTFVAR, CTE-CH4 and
CTDAS-WRF, show a systematic reduction over Italy, possi-
bly due to overestimated a priori geological emissions (see
Sect. 3.2) that are important in this region (Bergamaschi
et al., 2015). The disagreement by NTFVAR, CTE-CH4 and
CTDAS-WRF could be influenced by transport model un-
certainties (for example caused by the planetary boundary
layer (PBL) structure) in simulating the in-situ observations
in that region, notably from Monte Cimone. In CTE-CH4,
geological emissions are not optimised, which may be a rea-
son why this inverse model does not show strong changes
in Italy. In northern Europe, where natural CH4 emissions
from wetlands are important, some models show reduc-
tions (ICONDA, CTDAS-WRF, CIF-CHIMERE), while oth-
ers show a small enhancement (CSR, CTE-CH4) or mixed
patterns (NTLB, LUMIA, NTFVAR, CIF-FLEXPART).

Some inverse models (e.g. CSR, CTE-CH4) show similar
spatial patterns over Central Europe, but across all models,
the patterns have a large variability in that region. The inverse
models show large differences over Ireland and the Iberian
Peninsula. As these regions are close to the predominant in-
flow edge, these differences may be related to the treatment
of the western domain boundary condition: regional inverse
models, such as LUMIA, CSR, ICONDA, NTLB, CTDAS-
WRF, CIF-FLEXPART, use CAMS as lateral boundary con-
dition (or its Rödenbeck variant), some with optimisation,
while global inverse models (CTE-CH4) do not.

Some similarities are found between inverse models that
make use of the same transport model or optimisation
method. For example, LUMIA and CIF-FLEXPART, which
both use FLEXPART, show similarities in Italy, France,
northern Europe and part of eastern Europe. However, dif-
ferences are found over Ireland and the Iberian Peninsula,
potentially due to a different treatment of the boundary con-
ditions (see Table 3). The two models that are coupled to the
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Community Inversion Framework (CIF), CIF-FLEXPART
and CIF-CHIMERE, agree with each other, over the Benelux
region, Po Valley and parts of central Europe. Furthermore,
some inverse models (ICONDA, CTE-CH4 and CTDAS-
WRF) use the CTDAS EnKF for optimisation. However,
there is little agreement in the spatial patterns, such as an
increase in CH4 emission over The Netherlands, in these
three models. CIF-CHIMERE, CIF-FLEXPART, ICONDA
and CTDAS-WRF optimise background conditions, which
could explain the similar flux increments over Ireland, the
UK, and Spain. However, the global CTE-CH4 inversion, in
which discontinuities at regional domain boundaries do not
play a role, shows different patterns in CH4 emission com-
pared to the other inverse models.

Many other differences between the inverse models may
explain the patterns that are found, including differences in
meteorological boundary conditions, transport models, in-
consistencies in transport with the inversion system used in
CAMS, state vector and covariance parameters. To further
investigate model uncertainties related to transport, 222Rn
could be used as a tracer for atmospheric transport. Unfor-
tunately, the number of participants who provided informa-
tion on 222Rn is too low for such an assessment in this inter-
comparison.

4.1.2 Influence of number of in-situ stations on a
posteriori CH4 fluxes

Half of the participants submitted results for the BASE and
TEST experiments which we used to investigate whether
the use of 19 additional stations constrains the CH4 emis-
sions better. Figure D1 shows the a posteriori fluxes and the
differences between the a posteriori and a priori fluxes for
the TEST run. In the TEST simulation all the a posteriori
fluxes show spatial patterns that are similar to the a priori
fluxes, such as over the Benelux region, Po Valley, Romania
and southern Poland. All inverse models show overall differ-
ent patterns, regarding their enhancement or diminishment,
between each other over the domain, except ICONDA and
NTLB showing similar patterns over Northern Europe, the
UK and Ireland. However, all inverse models agree on an in-
crease over the Netherlands/northwest Germany and a nega-
tive adjustment of the CH4 fluxes over Italy. Petrescu et al.
(2023) showed regional inversion results over Europe from
2006 to 2017 with negative emission adjustments over Italy,
and positive adjustments over the Benelux region for 2 out of
the 3 inverse models.

Figure 3 shows the differences between the a posteriori
fluxes from the BASE and TEST runs for the inverse mod-
els with results for both runs. In the TEST run, there are
more stations in central and northern Europe, as well as in
Italy, Greece, and Romania. All inverse models show dif-
ferent BASE vs. TEST patterns, but there are clusters of in-
verse models showing similar patterns over specific regions.
For example, ICONDA and LUMIA (Fig. 3a,d) show higher

emissions in the TEST simulation over south Eastern Europe,
where there is only one new station (in Romania) compared
to the BASE simulation. On the other hand, three inverse
models agree (Fig. 3a, b, c) on increased CH4 emissions
over Germany, Denmark, and southern Sweden and Norway,
which are in the footprint of stations in the “Other” list, but
not in the “Core” list. The comparison between the BASE
and TEST simulations shows overall similar spatial patterns
for most of the inverse models (compare Figs. 2 and D1),
indicating a moderate sensitivity to the network geometry.

4.2 Evaluation of inverse models

The a priori and a posteriori modelled CH4 mole fractions are
evaluated against the observations used in the inversion and
against independent measurements. Here we present sum-
mary statistics across all stations, comparing the different in-
verse models for the common years.

4.2.1 Optimised stations

Figure 4 shows the averaged root mean square error (RMSE),
mean bias, and correlation coefficients between the a priori
and a posteriori modelled CH4 mole fractions and the obser-
vations used in the optimisation set-ups (“Core” list in Ta-
ble A1). The statistical metrics are shown per inverse model
and they are calculated per station and then averaged over the
three common years.

As expected, a posteriori CH4 mole fractions show bet-
ter agreement with the observations than the a priori, with
reduced RMSEs and biases, with ICONDA and NTLB hav-
ing the smallest biases. Note that CIF-FLEXPART and NT-
FVAR show slightly higher a posteriori biases, compared to
the a priori, while the a posteriori RMSE is reduced, with an
averaged (over the common years) observation uncertainty
of 43 ppb. The results in Fig. 4a show a correlation between
RMSE and model resolution. ICONDA, LUMIA and NTF-
VAR (regional inverse models) show the lowest RMSE. All
a posteriori results show improved correlation coefficients,
higher than 0.8. Table 5 summarises the statistics for the in-
verse models that provide CH4 mole fractions for the opti-
mised stations in the BASE and TEST simulations. The use
of more stations results in improved statistics for all inverse
models in general. For example, RMSE is further improved
for all inverse models in the TEST simulation, with compara-
ble correlation coefficients between the two runs. ICONDA
and LUMIA performed better than the other two inverse
models.

4.2.2 Validation stations

Figure 5 shows the averaged RMSE, mean bias, and correla-
tion coefficients between the a priori, a posteriori modelled
CH4 mole fractions, and the independent observations (Vali-
dation list, as shown in Table A1) for the BASE simulation.

https://doi.org/10.5194/essd-18-167-2026 Earth Syst. Sci. Data, 18, 167–198, 2026



176 E. Ioannidis et al.: CH4-inter-comparison

Figure 4. Evaluation of the a priori and a posteriori modelled CH4 mole fractions, against all available observations used in the optimisation
and averaged for the common years 2008, 2013 and 2018 (“Core” list, as shown in Table A1), and for the BASE simulation. (a) shows mean
RMSE in ppb, (b) shows mean bias in ppb, and (c) shows correlation coefficient, for all inverse models. The pink and blue bars represent,
respectively, a priori and a posteriori CH4 mole fractions.

Table 5. Statistical summary for the inverse models which provided CH4 mole fractions for the optimised stations from both simulations.
Bias and RMSE are expressed in ppb. R is Correlation coefficient. The statistics are for the common years.

BASE TEST

Prior Posterior Prior Posterior

Bias R RMSE Bias R RMSE Bias R RMSE Bias R RMSE

LUMIA −14.6 0.83 32.8 −7.0 0.92 20.6 −11.5 0.83 31 −5.8 0.88 18.5
CSR −18.5 0.78 36.6 −12.9 0.82 31.4 −16.4 0.79 32.5 −10.7 0.84 26.8
ICONDA 5.7 0.84 27.5 0.04 0.89 21.8 6.8 0.82 26.6 0.9 0.91 20.7
NTLB 5.8 0.73 46.5 −1.0 0.81 35.7 4.5 0.75 41.6 −1.7 0.81 32.0

Bear in mind that not all inverse models provided results for
the validation stations (see the “Validation data” part in Ta-
ble 4). Averaging over all stations, the RMSEs (Fig. 5a) de-
creased for almost all inverse models, with ICONDA having
the smallest RMSEs. Fig. 5b, c also show improved a posteri-
ori results with low biases and correlation coefficients higher
than 0.6 respectively for four out of six inverse models. Two
of the inverse models that submitted results for the validation
stations simulated these observations considerably less well
than the observations that were optimised: CSR (Fig. 5c) and

CTDAS-WRF (Fig. 5a, c),where the latter shows the poorest
performance in this metric among all inverse models, despite
using a similar inversion setup to an outperforming inverse
model, such as ICONDA (see Table 3). The poorer overall
performance of CTDAS-WRF is driven by big discrepan-
cies with the observations during winter and fall (not shown
here). Hence, we assume that this could be due to errors
in simulating the shallow boundary layer, which is a com-
mon transport model error (Gerbig et al., 2008; Deng et al.,
2017; Lehner and Rotach, 2018). Errors in the modeling of
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Figure 5. Validation of the a priori and a posteriori CH4 mole fractions against the independent observations for the common years 2008,
2013 and 2018 (Validation list, as shown in Table A1), and for the BASE simulation. (a) shows mean RMSE in ppb, (b) shows mean bias
in ppb, and (c) shows correlation coefficient, for six inverse models. Pink color shows the validation against the a priori CH4 mole fractions,
while the blue shows the validation against the a posteriori CH4 mole fractions.

Table 6. Statistical summary for the inverse models which provided CH4 mole fractions for the validation stations from both simulations.
Bias and RMSE are expressed in ppb. R is Correlation coefficient. The statistics are for the common years.

BASE TEST

Prior Posterior Prior Posterior

Bias R RMSE Bias R RMSE Bias R RMSE Bias R RMSE

CSR −14.7 0.82 30.0 −6.7 0.81 24.6 −14.7 0.82 27.0 −6.9 0.81 24.0
ICONDA 8.8 0.88 20.0 4.3 0.89 17.6 8.8 0.89 20.0 3.6 0.90 16.3
NTLB 2.1 0.78 29.0 −1.0 0.79 27.7 2.0 0.79 29.0 −1.4 0.79 28.0

atmospheric transport, such as advection schemes, sub-grid
scale parameterizations, and horizontal and vertical resolu-
tions, could also be responsible for these discrepancies, as
has been reported by previous studies, such as Locatelli et al.
(2013). Complex terrain, e.g. mountainous sites, could also
introduce biases in the results, as it is difficult to simulate in-
flow in and around mountains (e.g. Al Oqaily et al., 2025).
The performance of CTDAS-WRF with respect to the sta-
tions that were optimized for is much better (compare Figs. 4
and 5), which suggests that the poor performance with re-
spect to the validation stations could be due to overfitting.
However, on average, the fit to the optimized stations does
not improve more in the CTDAS-WRF inversion than some

other models (Fig. 4), suggesting that the weight of the ob-
servations in the inversion was not considerably larger than
in the other models. Overfitting could still play a role for in-
dividual stations, but further analysis is needed. Finally, the
statistics presented here are averaged using all the stations
for the common years. Therefore it is possible that the statis-
tics are driven by one of the stations. Table 6 summarises the
statistics for the inverse models that provide CH4 mole frac-
tions for the validation stations for both the BASE and TEST
simulations. The use of more stations in the TEST simula-
tion resulted in better agreement between the modelled and
the observed molar fractions for all inverse models, as shown
by the lower RMSEs for all models. ICONDA performs bet-
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ter than the other two inverse models with a lower bias and a
higher correlation coefficient in both simulations. For details
regarding ICONDA’s development and detailed testing for
European CH4 inversions please refer to Steiner et al. (2024).

The reductions in RMSE and bias from a priori to a pos-
teriori is less for independent sites than for optimised sites
(Fig. 4). Some loss in performance is expected due to un-
certainties in atmospheric transport models, and limitations
in the coverage of the measurements that are used in the
optimisation. This is also reflected in the correlation coeffi-
cients which barely improve, as the measurement variability
is largely determined by the meteorology, which is not opti-
mised.

4.3 Seasonal cycle

Figure 6 shows the seasonal cycle of total CH4 emission
anomalies for EU-27 (Fig. 6a), Western, Northern, Eastern
and Southern Europe (Fig. 6b–e), using results from the
BASE run. See Fig. 1 (Sect. 3.1) for the sub-regions defi-
nition. The seasonality is estimated by subtracting the annual
mean of each year from the monthly values of that year. Here
we treat the different inverse model results as an ensemble
consisting of 9 BASE runs (see Fig. 6) and 4 TEST runs (see
Appendix E and Fig. E1), as shown in Table 4. The average
over all models is also shown. For the EU-27, the a posteriori
CH4 emissions show an enhanced seasonal cycle compared
to the a priori, with a maximum in July/August and a min-
imum in March/April and November/December. Although
the models generally follow the same pattern, there is a con-
siderable spread in the individual inverse models, especially
during summer and winter months. To further investigate the
origin of this signal in the a posteriori CH4 emissions, we
split the EU-27 in four sub-regions.

A priori CH4 emissions show a very small seasonal cycle
in all sub-regions (Fig. 6b, d, e), except for Northern Europe
(Fig. 6c). In Northern Europe, a priori CH4 emissions are
enhanced during the summer (Fig. 6c), due to the contribu-
tion of natural wetland emissions, as shown in previous stud-
ies (Bergamaschi et al., 2018b). We expect the influence of
the hydroxyl radical ( qOH) on CH4 to be small over Europe
(Zhao et al., 2020). East et al. (2024) attributed wetland emis-
sions as the primary driver of CH4 seasonality during sum-
mer in the northern hemisphere, while CH4 sinks, such asqOH, are unlikely to play a significant role. A posteriori CH4
emissions follow the a priori seasonality, however, the signal
is slightly more enhanced during summer and extends longer
into autumn. By using the JSBACH-HIMMELI model as the
only a priori estimate for natural emissions, we might indeed
underestimate total emissions over Northern Europe during
summer, because it does not account for emissions from
rivers and lakes (Tenkanen et al., 2025). Though JSBACH-
HIMMELI also does not explicitly resolve coastal wetland
emissions. Recent studies, such as by Aalto et al. (2025),
have demonstrated JSBACH-HIMMELI’s limitations in pro-

ducing accurate CH4 wetland emissions, due to uncertainties
in processes, for example, linked to temperature and precip-
itation. Although temperature and precipitation are impor-
tant drivers, studies suggest that CH4 emissions are more
sensitive to inundation (Gerlein-Safdi et al., 2021). Inunda-
tion, after snow-melt, could induce large CH4 emissions in
spring. Inundation in JSBACH-HIMMELI is taken as pre-
scribed from satellite data (WAD2M, Zhang et al., 2021)
and CH4 emissions from inundated lands are calculated us-
ing the approach by Spahni et al. (2011). However, bottom-
up process-based models, such as JSBACH-HIMMELI, have
limitations combining emissions from different types of land,
which might result in limitations in the total wetland CH4
emissions.

In other sub-regions, the model-average of a posteriori
CH4 emissions show a slightly enhanced seasonality com-
pared to the a priori. An increase was expected since the an-
thropogenic component of the prior emissions had no sea-
sonal cycle in our protocol. A posteriori emissions show
stronger emissions during summer, with a peak in August,
in Southern Europe (Fig. 6e) than the a priori. Similar sea-
sonal adjustments are found in Eastern Europe (Fig. 6d), al-
though slightly less strong than in Southern Europe, with a
smaller spread of the ensemble members. We speculate that
factors contributing to a summer maximum in these regions
could be enhanced energy use due to air conditioning (Dong
et al., 2021) and microbial sources such as CH4 emissions
from land fills and waste water, which we assume respond to
warmer temperatures with higher CH4 emissions (Hu et al.,
2023). Neither factor would be accounted for in temporally
resolved bottom-up data for these regions: time profiles for
power use available in the literature are not region-specific
and feature a maximum of energy use in winter (e.g. Kuenen
et al., 2014), and to our knowledge up to date time profiles
are not available for waste treatment (Guevara et al., 2021).
Therefore, while including a seasonal cycle in the anthro-
pogenic prior emissions may have improved the prior esti-
mate in other regions, it could have increased the discrepancy
between prior and posterior seasonal cycles in Southern and
Eastern Europe. Note that both regions are not well covered
by the observation network and the sites in the center of those
regions may drive the adjustments in the a posteriori results.

In Western Europe, the seasonality in inversion-optimised
CH4 emissions shows a double maximum in winter and sum-
mer (Fig. 6b). The spread of the ensemble members (the dif-
ferent inverse models) is bigger, however, in Western Europe
than in the other sub-regions, and seems to drive the spread
shown in EU-27 (Fig. 6a). A missing contribution from fossil
fuel use (e.g. domestic heating) to the a priori seasonal cycle
might explain the difference between the a posteriori and a
priori winter peak in January extending into February and
March. Recent studies point to CH4 leaks from oil and gas
pipelines in Western European cities, which might be miss-
ing in bottom-up inventories (Maazallahi et al., 2020; De-
fratyka et al., 2021; Dowd et al., 2024). However, only small
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Figure 6. Seasonal cycle of CH4 emission anomalies, in Gg month−1, for 2006–2018. The black solid line shows the mean a priori emissions,
while the red line shows the mean a posteriori emissions. The green lines show the a posteriori results from the different inverse models. This
figure shows the seasonal cycle for (a) EU-27, (b) Western Europe, (c) Northern Europe, (d) Eastern Europe and (e) Southern Europe, based
on the BASE simulation.

seasonal variations have been found for natural gas distribu-
tion systems (McKain et al., 2015; Wong et al., 2016), so this
processing is unlikely to explain the different seasonalities in
the a posteriori emissions compared to the a priori emissions.

Uncertainties in agricultural emissions from livestock and
manure management might also influence emission seasonal-
ity (Solazzo et al., 2021; Petrescu et al., 2021; Ghassemi Ne-
jad et al., 2024). Recent studies show that emissions from
storage and treatment of manure are temperature dependent,
and exhibit seasonal variations (Cárdenas et al., 2021; Zhang
et al., 2021; Ólafsdóttir et al., 2023). Other studies have re-
ported significant variations in CH4 emissions from dairy
cows, due to the lactation periods of cows (Ulyatt et al.,

2002). Increased agricultural emissions during summer com-
bined with increased fossil fuel emissions during winter
could explain the double peaked seasonal variability in the a
posteriori CH4 emissions in Western Europe, as well as sea-
sonal emission adjustments in other sub regions. Conducting
source-resolved posterior analyses in future studies, for ex-
ample using isotopic measurements, would facilitate a more
precise quantification of contributions from agricultural and
fossil fuel sources.

Two inverse models exhibit abnormal seasonality:
CTDAS-WRF in Western Europe (August-December) and
NTLB in Southern Europe (from August to November), de-
spite the latter performing better than CTDAS-WRF when
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comparing against the independent observations (Fig. 5). Al-
though CTDAS-WRF and NTLB use a different inversion
setup as shown in Table 3 and therefore it is difficult to point
out the cause of these discrepancies, both inverse models are
driven by the same transport model (WRF). It is known in the
literature that WRF has difficulties simulating realistic mix-
ing, as mentioned earlier in Sect. 4.2, and BL and strongly
depends on the parametrisation used (e.g. Banks and Bal-
dasano, 2016). We estimated the seasonal cycle without those
two inverse models (not shown here). When excluding re-
sults from CTDAS-WRF and NTLB, the seasonal patterns
remain largely consistent across Southern, Northern, West-
ern and Eastern Europe, with minimal changes to the overall
seasonality.

The TEST run (see in Appendix E) shows seasonal emis-
sion adjustments that are similar to the BASE run, namely
a strong seasonal cycle in the a posteriori fluxes in EU-
27 (Fig. E1a), as well as in Western and Northern Europe
(Fig. E1b and E1c respectively). Interesting patterns are
shown in Southern and Eastern Europe, namely a stronger
variability during summer and winter compared to the BASE
run (Fig. 6d). More stations are available in the TEST run
over Western and Southern Europe, compared to the BASE
run. Therefore, more information is available to constrain the
a priori emissions, which might explain the increased sea-
sonal emission adjustments. The reasons discussed earlier
could be responsible for the discrepancies between a priori
and a posteriori results.

4.4 CH4 emission trends

According to the European Environment Agency (European
Environment Agency, 2022), regulations at the European
level, following the Kyoto protocol and the Paris agreement,
have resulted in a decrease in CH4 anthropogenic emissions
from the energy sector, including fugitive emissions from oil,
coal and natural gas, as well as the agriculture and waste sec-
tors, since the early 1990s. Previous inverse modelling inter-
comparison studies, such as by Bergamaschi et al. (2018b),
did not discuss trends in CH4 emissions in detail, as they
focused on a shorter time period (2006 to 2012). Neverthe-
less, Bergamaschi et al. (2018b) reported a negative trend in
CH4 emissions for EU-28 (including the UK). Petrescu et al.
(2021, 2023) compared top-down and bottom-up estimations
for several years, but provided trends only for the a priori
emissions.

Here we present a detailed analysis of CH4 emission
anomaly trends over Europe and sub-regions (Fig. 7), as de-
fined earlier, including the common years from all the in-
verse models provided results for a long time period (see Ta-
ble 4). Standarised anomalies are estimated first by inverse
model and then the results are averaged to get the mean pos-
terior anomaly trends. The results based on the BASE run
are shown here. The trends from the TEST run are not shown
here since only two models submitted results for all the years.

Table 7 summarises the a priori and a posteriori trends for
EU-27 and per sub-region, and also shows whether the trends
and the difference between the a posteriori and a priori trend
are statistically significant, as indicated by the p-value, com-
puted using the Mann-Kendall test (Mann, 1945; Kendall,
1948; Gilbert, 1987). We consider results to be statistically
significant when the p-value is less than 0.05.

The EDGAR inventory used for the a priori anthropogenic
emissions in this study indicates a decrease in CH4 emissions
over Europe as well as all our sub-regions except Northern
Europe (Table 7), where the prior shows no significant trend.
More specifically, a priori CH4 emissions show a negative
trend (−9.1 % or −0.7 % yr−1) in EU-27 (Fig. 7a), while
the decrease is stronger (−18.3 % or −1.3 % yr−1) in West-
ern Europe (Fig. 7b) and in Eastern Europe (−14.5 % or
−1.04 % yr−1) (Fig. 7d). The a priori trends are statistically
significant for EU-27 and these three sub-regions, whereas
no statistically significant trend is present in the prior emis-
sions for Northern Europe (Fig. 7c).

The inverse model outputs are treated here as ensemble
members and the trend based on the mean a posteriori emis-
sions is analysed. The trends of averaged a posteriori re-
sults agree with the prior (i.e., are not statistically signif-
icantly different) in the EU-27, where they show a simi-
larly strong negative trend (−12.3 % or −0.9 % yr−1), and
in Northern Europe, where no statistically significant trend
is detected (+3.6 % or +0.3 % yr−1). By contrast, the trends
of the mean a posteriori emissions in Western, Eastern and
Southern Europe differ significantly from the trends of the
respective a priori emissions. The emission reduction trends
in both Southern (−21 % or −1.5 % yr−1, Fig. 7e) and East-
ern (−35.6 % or −2.5 % yr−1, Fig. 7d) Europe are signif-
icantly stronger than in the a priori. The stronger decline
on CH4 emissions over Southern and Eastern Europe com-
pared to the a priori could be driven from the observations
used to constrain the a priori emissions. Follow up studies
could further explore what drives the emission trends (e.g.
in-situ stations, background optimisation) in the European
boundaries. The opposite applies to Western Europe: while
the a priori emissions show the above-mentioned significant
emission decrease (−18.3 % or −1.3 % yr−1), the a posteri-
ori emissions saw a small decrease (−2.8 % or 0.2 % yr−1)
which is not a significant trend. We note that the period with
the strongest emission reductions in the a prior in Western
Europe, 2006–2011, is characterized by much higher inter-
annual variability than in the other periods and regions, with
relatively small uncertainty among the models.

Overall, the inversions retrieve a similar trend as the a pri-
ori over the aggregated EU-27 region, but shifts emission re-
ductions in the a priori from Western Europe to Eastern and
Southern Europe.
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Table 7. A priori and a posteriori anomaly trends over the years 2006 to 2018 for EU-27 and the four sub-regions. p-value is given for mean
a priori, mean a posteriori trend and for the difference between the mean a posteriori and mean a priori trend. These results are based on the
BASE simulation. See text for more information.

a priori a priori a posteriori a posteriori p-value posterior
trend p-value trend p-value minus prior

EU-27 −9.1 % 3.2× 10−6
−12.3 % 0.002 0.1

Western Europe −18.3 % 3.2× 10−6
−2.8 % 0.8 0.03

Northern Europe 6.6 % 0.2 3.6 % 0.5 0.6
Southern Europe −8.4 % 0.0001 −21 % 0.0003 0.01
Eastern Europe −14.5 % 1.4× 10−5

−35.6 % 0.003 0.06

Figure 7. Total CH4 emission anomaly trends, in Gg yr−1, over (a) EU-27, (b) Western Europe, (c) Northern Europe, (d) Southern Europe
and (e) Eastern Europe and over the common long period (2006–2018), based on the BASE simulation. The red line shows the mean a
priori model results, the blue line shows the mean a posteriori results, while the green lines and dots show the a posteriori model outputs.
The horizontal gray line shows the reference line at y = 0. The blue shade shows the emissions’ uncertainty, which is estimated using the
standard deviation of the ensemble of models. Note the scales are different.

https://doi.org/10.5194/essd-18-167-2026 Earth Syst. Sci. Data, 18, 167–198, 2026



182 E. Ioannidis et al.: CH4-inter-comparison

5 Code and data availability

The output database has been prepared in network Com-
mon Data Form (NetCDF) and comma-separated val-
ues (csv) format and are available at the ICOS por-
tal: https://doi.org/10.18160/KZ63-2NDJ (Ioannidis et al.,
2025). The input data, observations and emissions, used in
this study are included in the ICOS portal. The protocol can
be found at https://doi.org/10.5281/zenodo.15082281 (Flo-
rentie and Houweling, 2021). All the inverse and transport
models are publicly available online.

6 Conclusions

A new inverse modelling inter-comparison has been pre-
sented to study European CH4 emissions, organised as part
of the CoCO2 project and WMO-IG3IS. The participating
groups submitted inverse model outputs of a posteriori CH4
emissions, and a priori and a posteriori CH4 mole fractions
over Europe covering the period from 2005 to 2019. The in-
version setups follow an experimental protocol specifying
common a priori CH4 emissions and in-situ measurements
to be used in two inversions, using different sets of in-situ
stations (BASE and TEST runs). This resulted in 9 model
submissions for the BASE run and 4 for the TEST run, which
have been used to analyse mean emission adjustments, emis-
sion seasonality, and trends during the study period.

The inverse models use different atmospheric transport
models, operating at different resolutions, and inversion tech-
niques, which differ in model-data mismatch and a priori flux
uncertainties. The optimised emissions adjustments from the
a priori show significant spatial variations across the Euro-
pean domain with differences between the inverse models
that largely persist in time. We believe that some of these
differences could be due to known critical issues in regional
inverse transport modelling, such as the sensitivity to the
treatment of domain boundaries, atmospheric transport un-
certainty (such as representation of mountain sites due to
uncertainties in the PBL structure) and the relative weight
of the data and a priori fluxes. Despite these differences,
the inverse model outputs also show common spatial pat-
terns in a posteriori emission adjustments, such as a system-
atic enhancement over The Netherlands and northern Ger-
many, over southern UK and Bretagne. Most models agree
on emissions reduction over Italy and Belgium. To test in-
version performance, the a priori and a posteriori CH4 mole
fractions have been evaluated against measurements that are
used for optimisation and validation. The optimisation de-
creased the RMSEs and biases for all inverse models from a
priori values ranging between 21 and 45 ppb RMSE and−17
to 5 ppb bias, to a posteriori RMSEs ranging between 20 and
33 ppb and biases of −12 to 2 ppb, for sites used in the op-
timisation. RMSEs and biases also decreased for all but one
model compared to independent measurements, from a pri-
ori values ranging between 19 and 50 ppb RMSE and −16

to 13 ppb bias, to a posteriori values range between 18 and
60 ppb RMSE, and −8 to 11 ppb bias. Modelled a posteriori
CH4 mole fractions also improved in the TEST simulation,
compared to the a priori. However, the use of more stations
did not lead to better results against the independent stations
compared to the BASE run. ICONDA and LUMIA are the
inverse models that perform better than the rest in this study
based on the above analysis.

The analysis of optimised CH4 emissions reveals a
stronger seasonal cycle, by up to 220 Gg month−1 on aver-
age, in the a posteriori CH4 emissions compared with the
a priori (up to 100 Gg month−1) integrated over the EU-27,
peaking in summer. After splitting up the EU-27 into sub-
regions, a stronger seasonality is found in the multi-model
mean a posteriori than in a priori emissions across the Euro-
pean domain, albeit with large inter-model differences. How-
ever, the shape of the a posteriori seasonal cycle varies be-
tween Western Europe, with emission maxima during win-
ter and summer, and Northern, Southern and Eastern Europe,
where emissions peak during summer. The seasonal cycle of
the a posteriori CH4 emissions is stronger than the a priori,
driven entirely by the observations, as we didn’t impose a
seasonal cycle on the a priori emissions. Further investigation
could help to quantify the uncertainty imposed on a priori
emissions due to the use of temporal profiles. Natural CH4
emissions from wetlands or wet mineral soil could be under-
estimated, up to 20 %, in the JSBACH-HIMMELI process-
based model (Aalto et al., 2025; Ying et al., 2025), although
Northern Europe has only a relatively minor contribution to
the EU-27 seasonal cycle adjustment. Missing seasonality in
the anthropogenic emission sectors, such as fossil fuel (e.g.
energy sector due to intense heating in winter or due to in-
tense use of air conditioning in summer), waste treatment
(livestock waste, landfills, waste water plants) could play a
role also on top-down estimations (Tenkanen et al., 2025),
but needs further investigation.

Compared with previous inversion inter-comparison stud-
ies, we were able to extend the inversion time window with
additional years of measurements, allowing us to study a pri-
ori and a posteriori trends in CH4 emissions. According to
the a priori CH4 emissions inventory the emissions in the
EU-27 decreased by 9.1 % between 2005 and 2019, while
the inversion results (−12.3 %) agree within uncertainties.
Analyzing this result by sub-region, the inversions shift an
emission decrease in Western Europe that is present in the
a priori to Eastern and Southern Europe. The inversion re-
sults for Western Europe until 2011, i.e. the period of biggest
emission reductions in the a priori, exhibit bigger a posteri-
ori emissions inter-annual variations compared to any other
period or region in our analysis.

This is the first inversion inter-comparison study of na-
tional CH4 emissions for Europe spanning 15 years. Our
results highlight the importance of optimised lateral bound-
ary conditions in regional inversions and accurate represen-
tations of the optimised stations by the atmospheric trans-
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port models that are used. Most of the participating inver-
sion systems are still under development for long-term appli-
cations. Including background mole fractions optimization
within the inversion framework enhances the agreement be-
tween posterior modelled and observed mole fractions, par-
ticularly in regions close to the boundaries of the model-
ing domain and minimises uncertainties due to biases on
long-way transport (Steiner et al., 2024). More specifically,
the choice of optimising background mole fractions seems
to be important for constraining long-range transport or in-
consistencies caused by the lateral boundary conditions. Fu-
ture projects could investigate in detail the role of optimis-
ing background mole fractions in the inversions with de-
tailed sensitivity runs. Follow-up inter-comparison studies
are in preparation in the on-going European projects Attribut-
ing and Verifying European and National Greenhouse Gas
and Aerosol Emissions and Reconciliation with Statistical
Bottom-up Estimates (AVENGERS), Verifying Emissions of
Climate Forcers (EYE-CLIMA) and Process Attribution of
Regional Emissions (PARIS) for which this study can serve
as a reference. Detailed protocols with prescribed prior emis-
sions, common observations to be used for optimisation and
validation, and lateral boundary conditions, as has been done
in this study, can help to narrow down inter-model discrep-
ancies. The use of common meteorological boundary con-
ditions in a subset of inverse models, as in Munassar et al.
(2023), could be explored to shed light on the causes of trans-
port errors in the models. There is still a significant potential
to narrow down the wide range of inverse model estimates,
as needed for a more detailed evaluation of national emission
inventories.
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Appendix A

Table A1. European monitoring stations used in this study. Altitude and intake height are in meters (m). Altitude is the sum of station
elevation and intake height. ST specifies the sampling type: I stands for continuous measurements and F for flask (discrete) measurements.
The last three columns indicate the use of the corresponding station data set in the inversions.

ID Station name Data provider Latitude Longitude Altitude Intake Height ST Core Other Validation

PUY Puy de Dome ICOS 45.7719 2.9658 1475.0 10.0 I •

PUY LSCE 45.7700 2.9700 1475.0 10.0 F •

IPR Ispra ICOS 45.8100 8.6400 226.0 16.0 I •

IPR JRC 45.8100 8.6400 226.0 16.0 I •

CMN Mt Cimone UNIURB 44.1667 10.6833 2172.0 7.0 I •

OXK Ochsenkopf InGOS 50.0300 11.8100 1185.0 163.0 I •

OXK NOAA 50.0301 11.8084 1185.0 163.0 F •

OXK ICOS 50.0300 11.8100 1185.0 163.0 I •

MHD Mace Head NOAA 53.3100 −9.9000 26.0 21.0 I •

MHD AGAGE 53.3300 −9.9000 5.0 0.0 I •

PAL Pallas NOAA 67.9600 24.1100 570.0 5.0 I •

PAL ICOS 67.9733 24.1159 567.0 7.0 I •

ZSF Zugspitze WDCGG 47.4165 10.9796 2670.0 3.0 I •

Schneefernerhaus

PDM Pic du Midi LSCE 42.9400 0.1400 2877.0 0.0 I •

KAS Kasprowy Wierch Akademia 49.2300 19.9800 1989.0 2.0 I •

Górniczo-Hutnicza

BIS Biscarosse LSCE 44.3781 −1.2311 120.0 47.0 I •

LMP Lampedusa NOAA 35.5100 12.6100 50.0 5.0 F •

RGL Ridge Hill WDCGG 51.9976 −2.5400 294.0 90.0 I •

OPE Observatoire perenne ICOS 48.5619 5.5036 510.0 120.0 I •

de l’environnement

TER Teriberka WDCGG 69.2000 35.1000 42.0 2.0 I •

LUT Lutjewad ICOS 53.4036 6.3528 61.0 60.0 I •

SSL Schauinsland UBAG 47.9000 7.9167 1211.0 6.0 I •

BGU Begur LSCE 41.9700 3.2300 15.0 2.0 F •

GIF Gif-sur-Yvette LSCE 48.7100 2.1475 167.0 7.0 I •

HUN Hegyhátsál NOAA 46.9500 16.6300 344.0 96.0 F •

HUN InGOS 46.9600 16.6500 344.0 96.0 I •

BIK Bialystok InGOS 53.2300 23.0100 483.0 300.0 I •

CIB CIBA NOAA 41.8100 −4.9300 850.0 5.0 F •

TRN Trainou ICOS 47.9647 2.1125 311.0 180.0 I •

JFJ Jungfraujoch Empa 46.5475 7.9851 3580.0 10.0 I •

TAC WDCGG 52.5177 1.1386 241.0 185.0 I •

HEI Heidelberg Institut für 49.4200 8.6800 143.0 30.0 I •

Umweltphysik

SAC ICOS 48.7200 2.1400 260.0 100.0 I •

WAO Weybourne University of 52.9500 1.1200 10.0 0.0 I •

East Anglia
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Table A1. Continued.

ID Station name Data provider Latitude Longitude Altitude Intake Height ST Core Other Validation

HPB Hohenpeissenberg NOAA 47.8011 11.0245 941.0 5.0 F •

HPB ICOS 47.8000 11.0100 1065.0 131.0 I •

FKL Finokalia LSCE 35.3400 25.6700 150.0 0.0 F •

FKL LSCE 35.3378 25.6694 165.0 15.0 I •

LMT Lamezia Terme WDCGG 38.8763 16.2322 14.0 8.0 I •

PDM Pic du Midi LSCE 42.9372 0.1411 2887.0 10.0 F •

UTO UTO ICOS 59.7800 21.3700 65.0 57.0 I •

VKV Voeikovo InGOS 59.9500 30.7000 76.0 6.0 I •

HTM Hyltemossa ICOS 56.1000 13.4200 265.0 150.0 I •

NOR Norunda ICOS 60.0900 17.4800 146.0 100.0 I •

BIR Birkenes EBAS 58.3900 8.2500 218.0 3.0 I •

ORL Orleans LSCE 47.8300 2.5000 1937.0 1767.0 F •

TOH Torfhaus ICOS 51.8100 10.5400 948.0 147.0 I •

HEL Helgoland ICOS 54.1800 7.8800 153.0 110.0 I •

SMR Hyytiala ICOS 61.8500 24.2900 306.0 125.0 I •

CUR Monte Cursio NOAA 39.3160 16.4232 1801.0 3.0 F •

LIN Lindenberg ICOS 52.1700 14.1200 171.0 98.0 I •

BSC Black Sea NOAA 44.1776 28.6647 5.0 5.0 I •

BAL Baltic sea NOAA 55.4100 17.0600 28.0 25.0 F •

KRE Kresin u Pacova ICOS 49.5700 15.0800 784.0 250.0 I •

LPO Ile Grande LSCE 48.8000 −3.5800 20.0 10.0 F •

KIT Karlsruhe ICOS 49.0900 8.4200 310.0 200.0 I •

NGL Neuglobsow WDCGG 53.1428 13.0333 62.0 0.0 I •

GAT Gartow ICOS 53.0700 11.4400 410.0 341.0 I •

SNB Sonnblick WDCGG 47.0542 12.9578 3111.0 5.0 I •

SVB Svartberget ICOS 64.2600 19.7800 385.0 150.0 I •

Appendix B

B1 CIF-CHIMERE

The CIF is a modular inverse modeling platform developed
as a python library (Berchet et al., 2021), designed in the
framework of European and international projects. It can
drive various data assimilation schemes (analytical inver-
sions, Ensemble Kalman filtering and 4D variational inver-
sions) and it can be coupled to various chemistry-transport
models (CTMs). Here, we use CIF with the CTM CHIMERE
in variational mode. The regional chemistry-transport model
CHIMERE (Mailler et al., 2017) and its adjoint (Fortems-
Cheiney et al., 2021) computes CH4 mole fractions as a

passive tracer. The European configuration covers the lat-
itude range of 31.75–73.75° N and longitude range of
15.25° W–34.75° E with a 0.5°× 0.5° horizontal resolution
and 17 vertical layers up to 200 hPa. Meteorological forcing
for CHIMERE is generated using operational forecasts from
the Integrated Forecasting System (IFS) of the European
Centre for Medium Range Weather Forecasting (ECMWF).
Total fluxes of CH4 are optimized on a daily basis at the pixel
scale, as well as background mole fractions on a 2 d basis,
also at the pixel scale.

https://doi.org/10.5194/essd-18-167-2026 Earth Syst. Sci. Data, 18, 167–198, 2026



186 E. Ioannidis et al.: CH4-inter-comparison

B2 CIF-FLEXPART

FLEXPART is a Lagrangian Particle Dispersion Model,
which is driven by external meteorological fields (Stohl et al.,
2005; Pisso et al., 2019); in this study ECMWF EI fields at
1.0°× 1.0° horizontal resolution and 3-hourly temporal res-
olution are used. FLEXPART can be run in a backwards
in time mode to compute retroplumes from which source-
receptor relationships can be derived and describe the re-
lationship between the change in flux and the change in
mole fraction at a given observation point. The retroplumes
are calculated for 10 d backwards in time from the observa-
tion time. The source receptor relationships are calculated
for each hourly observation with a resolution of daily and
0.25°× 0.25° for the European domain and 1.0°× 1.0° for
the global domain. In addition, the sensitivity of each ob-
servation to the initial mixing ratios is calculated from the
particle locations when they are terminated (10 d before the
observation). The FLEXPART output (source receptor rela-
tionships and sensitivities to initial mixing ratios) are used
in the Community Inversion Framework (CIF) – a Python li-
brary for atmospheric inversions (Berchet et al., 2021). Using
CIF, the minimum solution for the cost function was found
using the variational approach based on the Lanczos algo-
rithm.

B3 CSR

The CarboScope Regional inversion system (CSR) uses a
Bayesian approach for solving the under-determined inverse
problem (Rödenbeck, 2005). For the CSR inversion system
the spatial and temporal correlation of the a-priori uncer-
tainty was taken from previous studies with a spatial cor-
relation scale length of 300 km and a temporal correlation
time scale of 1 month (Bergamaschi et al., 2018b). Prior
uncertainties of 50 % are assumed domain wide (15° W to
35° E and 33 to 74° N) at annual time scale. Model repre-
sentation errors are assigned to the individual sites according
to their location with respect to urban, continental, remote,
mountain or oceanic situations (Rödenbeck, 2005), ranging
from 40 to 8 ppb on weekly scale, respectively. Atmospheric
transport is simulated by the Stochastic Time-Inverted La-
grangian Transport (STILT) model (Lin et al., 2003), which
is utilized to calculate surface influences (i.e. “footprints”)
for the observing stations with 0.25°× 0.25° spatial resolu-
tion and hourly temporal resolution. The model is driven by
meteorological fields from the high-resolution implementa-
tion of the Integrated Forecasting System (IFS HRES) model
of the European Centre for Medium Range Weather Fore-
casts (ECMWF), extracted at 0.25°× 0.25° using 90 vertical
levels until 20 km height and 3-hourly temporal resolution.
The footprints are simulated over the past 10 d by releas-
ing 100 virtual particles at receptor positions and sampling
heights. For mountain sites a release height correction was
applied due to the fact that the actual elevation of mountain

sites differs from the mean orography of the 0.25°× 0.25°
grid cell. The height correction was introduced using the
half of the difference between the actual elevation of the
mountain site and the mean orography of the correspond-
ing 0.25°× 0.25° grid cell. The hourly release time differs
between mountain atmospheric sites (23:00–04:00 UTC) and
all other atmospheric sites (11:00–16:00 UTC).

B4 CTE-CH4

CTE-CH4 is based on the Carbon Cycle Data Assimilation
Shell (CTDAS; Peters et al., 2005; Van Der Laan-Luijkx
et al., 2017) and optimises CH4 fluxes globally. For obser-
vation operator, the Eurlerian global atmospheric transport
model TM5 (Krol et al., 2005) is used. TM5 is run 6° (lon-
gitude)× 4° (latitude) globally with 1°× 1° resolution zoom
over Europe (24–74° N, 21° W–45° E) with 25 hybrid sigma
pressure levels, constrained by 3-hourly ECMWF ERA5 me-
teorological fields. The initial 3-dimentional mixing fields
was taken from previous study (Saunois et al., 2019). CT-
DAS is run with 500 ensemble members, a window length of
seven days, lag of five weeks and localization based on Pe-
ters et al. (2007). Anthropogenic and natural CH4 emissions
are optimised separately, and at 1°× 1° resolution over Eu-
rope. 80 % a priori uncertainty is applied to both a priori an-
thropogenic and natural fluxes, assuming them to be uncor-
related. Two categories were optimised: (1) anthropogenic
(Fossil Fuels & Agriculture and waste, i.e. EDGAR compo-
nents as a sum) and (2) natural (Peatlands, Mineral soils, in-
undated i.e. JSBACH-HIMMELI components as a sum). The
spatial correlation length is set to 100 km over Europe, and
no temporal correlation is assumed. The data representation
uncertainty is set to constant values per observation site, and
ranged between 4.5 and 75 ppb globally, following previous
work, for example by Bruhwiler et al. (2014) and Tsuruta
et al. (2019).

B5 CTDAS-WRF

The Weather Research and Forecasting Greenhouse gases
(WRF-GHG v4.5.2) transport model is used here (Grell et al.,
2005; Beck et al., 2011). The model is run at 0.25°× 0.25°
spatial resolution, covering continental Europe, with 50 verti-
cal eta levels. European Centre for Medium-Range Weather
Forecasts (ECMWF) Reanalysis v5 (ERA5) is used for the
meteorological boundary conditions (Hersbach et al., 2020).
Spectral nudging is applied, with spectral nudging param-
eters calculated as in Hodnebrog et al. (2019). WRF-GHG
temperatures and winds are nudged to the reanalysis, at each
dynamical step above the PBL, and are updated every 6 h.
150 ensemble members are used as separate passive tracers in
the model, which are advected internally every model time-
step. The model is run for the years 2008, 2013 and 2018.

WRF-GHG is coupled to CTDAS, originally developed
in the H2020 projects SCARBO and CHE (see https://
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che-project.eu/node/239, last access: 1 January 2022). The
coupling between WRF and CTDAS is described in Reum
et al. (2020). The optimisation in CTDAS is carried out us-
ing an Ensemble Kalman Filter (EnKF) to solve the Bayesian
optimisation problem via in-situ data, providing a statisti-
cal representation of the covariance structure in the space of
fluxes and mixing ratios (Peters et al., 2005). CTDAS-WRF
supports flux optimisation at high spatial resolution by us-
ing a priori flux covariances and replacing the existing local-
ization algorithm with a computationally more efficient ver-
sion. The new localization method is based on the distance
between the observation and the state vector element loca-
tion, instead of the t-test that was implemented initially and
drastically reduces computational time. Anthropogenic and
natural CH4 emissions are optimised separately, using the a
priori emissions provided with the protocol. 100 % a priori
uncertainty is applied to both a priori anthropogenic and nat-
ural fluxes, whereas the uncertainty of background CH4 mole
fractions is set to 2 ppb. A window length of 10 d is chosen,
with two lags, and the correlation length is set to 200 km. The
state vector has 106 504 flux elements in our implementation
(2 windows× (2 processes× 26 622 grid cells+ 8 boundary
condition parameters)). The data representation uncertainty
is set to constant values of 20 and 75 ppb for land and moun-
tain sites, respectively, following previous work, for example
by Bruhwiler et al. (2014).

B6 ICONDA

ICONDA is a system based on CTDAS, an ensemble
Kalman smoother coupled to the ICOsahedral Nonhy-
drostatic (ICON) model (Wan et al., 2013; Zängl et al.,
2015; Pham et al., 2021) with the extension for aerosols and
Reactive Trace (ART; Rieger et al., 2015; Weimer et al.,
2017; Schröter et al., 2018). The implementation and ap-
plication of the inversion system is described in detail in
Steiner et al. (2024). The ICON-ART model is run in lim-
ited area mode with a spatial resolution of 26× 26 km2 and
60 vertical levels, with a grid covering Europe and a time
step of 120 s. The simulations are initialised and driven
at the lateral boundaries by ERA5 data (Hersbach et al.,
2020). During the simulation, the meteorological fields were
weakly nudged towards the 3-hourly reanalysis data through-
out the domain to keep the simulated meteorology close to
the analysed meteorology. The simulation used 192 ensem-
ble members, i.e. 192 passive tracers representing the sig-
nal of the perturbed emissions. In addition, a background
tracer is transported into the model, initialised and driven
with data from the CAMS v19r1 inversion product (avail-
able via https://ads.atmosphere.copernicus.eu/, last access: 1
October 2021). The background tracer is perturbed in 8 dif-
ferent regions of the lateral boundary to allow optimisation of
the background mole fractions in these boundary regions. In
the inversions, anthropogenic and natural CH4 observed and
simulated mole fractions by iteratively adjusting emission

scaling factors across different source categories (Maksyutov
et al., 2021). Sensitivity analyses are conducted to examine
the impact of uncertainties in observational data and a pri-
ori emissions, following methodologies such as perturbation
of input values (Wang et al., 2019). The inversion process
yields monthly scaling factors for emission fields, optimised
at a 0.2°× 0.2° spatial resolution with bi-weekly temporal
steps. A spatial correlation length of 50 km and a tempo-
ral correlation of two weeks are applied to ensure smooth
scaling factors. Scaling factors and flux corrections are esti-
mated for six anthropogenic and natural emission categories:
agriculture, waste, coal, oil and gas, biofuel burning (con-
sidered anthropogenic), and wetlands. Fluxes are estimated
with separate inversion for each year, with 18-month assim-
ilation window, starting from optimised global 3-D field 3
months before the year begins and ending 3 months after the
year end. The simulation period spans 2005–2020, providing
a detailed assessment of emissions and flux variability over
time.

B7 LUMIA

LUMIA is a regional atmospheric inversion system, initially
developed for regional CO2 inversions using European in-
situ CO2 observations (Monteil et al., 2020), and adapted
to CH4 inversions in the framework of the CoCO2 project.
Regional tracer transport is computed using the FLEXPART
10.4 Lagrangian particle dispersion model (Pisso et al.,
2019), driven by meteorological data from the ECMWF
ERA5 reanalysis. For this study, boundary conditions were
taken from the CAMSv19 product (as per the protocol), as
prescribed CH4 timeseries baselines at each of the observa-
tion sites, following the approach of Rödenbeck et al. (2009).

The inversions solve the daily total CH4 emissions (i.e.
the sum from all categories), at a 0.25° spatial resolution.
Prior uncertainties were set proportional to the prior val-
ues, uniformly scaled to achieve a total annual uncertainty
of 5 TgCH4 yr−1 over the whole domain, accounting for the
error covariances reported in Table 3.

The inversions assimilate day-time observations (from
12:00 to 16:00 solar time) at regular sites, and night time
observations (from 00:00 to 04:00) at high-altitude sites
(> 1000 m a.m.s.l), from the observation sites imposed by
the protocol. The observation error combines the measure-
ment uncertainty (provided with the observations) with a
site-specific estimate of the model representation error based
on the quality of the prior model fit to the short-term observed
variability. For this, we calculated de-trended observed and
prior time-series at each site, by subtracting their respective
weekly moving average. The representation error of each site
was then set to the standard deviation of the difference be-
tween these modelled and observed detrended time-series.
This approach yields an estimate of the observation error
ranging from ≈ 10 ppb at background sites (e.g. 10.3 ppb
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at Mace-Head), but much higher for sites closer to anthro-
pogenic emission hot-spots (e.g. 87.4 ppb at Lutjewad).

B8 NTFVAR

The NIES-TM-FLEXPART-variational model (NTFVAR) is
a variational inverse modelling system based on coupled
global Eulerian-Lagrangian models, integrating the National
Institute for Environmental Studies Transport Model (NIES-
TM) as the Eulerian component with the FLEXible PARTicle
dispersion model (FLEXPART) as the Lagrangian compo-
nent (Belikov et al., 2016). This model combination lever-
ages the strengths of both approaches: Eulerian modeling
provides 3-D background mole fractions at moderate reso-
lutions, while Lagrangian modeling captures localized flux
influences. Meteorological data for the current version of
transport model (see Nayagam et al., 2023) is sourced from
ERA5 for the NIES-TM and for FLEXPART from the JRA-
55 meteorological fields provided by the Japanese Mete-
orological Agency (JMA) Climate Data Assimilation Sys-
tem (Kobayashi et al., 2015). The JRA-55 fields include
three-dimensional wind fields, temperature, and humidity at
a 1.25°× 1.25° spatial resolution, 40 vertical hybrid sigma-
pressure levels, and a 6 h temporal resolution. A varia-
tional inversion framework is applied to estimate flux correc-
tions. This framework minimizes the mismatch between ob-
served and simulated mole fractions by iteratively adjusting
emission scaling factors across different source categories
(Maksyutov et al., 2021). Sensitivity analyses are conducted
to examine the impact of uncertainties in observational data
and a priori emissions, following methodologies such as per-
turbation of input values (Wang et al., 2019). The inversion
process yields monthly scaling factors for emission fields,
optimised at a 0.2°× 0.2° spatial resolution with bi-weekly
temporal steps. A spatial correlation length of 50 km and
a temporal correlation of two weeks are applied to ensure
smooth scaling factors. Scaling factors and flux corrections
are estimated for six anthropogenic and natural emission cat-
egories: agriculture, waste, coal, oil and gas, biofuel burning
(considered anthropogenic), and wetlands. Fluxes are esti-
mated with separate inversion for each year, with 18-month
assimilation window, starting from optimised global 3-D
field 3 months before the year begins and ending 3 months
after the year end. The simulation period spans 2005–2020,
providing a detailed assessment of emissions and flux vari-
ability over time.

B9 NTLB

The Weather Research and Forecasting (WRF 4.3, Grell
et al., 2005) and the Stochastic Time-Inverted Lagrangian
Transport model (STILT, Lin et al., 2003) are used here. The
WRF model operates at a spatial resolution of 27 km2, cov-
ering the European continent with 35 vertical levels. The lat-
eral boundary conditions and initial conditions of the me-

teorological field required for WRF model are provided by
NCEP FNL Operational Model Global Tropospheric Analy-
ses at 1°× 1° spatial resolution and 6-hourly temporal reso-
lution (NCEP, 1999). The WRF Model configuration in this
study follows the work by Ren et al. (2024). Combining con-
ventional meteorological data provided by the World Meteo-
rological Organization (https://www.ncei.noaa.gov/products/
wmo-climate-normals, last access: 1 January 2020), the
Grid-nudging method (Stauffer and Seaman, 1990) and Ob-
servational data assimilation (OBSGRID) are added to the
meteorological field simulation process (Deng et al., 2009).
The STILT model is driven by WRF meteorological data
and operates in time-reverse mode, releasing an ensemble
of 1000 particles that are transported backward for 7 d for
each observation’s hour and location. Each hourly footprint
provides an estimate of surface influence on the measure-
ment. Mixing height is derived from WRF Planetary Bound-
ary Layery (PBL) heights; we set the influence layer as 0.5 of
the mixed layer height. The model is run for the years 2008,
2013 and 2018.

The WRF-STILT model is coupled with Bayesian statis-
tical methods for inversion (Ren et al., 2024). The optimi-
sation in NTLB is carried out using matrix multiplication to
solve the Bayesian optimisation problem, the calculation of
the solution (a posteriori flux) and a posteriori uncertainty
is described in Yadav and Michalak (2013). The inversion
framework comprehensively considers the observation value,
background value, a priori information and footprints data
of the whole month, and obtains the monthly emission flux
of the whole European region. The a priori emissions pro-
vided by the protocol are used to optimise the total regional
emissions, with the a priori flux uncertainty set at 30 % and
the correlation length set at 500 km. The Model-data mis-
matches value (include Transport model, boundary condi-
tion and other errors) are determined at each site. We set
the model-data mismatch error parameter based on the idea
of grid search in the statistical machine learning algorithm,
where the mismatch error value of all sites is set to the same
28 ppb.
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Appendix C

Figure C1. CH4 emission fluxes, in mg m−2 h−1, over Europe, averaged for the common years 2008, 2013 and 2018, and the BASE
simulation. The different panels show the a posteriori fluxes for the different inverse models: (a) LUMIA, (b) CSR, (c) CTE-CH4, (d)
NTFVAR, (e) CIF-CHIMERE, (f) CIF-FLEXPART, (g) NTLB, (h) ICONDA and (i) CTDAS-WRF.
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Appendix D

Figure D1. CH4 emission fluxes, in mg m−2 h−1, over Europe, averaged for the common years 2008, 2013 and 2018, and the TEST
simulation. The different panels show the a posteriori fluxes and the differences between a posteriori and a priori for the different inverse
models: (a) ICONDA, (b) CSR, (c) NTLB, and (d) LUMIA.
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Appendix E

Figure E1. The same as Fig. 6, results are shown for the TEST simulation. Note that less inverse models provided results for the TEST run.
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