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Abstract

Information freshness is becoming increasingly critical with the proliferation of communication net-
works and portable communication devices. Non-terrestrial networks exhibit unique challenges arising
from line-of-sight constraints, dynamic traffic conditions, and the diverse architectural components.
These characteristics make them a compelling scenario for analyzing optimal configurations and energy
consumption.

In this work, we examine two different non-terrestrial communication models: a deterministic model
with intermittent connectivity caused by periodic loss of line-of-sight and a multi-user multi-queue
model in which traffic is split over multiple servers. For the intermittent connectivity model, we
derive a closed-form expression for the metric known as Age of Information and demonstrate its linear
dependence on the generation rate, service rate and duration of the active phase, as well as its inverse
relationship with the duration of the inactive phase.

We also introduce the concept of packet usefulness for the multi-user multi-queue scenario and derive
a closed-form expression for the shared queue. Our results highlight the importance of traffic splitting
in reducing both the Age of Information and the overall resource consumption.
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Introduction

This chapter provides the introduction and context for this study. Section 1.1 discusses the emer-
gence of real-time communications and the growing importance of timely data delivery in modern
applications. Section 1.2 presents the concept of Age of Information, which formalizes the notion of
information freshness. Section 1.3 reviews the relevant literature on intermittently available channels
and multi-user/multi-queue systems, highlighting existing approaches and identifying gaps that moti-
vate this work. Finally, Section 1.4 summarizes the contributions of this thesis, introducing the new
analytical models developed and their significance for non-terrestrial networks and real-time commu-
nication systems.

1.1 REAL-TIME COMMUNICATIONS

Real-time communications are characterized by constraints in the period in which data availability and
management became critical to make fast and efficient decisions. During history, the human necessity
to communicate has always been limited by constraints on distance, time, and modes of transmission.
Improving the ability to send data in a timely way is a central challenge in modern communication
networks.

As observed by David S. Alberts and Daniel S. Papp[1]:

”Successfully responding to these challenges will require three things. First, we will need to recognize
that something has changed. Second, we will need to understand the implications of this change.
Third, we will need to develop timely and effective responses.”

Having access to up-to-date information in real time is fundamental in many scenarios. For example,
being rapidly informed of the arrival of a tsunami can save lives thanks to timely warning systems;
updated data on the river levels can prevent floods or help manage evacuations; monitoring in real time
the position and the velocity of an airplane or a ship helps to avoid incidents. In all these scenarios,
having the data is not sufficient: their timeliness, i.e., their freshness decides how much effectively the
system can react to changes and optimize its performance.

It is exactly from this necessity to understand and quantify the continuous updating of information that
arose the need to create theories on stochastic and dynamic systems, to gain a deeper understanding
of how data packets are transmitted within a server.

Queueing theory is widely used to model waiting systems and stochastic flows of packets (or clients)
and, together with Shannon’s information theory [2][3], it is used to evaluate the capacity of the
channel and the delay. These theories give us the mathematical tools to describe the waiting times,
congestions, and flow dynamics by analyzing channel latency and throughput.

However, the ever-increasing use of communication networks and connectivity via portable devices has
made it necessary that real-time status updates are as timely as possible. This makes previous metrics
no longer sufficient and opens the way to the more recent concept of Age of Information [4][5][6], which
formalizes in a more quantitative way how fresh the information is in a system.

The study of Age of Information is not limited just to theory: it has become essential to understand
the behavior of real-time systems, evaluate performance, and develop optimization strategies that can
reduce delays and inefficiencies. The purpose of this thesis, starting from consolidated mathematical
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principles, is to model and explore the value of the information update in dynamic and complex
scenarios.

1.2 AGE OF INFORMATION

The concept of Age of information (Aol) was formalized around 2011. In [7] and [8], the authors move
beyond the notion of status update age and explicitly adopt the term system age of information to
describe the timeliness of information at the receiver. Traditional performance metrics such as delay,
throughput, and sampling rate were no longer sufficient to quantify the freshness of information at
the receiver, so researchers began to look for a new and effective metric.

In 2012 Kaul et al. published [4], which marks the birth of the Aol metric as we know it today. Aol
measures how old the most recently received update is with respect to its generation time, capturing
the staleness of information rather than the transmission delay alone.

The way in which this metric describes the process is very simple: every time a monitor receives
an update at time ¢, this contains a time-stamp wu(t), capturing the time at which information was
generated, i.e. the status age. The difference between ¢ and wu(t) is the age of the quantity monitored.

5(t) =t — u(t)

Aol grows linearly, and at every update it will be reset. For this reason, the Aol graph has a particular
shape and is called a sawtooth graph (see Figure 2.1).

Knowing the age allows us to analyze models and understand in which situations real-time systems
perform better (the lower the age, the better). There are two main ways to do an Aol analysis:

e Time-average Age
e Peak Age

The time-average Aol is defined as the long-term average of the age process and characterizes its
steady-state temporal behavior. The second metric focuses on the peak values [9] of Aol and was
introduced to simplify the mathematical analysis of the first. In fact, the average peak age and
average age are not so far from each other in model investigation [10] and the peak age may also be
a powerful tool in applications with a threshold restriction on age.

In our analysis, we focus on the time-average age for a better understanding of our models.

1.3 STATE-OF-THE-ART

The rise of IoT (Internet of Things), cyber-physical systems, and autonomous networks, where timely
information is essential, has increased the importance of freshness [11][12]. For ambient monitoring,
surveillance, automation, and any scenario in which timely awareness of events is important, fresh
information must be used to avoid errors.

In queueing systems, the Aol metric highlights how congestion and scheduling policies affect informa-
tion freshness. For example, Inoue et al. [6] show its usefulness in analyzing single-server queues under
different service disciplines. Similarly, the survey by Yates et al. [5] provides a comprehensive analysis
of Aol in multi-user M/M/1 queues, illustrating how queue length and service policies influence the
timeliness of information.

The application of Aol to communication channels is a more recent development. In real networks,
transmission is not always continuously available; interruptions can occur due to random transmis-
sion errors, such as erasures [13] or collisions [14][15]. However, scenarios in which connectivity is
systematically limited by the physical characteristics of the communication medium (e.g., satellite
line-of-sight restrictions) have been less explored. Badia and Munari [16] also consider the freshness of
the information from an intermittent link due to satellite flybys, but the process follows a scheduled
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pattern and the duration of the missing line-of-sight of the satellite is modeled through a Markov
chain.

Instead, a scenario in which cyclic intermittent connectivity [17] is considered with a periodic pattern
has never been examined before, possibly due to the difficult tractability of deterministic time intervals.

Another important topic for non-terrestrial communication is the analysis of a multi—user multi-queue
system. Related works address these challenges separately. Moltafet et al. [18] and Yates et al. [19]
analyze the problem of multi-user systems. The former performs an analysis based on the Aol metric
to evaluate the average Aol for only one of the multiple users, deriving a closed-form expression but
already so complex even if they have one server. In the second case, they used an SHS approach to
arrive at a similar solution.

Bhati and Baze [20] studied a two-queue system in which the user sends a message with probability
a to one queue and 1 — « to the other. The final formula of the average Aol involves high-degree
multinomials, so they searched for an approximation. By using a Gamma distribution, they approxi-
mate the system to a single-server M/M/1 queue and evaluate the average Aol showing the benefits
of having more servers.

In any case, each of these two problems is already highly complex when studied independently, and
to the best of our knowledge, no published work has addressed their combination. In this study, our
aim is to go further by providing a framework that opens new directions for the study of this joint
problem. This is particularly relevant in satellite communications, where the growing number of users
and the increasing availability of multiple satellites per user make such models especially important.

Both intermittent connectivity and multi-user/multi-queue problems pose key challenges in modern
communication networks. In particular, non-terrestrial networks (NTNs) [21] exhibit predictable
coverage cycles and must support multiple users sharing limited communication resources, motivating
the study of these two problems.

For this reason, the topics are addressed separately, but both constitute essential extensions of the
existing literature on Aol.

1.4 CONTRIBUTIONS

The purpose of this work is to study new scenarios that are important for NTNs. Develop a new
analytical representation to answer the challenges rising in real-time systems, understand the behavior
of more complex transmissions, and find the better strategy to optimize the connectivity.

Satellites at lower altitudes are not always available because of their orbital motion: they rotate
around the globe, and the transmitter can see them just during precise windows. The intermittent
connectivity model has the precise purpose to understand how much transmission is delayed in these
situations and to completely analyze what happens during on/off phases of different duration. We
develop an analytical model with deterministic cyclic intermittent connectivity (Chapter 3), which has
not been studied previously. This problem can also be related to IIoT (Industrial Internet of Things),
industrial systems are affected by energy or multitasking constraints[22][23][24]. This does not allow
the links to be always available, even if they cannot have prolonged outages for the operability of the
system.

We extend the analysis to a multi-user multi-queue system (Chapter 4) to answer the growing necessity
to send messages as fast as possible. Different users can use only a server to send their messages, but
this can create congestion and delay. To optimize the transmission, a user can send the remaining
of his data to another satellite and optimize the communication. The impact of this choice on the
average Aol is a very interesting point of discussion in both NTNs and traditional networks.

We also provide simulation results to validate the theoretical models and discuss potential strategies
for scheduling and updating policies to minimize Aol in practical scenarios.






Background and Preliminaries

This chapter presents the theoretical background used in this thesis. Section 2.1 introduces the
average Age of Information. Section 2.2 reviews the fundamentals of queueing theory, focusing on
M/M/1 model relevant for Aol analysis. Section 2.3 introduces the Birth-Death Processes important
for understanding queue dynamics. Section 2.4 provides an overview of NTNs and their implications
for intermittent connectivity and multi-user/multi-queue systems.

2.1 AVERAGE AGE OF INFORMATION

The Aol is a metric that quantifies the timeliness of status-update systems. It evaluates how much
time is passed since the most recent update generated by a sender has been received by the monitor
or receiver. Let denote as t, the sequence of generation times of our packets of data and ¢/, the
corresponding delivery times. The instantaneous age process is defined as:

5(t) =t — u(t),

where u(t) is the timestamp of the most recently delivered update at time ¢. Between two updates
the Aol increases linearly and after a delivery it drops to the system time of the received packet.

Now we want to define, as a metric important in our study, the average Aol A [5]:

A= lim = o(t
TE};OT/

From the previous consideration, the Aol evolves following a typical sawtooth graph as shown in Figure
2.1. For the nth delivered update, we define the time between the generation of two consecutive
packets, called the inter-arrival time, as I, = t, — t,—1 and the time between the generation and
delivery of a packet, called the system time, as T,, = ), — t,,. The key idea in the graphical method of
age analysis is to decompose the area defined by the integral into a sum of trapezoidal areas. As we
can see, these regions can be expressed as the difference between two triangular areas.

1 Lo 1
—(I, + Tp)* — =T, 5 2 = 12 4 I,Ty.

@n =3 9'n

If the system is ergodic, time averages converge to the statistical average over the set of all realizations.
In particular, as T" — oo, the integral of the age process can be approximated by the sum of the areas
of individual sawteeth divided by the total observation time:

N(T)
/ 5(t) dt ~ Q”

where N(T') is the number of updates delivered up to time 7. Using the law of large numbers, in the
long-term limit we can replace the sum with expected values:

N(T
p T @ Y Qn _ E(Q)
T 00 T N—oo SNV 1 E[L)]
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Figure 2.1: Sawtooth graph of the Aol as a function of time with focus on the nth inter-update interval.

Substituting the expression of (), in terms of I,, and T}, we finally obtain:

_EQi] _ 3B + E[LT

ASEL T ER 21

This equation can be applied to a broad class of service systems, such as FCFS (First-Come-First-
Served) lossless systems and LCFS (Last-Come-First-Served) systems in which updates are preempted
and discarded. It makes no specific assumptions regarding other traffic that might share the system
with the update packets of interest. However, Aol analysis can be challenging, as evaluating the term
E[I,,T},] is difficult due to the negative correlation, which depends on the system dynamics.

However in scenario where the inter-arrival and the system times are independent, for example in
bufferless or loss systems (no-queue) or in infinite-server systems, the expected value of E[I,T,] =
E[I,]E[T,] and the average Aol became:

_ 1E[1]]
 2E[L)]

+E[T,). (2.2)

This is used in the intermittent-connectivity model, as we want to analyze in greater detail how
connectivity interruptions affect packet delivery. In contrast, in the multi-user/multi-queue system we
have to use equation (2.1), since inter-arrival and service dynamics are influenced by the interaction
between users and queues. However, since the term E[I,,T,] cannot be computed analytically due to
the complex interactions between users and queues, we restrict our study to simulation-based results.
In general, the time-average Aol metrics provide a quantitative measure of information freshness and
the associated formulas will be widely used in this work.



2.2 QUEUEING THEORY BASICS FOR AOI ANALYSIS

In order to analytically derive the Aol, it is necessary to model the underlying process of packet
generation, transmission, and service time. In this work, we will use queueing theory results to this
aim, which are briefly introduced in this section.

Queueing theory was developed to model any type of traffic, whether composed of people or data
packets, and to know how to optimize it. The average number of customers, the average amount of
time a customer spends waiting in the queue, in which case congestion happens: these are all quantities
that queueing system models can estimate.

In general, we describe the type of queue system with Kendall notation:
A/S/c/K/N/D

where A is the arrival distribution, S is the service time distribution, ¢ is the number of servers. K
represents the maximum number of customers that can be in the system and NV is the population size,
but they are usually omitted, considered infinite. D is the service discipline and, by default, is FCFS
unless otherwise specified.

Examples of the more studied model are:
e M/M/1: Poisson arrivals, exponential service time, 1 server
e M/D/1: Poisson arrivals, deterministic service time, 1 server
e M/G/1: Poisson arrivals, general service time distribution, 1 server
e G/M/1: general distribution of arrivals, exponential service time, 1 server

Principally we see the use of Poisson processes and exponential variables, because in an already
complex problem it is more easy to manipulate exponential quantities.

Moreover, queueing strategies also depend on how the service is managed. This can be:
e Non-preemptive: once a customer begins service, it cannot be interrupted until completion;

e Preemptive: the service of a customer can be interrupted by the arrival of another customer
according to priority rules.

In this work, we focus on FCFS non-preemptive systems.

2.2.1 M/M/1 QUEUE

The M/M/1 model represents the easiest and at the same time most fundamental among the models
of queueing theory. It describes a system with a single server where the arrivals follow a Poisson
process with inter-arrival times exponentially distributed with parameter A and the service times are
distributed exponentially with parameter pu.

The model denotes a process of birth and death, with state space {0, 1,2, ...} where each state corre-
sponds to the number of clients in the system at a given time, including those in service.

The system is stable if the number of customers in the system does not grow to infinity over time, and
in an M/M/1 queue this happens if and only if A < p. In this case, the system at any part in time is
in stationary conditions and follows a geometric distribution, so that its probability is:

P(number of customers in the system =n) =m, = (1 — p)p", (2.3)

where p = A/ is the utilization of the buffer. From this distribution, we can immediately evaluate
that the average number of clients in the system is equal to p/(1 — p) and its variance p/(1 — p)2.
These results, in closed-form, show the analytical power of the model and his capacity to immediately
show the behavior of the system.



Another central aspect of this system is about the inter-arrival time and system time. The inter-arrival
time is described by a Poisson process, so its probability density function follows an exponential
distribution Ae~*. From this distribution, the moments of the inter-arrival time can be directly
obtained. In particular, the average inter-arrival time I is given by:

2 2

E[Il = < E[I7] = 2 (2.4)
In turn, the average system time is equal to 1/(— \). To be more precise, system time 7" is composed
of two components: the time that a client spends in line, waiting time W, and the time needed to be
processed by the server, service time S.

Under FCFS non-preemptive service, a newly arrived packet must wait for all customers ahead to
complete service. If n customers are already in the system, the total service time before completion
is the sum of (n + 1) independent exponential random variables with parameter p. This sum follows
an Erlang distribution, whose cumulative distribution function (CDF) is:

k
1
Flak+1Lp)=1-> —e T ()" (2.5)
n=0

Then, the CDF of the system time T' can be written as a weighted sum of Erlang distributions:

00 00 n T k
Pr(z) =Y mF(zin+1,p) =Y (1-p)p" [1 - (uk!) e‘“] : (2.6)

n=0 n=0 k=0

This gives exactly the system time distribution for an M/M/1 queue, which is equivalent to an expo-
nential distribution with rate u — A:

Fr(z)=1—e Nz 2 >0,

The average Aol for an M/M/1 queue can also be exactly evaluated, resulting in a simple closed-form
expression [5]:

1 1 p? >
A =—(14+-+ . 2.7
M/M/1 M< P (2.7)

This formula captures the freshness of information in the system, showing that Aol depends not only

on the service rate but also on the system utilization p.

In summary, the M/M/1 model is an essential starting point in the study of queues and its simplicity
allows us to obtain closed-form and easy to evaluate formulas. Its generality also make it a reference
point to understand more complex phenomena.
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2.3 BIRTH-AND-DEATH PROCESSES

A Dbirth-death process is an important class of continuous-time Markov chains with countably infinite
state space in which transitions are only allowed between neighboring states [25]. Let X (¢) denote
the state of the process at time ¢ > 0. The dynamics of the process are fully characterized by two
sequences of non-negative parameters: the birth rates {\,}n>0 and the death rates {pin}n>1, where:

e a birth corresponds to a transition n — n + 1,
e a death corresponds to a transition n — n — 1.

By construction, transitions to negative states are not allowed. For a small time interval At > 0, the
transition probabilities satisfy:

Pont1(At) =P{X(t+At)=n+1|X(t) =n} = NAt +0(At), n >0,
Ppno1(At) =P{X(t+ At) =n—1| X(t) =n} = uy,At + o(At),
Ppn(At) =1 — (Ay + pn)At +0o(At), n>1.

These relations explicitly express the idea that, if the interval is infinitesimal, at most one transition
can occur and only with adjacent states.

The process can also be represented in terms of its infinitesimal generator matriz (or transition rate
matrix) ¢ = [gi;]i jes, whose entries are defined as:

dnn+1 = >\na dnn—1 = Hn (n > 1)a Gnn = _()\n + Mn),

with all other entries equal to zero. Its tridiagonal structure reflects the fact that transitions occur
only between neighboring states:

-0 Ao 0 0
pr o —(A1+ 1) A1 0
Q=10 12 —(A2 + p2) A2

0 0 13 — (A3 + p3)

The evolution of the probability distribution of the system state is governed by the Kolmogorov
forward equations. Let P,(t) = P{X(t) = n} denote the probability that the process is in state n at
time ¢. Then, the system is described by the following differential equations:

d
%PO(t) = 1 Pi(t) — AoPo(t),
d
%Pn(t) = )‘n—lpn—l(t) + Mn-ﬁ-lpn—i-l(t) - ()‘n + Mn)Pn(t)a n > 1.
Equivalently, we can write them in vector-matrix form and defining P(t) = [Py(t), Pi(t),...]%, we

have:

d
ZP(t) = QP(t).

The formal solution of this expression is:
P(t) = e“'P(0),

where P(0) is the initial probability distribution and e?? denotes the exponential matrix. This ex-
pression allows us, in principle, to compute the probability of having any number of individuals (or
packets) in the system at any time .

A particularly important case of a birth and death process is the M/M/1 queue, where the birth and
death rates are constant.
A =N pn=p, Yn>0(u =0).
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GEO~36000km

LEO~300km

Figure 2.2: Non-terrestrial station, recreated based on [21].

This is very important for our analysis, as it provides a rigorous framework to model the dynamics
of queues and to estimate the probability that a packet finds a queue empty or congested. In the
multi-queue, multi-user scenario, the birth—death process is particularly relevant, since the system can
be decomposed into M/M/1 queues.

2.4 NON-TERRESTRIAL NETWORKS

Non-terrestrial networks (NTNs) are radio communication systems operating far above the Earth’s
surface. They can include (see Figure 2.2) satellites in the lower terrestrial orbit (LEO), medium orbit
(MEO), geostationary orbit (GEO), high altitude platforms (HAPs) and unmanned aerial vehicles
(UAVs).

Recently, NTNs have been included in the standard 3rd Generation Partnership Project (3GPP),
which allows them to operate as part of the 5G mobile network and makes them an integral part of
the global mobile infrastructure [26].

This growing interest in non-terrestrial platforms is also reflected in recent survey literature, which
highlights how satellite communications and related NTN technologies are becoming a key enabler for
next-generation wireless systems. In particular, emerging applications such as 5G integration, remote
sensing and global connectivity are driving renewed research efforts and large-scale deployments in
space-based communication infrastructures, positioning NTNs as a crucial component of future wireless
networks [27].

The principal components of NTNs are:
e a terrestrial terminal;
e an air or space station that can operate in a similar way as a terrestrial base station;
e a service link with the terrestrial terminal;

e a gateway that connects the non-terrestrial access network to the core network through a feeder
link.
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NTNs can adopt either a bent-pipe or a regenerative architecture. In a bent-pipe configuration, the
satellite or aerial platform primarily forwards the signal to the gateway, which performs most of the
processing. In a regenerative setup, some processing is carried out directly on the platform, potentially
reducing delay and alleviating the gateway’s workload. The gateway’s role is therefore critical, as it
influences latency, buffering and overall system performance [28].

UAVs or drones fly at a lower altitude and, thanks to their flexibility, are a good tool for broadband
wireless connectivity. They can be deployed on-demand, allowing for rapid coverage of areas with
high user density or inadequate infrastructure. HAPs operate in the stratosphere and have a wide
geographic coverage of hundreds of kilometers. They are cheaper to operate with respect to terrestrial
infrastructures, but may suffer from the need for refueling.

Compared to UAVs and HAPs, satellites provide more persistent connectivity and larger coverage ar-
eas, ensuring continuous service over extended durations. However, this comes at the cost of increased
propagation delay and higher energy requirements. This means that system parameters need to be
carefully configured to achieve optimal performance [27].

Satellites are also an integral part of NTNs and the primary focus of our study. In particular, GEO
satellites (about 35 800 km of altitude) and LEO satellites (between 200 and 2 000 km). The former
follow geodesic trajectories and cover very large geographic areas, making them always visible from
terrestrial terminals. However, the long distance from Earth causes signal propagation delay and
attenuation. LEO satellites, instead, guarantee better signal strength, but they are not stationary
relative to the surface. For this reason, they are not always visible and must operate in constellation
to maintain service continuity.

Compared to terrestrial networks, NTNs have unique challenges, such as variable latency, incomplete
coverage, weaker signal, and strong Doppler shifts (rapid movements create a change in the frequency
of the signal). However, with respect to terrestrial networks, NTNs offer wider geographic coverage,
reduced congestion, and more predictable propagation conditions. These characteristics make NTNs
both a challenging and valuable environment for examining the timeliness of information. The analysis
of Aol can respond to this challenge and find in which context updates can be as timely as possible,
and design strategies to optimize the freshness of information.

2.4.1 TRADITIONAL QOS METRICS VS AGE OF INFORMATION

Network performance is commonly evaluated using classical Quality of Service (QoS) metrics [29],
such as:

Throughput: the rate at which data is successfully delivered over the network.

Latency / Delay: the time it takes for a packet to travel from the sender to the receiver.

Packet Loss: the fraction of packets that do not reach the receiver.

Jitter: the variation in packet arrival times.

Although throughput provides a measure of the network’s capacity, it does not capture how timely
the received information is. Similarly, latency and jitter quantify transmission delays and variability,
but offer an instantaneous view that does not capture freshness. Packet loss measures reliability, but
does not indicate whether successfully delivered packets are still relevant or fresh for the application.

Also, these metrics are suitable for terrestrial networks with relatively stable links. NTNs have char-
acteristics that limit their effectiveness, as they often experience intermittent connectivity, frequent
handovers, and time-varying link quality due to satellite mobility or orbital dynamics.

Consequently, packets may be delivered with significant delay or after temporary disconnections,
making classical QoS metrics insufficient to evaluate the actual value of the received information. Thus,
Aol provides a more application-oriented metric, measuring the time elapsed since the generation of
the most recently received update and offering a direct assessment of information freshness.
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Cyclic Intermittent Communication: Modeling and
Information Freshness

This chapter introduces a cyclic intermittent connectivity model to describe communication systems
with periodic service availability. Section 3.1 analyzes the packet transmission process under inter-
mittent connectivity with asymmetric active/inactive phases, with a brief mention of the symmetric
case. Section 3.2 extends the analysis to the scenario in which the system starts in the inactive phase.
Finally, Section 3.4 evaluates the Aol.

3.1 INTERMITTENT TRANSMISSION WITH ASYMMETRIC PHASES

The purpose of this analysis is to investigate the behavior of an intermittent transmission process in
which the transmitter alternates between the active and inactive phases. This type of model is par-
ticularly relevant when describing satellite communication systems, where transmission opportunities
depend on periodic visibility windows between the satellite and the terrestrial station (see Figure 3.1).
The duration of these phases are, in general, different. In this part of the analysis, we concentrate
on a process that starts in an active phase. When our packet is generated, the server cannot always
send it to the receiver, because transmission is only possible during active windows. The process (see
Figure 3.2) is characterized by exponential times and the service happens with rate p only during
active phases. The most important quantities for this analysis are:

e the duration of the active phase T7;

e the duration of the inactive phase T5;
e the delivery time F of each packet;

e the service rate u.

We denote by T' = T} + T the total duration of one complete cycle, consisting of one active phase
followed by one inactive phase.

This modeling framework is aligned with recent research showing the limitations of traditional metrics
in satellite networks and the relevance of Aol as freshness metric. For example, in [30] a multi-hop
LEO constellation subject to erasures and queueing delays is analyzed and are derived closed-form
bounds for average and peak Aol. The study reveals non-trivial trade-offs between update rate, packet
loss and network load. This strongly impact the freshness of data at the receiver despite potentially
high throughput.

To evaluate the Aol, we use formula (2.2). The two quantities that we need to compute it are the
expected value of the inter-arrival time E[I] and the expected value of the system time E[F]. In this
section, we estimate the second one.

The probability that the transmission is not completed by time f depends on which phase we are
in. If f belongs to the jth active phase, the probability depends on two independent events: the
transmission failure in the previous active phase and the failure until f during the current active
phase. In contrast, if we are in the inactive phase, the probability p remains equal to one, since no
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Figure 3.1: Illustration of intermittent satellite-to-receiver transmission. The receiver is only within the satel-
lite’s visibility window for limited periods, resulting in cyclic connectivity and periods of inactivity.

transmission can occur when the server is down (the packet will not be delivered).
B eI L e=ilf=iT) - if f € [§T, 4T + Ty] (active phase)
b= if fe[jT+Th,(j+1)T] (inactive phase)

L,
This expression represents exactly the complementary probability of the cumulative distribution func-
tion and, by deriving it, we can evaluate the probability distribution function (pdf). The pdf (see

Figure 3.3) of the finishing time F' can be written as:
pe Il r =D - f € [T, jT + T

pr(f) = {0’ felT+ T, (j+1)T)

To compute the expected value E[F]|, we must take into account that we are considering deterministic
Therefore, to obtain the expected value in the jth interval, we integrate the pdf

time intervals.
multiplied by the time f. The final value is given by summing over all possible intervals:

i/jmlf =31
T br —j:() J-

J=0

E[F] =

The I; component is:
—uT
f- ,ue_:u(f_jT)e_j/JTl df = <1 — (14pTy)e Hit +jT(1_6—pT1)>€—ujT1 )

JT+T1
be
§T
Thus, we are left only with the infinite summation, where each term represents the contribution of

the jth active phase to the overall expectation.
(3.1)

oo

o [1— (14 pTy)eH1

E[F] — Ze—]uTl |: ( + M l)e —|—jT(1 - e—uT1):| .
: 7
7=0

Although this expression is exact, it is not immediate to interpret or evaluate numerically. So, to
obtain a more useful result, we can solve it by splitting our equation and using series summation

identities. After defining auxiliary variables:
1— (14 pTy)erh
x = LAy g ey,
1
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Figure 3.2: Intermittent satellite-to-receiver transmission. The transmitter alternates between active 77 and
inactive T, phases, and packets can only be delivered during active phases.
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Figure 3.3: Probability density function pr(f) of the packet delivery time F' in a scenario with intermittent
transmissions. During inactive periods, no packets are sent to the receiver.
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Figure 3.4: Expected transmission time for parameters p = 1, 73 = 2, and 75 = 1. The solid blue line shows
the series-based computation, while the red dashed line represents the analytical result.

we get:

E[F] = X Z ety Ly ZjefujTl
j=0 =0

X Y et
Tl # T (1= e w2

This result is obtained by using two standard series:

1
1—e—HT1>

o Geometric series: ) 22 e IrT =

e~ T

e Weighted geometric series: Z?iojeijuﬂ = e FT1)2"

After some simplifications, we obtain the final closed-form expression for the expected delivery time
E[F], which explicitly depends on the service rate p and the duration of the active and inactive phases
T1 and Tg.
1—(1— puTy)e Hh
p(l — e ri)

This closed-form result gives us important insight for the system analysis. The overall performance is
driven by both the service dynamics and the structure of the satellite visibility process.

In Figure 3.4, we compare (3.1) and (3.2). This validates the correctness of the derived expression,
since the two results coincide perfectly. Moreover, from the blue line we can identify the average
number of active phases required to successfully deliver my packet to the final destination, giving
us additional information about the transmission dynamics. Finally, for a complete analysis of the
expected value, we evaluate how it changes with the durations of the active phase T} and the inactive
phase T5. As shown in Figures 3.5 and 3.6, the period of the inactive phase increases the average time
delivery, while the active duration 77 reduces it. This already gives us important insights on the delay
of the transmission and the timeliness of the received information.

(3.2)
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Figure 3.5: Expected transmission time for p = 1,
Ty =1, and varying values of T;.

Figure 3.6: Expected transmission time for p = 1, T}
= 1, and varying values T5.

3.1.1 SYMMETRIC CONNECTIVITY PHASES

The symmetric transmission scenario, where Ty = T, = T, is a special case of the previous. It yields
several simplifications and exhibits more regular behavior. The expected transmission time reduces
to the closed-form expression: .
olf P G2 e
p(l —e=rT)

To fully investigate the impact of intermittent connectivity on communication dynamics, we analyze
how the expected transmission time varies with the transmission rate p, as shown in Figure 3.7. The
results show an inverse relationship between the service rate and the average delivery time: increasing
1 leads to a faster delivery process and thus reduces the time needed to complete the entire procedure.
This behavior is consistent with intuition, since a higher service rate increases the probability of
completion during the active phase and reduces the number of cycles that the packets need to go
through.

(3.3)
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Figure 3.7: Expected transmission time E[F] as a
function of the transmission rate p for a fixed T. In-
creasing p reduces the expected transmission time.

Figure 3.8: Expected transmission time E[F] as a
function of the interval duration T for a fixed u. In-
creasing T reduces the expected transmission time.

Moreover, Figure 3.8 reveals the impact of phase duration 7" on system performance. As T increases,
both active and inactive intervals become longer, leading to longer waiting periods and an increase
in overall system time. The symmetric configuration allows us to observe how the periodicity of the
server availability alone, even in the absence of asymmetry, plays a fundamental role in determining
the system delay.
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3.2 INTERMITTENT TRANSMISSION STARTING IN THE INACTIVE PHASE

To complete the analysis of the intermittent transmission model, we now investigate the case in which
the system starts in an inactive phase. In this configuration, the system remains inactive for a duration
T5 during all odd intervals, which are then followed by an active phase of duration 77 in the even
intervals. This scenario is also relevant for practical applications since the satellite may initially be
outside the visibility window and therefore unable to serve incoming packets.

As before, the transmission is only allowed during active intervals and the pdf of F' becomes:

oty 10 f € [iT,jT+T3)
pe BTGV [ € [Ty, (j+1)T)

Repeating the same analytical steps of the previous section where the system starts in the active
phase, we derive an estimation of the expected delivery time by integrating the pdf over all possible
active intervals. This results in the following infinite series representation:

o0
o [1+ pTe — (14 pT)e H1

Ewﬂ=225w”{ Hile 2 QDT - e

— o

]7
Once again, this expression can be simplified and, after appropriate manipulation, we arrive at the
closed-form expression:
1+ puly — e+
p(l —erT)

Observing this formula more closely, we see that compared to the scenario where the system starts in
the active state, the presence of an initial inactive interval introduces an additional delay equal to T5.
Specifically:

E[F]inactive - E{F]active + T2-

This shows that the system behavior in the two scenarios is identical once the initial inactive phase is
over.

Moreover, it is interesting to analyze some limiting and special cases of the derived expression. When
T, — 0, the expected delay reduces to that of a memoryless exponential distribution E[F] = 1,
This confirms the consistency of the proposed model with standard queueing theory results. In the

symmetric case where T7 = Ty = T, the expression is further simplified and we obtain:

14+ puT — e M
ElF] = —
p(l —e=rt)

Finally, Figures 3.9 and 3.10 show how the expected finish time evolves with respect to the active
phase duration 77 and the inactive phase duration T5, respectively. In particular, Figure 3.9 displays
that increasing the duration of the active phase reduces the expected delivery time, since it increases
the probability of finishing the service in a single cycle. Instead, Figure 3.10 displays the negative
impact of longer inactive periods, which directly increase the waiting time before the service can even
start. These results show how both the structure of the intermittent connectivity and the ordering
of the phases play a crucial role in determining the performance of the system. They provide useful
insights for the design and optimization of communication systems that work under periodic service
constraints.
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3.3 Aol EVALUATION

To evaluate the Aol, we consider a stochastic model in which the generation of each new packet is
triggered only after the successful delivery of the previous one. In particular, as illustrated in Figure
3.11, the inter-generation time I, follows an exponential distribution and its timer starts immediately
after the delivery instant of the preceding packet. As a result, the evolution of Aol can be described as
a sequence of independent sawtooth-shaped cycles, each corresponding to a triangular area @,. Each
Q) quantifies the age accumulated during the nth update cycle and resets to zero upon the reception
of the new update at the receiver.

More precisely, updates are generated according to a delivery-triggered Poisson process with rate .
This means that, although the inter-generation times are exponentially distributed, the generation
clock is reset at every delivery event, and not continuously running as in a standard Poisson arrival
process.

Moreover, we are not considering a queueing system in this model, since there is at most one packet
in the system at any given time. Consequently, the service (or transmission) time is statistically
independent of the update generation process and does not influence the subsequent inter-generation
time.

The server represents a satellite with alternating active and inactive phases, corresponding to visibility
and non-visibility intervals, respectively. The system time of this process has already been evaluated
in the previous sections of this chapter. From the calculation done before, we know that if we start
in the inactive phase, all is shifted by a factor T5, so we limited our analysis only in case the packet
arrives in the active phase, as the results will be redundant.

In this scenario, the average Aol can be estimated using (2.2), since the inter-arrival time I and the
system time F' are independent random variables. So using (2.4) we obtain the following closed-form

expression:

1
A= +E[F)

where E[F] is the mean system time under intermittent connectivity, as in (3.2).

To evaluate the truthfulness of this model, we implemented a Monte Carlo simulation that explicitly
reproduces the stochastic generation and service processes described above. We compare the theoret-
ical formula of the Aol with the empirical results obtained over a large number of simulations. This
comparison allows us to verify the validity of our expression and the robustness of the model under
different operating conditions.
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Figure 3.9: Expected transmission time E[F] as a  Figure 3.10: Expected transmission time E[F] as a
function of T, for fixed p =1 and Ty = 1. function of T5, for fixed y = 1 and 77 = 1.
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Figure 3.11: Evolution of the Aol over time. For the nth update, the inter-generation time I,, starts immediately
after the reception of the previous packet, while the delivery interval F,, spans from the generation instant f,, to
the reception instant f/,. The triangular shaded areas @, represent the Aol contribution of each update cycle.

In particular, we decide to do separate study for each parameter of interest. These are the active
phase T7, the total period 7', the rate of service p and the rate of generation A.

As shown in Figure 3.12, the Aol decreases significantly as the service rate p increases, considering
A=0.8, T1=2 and T5=0. This behavior is intuitive, since faster servers are able to process packets
more quickly, thus reducing delay. However, the reduction is non linear and already for u > 3 the
improvements are marginal. This suggests that while the optimal Aol is achieved at higher service
rates, a lower p can be chosen to achieve a better trade-off between time and resource utilization.

A similar trend can be observed in Figure 3.13, where the average Aol decreases as the packet gen-
eration rate A increases, with u=1, T1=2 and 75=0. This implies that more frequent updates obtain
fresher information. However, as with the service rate u, the improvement decreases beyond a cer-
tain point, showing marginal gains for higher A\. This emphasizes the need to carefully select also an
optimal generation rate to balance timeliness and system efficiency, rather than simply maximizing A.
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Figure 3.12: Average Aol as a function of the service

Service rate p

Arrival rate A

Figure 3.13: Average Aol as a function of the gener-

rate p, with A=0.8, T1=2 and T5=0. ation rate A\, with u=1, T1=2 and T>=0.
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Figure 3.14: Average Aol as a function of the phase Figure 3.15: Average Aol as a function of the total
ratio 71 /T, with A=0.8, u=1 and T=2. period T, with A=0.8, u=1 and T1=1

Figure 3.14 displays how Aol changes as a function of the ratio 77/7T, the fraction of time in which
the system is in the active phase. We set \=0.8, y=1 and T'=2. As expected, increasing this ratio
improves performance because the system is available more frequently. From the figure, we can also
see that the most significant improvement occurs for 77 /T < 0.6, after which the decrease in Aol
becomes considerably less pronounced. This means that my transmission can be effective even if we
have to transit in phases of unavailability due to physical or energetic constraints.

Finally, in Figure 3.15 we investigate the impact of the total period T while keeping T} fixed, with
A=0.8, p=1 and T1=1. In this case, increasing 7" means increasing the inactive phase T5. The
result show a linear correlation with the Aol, showing that longer inactive intervals lead to outdated
information held at the receiver for longer time spans. These results provide important insight into real-
world scenarios with intermittent connectivity. Connectivity patterns are often dictated by physical,
technological, and energy constraints. The proposed analysis allows us to identify suitable operating
points that balance Aol minimization with resource consumption, enabling the design of more efficient
communication strategies.
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Multi-User Multi-Queue System

This chapter presents a multi-user multi-queue system with traffic splitting. Section 4.1 introduces
the dual-queue model and discusses its relevance for satellite-based communication systems. Sec-
tion 4.2 develops the analytical derivation of the packet usefulness. Section 4.3 investigates the Aol
performance through Monte Carlo simulation results and an age-energy trade-off.

4.1 SYSTEM ARCHITECTURE

The model of our interest is a system with M /M/1 queues FCFS without preemption (see Figure 4.1).
The M/M/1 model is widely used to represent realistic scenarios such as distributed edge servers,
uplink and downlink channels in LEO satellite networks [31], and shared servers in IoT and wireless
sensor networks [32], where stochastic packet arrivals and service processes naturally arise. For this
reason, it is an appropriate and well-established choice for modeling the system considered in this
work.

Each user can rely on two queues: one just for himself and one shared with all other users. In general,
we have N users which generate packets, each with rate \. They send each newly generated packet
either to their own queue, with probability a or to the shared queue, with probability 1 — «. The
interesting point of this architecture is that a user can decide, to optimize his transmission, how much
of his data to send to the shared queue.

The use of a routing probability « in our model is closely related to well-known mechanisms of
probabilistic routing and randomized server selection in distributed systems. Similar approaches are
widely used in the literature to achieve scalable and distributed load balancing, where each user
makes an independent decision without requiring global knowledge of the system. In particular,
random or probabilistic server selection has been shown to be effective in reducing congestion and
improving overall system performance under strict latency constraints [33]. Moreover, classical results
in randomized load balancing, such as the power of two choices paradigm and shortest-queue selection
policies, have demonstrated that even simple randomized decisions can lead to significant performance
gains in large-scale queueing systems [34]. Therefore, the introduction of the probability « is not an
ad-hoc assumption, but rather a design choice grounded in established and well-studied principles in
queueing theory and distributed network optimization.

The shared queue has a higher service rate us but its traffic may be high due to the presence of
other clients. This setting closely resembles an edge—cloud (or LEO-GEQ) continuum, where nearby
resources such as edge servers or LEO satellites provide low-latency but limited processing capabilities,
while remote and more powerful infrastructures such as cloud data centers or GEO satellites offer
higher service rates at the cost of increased contention and queueing delays [35] [36]. Instead, local
queues are dedicated to a single source, but offer a lower service rate uy. Which option is better for
the user? He can decide to send all his data to only one of the two queues, but this decision can lead
to a very high delay in transmission.

Given the symmetry of the problem, we focus on the transmission and the Aol with just one reference
user. For simplicity, we reduce the model to just two queues: the private queue for user 1 and the
shared queue that collects the aggregate traffic from all the other N — 1 users (see Figure 4.2). Since
the other users are grouped together, the generation rate to the shared queue becomes N(1 — ).
This simplification allows us to study the system in depth without losing generality.
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Figure 4.1: System model with N users, each having a private and a shared M/M/1 queue. Packets are directed
to the private queue with probability a and to the shared queue with probability 1 —a. All queues follow FCFS
service without preemption.
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This scenario may be relevant for NTN applications. In general, a user sends data to satellites with
higher service rate u, such as higher orbit satellites such as GEO, but they can be very busy due to
heavy traffic from other clients. So, it can be advantageous to split the traffic and send data to a less
capable but less congested server, such as a LEO satellite.

The optimal decision on how to split the traffic is not trivial and deserves an in-depth study. The
overall behavior departs from the classical M/M /1 queuing system. In some cases, a packet delivered is
no longer the freshest. To better understand, we define a packet as useful if it carries new information,
and this implies that when it is delivered, it is not older than any previously delivered packets, i.e., it
will reset the Aol for the user. The policy inside each queue is FCFS, so packets cannot overtake each
other in the same queue. However, a packet in the opposite queue can, making one or more packets
useless. Knowing whether the data provided to the collector are useful or not is a very important step
in understanding under which conditions more packets are discarded. Assessing packet usefulness thus
provides insight into the effects of queue interactions and traffic management, which directly impact
Aol and energy efficiency. Transmitting packets that do not contribute to improving the system state
leads to unnecessary consumption of energy and bandwidth, which is particularly critical in resource-
constrained scenarios such as IoT devices, battery-powered sensors and satellite communications.
Recent studies have highlighted this trade-off between information freshness and energy expenditure,
showing that intelligent packet management can significantly reduce energy use while maintaining low
Aol [37] [38].

4.2 PACKET USEFULNESS

The purpose of this section is to analyze the packet usefulness for a single user. This metric allows
us to distinguish between packets that effectively contribute to the information update process and
those that become obsolete due to queue interactions.

To start our analysis, we define the main random variables associated with the traffic of User 1:
e T7: system time of a packet entering queue 1;
e T5: system time of a packet entering queue 2;
e [i: inter-arrival time for packets entering queue 1;

e [5: inter-arrival time for packets entering queue 2.
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Figure 4.2: Reduced system model, showing a private M/M/1 queue and a shared queue that aggregates traffic
from the other N — 1 users. The total arrival rate to the shared queue is N(1 — a)\.

Based on the known properties of M/M/1 queues (as discussed in Section 2.2.1), the probability
density functions of these rvs are:

fr () = (p1 — a) e_(“l_‘”\)t’
Fr () = (u2 — N(1 — a)A) e~ (2= NO=a)N)t,
f1(t) = () e (@M,

(t) = (

The final goal is to find the probability that a packet is useful. This occurs if and only if it is delivered
before it is made obsolete by another, more recent, packet on the opposite queue. More precisely, a
packet sent to queue 1 is useful if its system time 77 is smaller than the time required for a newer
packet from queue 2 to be generated and delivered. The same consideration is true for a useful packet
in queue 2. So, the probability of being useful is defined as follows:

Pluseful = P(Tl < I +T2)7

(4.1)
P2useful = P(T2 < Il + Tl)-

To derive these quantities, we note that, although the two queues are independent, within the same
queue the inter-arrival time and the system time of packets are not independent. In particular, the
system time of the opposite queue change in consideration of packets already present in the queue
upon its arrival, influenced by the departures occurring during the inter-arrival interval and arrivals
only from other users. An illustrative situation is reported in Figure 4.3. At the arrival of a packet
in queue 1, the shared queue contains n packets. During the subsequent inter-arrival interval Is,
some of these n packets may depart, while additional packets may arrive from the other N — 1 users.
As a result, when the next packet arrives in queue 2, it observes k packets in the system, where k
jointly depends on the initial queue length n, the departures during Is, and the random arrivals of the
aggregated traffic.

To evaluate the sum I; +.S; where ¢ = {1,2}, we cannot rely on a convolution, but we need to consider
the evolution of the queue state. For these reasons, we proceed by conditioning on the number of
remaining packets k£ in the queue. Specifically, the system time follows an Erlang distribution, see
formula (2.5), of order k + 1, since the packet must wait for the completion of k service times plus its
own. So we introduce two new quantities in our analysis:

e X;i: system time of a packet entering queue 1 conditioned on finding k packets in the queue

Fx,(8) ~ Brlang(k + 1, py) =
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Figure 4.3: Illustration of packet dynamics in a two-queue system for a single user. Queue 1 is the private
queue, while Queue 2 is shared among multiple users. The timeline shows the arrival of a packet to Queue 1
at time t,, and the evolution of Queue 2 during the inter-arrival interval I5, including departures and arrivals
from the other N — 1 users. At time t,, + I, a new packet arrives to Queue 2, illustrating the change in queue
occupancy from n to k packets.

e Xs: system time of a packet entering queue 2 conditioned on finding k packets in the queue

,LLk+1tk€_M2t
fx,(t) ~ Erlang(k + 1, u2) = 2T

They both follow Erlang distributions with rates p; and ps, respectively.
From this point onward, we introduce the following ancillary quantities:
e a=(m —ar),
e b= (u2—N(1—-a)h),
e c=(1—a)),
o d=al.

In this way, the expressions will become more compact and readable, simplifying the writing of prob-
ability calculations.

4.2.1 PACKET USEFULNESS ANALYSIS

We see that our process cannot be evaluated by treating the variables as independent, but we need to
know the evolution of the queue state. In particular, the system time of the opposite queue depends
on the number of packets n present when the packet we are analyzing arrives, on the inter-arrival time
between packets and the k remaining packets in the queue. The value of k itself depends on n and
the inter-arrival time. For simplicity, we perform the evaluation for queue 1 as the result for queue 2
is analogous.

The first step is therefore to compute the probability by conditioning it on n and weighting this by
the stationary distribution ps2 as found in (2.3).

P(Ty <L+ Xp) =Y (1—pa)py- P(Ty < I+ Xo|N =n). (4.2)

n=0

To evaluate P(T} < Is+ X2|N = n), we then consider all possible inter-arrival times, since X5 depends
on Iy (but not vice versa).

&)
P(Tl < I —|—X2’N :’I’L) :/ Ce_CtP(Tl <t—|—X2|N: n, o = t) dt. (4.3)
0
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where ce™ is the inter-arrival pdf fr,(t) defined previously. We now derive P(Ty < t + Xo|N =
n, Iy = t) conditioning on k, i.e. on the number of packets that the packet entering queue 2 finds in
front of itself, given that n were there I seconds earlier.

During the inter-arrival time I = ¢, with ¢ = {1, 2}, no additional packets from User 1 arrive, but som
from the other users may. If we start with n packets in the queue, each will be delivered with rate
p2 while the number of new packets that can arrive depends on the parameter A5 = (N — 1)(1 — ),
which contains only the contributions from other users only. This is a birth-death process (see section
2.3) defined by the infinitesimal generator matrix:

NN 0 0
po = (A3 + p2) A5 0
o= 0 7 — (A5 + p2) A3

0 0 1 (A3 + p2)

The probability of having k£ remaining packets at time Is = t is therefore:

pe(t) = [Pk = [P(0) e?']y; ,

where p(0) represents the initial state distribution of the Markov process. In this case, the queue does
not start empty but with n packets. Hence, the initial distribution is:

1, if k=n,
pr(0) =
0, if k+#n.

Once the distribution of k is known, it is possible to compute the conditional probability P(7T7 <
I, + X5|K = k). This probability can be evaluated by integration:

P(Ty <t+X2|K:/~c):/ P(Ty < t+5) fx, (s) ds
0

) k+1 _k _—pas
- / (1 — emaltts) % ds (4.4)
0 .

k+1
=1—e % H2 +.
p2 +a

Finally, by summing over all possible values of k, we obtain the exact conditional probability

o0
P(Ty <t+Xo|N=nIy=t)=Y pi(t)- P(Ty < I + Xo| K = k). (4.5)
k=0

Combining (4.5) with (4.2) and (4.3), we find an exact formula for the probability that a packet is
useful.

We also evaluate our analytical result with a Monte Carlo simulation, and, as shown in Figures 4.4
and 4.5, the simulation perfectly matches the theoretical predictions, confirming the validity of our
model.

Figure 4.4 displays the probability of packet usefulness as a function of the splitting factor a with
A=1, N=2, p1=1 and ps=2. For low values of «, most packets are directed to queue 2, which becomes
highly loaded. For this reason, the packet usefulness of queue 1 is greater than that of the shared
queue; the few packets that arrive are more likely to be served immediately and to be useful. The two
curves intersect at approximately a=0.2; beyond this point, the usefulness of queue 2 becomes higher
than that of queue 1, while the usefulness of queue 1 decreases due to increased congestion. Choosing
an appropriate « can balance usefulness between queues and traffic splitting strategies that could
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Figure 4.4: Packet usefulness probability as a function of the splitting factor o, with A=1, N=2, u;=1 and
[L2:2.

account for current queue occupancy to reduce wasted service and improve effective Aol updates.
Figure 4.5 shows the probability of packet usefulness as a function of the arrival rate A. In this case,
we set «=0.3, N=2, u1=1 and uo=2. For small values of A, both queues are lightly loaded and the
probability of being useful increases. As A increases, the probability in the two queues decreases,
reflecting increased congestion. Interestingly, the probability for queue 1 starts to increase again for
A 2 0.9. This behavior is likely due to the relatively low value of «, which results in fewer packets
being assigned to queue 1. As queue 2 becomes heavily congested, packets in queue 1 are less likely
to be preempted, leading to a slight increase in their probability of being useful.

Figure 4.6 highlights the difference in the usefulness of packets as a function of the total number
of users. Considering a=0.3, A=0.7, u1=2 and pus=3, the results are obtained using the theoretical
expression validated previously. It can be observed that, with fewer users, fewer packets in the shared
queue are preempted. This implies that it is not always convenient to direct all traffic to the private
queue, since queue 2 may perform better when it is not heavily congested. In conclusion, these results
provide insight into how queue parameters, such as splitting factor and arrival rate, influence packet
usefulness. Understanding these dependencies could be valuable for designing systems that optimize
information freshness and packet efficiency under different traffic conditions.

4.2.2 SHARED QUEUE PACKET USEFULNESS

The shared queue packet usefulness is a special case of the previous. In this case, we know that in the
opposite queue there is only one user, so AT = 0. This consideration brings a lot of simplification and
allows us to find a closed-form expression. For completeness, we present the full derivation.

We fix an arrival of interest in queue 1 and denote I; its inter-arrival time. Let n be the number
of packets present in queue 1 at the beginning of this interval. During the inter-arrival interval, no
packets arrive in this queue, while service completions occur at rate p. Our purpose is to compute
the probability that a packet in the shared queue becomes useless because it is superseded by a newer
packet from the private queue.

Given that k packets remain in queue 1 at time ¢, we can compute the probability as a function of k
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Figure 4.5: Packet usefulness probability as a function of the arrival rate A, with a=0.3, N=2, ;=1 and po=2.

Theoretical Packet Usefulness vs Number of Users

T S R E——

=
[=)
!

© o e o o
] ) N © ©
) 1 A !

Packet usefulness probability
o
~

1 —e— Queuel
—#— Queue 2

°
w

2 3 4 5 6
Number of users N

Figure 4.6: Packet usefulness probability as a function of the number of users IV, with a=0.3, A=0.7, ;=2 and
,UQZ?).

31



as:
P(T2>t+X1|K:k2):/ P(T2>t+8)fxl(8)d8
0

o) k+1 _k_—pu1s
_ “b(t4s) Mp sTe M
e 7d8
A Kl

k+1
— b ( H1 > _
p1+0b

After obtaining this expression, the question that we should ask is: how can we know the probability
of having k remaining packets if we have n initial packets in the queue? The packets are served in
an M/M/1 FCFS queue, so service completion follows a Poisson process with parameter pit. The
probability that exactly n — k packets are served within time ¢ is given by the Poisson distribution:

(pat)"~Fermt
(n—k)!

However, we need to take in account that this formula describes a countable process, while in our
system at most n packets can be delivered. So the conditional probability P(k|n) follows a truncated
Poisson process. It coincides with the Poisson probabilities until n — 1 packets are served, while the
scenario with zero packets in the queue k = 0 corresponds to the cumulative probability:

P,Ult(n — k)=

N-—1
1-— Z PPoisson(k§ Ult)-
k=0

Now that we evaluate P(k|n), we can compute the probability as a function of n and ¢ only, removing
the parameter k by appropriately weighting over all its possible values:

n

n k+1
Y P(Ty>t+ Xy |[N=nTL=t)P(k|n)=) e <M1Mj_b> Py (k)

k=0 k=1
n—1
Leht ( H1 ) 1— met(k)]
w1 +b —
= f(n,t).

For simplicity, we denote this probability f(n,t). Now we just have to integrate over all the possible
inter-arrival times:

mn>h+&w=m=/'m%mew
0

where de~% is the pdf fr,(t). Finally, we just need to sum over all possible values of n:

e}

P(T2 > 1 + Xl) = Z(l — Pl)P? /Ooode_dT f(n,t) dt.

n=0

where p1 = d/p.

An important consideration at this point is that all the involved quantities are non-negative, since we
are working with probabilities. Thus, applying Tonelli’s theorem, we exchange the order of summation
and integration. Finally, taking into account that the preceding calculation was performed for the
probability of a packet being useless, we consider its complement to obtain the exact closed-form
expression for the probability that a packet is useful:

H1 < d? N d(u1+b+d)>

P(T2<11+T1)=1—(1—Pl)(m+b)2 p1+b—d b+d

If we limit our analysis to just one user, also for the private queue, we can use the same procedure.
In this case, we only need to replace p2 with p;, a with b and ¢ with d, thus obtaining:

2 < c? +c(,u2+a+c)>‘

(u2+a)2 \p2+a—c a-+c

P(T1<IQ+T2):1—(1—,02)
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Figure 4.7: Packet usefulness probability as a function of the splitting factor a with one user and with A=1,
p1=2, pp=3

As we can see in Figure 4.7, when there is only one user splitting traffic between the two queues, the
closed-form expression matches the simulation results. We can also notice that the shared queue has
a packet usefulness higher than the private queue, confirming the importance of splitting the traffic
instead of using only the private queue.
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w1 =2, and ps = 3.

4.3 Aol PERFORMANCE AND ENERGY TRADE-OFF

Obtaining a closed-form analytical expression for the average Aol in our multi-user, multi-queue system
is highly challenging. Simplified formulas such as (2.2) can be used for particular queueing models
(see Chapter 3.3), but our scenario is more complex.

For this reason, we study the Aol in the shared queue setting via Monte Carlo simulations. These
simulations allow us to explore a wide range of parameter values and to gain insight into how the
system behaves. They help us identify regions where our model exhibits improved performance in
terms of information freshness.

Moreover, thanks to the notion of packet usefulness probability, we are also able to quantify how many
packets update the Aol and how many, instead, are wasted due to preemption or obsolescence. This
provides a more complete picture of the efficiency of the system, not only in terms of Aol but also in
terms of resource usage.

To put our results in perspective, we compare the simulated Aol of our model with the well-known
closed-form expression of the average Aol for a stationary M/M/1 queue with service rate u, given
in (2.7) [5]. Figure 4.8 shows how the average Aol changes as a function of the generation rate A for
an M/M/1 queue and for some values of the percentage of splitting «, considering N = 2, u; = 2 and
e = 3. We can see that in all cases the decision to send data only in the private queue is not efficient
in terms of freshness. Moreover, we see that the average Aol decreases in a. However, at a certain
point, it is no longer convenient to increase the value of a because there is a turning point in which
the average Aol restarts to grow. In our graph, this is reached for a=0.6.

Based on the theoretical analysis of an M/M/1 queue with service rate p; = 2, the minimum average
Aol is obtained at an arrival rate )\xi/nM/ 1= 1.064, yielding Ail/[i/nM/ ' = 1.742. This represents the

optimal operating point in a single-server system where the freshness of information is maximized.

We then extended this analysis to a system in which the user splits its traffic between two queues with
a routing probability a = 0.4. By performing Monte Carlo simulations on the same range of arrival
rates, we identified that, to achieve the same Aol as the M/M/1 minimum, A,—g4 = Arl\r/fi/nM/ 1, the
corresponding arrival rate is Ao—g.4 = 0.761. Interestingly, this configuration attains the same level of
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timeliness while requiring a substantially lower effective arrival rate, approximately 28.5% less than
in the single-server system.

These results suggest that introducing a controlled traffic split between queues allows the system to
maintain comparable Aol performance while reducing the overall server load, highlighting the potential
for more efficient resource utilization without compromising information freshness.

In conclusion, the multi-user multi-queue model shows a lot of improvements with respect to the
stationary M/M/1 model. Using a hybrid GEO-LEO architecture, rather than relying on a single
satellite, enables both improved information freshness and substantial reductions in energy expendi-
ture. This shows that intelligent queueing and system design can fundamentally reshape the Aol and
the energy trade-off.
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Conclusions

This thesis investigated the behavior of the Aol under intermittent connectivity in multi-user, multi-
queue systems, a scenario representative of NTNs. The study focused on understanding how system
parameters, such as the service rate, the packet generation rate, the durations of the active and inactive
phases, and the traffic splitting strategies, affect both information freshness and resource utilization.

In Chapter 3, we analyzed a system with deterministic active and inactive intervals and derived an
exact closed-form expression for the Aol. This analytical result simplifies the evaluation of Aol and
allows the identification of optimal operating points, as illustrated in Figures 3.12 and 3.13. These
figures demonstrate the trade-off between timeliness and resource cost, enabling informed choices for
service and generation rates. Figures 3.14 and 3.15 further highlight the impact of phase durations,
showing that increasing the active-phase ratio improves information freshness, whereas longer inactive
periods lead to higher Aol. These insights confirm that transmission strategies can be optimized even
for moving satellites with intermittent line-of-sight connectivity.

Chapter 4 extended the analysis to multi-user, multi-queue systems and introduced analytical formulas
for the packet usefulness, quantifying the fraction of updates that effectively contribute to reducing
Aol. This provides a framework to optimize both information freshness and transmission efficiency
under varying traffic conditions. Figure 4.6 illustrates that splitting the traffic between private and
shared queues can be beneficial, particularly when queues are not heavily congested, as it increases
packet usefulness. Simulation results, summarized in Figure 4.8, demonstrate that the multi-user,
multi-queue system outperforms the single-server M/M/1 baseline. The analysis also shows that an
optimal traffic-splitting factor « exists and that a comparable Aol can be achieved with a lower
effective arrival rate, reducing the number of transmissions and the associated energy consumption.

These findings have significant implications for satellite communication systems. Using hybrid GEO-LEO
architectures, rather than relying on a single satellite, can enhance the freshness of information while
reducing energy expenditure. Moreover, intelligent traffic management through queue splitting and
optimized arrival rates enables efficient resource utilization without compromising system performance.

While the models developed in this work capture key aspects of Aol under intermittent connectivity
and highlight the role of packet usefulness in multi-user, multi-queue systems, an exact analytical
evaluation of Aol for the full multi-user, multi-queue scenario remains an open challenge. Future
research could focus on extending the analytical framework to address this problem, as well as exploring
adaptive routing and scheduling strategies to further improve system efficiency.

5.1 FUTURE WORKS

While this thesis has provided insights into Aol dynamics in intermittent connectivity scenarios and
multi-user, multi-queue systems, several promising directions remain open for future investigation.
One natural extension is the analysis of multi-hop or mesh satellite networks. Building on studies
such as [30], the current model could be generalized to account for chains of intermediate nodes, each
with its own queueing behavior and service characteristics. This extension would enable the evaluation
of Aol across a chain of relays. It would capture the compounding effects of delays, packet loss, and
queue interactions, providing a more realistic representation of NTNs.

Another interesting avenue is the incorporation of heterogeneous users and multiple queue disciplines,
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including FCFS, LCFS, and replacement policies [39]. The model could be extended to scenarios with
several classes of users generating traffic with different patterns and priorities. Studying how Aol
evolves under multi-priority or heterogeneous traffic conditions would provide insights into optimal
queue management and scheduling.

Energy-aware optimization represents a third critical direction. Modern NTN and IoT scenarios fre-
quently involve battery-powered devices or satellites with limited energy resources. Future work could
incorporate energy harvesting and power constraints, balancing information freshness with energy
expenditure [39] [40]. This would allow the design of energy-efficient transmission policies that dy-
namically adjust traffic splitting or scheduling based on both Aol and available energy, reflecting
realistic operational limitations.

Finally, a broader perspective involves bridging the gap between theoretical models and real systems.
Real-world networks introduce challenges such as variable channels, fading, mobility, and packet loss
[41]. Future research could leverage the analytical foundations developed in this thesis to design mod-
els that account for these stochastic phenomena, potentially combining analytical, simulation-based,
and machine learning approaches to handle complex and dynamic scenarios. This would enable the
deployment of Aol-aware strategies in realistic LEO-GEO satellite systems, edge computing networks
and IoT applications, providing a comprehensive understanding of the trade-offs between information
freshness, latency and energy consumption.
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