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A B S T R A C T

A novel AsPyCC framework is introduced to conduct techno-economic evaluations of post-combustion carbon 
capture (PCC) units. The framework is demonstrated across seven industrial sectors, represented with different 
flue gas compositions. The automated framework integrates design, sizing, and simulation of PCC units in Aspen 
Plus® via Python, ensuring compliance with industry standards, while reducing the design effort as compared to 
traditional process synthesis methods. This is possible because design heuristics were integrated in the tool, 
namely target loadings, capture rate, geometrical relations, flooding percentage, etc. For testing the capabilities 
of the tool, a total of 35 PCC units considering an ammonia-based solvent were designed targeting 90 ± 5 % CO2 
capture rate (CCR), 0.12 lean loading, 5 wt% NH3 in the make-up solvent, and different flue gas compositions. 
The results demonstrated an average CCR of 89.70 %, with solvent losses below 10 %, and regeneration energy 
values within literature-reported ranges. An extended techno-economic sensitivity analysis was conducted to 
assess the influence of NH3 sourcing pathways and plant capacity on the total operating cost and carbon capture 
cost. Results showed that most cases remained within the same order of magnitude as current carbon market 
prices, reinforcing the economic viability of the proposed PCC configurations. This evaluation, incorporating 
relevant metrics such as the industry sector index (ISI), capacity sector index (CSI), and available CO2 score index 
(ACSI), identified cost-effective carbon capture scenarios. Clustering analysis, supported by principal component 
analysis (PCA), revealed three distinct groups of industrial cases based on economic and operational charac
teristics. Cement plants, natural gas and coal-fired power plants exhibited the highest ISI scores, with 200 t/h to 
300 t/h plant capacities being identified as suitable for PCC implementation. The ASCI analysis determined that 
CO2 concentrations between 17–19 % and 11–17 % were most suitable for 200 t/h and 300 t/h plants, 
respectively.

1. Introduction

Greenhouse gas mitigation technologies have garnered significant 
attention in response to escalating concerns about global warming [1]. 
In 2018, the U.S. EPA reported that 76 % of industrial carbon dioxide 
(CO2) emissions in the United States originated from fossil fuel com
bustion, with major contributors being power plants, oil and gas oper
ations, chemical manufacturing facilities, and petroleum refineries [2]. 
Carbon capture (CC) technologies play a crucial role in addressing 
emissions from these hard-to-decarbonize sectors, with Post- 
Combustion Capture (PCC) standing out as a mature and retrofittable 
approach for CO2 removal from flue gases [3].

The dominant commercial PCC technology involves chemical ab
sorption using different solvents such as alkanolamines, alkali solvents, 
ammonia (NH3), ionic liquids (ILs), phase change solvents, amino acids, 
and sterically hindered amines [4]. Monoethanolamine (MEA) is the 
most widely used solvent for PCC due to its high CO2 capture rate and 
selectivity at low partial pressures. However, its application presents 
several drawbacks, including high energy requirements for regenera
tion, potential equipment corrosion, and significant solvent losses due to 
oxidative degradation [5–8].

Recently, NH3 has gained attention as an alternative solvent due to 
its lower regeneration energy requirements, ability to simultaneously 
capture CO2, sulfur dioxide (SO2), and nitrogen oxides (NOx), and its 
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cost-effectiveness compared to amines [9]. Additionally, ammonia of
fers a higher CO2 absorption capacity, low corrosiveness, and low cost 
[10]. However, its implementation requires additional energy and 
capital investment to manage solvent evaporation and recovery, owing 
to its high volatility [11].

During typical operation, the aqueous NH3 solvent is introduced at 
the top of the absorption column, flowing downward over the packing 
material while absorbing CO2 from the flue gas entering at the column’s 
base [12]. This countercurrent flow results in the release of CO2-free gas 
at the top of the column and the generation of a CO2-rich solution at the 
bottom [13]. The CO2-rich solution is then routed through a cross-heat 
exchanger, where it is preheated by the recycled lean solution from the 
stripper column’s bottom. Following this, the solution enters through 
the top of the stripper column where heat is applied to reverse the CO2 
absorption reactions [14], producing a bottom liquid stream primarily 
consisting of aqueous NH3 and a top vapor stream predominantly con
taining CO2. The regenerated CO2 is subsequently directed to a 
compression train for further processing [15].

Captured CO2 can be injected at high pressure into geological for
mations or offshore reservoirs, or it can be converted into value-added 
chemical feedstocks, contributing to environmental mitigation and 
sustainable development [16,17]. CO2 serves as a valuable feedstock for 
various industrial processes, including methanol and fertilizer produc
tion [18–20], biomass gasification [21], dimethyl ether synthesis [22], 
and Fischer-Tropsch (FT) synthetic fuels production [23], among others. 
As a retrofittable technology, PCC presents an effective approach for 
integrating carbon capture into existing industrial processes [24,25], 
meeting the demands of their operations, enhancing both economic and 
environmental benefits [26–28].

Due to the complexity of the reactive absorption-stripping process 
and the variability among emitting facilities in terms of plant size, flue 
gas composition, capacity, and geographical location, a tailored process 
design and modeling approach is essential for developing a PCC unit that 
aligns with the specific characteristics of the flue gas source [29,30]. 
Therefore, this work focuses on the development of a process design and 
sizing framework for PCC units. The framework uses a rate-based 
approach to accurately represent simultaneous mass and energy trans
fer, incorporating diffusion in both phases as well as equilibrium and 
kinetic reactions [29] within the Aspen Plus® simulator. The novelty of 
this work lies in the development of a Python scheme that automates the 
design and sizing of PCC units, which aids the process synthesis task. The 
proposed framework integrates process design heuristics, specific 
operating conditions, and target performance metrics to ensure the units 
meet desired efficiency standards. Additionally, it enables the evalua
tion of various flue gas compositions, allowing for an accurate assess
ment of CO2 capture potential across different industrial sectors.

2. Methodology

2.1. PCC unit: Basis of design

The units operate with a fixed inlet temperature of 50 ◦C and a 
pressure of 101 kPa. Pretreatment and cooling are assumed to occur in a 
Direct Contact Cooler (DCC), which is not included in the design algo
rithm. A 5 wt% aqueous NH3 solution with a CO2 loading of 0.12 
(apparent mol CO2/apparent mol NH3) is introduced into the absorber 
from the top, while flue gas enters from the bottom. CO2 is absorbed by 
the lean solvent, forming a CO2-rich solution, which is then preheated in 
a cross-heat exchanger before further conditioning in another heat 
exchanger prior to entering the stripper. In the stripper, the rich solvent 
is heated in a reboiler, generating CO2 and water vapors, which exit at 
the top. A condenser cools the vapor stream, separating CO2 from water.

The CO2 product stream is assumed to be sent to a compression train 
for further chemical upgrading, while the condensed water is returned to 
the stripper. The hot lean solvent exiting the stripper bottom transfers 
heat to the rich solvent in the cross-heat exchanger before being mixed 

with NH3 make-up solution and cooled before re-entering the absorber. 
A summary of the general PCC unit and operating conditions are pro
vided in Table 1, and a general process layout is illustrated in Fig. 1.

The vapor–liquid equilibrium and thermodynamic properties are 
computed using the Electrolyte-NRTL method and the Redlich-Kwong 
equation of state (ENRTL-RK) [31]. The Electrolyte-NRTL method is 
used for liquid-phase property calculations due to its reliability in pro
cess modeling and simulation. This approach depends solely on binary 
interaction parameters and maintains consistency by applying the mole 
fraction concentration scale for short-range local composition in
teractions. For the vapor phase, the Redlich-Kwong equation of state is 
utilized to determine thermodynamic properties, ensuring accurate 
representation of phase behavior [31,32]. The main chemical reactions 
involved in the process are summarized in Table 2 [33]. The simulation 
is conducted in Aspen Plus®, utilizing the rate-based RadFrac module 
for the absorber. The stripper operates based on the chemical equilib
rium of the species [15,34]. Both columns employ MELLAPK 250Y as the 
internal packing material. The design parameters of the absorber and 
stripper columns are provided in Table 3.

2.2. Python-Aspen Plus® COM-connection: AsPyCC framework

The presented framework for the design and simulation of PCC units 
is implemented in Python via a Component Object Model (COM) inter
face, enabling automated and iterative process analysis. This framework 
facilitates the systematic evaluation of column dimensions and process 
variables to ensure they meet predefined performance criteria. The 
Python-based structure supports the incorporation of process heuristics 
and specific operational constraints. Within this framework, the 
absorber is configured to achieve a target CO2 capture efficiency while 
maintaining hydraulic integrity, avoiding excessive column flooding 
and respecting a maximum allowable diameter. The stripper and make- 
up stream configurations are designed to ensure that the CO2 loading in 
the recycle stream matches that of the lean solvent.

The AsPyCC framework is not limited to NH3-based systems; it can 
also be applied to other solvent classes such as amines (e.g., MEA, 
diethanolamine (DEA), methyldiethanolamine (MDEA), or blends like 
piperazine-methyldiethanolamine (PZ + MDEA)) and ILs. The key 
requirement for its implementation with alternative solvents lies in 
establishing the appropriate simulation environment, including the 
definition of components, thermodynamic model selection, and reaction 
specification. For amine-based systems, this setup is relatively 
straightforward since common amines are readily available in the Aspen 
Plus ® component database, and established templates for amine-based 
CO2 capture processes already exist within the software [35–38]. The 
ENRTL-RK thermodynamic model is typically suitable for representing 
these systems, and reaction kinetics can be defined using well- 
documented parameters available in the literature [39–41].

Table 1 
General operating conditions of the PCC unit.

Equipment Parameter Specification

Absorber Flue gas inlet temperature 50 ◦C
Flue gas inlet pressure 101 kPa
Lean solvent inlet temperature 15 ◦C
Lean solvent inlet pressure 101 kPa
Lean solvent loading 0.12

Cross-heat exchanger Exchanger side Hot
Specification Temperature
Value 50 ◦C

Heat-exchanger Outlet temperature 135 ◦C
Outlet pressure 500 kPa

Stripper Pressure 500 kPa
Condenser Temperature 30 ◦C

Pressure 500 kPa
Cooler Outlet temperature 15 ◦C

Outlet pressure 101 kPa
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In contrast, the use of ionic liquids requires a more detailed initial
ization, as these compounds are not included in the Aspen Plus ® da
tabases. ILs can be introduced either as pseudocomponents, by defining 
their molecular weight, normal boiling point, and density; or as user- 
defined conventional components if structural information is available 
[42,43]. These fundamental properties can be obtained experimentally 
or estimated using predictive methods reported in the literature [44]. 
Once defined, several thermodynamic models can be employed to 
represent ILs systems, with UNIFAC and COSMO-based methods being 
among the most widely used due to their suitability for gas–liquid and 
liquid–liquid equilibrium prediction [45]. Alternatively, PC-SAFT has 
shown strong predictive capabilities for gas solubility and is sometimes 
employed for ILs-based separation or reactive systems [46–48]. For 

reactive operations such as CO2 absorption or reactive distillation, re
actions can be defined using the React-Dist formalism in Aspen Plus®, 
allowing kinetic or equilibrium modeling within RADFRAC columns 
[49–51]. For detailed guidance on implementing ILs in Aspen Plus ®, the 
methodology described by [52] provides a comprehensive reference.

The Aspen–Python for Carbon Capture (AsPyCC) framework is 
organized into four modular stages: (a) absorber design, (b) heat 
exchanger and stripper design, (c) cross-heat exchanger integration, and 
(d) recycle-loading correction. A detailed description of the scheme is 
presented below.

(a) Absorber design
The framework begins by initializing an Aspen Plus® document 

containing a RadFrac block, along with the required process streams: 
flue gas, clean gas, lean NH3, and rich solvent. This setup is established 
via the COM interface, which enables Python to programmatically 
define the flue gas specifications and lean solvent properties for simu
lation input. The absorber is designed using the infinite height column 
approximation [29], in which the initial column height is set to 100 m 
and the diameter to 12 m. The starting solvent flowrate is estimated 
based on a typical solvent-to-flue gas flowrate ratio, ranging from 2 to 
3.5. Once the specified CO2 capture rate (CCR) is reached by adjusting 
the solvent flowrate, the minimum required flowrate is identified and 
scaled by a factor of 1.1 to determine the effective operating value.

Subsequently, the absorber height is iteratively adjusted to match the 
CCR target. The column diameter is then varied, with corresponding 
adjustments to the solvent flowrate, to achieve the desired flooding 
percentage while maintaining CCR performance. A final height adjust
ment ensures correction of any remaining CCR deviation. These design 
steps, typically performed manually through trial-and-error and solver 
parameter refinement, are systematically automated within the pro
posed framework. Using the proposed approach shown in Scheme 1, the 
column design is automated to meet industry standards, with exogenous 
degrees of freedom related to the flue gas composition and flowrate. 
Further implementation details, including how to establish the 
Python–Aspen Plus® COM connection, handles convergence errors, and 
accesses internal Aspen Plus® variables (e.g., feed stream specifications, 
absorber configuration, and simulation outputs), are provided in 
Tables S1–S4.

(b) Heat exchanger and stripper design
In this stage of the framework, the heat exchanger, stripper, and 

condenser blocks are programmatically created in Aspen Plus® using 
the elements protocol, along with the associated process streams: To 
stripper, Vapor, Reflux, Lean solvent, and CO2. These components are 
defined following the same COM-based protocol established in the 
absorber design stage. The initial boil-up ratio for the stripper is set 
between 0.01 and 0.05 to promote convergence during simulation.

Fig. 1. PCC using aqueous NH3 general flowsheet.

Table 2 
Kinetic, equilibrium, and salt reaction involved in the reactive capture process.

Type of reaction Reaction

Equilibrium NH3 + H2O ↔ NH4
+ + OH−

Equilibrium 2H2O ↔ H3O+ + OH−

Equilibrium HCO3
− + H2O ↔ H3O+ + CO3

−

Kinetic CO2 + OH− →HCO3
−

Kinetic HCO3
− →CO2 + OH−

Kinetic NH3 + CO2 + H2O→H2NCOO− + H3O+

Kinetic H2NCOO− + H3O+→NH3 + CO2 + H2O
Salt formation NH4HCO3(S)↔ NH4

+ + HCO3
−

Table 3 
Absorber and stripper design parameters.

Equipment Parameter Specification

Absorber Calculation type Rate-based
Packing material MELLAPK 250Y
Reaction condition factor 0.9
Film discretization option Geometric
Film discretization ratio 10
Liquid phase film resistance Discretize film
Liquid phase number of discretization points 5
Vapor phase film resistance Consider film
Mass transfer coefficient method Brf-85
Heat transfer coefficient method Chilton and Colburn
Interfacial area method Brf-85
Holdup correlation method Brf-92
Condenser None
Reboiler None

Stripper Calculation type Equilibrium
Packing material MELLAPK 250Y
Condenser None
Reboiler Kettle
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To maintain geometric consistency, the height-to-diameter ratio 
derived from the absorber is applied to the stripper, while the diameter 
is determined using the same flooding-based criteria. The boil-up ratio is 
further refined in a subsequent step of the framework to ensure both 
thermal and hydraulic performance. The inputs and outputs used to 
modify and control Aspen Plus® from Python in this stage are summa
rized in Table S5 and S6. A detailed description of the procedure is 
provided in Scheme 2.

(c) Cross-Heat exchanger integration

In this stage, a cross-heat exchanger is introduced using the MHXT 
block, along with the associated streams Hot rich and Cold lean. The 
integration is carried out using the elements protocol, which enables 
Python to disconnect the Rich solvent stream from the original heat 
exchanger and reassign it to the cross-heat exchanger as the cold feed. 

Simultaneously, the Lean solvent stream is designated as the hot feed. 
The Hot rich and Cold lean streams serve as the cold and hot outlets, 
respectively.

This automated reconfiguration step allows for flexible energy inte
gration strategies within the PCC process. The specific inputs and out
puts used to carry out these modifications are summarized in Table S7. A 
detailed step-by-step description of the implementation is provided in 
Scheme 3.  

(d) Recycle-Loading correction
In the final stage of the framework, a Mixer block is used to combine 

the Make-up stream with the Cold lean stream. The Make-up stream is 
generated using the elements protocol, with its temperature and pres
sure set to match those of the lean solvent. Its flowrate is computed 

Algorithm 3. AsPyCC: Cross-heat exchanger integration
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based on the estimated NH3 losses in the Clean gas and CO2 streams. The 
combined stream is then passed through a Cooler block to adjust its 
temperature, and the outlet of this block forms the Recycle stream.

The CO2 loading of the Recycle stream is calculated as the ratio of the 
apparent CO2 mole composition to the apparent NH3 mole composition. 
The apparent CO2 composition includes contributions from NH2COO–, 
HCO3

–, CO3
2–, and undissolved CO2, while the apparent NH3 composition 

includes NH4+, NH2COO–, and undissolved NH3. If the calculated 
loading exceeds the specified target value of 0.12, the boil-up ratio is 
increased; otherwise, it is decreased.

Finally, a 1 % purge is introduced before the Lean NH3 stream, which 
is designated as the tear stream in the simulation. The tear stream solver 
is configured using the Broyden algorithm with a tolerance of 1 × 10-5, 
as recommended by [53]. The loop is closed by replacing the Recycle 
stream with the original Lean NH3 stream, and the simulation is executed 
one final time to extract the results. The specific inputs and outputs 
involved in this stage are summarized in Table S8. A simplified repre
sentation is provided in Scheme 4.

2.3. Case study: Techno-economic evaluation of PCC units

The techno-economic evaluation presented in this work assesses the 
performance of PCC across different industries and plant capacities. The 
analysis aims to evaluate the CO2 capture potential of the selected in
dustrial sectors, focusing on the following key performance indicators 
(KPIs): 

• CO2 product flowrate (t/h): The amount of CO2 removed from the flue 
gas stream, leaving the process after the stripping section for storage 
or utilization.

• Reboiler duty (MW): The heat required in the stripper reboiler for 
solvent regeneration.

• Regeneration energy (kJ/kgCO2): The energy consumption per unit of 
CO2 captured in the PCC unit.

• CAPEX (MUSD): The total capital investment required for equipment 
procurement, engineering, installation, and construction.

• OPEX (MUSD/year): The annual operating costs, including materials 
and utilities.

• Carbon capture cost ($/tCO2): The ratio of annual operational costs to 
the amount of CO2 captured.

• NH3 loss (wt.%): The percentage of NH3 lost in the clean gas stream 
relative to the solvent provided in the lean solvent.

Additionally, to ensure a feasible design, the absorber height and 
diameter are included in the analysis.

2.3.1. Flue gas data generation
Flue gas compositions and flow rates were generated using the Sobol 

sequence within data ranges representative of various industrial sectors, 
as summarized in Table 4. The Sobol sequence is a widely used quasi- 
random, low-discrepancy method for generating uniform parameter 
samples [54], with further details available in [55]. The proposed data 
generation algorithm is outlined in Algorithm 1. In this approach, 
composition ranges for different industrial sectors are input into the 

Scheme 1. AsPyCC: Absorber design.
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Sobol sequence, where percentage compositions are converted to mass 
fractions while ensuring their sum equals one.

The number of samples was determined based on the combination of 
five representative plant capacities (100–500 t/h) and seven industrial 
sectors, resulting in 35 distinct PCC configurations. The sample size was 
chosen so that every relevant sector–capacity combination was included 
at least once. Within each configuration, operating and flue gas pa
rameters were generated using the Sobol low-discrepancy sequence, 
which provides a more uniform and space-filling distribution than 
purely random sampling [56]. This approach ensures a diverse yet 
representative coverage of the multidimensional input space, capturing 
realistic variations in flue gas compositions across different industrial 
sources while maintaining computational tractability.

A total of seven industrial sectors were analyzed: Cement, Coal-Fired 
Power Plant (CFPP), Natural Gas-Fired Power Plant (NGFPP), Gas Tur
bine Power Plant (GTPP), Steel, Pulp and Paper (PaP), and Fluid Cata
lytic Cracking (FCC). The number of variables corresponds to the typical 
species present in flue gas, while their labels represent the respective gas 
components. The minimum and maximum percentage values define the 
composition bounds for sampling. PCC unit capacities varied between 

100 and 500 t/h.
Algorithm 1 Flue gas sample generation
Input: Flue gas composition ranges database:FGdata = [Industry,Species,Ranges]

Number of samples (N)
1. for Industry in FGdata:
2. ​ Define number of model inputs:D = len(Species)
3. ​ Define problem:p(D,Species,Ranges)
4. ​ Generate samples:s(p,N)

5. ​ if sum(si) ∕= 1 with i = 1, ...,N:
6. ​ ​ Regenerate samples
7. ​ ​ ​ if sum(si) ∕= 1 persist after regenerating, discard si

8. ​ else:
9. ​ ​ Scale samples:si/sum(s)
10. ​ ​ return flue gas composition data:FGCdata = [Industry,Species,

Scalesamples]
11. for Industry in FGCdata:
12. ​ Define flowrate range:Flowraterange = [100,200,300,400,500]
13. ​ for F lowrate in Flowraterange:
14. ​ ​ assign random(Scalesamples) to Flowrate
15. ​ ​ return Samplesdatabase = [Industry,Species,Scalesamples,Flowrate]
Output: ​
​ Flue gas composition and flowrate data base (Samplesdatabase)

2.3.2. Ammonia cost sensitivity analysis
A sensitivity analysis was conducted to evaluate the impact of 

Scheme 2. AsPyCC: Heat exchanger and stripper design.
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ammonia production costs on OPEX and overall carbon capture cost 
across all process scenarios. The cost of ammonia was adopted from the 
work of [70] where three representative production pathways were 
analyzed: Methane-to-Ammonia (MtA), Biomass-to-Ammonia (BtA), 
and Power-to-Ammonia (PtA). Each pathway reflects a different energy 
source and technological maturity: 

• MtA represents the conventional natural-gas-based Haber–Bosch 
process, offering the lowest production cost but highest fossil 
dependence.

• BtA captures renewable routes using biomass-derived hydrogen, 
typically with intermediate costs and carbon footprints.

• PtA represents the fully renewable electricity-driven synthesis of 
ammonia via water electrolysis, with costs highly dependent on 
electricity prices.

For each pathway, the reference study reported several scenarios (e. 
g., maximum efficiency, minimum cost, and electricity price variations), 
yielding production costs ranging from $35 to $666 per ton of NH3 as 
shown in Table 5. These values were integrated into the AsPyCC 
framework by multiplying the reported ammonia makeup flowrate by 
each unit cost, resulting in a set of updated OPEX and total carbon 
capture costs. This approach enabled a comprehensive evaluation of 
how ammonia price variability propagates through the economics of 
PCC systems across different industries and plant scales.

2.3.3. Evaluation of PCC units
The KPIs outlined above, along with additional carbon capture- 

related parameters, were selected to evaluate trade-offs between cap
ture efficiency, economic feasibility, and process design constraints. 
These parameters included CCR, CO2 production, reboiler duty, regen
eration energy, CAPEX, OPEX, CO2 capture cost, available CO2, absorber 

Scheme 3. AsPyCC: Cross-heat exchanger integration.
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height-to-diameter ratio (H/D), solvent-to-feed ratio (S/F), and NH3 
loss. To ensure uniform weighting across variables, the data was stan
dardized to eliminate scale disparities.

K-means clustering was applied to classify industries based on their 

carbon capture characteristics. The optimal number of clusters was 
determined using the elbow method, which assesses the within-cluster 
sum of squared errors as a function of cluster count. The point at 
which additional clusters yielded minimal variance reduction was 

Scheme 4. AsPyCC: Recycle-loading correction.

Table 4 
Flue gas composition ranges for different industrial sectors.

Industry sector Species [wt.%] Source
N2 O2 CO2 CO H2 H2O

Cement [57–68] [2–10] [11–28] N/A N/A [1.18–18.2] [57,58]
CFPP [65–77] [3–5] [10–14] N/A N/A [8–10] [59,60]
NGFPP [70,71] [2.4–13] [8.6–9] N/A N/A [7.8–17.3] [59,61]
GTPP [74.4–75.7] [12.6–13.8] [3.4–3.8] N/A N/A [6.9–8.3] [61–63]
Steel [50–68] N/A [17–28.5] [20–22] [1–5] [3.8–10] [64–66]
PaP [47.4–67.6] [1.2–2.3] [13–20.4] N/A N/A [17–30.9] [64,67]
FCC [72–78] [1–3] [13–18] N/A N/A [3.6–10] [68,69]
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selected as the optimal cluster number [71]. Following clustering, mean 
feature values for each cluster were computed to assess performance. To 
facilitate comparison, feature values were normalized, ensuring all 
variables were evaluated on a common scale. A multi-criteria scoring 
function was developed, prioritizing high CCR and CO2 production 
while minimizing CAPEX, OPEX, and NH3 loss to reflect both process 
efficiency and economic feasibility. The computed cluster scores were 
ranked, with the highest-ranked cluster representing the optimal bal
ance between capture efficiency, cost-effectiveness, and operational 
feasibility.

Within the best performing cluster, PCC cases were scored based on 
the following indicators: 

• Industry Score Index (ISI): The ratio of cases from a specific industry 
within the cluster to the total number of cases in the initial dataset.

• Capacity Score Index (CSI): The ratio of cases from a specific capacity 
within the cluster to the total number of cases in the cluster.

• Available CO2 Score Index (ACSI): The ratio of the higher amount of 
CO2 available for capture in the cluster to the amount of CO2 entering 
a specific scenario.

3. Results and discussion

3.1. AsPyCC performance

The AsPyCC framework was executed on a system equipped with an 
AMD Ryzen 5 5500 CPU, using Aspen Plus® V14 and Python 3.13. The 
average computational time required to design and simulate a single 
PCC unit was approximately 9.30 min. Within this total, the absorber 
design stage accounted for the majority of the computational effort 
(90.10 %), followed by the recycle-loading correction (3.10 %), heat 
exchanger and stripper design (1.70 %), and cross-heat exchanger 
integration (0.80 %). The remaining 4.30 % was attributed to algorithm 
initialization steps, including library imports, data loading, and simu
lation file preparation. An Aspen Plus flowsheet is shown in Fig. S1 in the 
supplementary information.

The absorber design module accounts for around 90 % of total 
computational time due to three sequential iterative subroutines: 
determination of the minimum solvent flowrate, effective capture 
height, and column diameter, each requiring full convergence of Aspen 
Plus® before proceeding. The sequential dependency limits opportu
nities for parallelization, although dividing variable ranges among 
multiple Aspen Plus ® instances could offer efficiency gains. The 
average computation time for this stage is around 9 min, and further 
reduction is not considered critical at this stage of the AsPyCC 
framework.

The comparatively high computational cost of the absorber stage 
arises from the need to simultaneously satisfy two performance targets: 
achieving the specified CO2 capture rate and maintaining an acceptable 
flooding percentage. In contrast, the subsequent stages of the framework 

primarily require numerical convergence, resulting in significantly 
lower computational loads.

The framework demonstrated a high level of robustness, with a 
success rate of approximately eight absorber design completions for 
every failed attempt, the latter primarily due to COM interface or Aspen 
Plus® execution errors. All other components of the AsPyCC framework 
completed successfully without errors across all simulations.

COM connection errors occur when the established link between 
Python and Aspen Plus® is disrupted. Several factors can contribute to 
this issue, including executing the code before Aspen Plus® has 
completed its calculations, improper loading of the simulator modules, 
or interference from external applications. Within the AsPyCC frame
work, the most common cause of COM errors is related to the state of 
Aspen Plus®, for instance, when operating conditions are specified, the 
framework may attempt to execute the simulation before the software 
has fully processed the changes. The likelihood of encountering this 
error depends on the hardware being used, with faster CPUs handling 
simulations more efficiently, while slower systems are more susceptible 
to processing delays.

Although limited information is available in the literature regarding 
Python-Aspen Plus® errors, the development of the AsPyCC framework 
provides an opportunity to explore these issues and implement strategies 
for prevention and handling of errors. For AttributeError occurrences, the 
try-except statement in Python can be used to catch these errors, allowing 
the simulation to be reinitialized or re-dispatched [72]. Similarly, COM 
errors can be handled using the same approach; however, these methods 
may lead to increased computational time. These strategies will be 
incorporated into future versions of the framework to enhance its 
robustness. Since Aspen Plus® is a closed-source simulator, error causes 
such as memory overflow or division by zero are inaccessible, making 
universal prevention strategies difficult to achieve. Nonetheless, the 
adopted error-handling approach ensures robust execution across all 35 
scenarios. Overall, the AsPyCC framework enables the efficient design of 
PCC units within a relatively short time, facilitating the evaluation of 
various decarbonization scenarios.

3.2. Designed PCC units

A total of 35 PCC units were designed using the AsPyCC framework 
and evaluated based on the KPIs defined in the Methodology section. 
The average CCR across all designed units was 89.70 %, primarily 
influenced by the CCR of GTPP units, which averaged 87.12 %. 
Excluding GTPP units, the remaining units achieved an average CCR of 
90.01 %, demonstrating effective CO2 capture performance consistent 
with values reported in the literature [15,73,74].

GTPP units exhibited the highest NH3 loss, averaging 23 % of the 
initial loading, equivalent to 33700 ppm, which exceeds the reported 
maximum of 19000 ppm in the literature. The low CO2 content in the 
flue gas makes the formation of ammonium bicarbonate unfavorable, 
leaving free NH3 in the solution. Moreover, at lower total pressures, 
corresponding to lower CO2 concentrations, the partial pressure of NH3 Table 5 

NH3 cost based on production pathway.

Production pathway NH3 cost [$/t]

MtA MEP* 387
MtA MCP** 374
BtA MEP 505
BtA MCP 450
PtA MEP 666
PtA MCP 544
PtA A*** 482
PtA B*** 453
PtA C*** 281
PtA D*** 35
*MEP: Maximum efficiency point 

**MCP: Minimum cost point 
***A: 1060 $/stack, B: 470 $/stack, C: 35 $/MWh, D: 0 $/MWh

Table 6 
Summary of principal averaged PCC KPIs for the selected industry sectors.

Industry KPI
CCR 
[%]

Reg. 
energy 
[kJ/ 
kgCO2]

CAPEX 
[MUSD]

OPEX 
[MUSD/ 
year]

Carbon 
capture 
cost 
[$/tCO2]

NH3 

loss 
[%]

Cement 90.01 2906.13 22.68 18.93 45.46 4.30
CFPP 90.00 3050.47 20.84 15.14 51.48 6.30
NGFPP 90.00 3212.19 19.31 11.82 59.69 8.31
GTPP 87.12 3016.23 16.05 14.39 173.76 23.00
Steel 90.04 2867.58 36.38 42.83 96.08 5.81
PaP 90.01 2837.75 29.92 37.83 103.37 4.24
FCC 90.00 2895.25 30.45 36.60 103.67 5.57
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in the vapor phase increases, further enhancing NH3 losses [75,76].
The equilibrium partial pressure of NH3 above the CO2-lean solution 

increases with temperature and with the amount of free (unreacted) NH3 
in the solvent; conversely, increased CO2 partial pressure (or higher 
CO2-loading) promotes formation of ammonium bicarbonate/carbonate 
species, reducing free NH3 activity and vapor pressure [41,77,78]. In our 
GTPP cases the available CO2 for capture is comparatively low 
(3.48–17.41 t/h), and the solvent-to-flue gas ratio is relatively close 
(1.5–1.7), while the simulations use a fixed lean loading of 0.12 at an 
absorber temperature of 50 ◦C. The combination of limited CO2 avail
ability, the fixed low loading (i.e., greater NH3 excess relative to CO2), 
and the elevated absorber temperature leads to higher equilibrium NH3 
partial pressures and thus higher NH3 slip [79].

In contrast, all other units maintained NH3 loss below 10 %, within 
the reported range of 4500–19000 ppm [41]. The regeneration energy 
requirements for all cases fell within the reported range of 1000–4200 
kJ/kgCO2 [13].

Regarding CAPEX and OPEX, both increased with plant capacity. 
However, at 100 t/h, the absorber height was the tallest while the 
diameter was the smallest. This is attributed to the small amount of 
solvent required based on the flue gas-to-lean solvent ratio, requiring a 
tall and narrow column to achieve 90 % CCR while maintaining a 
flooding range of 70–80 % [80]. Finally, the carbon capture cost ranged 
from 43.74 $/tCO2 to 252.83 $/tCO2. With the carbon price currently 
ranging from 35 $/tCO2 to 250 $/tCO2 [81–87], the resulting values in the 
same order of magnitude indicate that integrating a PCC unit into an 
existing industrial plant is technically and economically feasible. It is 
worth noting that CO2 compression costs were not included in this 
analysis, as the design of the compression train depends on the specific 
CO2 conditions required for further chemical upgrading or sequestra
tion. A summary of the PCC units designed by the AsPyCC framework is 
shown in Table 6.

3.3. Sensitivity analysis

The sensitivity analysis revealed clear trends in how NH3 production 
pathways and plant capacities affect the overall carbon capture cost. 
Across all sectors, accounting for ammonia sourcing increased capture 

costs by 1.70–609.65 %, depending on the production route. MtA 
pathways consistently resulted in the lowest cost increments, reflecting 
their lower ammonia production cost, whereas PtA pathways, particu
larly under high electricity price conditions, produced the largest in
creases in total OPEX and carbon capture cost.

The lowest relative increase in carbon capture cost across all sce
narios occurred in the PaP scenario at 200 t/h under the PtA-D pathway, 
with only a 1.63 % increment, despite showing an NH3 loss of 3.45 %. In 
contrast, the cement plant scenario at the same capacity and a compa
rable CCR (90.06 %) exhibited a 36.96 % increase under identical NH3 
pricing conditions. This discrepancy stems from the interplay between 
solvent makeup rate, baseline OPEX, and sector-specific process char
acteristics. The PaP case exhibited a lower solvent makeup requirement 
(1.62 t/h vs. 2.03 t/h), directly reducing NH3 replacement costs. 
Moreover, its higher base OPEX (27.75 MUSD/year) diluted the impact 
of added NH3 costs in relative terms. Conversely, the cement plant, with 
its lower baseline OPEX and higher solvent consumption per unit CO2 
captured, showed amplified sensitivity to NH3 price fluctuations.

Although the 100 t/h GTPP scenario exhibits a slightly higher NH3 
loss percentage (27.3 % vs. 24.5 %), the 200 t/h GTPP case produces a 
much larger relative increase in carbon capture cost (+609.6 % vs. +
275.7 %). In the 200 t/h GTPP case the make-up is substantially higher 
(3.88 t/h vs. 2.13 t/h), so the absolute annual cost of NH3 replacement 
under the PtA MEP price is much larger. At the same time the 200 t/h 
case has a lower baseline OPEX (4.75 MUSD/yr) and only a modest in
crease in CO2 throughput (5.80 t/h), so the added NH3 expense repre
sents a large fraction of operating costs and, when divided by a small 
CO2 captured flow, yields a very high carbon capture cost increment. By 
contrast, the 100 t/h case, despite its higher fractional NH3 loss, has 
lower absolute NH3 consumption and a higher baseline OPEX (6.20 
MUSD/yr), which attenuates the relative impact of NH3 cost.

When analyzed by industry, cement and CFPP scenarios exhibited 
the most moderate cost increases, averaging 92.75 $/tCO2 and 120.34 
$/tCO2, respectively, due to their relatively low specific NH3 consump
tion per ton of CO2 captured. In contrast, GTPP and FCC sectors were 
more sensitive, reaching 546.32 $/tCO2 and 173.34 $/tCO2, respectively, 
driven by higher solvent makeup rates. Regarding plant scale, larger 
capacities (400–500 t/h) tended to mitigate the effect of NH3 price 

Fig. 2. Carbon capture cost sensitivity analysis based on different ammonia production pathways.
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fluctuations, as fixed operating costs were distributed over a greater CO2 
capture throughput. Conversely, smaller units (100–200 t/h) displayed 
higher volatility in capture costs, underscoring the influence of process 
scale on economic resilience.

Overall, including NH3 production cost shifted total carbon capture 
costs from approximately 44–250 $/tCO2 (base OPEX) to 60–950 $/tCO2 
under the most expensive PtA scenarios. Despite this increase, most 
cases remain within the same order of magnitude as current carbon 

Fig. 3. Scatter plot of Carbon capture cost vs captured CO2.

Table 7 
Summary of principal PCC KPIs for the selected industry sectors.

Cluster KPI
CCR 
[%]

Reg. 
energy 
[kJ/ 
kgCO2]

CAPEX 
[MUSD]

OPEX 
[MUSD/ 
year]

Carbon 
capture cost 
[$/kgCO2]

NH3 
loss 
[%]

0 85.98 2951.80 14.22 11.78 135.15 15.85
1 89.79 2992.75 23.40 22.68 69.45 5.73
2 90.05 2902.83 51.68 61.05 98.55 4.84

Fig. 4. Scatter plot of Carbon capture cost vs captured CO2 based on clusters.

Table 8 
Normalized scoring metric for the defined lusters.

Cluster KPI
CCR 
[%]

Reg. 
energy 
[kJ/ 
kgCO2]

CAPEX 
[MUSD]

OPEX 
[MUSD/ 
year]

Carbon 
capture cost 
[$/kgCO2]

NH3 
loss 
[%]

0 0.94 1.00 0.24 0.22 0.00 0.08
1 1.00 0.00 1.00 1.00 0.44 0.00
2 0.00 0.55 0.00 0.00 1.00 1.00
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market prices, suggesting that integrating renewable or hybrid ammonia 
supply chains can remain economically competitive across most indus
trial sectors analyzed. Scenarios exceeding the upper range of carbon 
market prices were classified as economically infeasible, as discussed in 
Section 3.4. Results from the sensitivity analysis are presented in Fig. 2.

3.4. Feasible CC units

To better assess the selection of optimal conditions for carbon cap
ture, principal component analysis (PCA) and clustering were per
formed. A plot of carbon capture cost versus captured CO2 is shown in 
Fig. 3. It can be observed that certain industry sectors fall within a region 
where the carbon capture cost is relatively low. To identify the char
acteristics that led these scenarios to fall within this region and to define 
its boundaries as suitable for carbon capture, a cluster analysis was 
performed.

A clustering analysis was conducted to classify industrial carbon 
capture cases based on key performance indicators, including CCR, 
reboiler duty, regeneration energy, capital and operational expendi
tures, and NH3 loss. The dataset was standardized using z-score 
normalization, ensuring comparability across variables by adjusting for 
differences in scale [88]. PCA was employed to capture patterns of 

similarity among observations by reducing dimensionality while pre
serving variance [89]. The optimal number of clusters was determined 
using the Elbow Method, which identified three clusters as the most 
suitable grouping.

The PCA scores suggest that the different scenarios can be grouped 
based on the selected features, with the contributions of CCR, regener
ation energy, CAPEX, OPEX, and NH3 loss to the principal components 
outlined in Table 7. The scenarios from different industries were mapped 
based on these scores, as shown in Fig. 4. Each cluster was characterized 
using the mean values of the selected features, revealing key trends in 
performance. Clusters 1 and 2 demonstrate effective CCR values; how
ever, Cluster 2 has higher CAPEX, OPEX, and carbon capture costs, 
although it achieves a higher CCR and lower NH3 loss compared to 
Cluster 1. On the other hand, Cluster 0 exhibits the lowest CAPEX and 
OPEX but underperforms in terms of CCR, achieving the highest carbon 
capture cost of all three clusters. This suggests that while Cluster 0 may 
offer cost savings in terms of capital and operational expenditures, its 
lower efficiency in carbon capture results in higher overall costs.

To determine the most favorable cluster for carbon capture appli
cations, a scoring metric based on normalized means was developed, 
prioritizing higher CCR and CO2 production while penalizing higher 
CAPEX, OPEX, and NH3 loss. The comparison of normalized cluster 
means revealed that Cluster 1 achieved the highest score, indicating that 
it represents the most economically and technically viable set of in
dustrial cases. The performance of the clusters is summarized in Table 8. 
The PCA visualization (Fig. 4) further demonstrates distinct separations 
between clusters, highlighting inherent differences in economic and 
operational characteristics. To refine the selection of the most suitable 
region for carbon capture, the ISI, CSI, and ASCI metrics were analyzed. 
For the ISI metric (Fig. 5), the cement plant emerged as the most suitable 
scenario, with a score of 1. In contrast, natural gas and coal-fired power 
plants scored 0.8, demonstrating their relative suitability for PCC. Steel 
and pulp and paper industries scored 0.6, followed by FCC with a score 
of 0.4, while gas turbine power plants scored 0, indicating the least 
suitability for PCC.

The CSI metric favored the 300 t/h plant capacity for PCC with a 
score of 0.3, the same as the 200 t/h capacity, as shown in Table 9. This 
suggests that these capacities provide sufficient CO2 entering the PCC 
unit, resulting in higher solvent flowrates and more feasible column 
dimensions, ensuring hydraulic soundness. Larger capacities require 
taller columns, increasing the economic investment. The 100 t/h 

Fig. 5. Industry score index (ISI) for the industry in best performing cluster.

Table 9 
Capacity score index for the capacities in best performing cluster.

Capacity [t/h] 100 200 300 400 500

Capacity score index (CSI) 0.10 0.30 0.30 0.19 0.14

Table 10 
Available CO2 score index (ACSI) for best performing capacity.

Industry Capacity [t/h]
100 200 300 400 500

Cement 0.36 0.44 0.65 0.96 1.00
CFPP 0.00 0.38 0.53 0.73 0.84
NGFPP 0.00 0.25 0.37 0.50 0.62
GTPP 0.26 0.59 0.76 0.00 0.00
Steel 0.00 0.55 0.80 0.78 0.00
PaP 0.00 0.36 0.59 0.00 0.00
FCC 0.36 0.44 0.65 0.96 1.00
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capacity score was 0.1, making it the least suitable for PCC. The ACSI 
score analysis revealed that for a 200 t/h capacity, a CO2 concentration 
range of 17–19 % is favorable, while for 300 t/h capacity, 11–17 % is 
optimal. For 400 t/h, a composition of 11–15 % is favorable, and for 500 
t/h, a concentration range of 8–13 % is considered suitable. These ACSI 
scores are summarized in Table 10.

Representative process design parameters were compiled for the 
most viable industries identified in Cluster 1 and by the scoring metrics 
defined in section 2.3.3. Table 11 summarizes key design and operating 
variables. These data provide practical guidance for scaling and retro
fitting PCC units in large stationary sources, bridging the gap between 
the methodological assessment and real industrial implementation.

4. Conclusions and future work

In this work, a comprehensive techno-economic evaluation of 
different post-combustion carbon capture (PCC) units was performed 
using the novel AsPyCC framework, applied to seven industrial sectors. 
The main objective of this study was to assess the feasibility of incor
porating PCC technology into key industrial sectors, using an automated 
framework for design, sizing, and simulation of PCC units in Aspen Plus 
through Python. The AsPyCC framework successfully designed 35 units 
that met industry standards, with internal constraints ensuring compli
ance with the selected parameters of 90 % CO2 capture rate (CCR), 0.12 
ammonia (NH3) loading, and 5 wt% NH3 in the solvent. The designs 
achieved an average CCR of 89.70 %, with several sectors demonstrating 
NH3 loss of less than 10 % of the initial amount, and regeneration energy 
requirements within the ranges reported in the literature. These results 
demonstrate the feasibility of utilizing PCC in diverse industrial 
applications.

To further assess the suitability of the design framework and the 
selected industrial sectors, clustering analysis was performed, supported 
by principal component analysis (PCA). This analysis identified three 
distinct clusters of industrial cases based on economic and operational 
characteristics. Cluster 1 emerged as the most favorable, balancing high 
CCR with cost-effectiveness, while Cluster 0, although cost-efficient, had 
a lower CCR and higher carbon capture cost. The ISI and CSI metrics 
helped refine the suitability of specific sectors and plant capacities, 
highlighting that cement plants (ISI = 1) and natural gas and coal-fired 
power plants (ISI = 0.8) were the most favorable for PCC, with the 
optimal plant capacities for PCC implementation identified as 200 t/h 
and 300 t/h.

Additionally, the ASCI analysis revealed the optimal CO2 concen
tration ranges for each plant capacity. For 200 t/h plants, CO2 concen
trations between 17–19 % were found to be most favorable, while for 
300 t/h plants, concentrations between 11–17 % were optimal. These 
findings suggest that while PCC is feasible across a range of industries, 
the most suitable conditions depend on plant type, capacity, and CO2 
concentration.

The sensitivity analysis provided deeper insight into the relative 
influence of key process variables on both technical and economic 
outcomes. Variations in parameters such as CO2 concentration, solvent 
makeup flow, and ammonia loss were found to have the strongest impact 

on carbon capture cost and overall process feasibility. The analysis 
revealed that even under similar ammonia pathway conditions, differ
ences in process scale and NH3 recovery efficiency can significantly alter 
the carbon capture cost increment. This highlights the nonlinear and 
interdependent nature of PCC system behavior, reinforcing the need for 
comprehensive multi-parameter assessments during design and 
optimization.

Looking ahead, further enhancements to the AsPyCC algorithm will 
include the incorporation of additional constraints related to NH3 loss, 
column height limits, and economic considerations. An optimization 
framework could also be added to the algorithm to design not only 
compliant but also optimal PCC units, maximizing both efficiency and 
economic feasibility. There is the opportunity to change the assumed 
solvent type and capture rate at the initial step of the algorithm. With 
this, other sectors could perform better, as those initial assumptions 
come from current industry practices mainly dealing with acid gases 
treatment and carbon captures with amines. Expanding the framework 
to include additional industrial sectors will improve the categorization 
of relevant sectors that contribute to CO2 emissions, as well as identify 
sectors that can be leveraged for CO2 production, essential for other 
chemical processes.
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Table 11 
Process design parameters of selected feasible PCC units.

Case CO2 concentration 
[wt.%]

S/F 
ratio

NH3 make-up 
[t/h]

Absorber height 
[m]

Absorber 
diameter [m]

Stripper height 
[m]

Stripper 
diameter [m]

Regeneration energy [kJ/ 
kgCO2]

Cement- 
200

24.52 6.29 2.03 20.7 6.5 11.58 3.63 2897.66

Cement- 
300

15.50 4.23 3.18 25.5 7.25 14.26 4.05 2955.03

CFPP-200 13.54 3.812 2.28 26.2 6.1 14.65 3.41 2965.55
CFPP-300 12.58 3.68 3.45 26.9 7.2 15.04 4.02 3087.29
NGPP-200 8.88 2.83 2.38 29.2 5.8 16.33 3.24 3159.45
NGPP-300 8.88 2.86 3.44 27.3 7.2 15.27 4.02 3249.82
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