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A novel AsPyCC framework is introduced to conduct techno-economic evaluations of post-combustion carbon
capture (PCC) units. The framework is demonstrated across seven industrial sectors, represented with different
flue gas compositions. The automated framework integrates design, sizing, and simulation of PCC units in Aspen
Plus® via Python, ensuring compliance with industry standards, while reducing the design effort as compared to
traditional process synthesis methods. This is possible because design heuristics were integrated in the tool,
namely target loadings, capture rate, geometrical relations, flooding percentage, etc. For testing the capabilities
of the tool, a total of 35 PCC units considering an ammonia-based solvent were designed targeting 90 + 5 % CO4
capture rate (CCR), 0.12 lean loading, 5 wt% NHs in the make-up solvent, and different flue gas compositions.
The results demonstrated an average CCR of 89.70 %, with solvent losses below 10 %, and regeneration energy
values within literature-reported ranges. An extended techno-economic sensitivity analysis was conducted to
assess the influence of NH3 sourcing pathways and plant capacity on the total operating cost and carbon capture
cost. Results showed that most cases remained within the same order of magnitude as current carbon market
prices, reinforcing the economic viability of the proposed PCC configurations. This evaluation, incorporating
relevant metrics such as the industry sector index (ISI), capacity sector index (CSI), and available CO5 score index
(ACSI), identified cost-effective carbon capture scenarios. Clustering analysis, supported by principal component
analysis (PCA), revealed three distinct groups of industrial cases based on economic and operational charac-
teristics. Cement plants, natural gas and coal-fired power plants exhibited the highest ISI scores, with 200 t/h to
300 t/h plant capacities being identified as suitable for PCC implementation. The ASCI analysis determined that
CO, concentrations between 17-19 % and 11-17 % were most suitable for 200 t/h and 300 t/h plants,
respectively.

1. Introduction

Greenhouse gas mitigation technologies have garnered significant
attention in response to escalating concerns about global warming [1].
In 2018, the U.S. EPA reported that 76 % of industrial carbon dioxide
(CO2) emissions in the United States originated from fossil fuel com-
bustion, with major contributors being power plants, oil and gas oper-
ations, chemical manufacturing facilities, and petroleum refineries [2].
Carbon capture (CC) technologies play a crucial role in addressing
emissions from these hard-to-decarbonize sectors, with Post-
Combustion Capture (PCC) standing out as a mature and retrofittable
approach for CO, removal from flue gases [3].
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The dominant commercial PCC technology involves chemical ab-
sorption using different solvents such as alkanolamines, alkali solvents,
ammonia (NHj3), ionic liquids (ILs), phase change solvents, amino acids,
and sterically hindered amines [4]. Monoethanolamine (MEA) is the
most widely used solvent for PCC due to its high CO2 capture rate and
selectivity at low partial pressures. However, its application presents
several drawbacks, including high energy requirements for regenera-
tion, potential equipment corrosion, and significant solvent losses due to
oxidative degradation [5-8].

Recently, NH3 has gained attention as an alternative solvent due to
its lower regeneration energy requirements, ability to simultaneously
capture COo, sulfur dioxide (SO2), and nitrogen oxides (NOy), and its
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cost-effectiveness compared to amines [9]. Additionally, ammonia of-
fers a higher CO, absorption capacity, low corrosiveness, and low cost
[10]. However, its implementation requires additional energy and
capital investment to manage solvent evaporation and recovery, owing
to its high volatility [11].

During typical operation, the aqueous NH3 solvent is introduced at
the top of the absorption column, flowing downward over the packing
material while absorbing CO5 from the flue gas entering at the column’s
base [12]. This countercurrent flow results in the release of CO2-free gas
at the top of the column and the generation of a CO»-rich solution at the
bottom [13]. The CO2-rich solution is then routed through a cross-heat
exchanger, where it is preheated by the recycled lean solution from the
stripper column’s bottom. Following this, the solution enters through
the top of the stripper column where heat is applied to reverse the CO,
absorption reactions [14], producing a bottom liquid stream primarily
consisting of aqueous NH3 and a top vapor stream predominantly con-
taining CO,. The regenerated CO, is subsequently directed to a
compression train for further processing [15].

Captured CO; can be injected at high pressure into geological for-
mations or offshore reservoirs, or it can be converted into value-added
chemical feedstocks, contributing to environmental mitigation and
sustainable development [16,17]. CO5 serves as a valuable feedstock for
various industrial processes, including methanol and fertilizer produc-
tion [18-20], biomass gasification [21], dimethyl ether synthesis [22],
and Fischer-Tropsch (FT) synthetic fuels production [23], among others.
As a retrofittable technology, PCC presents an effective approach for
integrating carbon capture into existing industrial processes [24,25],
meeting the demands of their operations, enhancing both economic and
environmental benefits [26-28].

Due to the complexity of the reactive absorption-stripping process
and the variability among emitting facilities in terms of plant size, flue
gas composition, capacity, and geographical location, a tailored process
design and modeling approach is essential for developing a PCC unit that
aligns with the specific characteristics of the flue gas source [29,30].
Therefore, this work focuses on the development of a process design and
sizing framework for PCC units. The framework uses a rate-based
approach to accurately represent simultaneous mass and energy trans-
fer, incorporating diffusion in both phases as well as equilibrium and
kinetic reactions [29] within the Aspen Plus® simulator. The novelty of
this work lies in the development of a Python scheme that automates the
design and sizing of PCC units, which aids the process synthesis task. The
proposed framework integrates process design heuristics, specific
operating conditions, and target performance metrics to ensure the units
meet desired efficiency standards. Additionally, it enables the evalua-
tion of various flue gas compositions, allowing for an accurate assess-
ment of CO, capture potential across different industrial sectors.

2. Methodology
2.1. PCC unit: Basis of design

The units operate with a fixed inlet temperature of 50 °C and a
pressure of 101 kPa. Pretreatment and cooling are assumed to occur in a
Direct Contact Cooler (DCC), which is not included in the design algo-
rithm. A 5 wt% aqueous NHj3 solution with a CO3 loading of 0.12
(apparent mol COy/apparent mol NH3) is introduced into the absorber
from the top, while flue gas enters from the bottom. CO, is absorbed by
the lean solvent, forming a CO»-rich solution, which is then preheated in
a cross-heat exchanger before further conditioning in another heat
exchanger prior to entering the stripper. In the stripper, the rich solvent
is heated in a reboiler, generating CO, and water vapors, which exit at
the top. A condenser cools the vapor stream, separating CO; from water.

The CO; product stream is assumed to be sent to a compression train
for further chemical upgrading, while the condensed water is returned to
the stripper. The hot lean solvent exiting the stripper bottom transfers
heat to the rich solvent in the cross-heat exchanger before being mixed
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with NH3 make-up solution and cooled before re-entering the absorber.
A summary of the general PCC unit and operating conditions are pro-
vided in Table 1, and a general process layout is illustrated in Fig. 1.

The vapor-liquid equilibrium and thermodynamic properties are
computed using the Electrolyte-NRTL method and the Redlich-Kwong
equation of state (ENRTL-RK) [31]. The Electrolyte-NRTL method is
used for liquid-phase property calculations due to its reliability in pro-
cess modeling and simulation. This approach depends solely on binary
interaction parameters and maintains consistency by applying the mole
fraction concentration scale for short-range local composition in-
teractions. For the vapor phase, the Redlich-Kwong equation of state is
utilized to determine thermodynamic properties, ensuring accurate
representation of phase behavior [31,32]. The main chemical reactions
involved in the process are summarized in Table 2 [33]. The simulation
is conducted in Aspen Plus®, utilizing the rate-based RadFrac module
for the absorber. The stripper operates based on the chemical equilib-
rium of the species [15,34]. Both columns employ MELLAPK 250Y as the
internal packing material. The design parameters of the absorber and
stripper columns are provided in Table 3.

2.2. Python-Aspen Plus® COM-connection: AsPyCC framework

The presented framework for the design and simulation of PCC units
is implemented in Python via a Component Object Model (COM) inter-
face, enabling automated and iterative process analysis. This framework
facilitates the systematic evaluation of column dimensions and process
variables to ensure they meet predefined performance criteria. The
Python-based structure supports the incorporation of process heuristics
and specific operational constraints. Within this framework, the
absorber is configured to achieve a target CO5 capture efficiency while
maintaining hydraulic integrity, avoiding excessive column flooding
and respecting a maximum allowable diameter. The stripper and make-
up stream configurations are designed to ensure that the CO5 loading in
the recycle stream matches that of the lean solvent.

The AsPyCC framework is not limited to NHs-based systems; it can
also be applied to other solvent classes such as amines (e.g., MEA,
diethanolamine (DEA), methyldiethanolamine (MDEA), or blends like
piperazine-methyldiethanolamine (PZ + MDEA)) and ILs. The key
requirement for its implementation with alternative solvents lies in
establishing the appropriate simulation environment, including the
definition of components, thermodynamic model selection, and reaction
specification. For amine-based systems, this setup is relatively
straightforward since common amines are readily available in the Aspen
Plus ® component database, and established templates for amine-based
CO4 capture processes already exist within the software [35-38]. The
ENRTL-RK thermodynamic model is typically suitable for representing
these systems, and reaction kinetics can be defined using well-
documented parameters available in the literature [39-41].

Table 1
General operating conditions of the PCC unit.
Equipment Parameter Specification
Absorber Flue gas inlet temperature 50 °C
Flue gas inlet pressure 101 kPa
Lean solvent inlet temperature 15°C
Lean solvent inlet pressure 101 kPa
Lean solvent loading 0.12
Cross-heat exchanger Exchanger side Hot
Specification Temperature
Value 50 °C
Heat-exchanger Outlet temperature 135°C
Outlet pressure 500 kPa
Stripper Pressure 500 kPa
Condenser Temperature 30°C
Pressure 500 kPa
Cooler Outlet temperature 15°C
Outlet pressure 101 kPa




F. Zea et al.

Mixer
Cooler

To cooler +—=< — Make-wp
Heat
r’ Clean gas
exchanger

Cold lean
solvent

Lean NH; »>
Absorber

Flue gas —>

Fuel 409 (2026) 137896

Condenser CO,
Vapor
10 ' Reflux
stripper
Hot rich .
solvent Skipper

\Er Rich solvent —

T

Cross-heat
Lean solvent

exchanger

Fig. 1. PCC using aqueous NH3 general flowsheet.

Table 2
Kinetic, equilibrium, and salt reaction involved in the reactive capture process.

Type of reaction Reaction

Equilibrium NH3 + H,O < NHs" + OH-
Equilibrium 2H,0 < H30" + OH™

Equilibrium HCO3~ + H,0 < H30% + CO3~

Kinetic COy + OH —-HCO3~

Kinetic HCO3~—CO2 + OH

Kinetic NH3 + CO, + H,O—~H;NCOO~ + H30"
Kinetic H;NCOO~ + H30"—NH3 + CO3 + H2O

Salt formation NH4HCO3(S) < NH4 " + HCO3~

Table 3
Absorber and stripper design parameters.

Equipment Parameter Specification

Absorber Calculation type Rate-based
Packing material MELLAPK 250Y
Reaction condition factor 0.9
Film discretization option Geometric
Film discretization ratio 10
Liquid phase film resistance Discretize film
Liquid phase number of discretization points 5
Vapor phase film resistance Consider film
Mass transfer coefficient method Brf-85
Heat transfer coefficient method Chilton and Colburn
Interfacial area method Brf-85
Holdup correlation method Brf-92
Condenser None
Reboiler None

Stripper Calculation type Equilibrium
Packing material MELLAPK 250Y
Condenser None
Reboiler Kettle

In contrast, the use of ionic liquids requires a more detailed initial-

ization, as these compounds are not included in the Aspen Plus ® da-
tabases. ILs can be introduced either as pseudocomponents, by defining
their molecular weight, normal boiling point, and density; or as user-
defined conventional components if structural information is available
[42,43]. These fundamental properties can be obtained experimentally
or estimated using predictive methods reported in the literature [44].
Once defined, several thermodynamic models can be employed to
represent ILs systems, with UNIFAC and COSMO-based methods being
among the most widely used due to their suitability for gas-liquid and
liquid-liquid equilibrium prediction [45]. Alternatively, PC-SAFT has
shown strong predictive capabilities for gas solubility and is sometimes
employed for ILs-based separation or reactive systems [46-48]. For

reactive operations such as CO2 absorption or reactive distillation, re-
actions can be defined using the React-Dist formalism in Aspen Plus®,
allowing kinetic or equilibrium modeling within RADFRAC columns
[49-51]. For detailed guidance on implementing ILs in Aspen Plus ®, the
methodology described by [52] provides a comprehensive reference.

The Aspen-Python for Carbon Capture (AsPyCC) framework is
organized into four modular stages: (a) absorber design, (b) heat
exchanger and stripper design, (c) cross-heat exchanger integration, and
(d) recycle-loading correction. A detailed description of the scheme is
presented below.

(a) Absorber design

The framework begins by initializing an Aspen Plus® document
containing a RadFrac block, along with the required process streams:
flue gas, clean gas, lean NHs, and rich solvent. This setup is established
via the COM interface, which enables Python to programmatically
define the flue gas specifications and lean solvent properties for simu-
lation input. The absorber is designed using the infinite height column
approximation [29], in which the initial column height is set to 100 m
and the diameter to 12 m. The starting solvent flowrate is estimated
based on a typical solvent-to-flue gas flowrate ratio, ranging from 2 to
3.5. Once the specified CO; capture rate (CCR) is reached by adjusting
the solvent flowrate, the minimum required flowrate is identified and
scaled by a factor of 1.1 to determine the effective operating value.

Subsequently, the absorber height is iteratively adjusted to match the
CCR target. The column diameter is then varied, with corresponding
adjustments to the solvent flowrate, to achieve the desired flooding
percentage while maintaining CCR performance. A final height adjust-
ment ensures correction of any remaining CCR deviation. These design
steps, typically performed manually through trial-and-error and solver
parameter refinement, are systematically automated within the pro-
posed framework. Using the proposed approach shown in Scheme 1, the
column design is automated to meet industry standards, with exogenous
degrees of freedom related to the flue gas composition and flowrate.
Further implementation details, including how to establish the
Python-Aspen Plus® COM connection, handles convergence errors, and
accesses internal Aspen Plus® variables (e.g., feed stream specifications,
absorber configuration, and simulation outputs), are provided in
Tables S1-S4.

(b) Heat exchanger and stripper design

In this stage of the framework, the heat exchanger, stripper, and
condenser blocks are programmatically created in Aspen Plus® using
the elements protocol, along with the associated process streams: To
stripper, Vapor, Reflux, Lean solvent, and COz. These components are
defined following the same COM-based protocol established in the
absorber design stage. The initial boil-up ratio for the stripper is set
between 0.01 and 0.05 to promote convergence during simulation.
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To maintain geometric consistency, the height-to-diameter ratio
derived from the absorber is applied to the stripper, while the diameter
is determined using the same flooding-based criteria. The boil-up ratio is
further refined in a subsequent step of the framework to ensure both
thermal and hydraulic performance. The inputs and outputs used to
modify and control Aspen Plus® from Python in this stage are summa-
rized in Table S5 and S6. A detailed description of the procedure is
provided in Scheme 2.

(c) Cross-Heat exchanger integration

Algorithm 3. AsPyCC: Cross-heat exchanger integration
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Simultaneously, the Lean solvent stream is designated as the hot feed.
The Hot rich and Cold lean streams serve as the cold and hot outlets,
respectively.

This automated reconfiguration step allows for flexible energy inte-
gration strategies within the PCC process. The specific inputs and out-
puts used to carry out these modifications are summarized in Table S7. A
detailed step-by-step description of the implementation is provided in
Scheme 3.

Input
CO,:
Condenser .
Vapor
Clean gas Heat
! exchanger
Lean NH; — To stripper Reflux
: Absorber
. Flue gas —|
; J Stripper
Rich solvent
Lean solvent
AsPyCC Process: Cross-heat exchanger integration
Set cross-heat exchanger
Set operating conditions
71
Achieved
convergence?
Yes
Output
CO; !
Condenser ;
Vapor
Clean gas Heat
b exchanger
‘Lean NH; —» Cold lean To
b solvent stripper A
Absorber
i Flue gas Hot rich .
. 9 solvent Stripper

Rich solvent

Cross-heat
exchanger

In this stage, a cross-heat exchanger is introduced using the MHXT
block, along with the associated streams Hot rich and Cold lean. The
integration is carried out using the elements protocol, which enables
Python to disconnect the Rich solvent stream from the original heat
exchanger and reassign it to the cross-heat exchanger as the cold feed.

Lean solvent

(d) Recycle-Loading correction

In the final stage of the framework, a Mixer block is used to combine
the Make-up stream with the Cold lean stream. The Make-up stream is
generated using the elements protocol, with its temperature and pres-
sure set to match those of the lean solvent. Its flowrate is computed
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Scheme 1. AsPyCC: Absorber design.

based on the estimated NH3 losses in the Clean gas and CO; streams. The
combined stream is then passed through a Cooler block to adjust its
temperature, and the outlet of this block forms the Recycle stream.

The CO; loading of the Recycle stream is calculated as the ratio of the
apparent CO, mole composition to the apparent NH3 mole composition.
The apparent CO2 composition includes contributions from NH;COO™,
HCOs3, CO§’, and undissolved CO,, while the apparent NH3 composition
includes NH*", NH,COO", and undissolved NHs. If the calculated
loading exceeds the specified target value of 0.12, the boil-up ratio is
increased; otherwise, it is decreased.

Finally, a 1 % purge is introduced before the Lean NH3 stream, which
is designated as the tear stream in the simulation. The tear stream solver
is configured using the Broyden algorithm with a tolerance of 1 x 107,
as recommended by [53]. The loop is closed by replacing the Recycle
stream with the original Lean NHj3 stream, and the simulation is executed
one final time to extract the results. The specific inputs and outputs
involved in this stage are summarized in Table S8. A simplified repre-
sentation is provided in Scheme 4.

2.3. Case study: Techno-economic evaluation of PCC units

The techno-economic evaluation presented in this work assesses the
performance of PCC across different industries and plant capacities. The
analysis aims to evaluate the CO5 capture potential of the selected in-
dustrial sectors, focusing on the following key performance indicators
(KPIs):

e CO; product flowrate (t/h): The amount of CO, removed from the flue
gas stream, leaving the process after the stripping section for storage
or utilization.

Reboiler duty (MW): The heat required in the stripper reboiler for
solvent regeneration.

Regeneration energy (kJ/kgco2): The energy consumption per unit of
CO;, captured in the PCC unit.

e CAPEX (MUSD): The total capital investment required for equipment
procurement, engineering, installation, and construction.

OPEX (MUSD/year): The annual operating costs, including materials
and utilities.

Carbon capture cost ($/tco2): The ratio of annual operational costs to
the amount of CO; captured.

NHs loss (wt.%): The percentage of NH3 lost in the clean gas stream
relative to the solvent provided in the lean solvent.

Additionally, to ensure a feasible design, the absorber height and
diameter are included in the analysis.

2.3.1. Flue gas data generation

Flue gas compositions and flow rates were generated using the Sobol
sequence within data ranges representative of various industrial sectors,
as summarized in Table 4. The Sobol sequence is a widely used quasi-
random, low-discrepancy method for generating uniform parameter
samples [54], with further details available in [55]. The proposed data
generation algorithm is outlined in Algorithm 1. In this approach,
composition ranges for different industrial sectors are input into the
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Scheme 2. AsPyCC: Heat exchanger and stripper design.

Sobol sequence, where percentage compositions are converted to mass
fractions while ensuring their sum equals one.

The number of samples was determined based on the combination of
five representative plant capacities (100-500 t/h) and seven industrial
sectors, resulting in 35 distinct PCC configurations. The sample size was
chosen so that every relevant sector—capacity combination was included
at least once. Within each configuration, operating and flue gas pa-
rameters were generated using the Sobol low-discrepancy sequence,
which provides a more uniform and space-filling distribution than
purely random sampling [56]. This approach ensures a diverse yet
representative coverage of the multidimensional input space, capturing
realistic variations in flue gas compositions across different industrial
sources while maintaining computational tractability.

A total of seven industrial sectors were analyzed: Cement, Coal-Fired
Power Plant (CFPP), Natural Gas-Fired Power Plant (NGFPP), Gas Tur-
bine Power Plant (GTPP), Steel, Pulp and Paper (PaP), and Fluid Cata-
lytic Cracking (FCC). The number of variables corresponds to the typical
species present in flue gas, while their labels represent the respective gas
components. The minimum and maximum percentage values define the
composition bounds for sampling. PCC unit capacities varied between

100 and 500 t/h.

Algorithm 1 Flue gas sample generation

Input: Flue gas composition ranges database:FGyqu, = [Industry, Species, Ranges)
Number of samples (N)

1. for Industry in FGggq:

2. Define number of model inputs:D = len(Species)

3. Define problem:p(D, Species, Ranges)

4. Generate samples:s(p,N)

5. if sum(s;) # 1 withi =1,...,N:

6. Regenerate samples

7. if sum(s;) # 1 persist after regenerating, discard s;

8. else:

9. Scale samples:s; /sum(s)

10. return flue gas composition data:FGCgqq = [Industry,Species,

Scalesamples)

11. for Industry in FGCgq:

12. Define flowrate range:Flowrateramge = (100,200, 300,400, 500]

13. for F lowrate in Flowraterange:

14. assign random(Scalesamples) to Flowrate

15. return Samples . qpqse = [Industry, Species, Scalesamples, Flowrate)

Output:

Flue gas composition and flowrate data base (Samples;qpqse)

2.3.2. Ammonia cost sensitivity analysis
A sensitivity analysis was conducted to evaluate the impact of
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ammonia production costs on OPEX and overall carbon capture cost
across all process scenarios. The cost of ammonia was adopted from the
work of [70] where three representative production pathways were
analyzed: Methane-to-Ammonia (MtA), Biomass-to-Ammonia (BtA),
and Power-to-Ammonia (PtA). Each pathway reflects a different energy
source and technological maturity:

e MtA represents the conventional natural-gas-based Haber-Bosch
process, offering the lowest production cost but highest fossil
dependence.

e BtA captures renewable routes using biomass-derived hydrogen,
typically with intermediate costs and carbon footprints.

e PtA represents the fully renewable electricity-driven synthesis of
ammonia via water electrolysis, with costs highly dependent on
electricity prices.

For each pathway, the reference study reported several scenarios (e.
g., maximum efficiency, minimum cost, and electricity price variations),
yielding production costs ranging from $35 to $666 per ton of NHj as
shown in Table 5. These values were integrated into the AsPyCC
framework by multiplying the reported ammonia makeup flowrate by
each unit cost, resulting in a set of updated OPEX and total carbon
capture costs. This approach enabled a comprehensive evaluation of
how ammonia price variability propagates through the economics of
PCC systems across different industries and plant scales.

2.3.3. Evaluation of PCC units

The KPIs outlined above, along with additional carbon capture-
related parameters, were selected to evaluate trade-offs between cap-
ture efficiency, economic feasibility, and process design constraints.
These parameters included CCR, CO production, reboiler duty, regen-
eration energy, CAPEX, OPEX, CO5 capture cost, available CO5, absorber
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Table 4
Flue gas composition ranges for different industrial sectors.
Industry sector Species [wt.%] Source
Nz 0, CO, co H, H,0
Cement [57-68] [2-10] [11-28] N/A N/A [1.18-18.2] [57,58]
CFPP [65-771 [3-5] [10-14] N/A N/A [8-10] [59,601
NGFPP [70,71] [2.4-13] [8.6-9] N/A N/A [7.8-17.3] [59,61]
GTPP [74.4-75.7] [12.6-13.8] [3.4-3.8] N/A N/A [6.9-8.3] [61-63]
Steel [50-68] N/A [17-28.5] [20-22] [1-5] [3.8-10] [64-66]
PaP [47.4-67.6] [1.2-2.3] [13-20.4] N/A N/A [17-30.9] [64,67]
FCC [72-78] [1-3] [13-18] N/A N/A [3.6-10] [68,69]

height-to-diameter ratio (H/D), solvent-to-feed ratio (S/F), and NH3
loss. To ensure uniform weighting across variables, the data was stan-
dardized to eliminate scale disparities.

K-means clustering was applied to classify industries based on their

carbon capture characteristics. The optimal number of clusters was
determined using the elbow method, which assesses the within-cluster
sum of squared errors as a function of cluster count. The point at
which additional clusters yielded minimal variance reduction was
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selected as the optimal cluster number [71]. Following clustering, mean
feature values for each cluster were computed to assess performance. To
facilitate comparison, feature values were normalized, ensuring all
variables were evaluated on a common scale. A multi-criteria scoring
function was developed, prioritizing high CCR and CO, production
while minimizing CAPEX, OPEX, and NHj3 loss to reflect both process
efficiency and economic feasibility. The computed cluster scores were
ranked, with the highest-ranked cluster representing the optimal bal-
ance between capture efficiency, cost-effectiveness, and operational
feasibility.

Within the best performing cluster, PCC cases were scored based on
the following indicators:

e Industry Score Index (ISI): The ratio of cases from a specific industry
within the cluster to the total number of cases in the initial dataset.

e Capacity Score Index (CSI): The ratio of cases from a specific capacity
within the cluster to the total number of cases in the cluster.

e Available CO; Score Index (ACSI): The ratio of the higher amount of
CO; available for capture in the cluster to the amount of CO; entering
a specific scenario.

3. Results and discussion
3.1. AsPyCC performance

The AsPyCC framework was executed on a system equipped with an
AMD Ryzen 5 5500 CPU, using Aspen Plus® V14 and Python 3.13. The
average computational time required to design and simulate a single
PCC unit was approximately 9.30 min. Within this total, the absorber
design stage accounted for the majority of the computational effort
(90.10 %), followed by the recycle-loading correction (3.10 %), heat
exchanger and stripper design (1.70 %), and cross-heat exchanger
integration (0.80 %). The remaining 4.30 % was attributed to algorithm
initialization steps, including library imports, data loading, and simu-
lation file preparation. An Aspen Plus flowsheet is shown in Fig. S1 in the
supplementary information.

The absorber design module accounts for around 90 % of total
computational time due to three sequential iterative subroutines:
determination of the minimum solvent flowrate, effective capture
height, and column diameter, each requiring full convergence of Aspen
Plus® before proceeding. The sequential dependency limits opportu-
nities for parallelization, although dividing variable ranges among
multiple Aspen Plus ® instances could offer efficiency gains. The
average computation time for this stage is around 9 min, and further
reduction is not considered critical at this stage of the AsPyCC
framework.

The comparatively high computational cost of the absorber stage
arises from the need to simultaneously satisfy two performance targets:
achieving the specified CO; capture rate and maintaining an acceptable
flooding percentage. In contrast, the subsequent stages of the framework

Table 5
NH3 cost based on production pathway.

Production pathway NH; cost [$/t]

MtA MEP* 387
MtA MCP"™" 374
BtA MEP 505
BtA MCP 450
PtA MEP 666
PtA MCP 544
PtAA™" 482
PtAB™" 453
PtAC™” 281
PtAD""" 35

*MEP: Maximum efficiency point
“"MCP: Minimum cost point
"""A: 1060 $/stack, B: 470 $/stack, C: 35 $/MWh, D: 0 $/MWh
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primarily require numerical convergence, resulting in significantly
lower computational loads.

The framework demonstrated a high level of robustness, with a
success rate of approximately eight absorber design completions for
every failed attempt, the latter primarily due to COM interface or Aspen
Plus® execution errors. All other components of the AsPyCC framework
completed successfully without errors across all simulations.

COM connection errors occur when the established link between
Python and Aspen Plus® is disrupted. Several factors can contribute to
this issue, including executing the code before Aspen Plus® has
completed its calculations, improper loading of the simulator modules,
or interference from external applications. Within the AsPyCC frame-
work, the most common cause of COM errors is related to the state of
Aspen Plus®, for instance, when operating conditions are specified, the
framework may attempt to execute the simulation before the software
has fully processed the changes. The likelihood of encountering this
error depends on the hardware being used, with faster CPUs handling
simulations more efficiently, while slower systems are more susceptible
to processing delays.

Although limited information is available in the literature regarding
Python-Aspen Plus® errors, the development of the AsPyCC framework
provides an opportunity to explore these issues and implement strategies
for prevention and handling of errors. For AttributeError occurrences, the
try-except statement in Python can be used to catch these errors, allowing
the simulation to be reinitialized or re-dispatched [72]. Similarly, COM
errors can be handled using the same approach; however, these methods
may lead to increased computational time. These strategies will be
incorporated into future versions of the framework to enhance its
robustness. Since Aspen Plus® is a closed-source simulator, error causes
such as memory overflow or division by zero are inaccessible, making
universal prevention strategies difficult to achieve. Nonetheless, the
adopted error-handling approach ensures robust execution across all 35
scenarios. Overall, the AsPyCC framework enables the efficient design of
PCC units within a relatively short time, facilitating the evaluation of
various decarbonization scenarios.

3.2. Designed PCC units

A total of 35 PCC units were designed using the AsPyCC framework
and evaluated based on the KPIs defined in the Methodology section.
The average CCR across all designed units was 89.70 %, primarily
influenced by the CCR of GTPP units, which averaged 87.12 %.
Excluding GTPP units, the remaining units achieved an average CCR of
90.01 %, demonstrating effective CO, capture performance consistent
with values reported in the literature [15,73,74].

GTPP units exhibited the highest NH3 loss, averaging 23 % of the
initial loading, equivalent to 33700 ppm, which exceeds the reported
maximum of 19000 ppm in the literature. The low CO; content in the
flue gas makes the formation of ammonium bicarbonate unfavorable,
leaving free NHgs in the solution. Moreover, at lower total pressures,
corresponding to lower CO2 concentrations, the partial pressure of NH3

Table 6
Summary of principal averaged PCC KPIs for the selected industry sectors.

Industry  KPI

CCR Reg. CAPEX OPEX Carbon NH3
[%] energy [MUSD] [MUSD/ capture loss
[kJ/ year] cost [%]
kgco2] [$/tcoz]
Cement 90.01 2906.13 22.68 18.93 45.46 4.30
CFPP 90.00 3050.47 20.84 15.14 51.48 6.30
NGFPP 90.00 3212.19 19.31 11.82 59.69 8.31
GTPP 87.12 3016.23 16.05 14.39 173.76 23.00
Steel 90.04 2867.58 36.38 42.83 96.08 5.81
PaP 90.01 2837.75 29.92 37.83 103.37 4.24
FCC 90.00 2895.25 30.45 36.60 103.67 5.57
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in the vapor phase increases, further enhancing NHjs losses [75,76].

The equilibrium partial pressure of NH3 above the CO»-lean solution
increases with temperature and with the amount of free (unreacted) NH3
in the solvent; conversely, increased CO2 partial pressure (or higher
COs-loading) promotes formation of ammonium bicarbonate/carbonate
species, reducing free NH3 activity and vapor pressure [41,77,78]. In our
GTPP cases the available CO, for capture is comparatively low
(3.48-17.41 t/h), and the solvent-to-flue gas ratio is relatively close
(1.5-1.7), while the simulations use a fixed lean loading of 0.12 at an
absorber temperature of 50 °C. The combination of limited CO5 avail-
ability, the fixed low loading (i.e., greater NHg excess relative to CO5),
and the elevated absorber temperature leads to higher equilibrium NH3
partial pressures and thus higher NHj slip [79].

In contrast, all other units maintained NHs loss below 10 %, within
the reported range of 4500-19000 ppm [41]. The regeneration energy
requirements for all cases fell within the reported range of 1000-4200
kJ/kgcoz [13].

Regarding CAPEX and OPEX, both increased with plant capacity.
However, at 100 t/h, the absorber height was the tallest while the
diameter was the smallest. This is attributed to the small amount of
solvent required based on the flue gas-to-lean solvent ratio, requiring a
tall and narrow column to achieve 90 % CCR while maintaining a
flooding range of 70-80 % [80]. Finally, the carbon capture cost ranged
from 43.74 $/tcoz to 252.83 $/tcoz. With the carbon price currently
ranging from 35 $/tcoz to 250 $/tco2 [81-871, the resulting values in the
same order of magnitude indicate that integrating a PCC unit into an
existing industrial plant is technically and economically feasible. It is
worth noting that CO, compression costs were not included in this
analysis, as the design of the compression train depends on the specific
CO4 conditions required for further chemical upgrading or sequestra-
tion. A summary of the PCC units designed by the AsPyCC framework is
shown in Table 6.

3.3. Sensitivity analysis
The sensitivity analysis revealed clear trends in how NH3 production

pathways and plant capacities affect the overall carbon capture cost.
Across all sectors, accounting for ammonia sourcing increased capture
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costs by 1.70-609.65 %, depending on the production route. MtA
pathways consistently resulted in the lowest cost increments, reflecting
their lower ammonia production cost, whereas PtA pathways, particu-
larly under high electricity price conditions, produced the largest in-
creases in total OPEX and carbon capture cost.

The lowest relative increase in carbon capture cost across all sce-
narios occurred in the PaP scenario at 200 t/h under the PtA-D pathway,
with only a 1.63 % increment, despite showing an NHj loss of 3.45 %. In
contrast, the cement plant scenario at the same capacity and a compa-
rable CCR (90.06 %) exhibited a 36.96 % increase under identical NH3
pricing conditions. This discrepancy stems from the interplay between
solvent makeup rate, baseline OPEX, and sector-specific process char-
acteristics. The PaP case exhibited a lower solvent makeup requirement
(1.62 t/h vs. 2.03 t/h), directly reducing NHj3 replacement costs.
Moreover, its higher base OPEX (27.75 MUSD/year) diluted the impact
of added NHj3 costs in relative terms. Conversely, the cement plant, with
its lower baseline OPEX and higher solvent consumption per unit CO4
captured, showed amplified sensitivity to NHj price fluctuations.

Although the 100 t/h GTPP scenario exhibits a slightly higher NH3
loss percentage (27.3 % vs. 24.5 %), the 200 t/h GTPP case produces a
much larger relative increase in carbon capture cost (+609.6 % vs. +
275.7 %). In the 200 t/h GTPP case the make-up is substantially higher
(3.88 t/h vs. 2.13 t/h), so the absolute annual cost of NHg replacement
under the PtA MEP price is much larger. At the same time the 200 t/h
case has a lower baseline OPEX (4.75 MUSD/yr) and only a modest in-
crease in COy throughput (5.80 t/h), so the added NH3 expense repre-
sents a large fraction of operating costs and, when divided by a small
CO4, captured flow, yields a very high carbon capture cost increment. By
contrast, the 100 t/h case, despite its higher fractional NHs loss, has
lower absolute NH3 consumption and a higher baseline OPEX (6.20
MUSD/yr), which attenuates the relative impact of NH3 cost.

When analyzed by industry, cement and CFPP scenarios exhibited
the most moderate cost increases, averaging 92.75 $/tcoz and 120.34
$/tco2, respectively, due to their relatively low specific NH3 consump-
tion per ton of CO; captured. In contrast, GTPP and FCC sectors were
more sensitive, reaching 546.32 $/tcoz and 173.34 $/tco2, respectively,
driven by higher solvent makeup rates. Regarding plant scale, larger
capacities (400-500 t/h) tended to mitigate the effect of NHj3 price
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Fig. 2. Carbon capture cost sensitivity analysis based on different ammonia production pathways.



F. Zea et al.

Table 7

Carbon capture cost [$/tCO,]
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Overall, including NH3 production cost shifted total carbon capture
costs from approximately 44-250 $/tco2 (base OPEX) to 60-950 $/tcoz

under the most expensive PtA scenarios. Despite this increase, most

Cluster ~ KPI cases remain within the same order of magnitude as current carbon
CCR Reg. CAPEX OPEX Carbon NH3
[%] energy [MUSD] [MUSD/ capture cost  loss
[ky/ year] [$/kgcoz] [%]
k o2 Table 8
gcoz] i . . .
Normalized scoring metric for the defined lusters.
0 85.98  2951.80 14.22 11.78 135.15 15.85
1 89.79  2992.75 23.40 22.68 69.45 5.73 Cluster  KPI
2 90.05  2902.83 51.68 61.05 98.55 4.84 CCR  Reg. CAPEX OPEX Carbon NH3
[%] energy [MUSD] [MUSD/ capture cost loss
[kJ/ year] [$/kgcoz] [%]
fluctuations, as fixed operating costs were distributed over a greater CO5 kgcoz]
capture throughput. Conversely, smaller units (100-200 t/h) displayed 0.94  1.00 0.24 0.22 0.00 0.08
higher volatility in capture costs, underscoring the influence of process 1 1.00 0.0 1.00 1.00 0.44 0.00
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Table 9

Capacity score index for the capacities in best performing cluster.
Capacity [t/h] 100 200 300 400 500
Capacity score index (CSI) 0.10 0.30 0.30 0.19 0.14

Table 10

Available CO, score index (ACSI) for best performing capacity.
Industry Capacity [t/h]

100 200 300 400 500

Cement 0.36 0.44 0.65 0.96 1.00
CFPP 0.00 0.38 0.53 0.73 0.84
NGFPP 0.00 0.25 0.37 0.50 0.62
GTPP 0.26 0.59 0.76 0.00 0.00
Steel 0.00 0.55 0.80 0.78 0.00
PaP 0.00 0.36 0.59 0.00 0.00
FCC 0.36 0.44 0.65 0.96 1.00

market prices, suggesting that integrating renewable or hybrid ammonia
supply chains can remain economically competitive across most indus-
trial sectors analyzed. Scenarios exceeding the upper range of carbon
market prices were classified as economically infeasible, as discussed in
Section 3.4. Results from the sensitivity analysis are presented in Fig. 2.

3.4. Feasible CC units

To better assess the selection of optimal conditions for carbon cap-
ture, principal component analysis (PCA) and clustering were per-
formed. A plot of carbon capture cost versus captured CO; is shown in
Fig. 3. It can be observed that certain industry sectors fall within a region
where the carbon capture cost is relatively low. To identify the char-
acteristics that led these scenarios to fall within this region and to define
its boundaries as suitable for carbon capture, a cluster analysis was
performed.

A clustering analysis was conducted to classify industrial carbon
capture cases based on key performance indicators, including CCR,
reboiler duty, regeneration energy, capital and operational expendi-
tures, and NHs loss. The dataset was standardized using z-score
normalization, ensuring comparability across variables by adjusting for
differences in scale [88]. PCA was employed to capture patterns of
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similarity among observations by reducing dimensionality while pre-
serving variance [89]. The optimal number of clusters was determined
using the Elbow Method, which identified three clusters as the most
suitable grouping.

The PCA scores suggest that the different scenarios can be grouped
based on the selected features, with the contributions of CCR, regener-
ation energy, CAPEX, OPEX, and NHj3 loss to the principal components
outlined in Table 7. The scenarios from different industries were mapped
based on these scores, as shown in Fig. 4. Each cluster was characterized
using the mean values of the selected features, revealing key trends in
performance. Clusters 1 and 2 demonstrate effective CCR values; how-
ever, Cluster 2 has higher CAPEX, OPEX, and carbon capture costs,
although it achieves a higher CCR and lower NH3 loss compared to
Cluster 1. On the other hand, Cluster 0 exhibits the lowest CAPEX and
OPEX but underperforms in terms of CCR, achieving the highest carbon
capture cost of all three clusters. This suggests that while Cluster 0 may
offer cost savings in terms of capital and operational expenditures, its
lower efficiency in carbon capture results in higher overall costs.

To determine the most favorable cluster for carbon capture appli-
cations, a scoring metric based on normalized means was developed,
prioritizing higher CCR and CO, production while penalizing higher
CAPEX, OPEX, and NHj loss. The comparison of normalized cluster
means revealed that Cluster 1 achieved the highest score, indicating that
it represents the most economically and technically viable set of in-
dustrial cases. The performance of the clusters is summarized in Table 8.
The PCA visualization (Fig. 4) further demonstrates distinct separations
between clusters, highlighting inherent differences in economic and
operational characteristics. To refine the selection of the most suitable
region for carbon capture, the ISI, CSI, and ASCI metrics were analyzed.
For the ISI metric (Fig. 5), the cement plant emerged as the most suitable
scenario, with a score of 1. In contrast, natural gas and coal-fired power
plants scored 0.8, demonstrating their relative suitability for PCC. Steel
and pulp and paper industries scored 0.6, followed by FCC with a score
of 0.4, while gas turbine power plants scored 0, indicating the least
suitability for PCC.

The CSI metric favored the 300 t/h plant capacity for PCC with a
score of 0.3, the same as the 200 t/h capacity, as shown in Table 9. This
suggests that these capacities provide sufficient CO, entering the PCC
unit, resulting in higher solvent flowrates and more feasible column
dimensions, ensuring hydraulic soundness. Larger capacities require
taller columns, increasing the economic investment. The 100 t/h
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Table 11
Process design parameters of selected feasible PCC units.
Case CO2 concentration S/F NH3 make-up Absorber height ~ Absorber Stripper height Stripper Regeneration energy [kJ/
[wt.%] ratio [t/h] [m] diameter [m] [m] diameter [m] kgCO2]
Cement- 24.52 6.29 2.03 20.7 6.5 11.58 3.63 2897.66
200
Cement- 15.50 4.23 3.18 25.5 7.25 14.26 4.05 2955.03
300
CFPP-200 13.54 3.812 2.28 26.2 6.1 14.65 3.41 2965.55
CFPP-300 12.58 3.68 3.45 26.9 7.2 15.04 4.02 3087.29
NGPP-200 8.88 2.83 2.38 29.2 5.8 16.33 3.24 3159.45
NGPP-300 8.88 2.86 3.44 27.3 7.2 15.27 4.02 3249.82

capacity score was 0.1, making it the least suitable for PCC. The ACSI
score analysis revealed that for a 200 t/h capacity, a CO, concentration
range of 17-19 % is favorable, while for 300 t/h capacity, 11-17 % is
optimal. For 400 t/h, a composition of 11-15 % is favorable, and for 500
t/h, a concentration range of 8-13 % is considered suitable. These ACSI
scores are summarized in Table 10.

Representative process design parameters were compiled for the
most viable industries identified in Cluster 1 and by the scoring metrics
defined in section 2.3.3. Table 11 summarizes key design and operating
variables. These data provide practical guidance for scaling and retro-
fitting PCC units in large stationary sources, bridging the gap between
the methodological assessment and real industrial implementation.

4. Conclusions and future work

In this work, a comprehensive techno-economic evaluation of
different post-combustion carbon capture (PCC) units was performed
using the novel AsPyCC framework, applied to seven industrial sectors.
The main objective of this study was to assess the feasibility of incor-
porating PCC technology into key industrial sectors, using an automated
framework for design, sizing, and simulation of PCC units in Aspen Plus
through Python. The AsPyCC framework successfully designed 35 units
that met industry standards, with internal constraints ensuring compli-
ance with the selected parameters of 90 % COs capture rate (CCR), 0.12
ammonia (NHs) loading, and 5 wt% NHg in the solvent. The designs
achieved an average CCR of 89.70 %, with several sectors demonstrating
NHj3 loss of less than 10 % of the initial amount, and regeneration energy
requirements within the ranges reported in the literature. These results
demonstrate the feasibility of utilizing PCC in diverse industrial
applications.

To further assess the suitability of the design framework and the
selected industrial sectors, clustering analysis was performed, supported
by principal component analysis (PCA). This analysis identified three
distinct clusters of industrial cases based on economic and operational
characteristics. Cluster 1 emerged as the most favorable, balancing high
CCR with cost-effectiveness, while Cluster 0, although cost-efficient, had
a lower CCR and higher carbon capture cost. The ISI and CSI metrics
helped refine the suitability of specific sectors and plant capacities,
highlighting that cement plants (ISI = 1) and natural gas and coal-fired
power plants (ISI = 0.8) were the most favorable for PCC, with the
optimal plant capacities for PCC implementation identified as 200 t/h
and 300 t/h.

Additionally, the ASCI analysis revealed the optimal CO2 concen-
tration ranges for each plant capacity. For 200 t/h plants, CO, concen-
trations between 17-19 % were found to be most favorable, while for
300 t/h plants, concentrations between 11-17 % were optimal. These
findings suggest that while PCC is feasible across a range of industries,
the most suitable conditions depend on plant type, capacity, and CO5
concentration.

The sensitivity analysis provided deeper insight into the relative
influence of key process variables on both technical and economic
outcomes. Variations in parameters such as CO4 concentration, solvent
makeup flow, and ammonia loss were found to have the strongest impact
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on carbon capture cost and overall process feasibility. The analysis
revealed that even under similar ammonia pathway conditions, differ-
ences in process scale and NHg recovery efficiency can significantly alter
the carbon capture cost increment. This highlights the nonlinear and
interdependent nature of PCC system behavior, reinforcing the need for
comprehensive multi-parameter assessments during design and
optimization.

Looking ahead, further enhancements to the AsPyCC algorithm will
include the incorporation of additional constraints related to NHg loss,
column height limits, and economic considerations. An optimization
framework could also be added to the algorithm to design not only
compliant but also optimal PCC units, maximizing both efficiency and
economic feasibility. There is the opportunity to change the assumed
solvent type and capture rate at the initial step of the algorithm. With
this, other sectors could perform better, as those initial assumptions
come from current industry practices mainly dealing with acid gases
treatment and carbon captures with amines. Expanding the framework
to include additional industrial sectors will improve the categorization
of relevant sectors that contribute to CO;, emissions, as well as identify
sectors that can be leveraged for CO, production, essential for other
chemical processes.
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