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A database of multimodal 
myography and hand kinematics 
during realistic daily life activities
Daniel Andreas   1 ✉, Dominik Werner1, Zhongshi Hou1, Anany Dwivedi2, Claudio Castellini   3,4 
& Philipp Beckerle   1,4

This paper introduces MyoKi, a database capturing multimodal myography and hand kinematics during 
various realistic daily life activities. MyoKi emphasizes the complexity of real-world settings, addressing 
limitations of existing databases, which often reflect controlled laboratory conditions. The database 
includes two subsets of participants designed to evaluate different sensor configurations. Both subsets 
contain surface electromyography (sEMG) and inertial measurement unit (IMU) data, along with hand 
kinematics covering 18 finger and wrist joints. For the second subset, additional force myography 
(FMG) data was collected. The database captures hand movements of 35 participants performing 
74 tasks, with varying arm orientations and movements involving different grips and motions. By 
offering detailed participant profiles and systematically categorizing each task, the MyoKi database 
enables in-depth exploration of task complexity, sensor influence, and the impact of demographic and 
anthropometric factors on control system performance. The database is designed to facilitate research 
in continuous hand control, enhancing the robustness and reliability of myoelectric devices for daily 
activities, moving towards user-friendly and effective control of robotic and prosthetic hands.

Background & Summary
Recent advancements in pattern recognition have enabled gesture-based control of both virtual and real robotic 
hands, as well as myoelectric hand prostheses1–5. The classification of various movement patterns facilitates 
the execution of fundamental daily tasks and has already been applied to commercially available myoelectric 
prosthetic hands6. However, this form of control cannot fully restore the hand’s functionality, as users are limited 
to a predefined set of movement patterns. The reliance on predefined movement patterns makes it challeng-
ing to perform more complex tasks requiring fine, individual, and continuous finger movements that vary in  
dynamics.

This control limitation is one of the primary reasons for the historically low acceptance of myoelectric pros-
theses among individuals with hand or forearm amputations7. Consequently, recent research has focused on 
enabling continuous control of artificial hands. Numerous databases containing electromyography (EMG) data 
and hand kinematics have been collected to drive progress. These databases can be used to facilitate machine 
learning-based decoding of muscular activity to control robotic or virtual hands and can provide valuable 
insight to improve prosthetic hand control. Some of these databases are compiled within the Ninapro data-
base8–12, while others are found in works by Furmanek et al.13, Hu et al.14, Jiang et al.15, Malešević et al.16,17, 
Matran-Fernandez et al.18, and Turgunov et al.19. While these databases encompass a wide range of individuals 
and movement patterns, their relevance for practical applications is limited, as they primarily reflect controlled 
laboratory conditions rather than realistic everyday scenarios. To ensure high signal quality, movement patterns 
were typically performed from a specific resting position in those databases, with regular breaks to prevent mus-
cle fatigue and the associated signal degradation.
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To make realistic statements about the ability to decode muscular activity into hand motions, it is crucial to 
account for the complexity of daily life. Thus, our focus was to define complex tasks that require different arm 
orientations and allow the user to fulfill the task in their preferred way. Although tasks and required grips were 
predetermined, the precise movement sequences were not strictly defined. Participants performed tasks that 
involved not only hand movements but also broader body motions (e.g., reach-to-grasp tasks with varying ver-
tical and horizontal distances), helping to identify potential interferences and enhance the robustness of control 
systems for real-world applications.

The MyoKi database presented in this work consists of two subsets of participants sharing the same data 
acquisition protocol. Subset 1 contains data from 25 participants (P01 to P25), and subset 2 contains data from 
another 10 participants (P26 to P35). In both subsets, surface electromyography (sEMG) sensors were used, 
of which many contain a 3-axis gyroscope and a 3-axis accelerometer. The sensors were distributed across the 
participant’s right arm. For the second subset of participants, additional FMG data were acquired along with 
EMG. By incorporating FMG, we aim to mitigate the high noise levels associated with EMG sensors20–22, thereby 
potentially improving the robustness of robotic hand control. Previous studies have already shown an increase in 
hand classification using a combination of EMG and FMG data compared to each data individually20,22–26. With 
the MyoKi database, we want to provide the tools to explore whether those benefits also transfer to regression 
tasks. Although FMG has been used successfully to record muscle activity in the past, we are not aware of any 
existing databases that incorporate FMG data along with EMG and hand kinematics data.

This database aims to enable testing the combination of various sensor modalities to maximize the decoding 
accuracy of hand motions during daily life. Further, the database allows to investigate which tasks or finger joints 
are more difficult to decode. The results are expected to offer insights into optimizing data collection regarding 
sensor selection/location and task design. By acquiring demographic and anthropometric information from the 
participants, researchers can study the influences of age, sex, and body fat on the ability to decode the acquired 
biosignals into wrist and hand motions to improve robotic hand control by personalized control algorithms. 
Ultimately, the goal is to provide a realistic database that is close to daily-life situations, allowing for a better 
translation from offline to online experiments. This shall make the artificial hand control more robust and move 
the control closer to the real hand.

Methods
The data collection from 35 participants with no upper limb mobility limitations within two subsets was in 
accordance with the Institutional Ethics Committee of the Friedrich-Alexander-Universität Erlangen-Nürnberg 
(24-439-S 2024-12-11). Of the original 38 participants, 3 were excluded due to corrupted task labels. The par-
ticipants were selected to cover various age groups (18-29: 11 participants, 30-44: 8 participants, 45-59: 9 
participants, 60+: 7 participants) and to obtain an even distribution between sex (17 female, 18 male). After 
explaining the experiment and obtaining informed consent for participation and data sharing, participants’ 

Fig. 1  Sensor layout of the CyberGlove by CyberGlove Systems LLC, CA, USA, to acquire data from 18 hand 
and wrist joints. The location of the strap to improve the signal quality of wrist sensors 17 and 1831 is marked  
in red.
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weight (76.6 ± 14.7 kg) and forearm circumference (27.1 ± 2.7 cm) were measured. Additionally, participants’ 
height (174.4 ± 8.6 cm), handedness (right: 31, left: 4), as well as their geographic and ethnic backgrounds, were 
recorded to help interpret differences in the ability to decode muscular activity into continuous finger and wrist 
motions.

Since body fat can influence the quality of signals from muscular activity27,28, a skinfold caliper was used 
to measure subcutaneous fat thickness at the triceps. This site, among others, is commonly utilized in body 
fat assessment using established methods such as the ones by Durnin & Wormersley29 or Jackson & Pollock30. 
Because data is collected exclusively from the participant’s right arm, local subcutaneous fat is more relevant 
than total body fat percentage. Therefore, a single-site skinfold measurement at the triceps was considered most 
suitable. The measured skinfold thickness at the triceps across participants was 17.6 ± 8.7 mm. See the chapter 
“Data Records” on how to access the table containing all participant information.

Sensor Layout.  Before starting the data acquisition, all sensors were attached to the participant. To measure 
hand kinematics in form of joint flexion, the CyberGlove by CyberGlove Systems LLC, CA, USA, was used. It 
acquires data from 18 hand and wrist joints using flex sensors as shown in Fig. 1. A strap was attached around the 
wrist, which according to Jarque-Bou et al.31 improves the signal quality of the wrist sensors 17 and 18 (see Fig. 1). 
We followed the calibration procedure by Belić et al.32 to convert the arbitrary flexion values from channels 1 to 
15 (see Fig. 1) into joint angles. We collected the calibration data from one female and one male participant who 
matched the average hand size to convert the kinematic data into angles for all female and male participants in 
the database, respectively. Recent anthropometric hand data (length and breadth) from Czech Republic33 and 
Spain34, which are both geographically close to Germany where the data acquisition took place, were averaged for 
females (length: 180 mm, breadth: 77 mm) and males (length: 195 mm, breadth: 87 mm). This roughly matches 
the median values for the German population in the year 2000, with median values for 20 to 24 years old female 
(length: 178 mm, breadth: 76 mm) and male (length: 194 mm, breadth: 87 mm) participants35. Assuming linear 
behavior of the CyberGlove’s flex sensors, a gain factor and offset value can be calculated by obtaining two values 
per sensor at specific angles (typically 0° and 90°, for a complete guide see the work by Belić et al.32). The calibrated 
joint angles were then calculated by applying a gain and offset value to the sensor readings as in the following 
equation: 
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sensor_value denotes the current sensor value to be converted into a joint angle. angle1 and angle2 are the cali-
bration angles with sensor_value1 and sensor_value2 as the corresponding sensor readings by the CyberGlove for 
those angles. To calibrate channel 16 (palmar arch), the method by Gracia-Ibáñez et al.36 was applied. Therefore, 
the palmar arch was measured at a neutral position (0°), and another sensor value was obtained at maximum 
palmar arch flexion. The angle at maximum flexion was measured using a goniometer between the line connect-
ing the index and middle knuckle with the line connecting the ring and little knuckle. Equation (1) was then 
again used to convert the sensor values into joint angles.

The wrist sensors 17 and 18 were individually calibrated for each participant using data from the CyberGlove 
acquired during the experiment, as across-subject generalization, applied to all other sensors, did not yield sat-
isfactory results. Among other tasks, participants performed radial/ulnar deviation (task 73) and wrist flexion/
extension (task 74) during data acquisition. The minimum and maximum values observed during these tasks 
were extracted and averaged across all repetitions. These values were then mapped to the angles provided by 
Nizamis et al.37, measured across 20 participants using a goniometer: maximum wrist flexion (+79°), extension 
(−63°), radial deviation (−19°), and ulnar deviation (+35°). Equation (1) was then applied again to calibrate 
the values from sensors 17 and 18 accordingly. It should be noted that the calibrated hand kinematics provided 
as joint angles should be used carefully, since the joint angles could only be approximated from the raw flexion 
values.

To acquire muscular activity, eight Trigno Avanti and one Trigno Quattro EMG sensor by Delsys 
Incorporated, Natick, USA, were used in mode 65 (see SDK) to acquire EMG signals at 1259 Hz, which were 
then internally upsampled to 2000 Hz according to the datasheet. While the Trigno Quattro sensor contains four 
separately attachable EMG channels and a single inertial measurement unit (IMU) with a 3-axis gyroscope and 
3-axis accelerometer (measuring range up to 16 g) in the main unit, the Trigno Avanti sensors each contain a 
single EMG channel and IMU. The IMU of the Trigno Avanti and Trigno Quattro sensors both acquire signals at 
148 Hz according to the datasheet. As shown in Fig. 3, the sensor layout comprised a total of 12 EMG channels 
and nine IMUs for data acquisition, which were located across the participant’s right arm. We used the bracelet 
by Andreas et al.38 without the additional FMG sensors for the first subset of the database to equally space EMG 
sensors 1 to 6 around the participant’s forearm to ensure consistent placement and optimal use of the available 
surface area. This approach establishes a reproducible relationship between each sensor channel and the under-
lying muscles, while also reflecting the practical constraints often encountered in prosthetic sockets, where 
targeting specific muscles is typically not feasible. Moreover, muscle-specific targeting is particularly challenging 
in individuals with higher subcutaneous fat levels and may introduce placement errors. For the second subset 
of the MyoKi database, the multimodal bracelet by Andreas et al.38 was used with the additional FMG sensors 
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(see Fig. 2) to combine EMG channels 1 to 6 with 24 force-sensitive resistor (FSR)-based FMG channels (4 FMG 
channels per module). The individual modules of the multimodal bracelet were designed to allow very small 
vertical movements (<1 mm) of the Trigno Avanti modules to transfer forces to the FSRs of type 400 Short by 
Interlink Electronics Inc., Camarillo, CA, USA, which are placed superficial to the EMG sensors, allowing EMG, 
IMU, and FMG readings at the same muscle location. For both participant subsets, we ensured consistent brace-
let placement and standardized the protrusion of the EMG sensors from the modules to maintain reliable skin 
contact. See the work by Andreas et al.38 for further information and functional tests of the multimodal bracelet. 
Additional information on signal range, unit, and frequency can be found in the section “Data Records”.

The skin for each sensor location was cleaned with alcohol wipes before application. The following protocol 
was followed to ensure consistent sensor positioning across participants:

• �EMG/Multimodal bracelet38: Bracelet orientation with the arrows of the Trigno Avanti sensors pointing toward 
the participant’s hand. The bracelet was located at the largest circumference of the forearm, which shall pre-
vent the bracelet from slipping during task execution and ensure good contact between the skin and electrodes. 

Fig. 3  Sensor layout on participant showing the location of all EMG sensors and the multimodal bracelet by 
Andreas et al.38 containing Trigno Avanti EMG sensors 1 to 6 and 24 FMG channels. All Trigno Avanti sensors 
are oriented with the arrows pointing in the distal direction, while the Trigno Quattro sensor is pointing in the 
proximal direction. This defines the axes orientation of the gyroscopic and accelerometer data. This layout was 
used for both subsets of participants, with the only difference that no FMG data was recorded for the first subset.

Fig. 2  Picture showing the multimodal bracelet by Andreas et al.38 that was used to acquire EMG (in both 
subsets) and FMG data (in the second subset). The bracelet spaces EMG channels 1 to 6 equally around the 
forearm. For the first subset, a dummy PCB was used to ensure consistent EMG sensor placement, maintain 
comparable protrusion of the EMG sensor, and guarantee reliable skin contact across both subsets. The right 
shows a detailed view of a module, which combines a Trigno Avanti sensor with 4 FSR-based FMG channels  
at a single location.
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Module 6 of each bracelet was then positioned to align with the participant’s right arm’s cubital fossa while the 
participant was standing as in Fig. 3. Figure 4 illustrates the arrangement of sensors within the EMG bracelet and 
the multimodal bracelet. It shows a cross-section of a right forearm from the distal to proximal direction, with the 
approximate locations of the six modules positioned above the underlying muscles38. The figure also defines the 
consistent order of FMG channels for each module that was used for the second subset of the MyoKi database.

• �EMG 7 & 8: On the right forearm between the CyberGlove (see Fig. 1) and the EMG/multimodal bracelet in 
distal direction. EMG 7 is located between modules 5 and 6 to target the flexor digitorum superficialis, while 
EMG 8 is located between modules 1 and 2 of the EMG/multimodal bracelet (see Fig. 4).

• EMG 9 & 10: Center of the right biceps brachii and triceps brachii, respectively.
• EMG 11 & 12: Intersection between the right lateral deltoid and the front/rear deltoid, respectively.
• Trigno Quattro IMU: Below the right deltoid, in between biceps brachii and triceps brachii.

Fig. 4  Sensor layout of the EMG/multimodal bracelet on the right forearm. The direction of the view can be 
depicted by the green arrow in Fig. 3 (distal to proximal). The gray rectangles represent the six modules of 
both the EMG bracelet and the multimodal bracelet. The layout of the FMG sensors is shown in the detailed 
view on the right (top view). Muscle abbreviations (left to right): Brachioradialis (BR), Extensor carpi radialis 
longus (ECRL), Extensor carpi radialis brevis (ECRB), Flexor carpi radialis (FCR), Flexor pollicis longus (FPL), 
Abductor pollicis longus (APL), Extensor digitorum (ED), Palmaris longus (PL), Flexor digitorum superficialis 
(FDS), Extensor pollicis longus (EPL), Extensor digiti minimi (EDM), Flexor carpi ulnaris (FCU), Flexor 
digitorum profundus (FDP), Extensor carpi ulnaris (ECU).

Fig. 5  Experimental setup for the data acquisition. Markers 1, 2, and 3 show the object locations for the pick-
and-place tasks, while A, B, and C mark the target locations. The experimenter (4) manually labeled the data 
with task ID and repetition. The participant’s actions were recorded on video by a webcam (5) to correctly 
annotate the data in case of errors by the experimenter or participants. The task instructions were displayed on a 
screen (6). A second screen (7) was provided to perform the clicking and typing tasks.
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Experimental Setup.  After the sensor application and a brief instruction, the participants were asked to 
perform a series of predefined daily tasks displayed on a screen as in Fig. 5 (marker 6), which shows the experi-
mental setup. The markers 1, 2, and 3 in Fig. 5 mark the object locations for the pick and place tasks, while mark-
ers A, B, and C mark the target locations to place the objects. The respective distances between object location 
2 and target locations A, B, and C are 1.5 m, 1.0 m, and 0.5 m, respectively. During the experiment, participants 
were knowingly recorded on video by a webcam (marker 5). The video data was only used for accurate annotation 
of the acquired data and is not published.

The experimenter (at marker 4 in Fig. 5) set the labels, such as task ID and repetition, manually in a computer 
program and signaled the participant the start of each task. The participants were instructed to place their hand 
near the object before the start of each task, ready to grasp the object or perform the upcoming task. This allowed 
precise labeling of the data and prevented the inclusion of unwanted movements that are not associated with the 
respective task. The transition phases in between tasks were labeled with zero, while tasks were labeled with their 
respective task ID. Participants performed a sequence of 74 different tasks in a fixed order. After completing the 
full set of tasks, the process was repeated 6 times to achieve a roughly even distribution of muscle fatigue across 
tasks and create a more realistic setting, which caused participants to include slight variations in task execution 
since repetitions were not performed back to back.

The experimental setup was inspired by the work of Nowak et al.39, who created a setup to train and assess the 
performance of myoelectric hand prosthesis control. The setup focuses on repeatability and postural variations 
during task execution to mimic complex daily-life situations. We extended the setup with more complex tasks 
to emphasize fine individual finger movements. The selected tasks vary regarding their location (below table 
height, at table height, above table height, sitting), motion distance (none, short: ≤0.75 m, medium:  > 0.75 m 
∧ < 1.25 m, long: ≥1.25 m) and direction (none, lateral, medial), grasp (cylindrical, spherical, hook, tripod, 
pinch, lumbrical, complex), wrist action (none, supination/pronation, deviation, flexion, complex), required 
force (low, medium, high), and whether the execution requires unimanual or bimanual actions. Since all sensors 
were attached to the participant’s right arm, all unimanual tasks, such as pick and place tasks, were performed 
using the right hand. Table 1 shows three of the 74 tasks as an example, which were categorized with respect to 
the aforementioned variations (see the Chapter “Data Records” on how to access the complete table) and are 
described in the following: 

•	 Task 24 - Take the key from 2 and place it on B: This task is performed at table height using a tripod grasp 
covering a medium distance of 1.0 m in medial direction. No wrist action is required for this pick-and-place 
task. Due to the low weight of the object, the task requires only low force and is performed unimanually.

•	 Task 45 - Take the 3 kg laptop bag from A and place it on 1: This task directly follows the previous task 44 
to place the 3 kg laptop bag from 1 to A. Due to the bag’s position, this task is categorized to be performed 
below table height. The object is moved a long distance of more than 1.5 m in lateral direction using the hook 
grip. This task requires no wrist action and is performed unimanually, but requires a high force due to the 
increased 3 kg weight of the bag.

•	 Task 58 - Tie the laces of the shoe and untie them again: This task is executed while sitting. It does not involve 
the re-placing of an object. The task requires bimanual complex finger and wrist motions at a low force.

The tasks were designed to eliminate the need for object resets between repetitions, streamlining the data 
acquisition process and maximizing the amount of data collected within a given time. For example, after task 24, 
where a key is moved from position 2 to B, task 25 requires returning the key from B to 2, effectively resetting the 
object to its original position. Additionally, the motion direction of task 25 shifts from medial to lateral. To assess 
the impact of movement distance on muscular activity and thus decoding performance, the pick-and-place task 
with the key was additionally performed over both a short distance (0.5 m from 2 to C) and a long distance (1.5 
m from 2 to A). Other pick-and-place tasks involved various objects requiring different grasp types, as well as 
variations in vertical placement (e.g., locations 1 and 3) and object weight. For instance, task 45 was performed 
using both a medium-weight bag (1.5 kg) and a lighter bag (0.75 kg) to evaluate the impact of variations in 
required force to complete the task.

In addition to these tasks, more complex movements emphasizing fine individual finger control were 
included. These involved common activities such as tying and untying shoelaces (task 58), opening and closing a 
water bottle (task 7 & 8), opening a book and turning pages (task 57), and handwriting a sentence on paper (task 
61). Contemporary interactions, such as clicking targets on the PC (task 62), typing on a keyboard (task 63), and 
tapping targets on a smartphone using the thumb (task 59), were also incorporated. Additional tasks focused on 
wrist movements, such as using a duster (task 46–48) or screwing and unscrewing a horizontal screw (task 54 & 
55). Lastly, tasks were included to capture the full range of motion for each finger, involving five repetitions of 
flexion and extension (task 65–69), fist clenching and stretching (task 70), as well as adduction and abduction 
(task 71). Wrist movements such as supination/pronation, radial/ulnar deviation, and flexion/extension (task 
72–74) were also included.

Data Processing.  After data acquisition, the IMU, FMG (in the second subset), and hand kinematics data 
were upsampled to match the 2000 Hz sampling rate of the EMG signal. All signal modalities were collected by 
a single host PC, with each incoming sample labeled with an absolute timestamp from a common time server to 
ensure synchronization across the database. To temporally align signals sampled at different frequencies, we used 
nearest-neighbor alignment based on timestamp proximity. Specifically, we applied a non-interpolative method 
that assigns, for each timestamp in the higher-frequency signal, the most recent preceding (or equal) value from 
the lower-frequency signal. This approach is equivalent to a zero-order hold (ZOH) strategy, wherein the last 
known sample is assumed constant until a new sample becomes available. This preserves the original sample 
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values without introducing interpolation artifacts. All signals were then compiled into a single MATLAB data file 
(*.mat) for each participant.

Data Records
The collected data and all supplementary files, such as the task list and participant information, are available on 
figshare40 (https://doi.org/10.6084/m9.figshare.28696778):

•	 P01.mat ... P35.mat: Matlab data files containing all sensor data during task execution for each participant.
•	 Task_categorization.xlsx: Microsoft Excel file that contains a table with all tasks and their corresponding Task 

ID. The tasks are categorized as in Table 1.
•	 Participant_information.xlsx: Microsoft Excel file that contains all relevant participant information such as 

participant ID (P01 ... P35) and corresponding age, sex, height, weight, forearm circumference, handedness, 
skinfold measurement at the triceps, as well as their geographic and ethnic backgrounds. The file further con-
tains notes on anomalies during data acquisition, such as missing repetitions or loose sensors.

•	 NinaproDB7_replica.mat: Matlab data file containing sensor data by one participant replicating the acquisi-
tion protocol from Ninapro database 711. It can be used for direct comparisons with the original NinaproDB7 
to validate signal quality.

•	 Glove_calibration.xlsx: Microsoft Excel file that contains calibration data of the CyberGlove collected from 
one female and one male participant with average hand sizes.

The Matlab data files containing sensor data for each participant (P01.mat ... P35.mat) are described in the 
following. Note that FMG data is only available in the second subset of the MyoKi database (P26 to P35). 

•	 task: Task labels for each sample according to the file “Task_categorization.xlsx”. Label “0” marks the transi-
tion phase between tasks. Data shape: number of samples × 1.

•	 grasp: Task labels translated into grasps (0: Rest/Transition, 1: Cylindrical, 2: Spherical, 3: Hook, 4: Tripod, 5: 
Pinch, 6: Lumbrical, 7: Complex) using the information from “Task_categorization.xlsx”. Data shape: number 
of samples × 1.

•	 repetition: Repetition label for each sample, ranging from 1 to 6. Data shape: number of samples × 1.

Take the key from 2 
and place it on B.

Lift the 3 kg laptop bag 
from A and place it on 1.

Tie the laces of the shoe 
and untie them again.

Object/Task location 
(vertical)

Below table height •

At table height •

Above table height

Sitting •

Horizontal distance

None •

Short

Medium •

Long •

Motion direction

None •

Medial •

Lateral •

Grasp

Cylindrical

Spherical

Hook •

Tripod •

Pinch

Lumbrical

Complex •

Wrist action

None • •

Supination/Pronation

Deviation

Flexion

Complex •

Force

Low • •

Medium

High •

Manual actions
Unimanual • •

Bimanual •

Table 1.  Showing task 24, 45, and 58 from left to right with their corresponding categorization as an example. 
Note that this table is transposed compared to the complete task table with all 74 tasks in the online repository.
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•	 frequency: Sampling frequency of all signals. Data shape: 1 × 1.
•	 timestamp: Relative timestamp in seconds for each sample starting with 0.0 s. Data shape: number of samples × 1.
•	 emg: EMG data from eight Trigno Avanti sensors and one Trigno Quattro sensor acquired in Volts at 1259 

Hz and internally upsampled to per-second mean frequencies of 1998.96 ± 3.93 Hz across participants. The 
average within-participant standard deviation of the sampling frequency was 41.50 Hz. Data shape: number of 
samples × 12 (number of EMG channels). The order of the EMG channels matches the one from Figs. 3 and 4.

•	 acc: 3-axis accelerometer data from eight Trigno Avanti sensors and one Trigno Quattro sensor acquired in 
multiples of the earth’s gravitation, denoted by g at per-second mean frequencies of 146.91 ± 0.05 Hz across 
participants. The average within-participant standard deviation of the sampling frequency was 5.60 Hz. Data 

Fig. 6  Power spectral density (PSD) comparison between raw data (blue line) and upsampled data using 
zero-order hold (ZOH) (orange dashed line). PSDs were estimated using Welch’s method and averaged across 
participants. Standard deviations are marked by the shaded areas.
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shape: number of samples) × 27 (number of IMUs × 3. The order of the ACC channels matches the one from 
Figs. 3 and 4 and follows the scheme of the EMG channels: acc_1_x, acc_1_y, acc_1_z, acc_2_x, ...

•	 gyro: 3-axis gyroscopic data from eight Trigno Avanti sensors and one Trigno Quattro sensor acquired in degrees 
per second (dps) at per-second mean frequencies of 146.91 ± 0.05 Hz across participants. The average with-
in-participant standard deviation of the sampling frequency was 5.60 Hz. Data shape: number of samples × 27 
(number of IMUs × 3). The order of the ACC channels matches the one from Figs. 3 and 4 and follows the scheme 
of the EMG channels: gyro_1_x, gyro_1_y, gyro_1_z, gyro_2_x, ...

•	 glove: Flexion from 18 hand and wrist joints from CyberGlove acquired as arbitrary 8-bit values at per-second 
mean frequencies of 80.85 ± 0.16 Hz across participants. The average within-participant standard deviation 
of the sampling frequency was 13.23 Hz. Data shape: number of samples × 18. The column order matches the 
one from Fig. 1.

•	 glove_calibrated: Calibrated hand and wrist joint angles in degrees from CyberGlove using the calibration 
data from “Glove_calibration.xlsx”. Data shape: number of samples × 18. The column order matches the one 
from Fig. 1.

•	 fmg: Force myography data from the multimodal bracelet by Andreas et al.38 acquired as arbitrary 12-bit 
values at per-second mean frequencies of 89.44 ± 0.02 Hz across participants. The average within-partici-
pant standard deviation of the sampling frequency was 3.80 Hz. The signal ranges from 0.0 V to 3.3 V, with 
higher voltages corresponding to higher forces. Data shape: number of samples × 24 (number of FMG modules 
channels × 4). The order of the FMG channels matches the one from Fig. 4: fmg_1_1, fmg_1_2, fmg_1_3, 
fmg_1_4, fmg_2_1, fmg_2_2, ...

Technical Validation
To assess the effect of temporal alignment after upsampling via zero-order hold, we compared the frequency 
spectra of all acquired signal modalities before and after alignment. As shown in Fig. 6, the aligned signals 
retained the key spectral components, confirming that the alignment procedure preserved signal integrity with-
out introducing significant artifacts. The frequency spectra observed for each modality align with previously 
reported dominant frequency ranges, with EMG signals showing the highest power primarily below 500 Hz and 
all other modalities (FMG, IMU, and hand kinematics) predominantly below 10-20 Hz41–44. Notably, the EMG 
signal exhibits strong power line interference at 50 Hz and its harmonics, for which the application of a notch 
filter is recommended.

To assess the synchronicity of the acquired signals, we instructed one participant to move from a resting hand 
position to a fist as quickly as possible. After holding the fist position for a few seconds, the participant returned 
to the resting position again. This rapid muscle activation helps to identify the onset of the motion in the hand 
kinematics data and thus allows the evaluation of the synchronicity between the EMG and FMG signals. The 
plot in Fig. 7 from this experiment shows no visible delay between the signals. Notable changes in muscular 
activity are observed in both the EMG and FMG signals at the onset of the movement, and these changes are 
well-aligned with the finger motions recorded from all five MCP joints by the CyberGlove.

To quantify the delay between the signals, EMG, FMG, and hand kinematics data by the CyberGlove were 
low-pass filtered at 10 Hz using zero-phase digital filtering to avoid phase distortion. The EMG signal was addi-
tionally bandpass filtered (20-450 Hz, 4th order Butterworth) to remove movement artifacts and high-frequency 
noise, followed by a rectification. The time window for delay estimation between signals was visually preselected 
between 19.82 s and 20.08 s (with respect to the time axis from Fig. 7). Delay estimation was then performed 
using a local slope-sign change-based event detection approach, marking the onset of the action within each sig-
nal. Specific channels were selected for the delay estimation based on known anatomical and functional relation-
ships between modalities. Specifically, EMG channel 6, targeting the Flexor digitorum superficialis (FDS), was 
chosen, along with the four spatially corresponding FMG channels from the same module (see Fig. 4). The FDS 
is primarily responsible for MCP flexion, corresponding to CyberGlove channels 5, 7, 10, and 13 (see Fig. 1). 
For FMG and hand kinematics, the signals were averaged across the selected channels. Then, for each signal, 
the first local minimum within the analysis window was identified, marking the onset of the motion. The delays 
between modalities were then calculated as the time differences between these detected events. The resulting 
average delays were: EMG → FMG = 2.22 ms, FMG → Motion = 12.66 ms, and EMG → Motion = 14.89 ms. 
These values are mostly consistent with physiologically reported benchmarks, including the delay from muscle 
activation to fascicle motion onset (~6 ms, reflecting the EMG → FMG delay), the delay from fascicle motion to 
force production onset (~5 ms, corresponding to the FMG → Motion delay), and the overall electromechanical 
delay from muscle activation to force production onset (~11 ms, reflecting the EMG → Motion delay)45,46.

However, it is important to note that these delay estimates should be interpreted with caution. Given the use 
of surface EMG electrodes and the anatomical placement shown in Fig. 4, cross-talk from overlying muscles 
such as the Flexor carpi radialis (FCR) and Palmaris longus (PL) may have influenced the EMG recordings and 
consequently the estimated delays. Although the temporal ordering of the signal onsets appears physiologically 
correct, the absolute delays slightly differed from those reported in previous studies. Additionally, zero-order 
hold (ZOH) upsampling may have introduced minor timing inaccuracies due to frequency mismatch between 
the source and target sampling rates. Although accelerometer (ACC) and gyroscope (GYRO) signals are more 
difficult to validate for synchronization due to less distinct signal features, their direct recording from the same 
device as the EMG signals ensured that they remained temporally aligned with the EMG, and thus with the 
FMG and CyberGlove data. All signals were timestamped using a common time server, making significant tim-
ing errors due to clock drift or server inaccuracies unlikely. Overall, these results provide evidence for effective 
signal synchronization across all modalities used in this study.
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To assess the data quality of the MyoKi database objectively, we replicated the acquisition protocol from data-
base 711 of the established Ninapro database (referred to as NinaproDB7 in the following), using the same sensor 
layout and acquisition setup as shown in Figs. 3, 4, and 5. This approach allows for a direct comparison between 
the MyoKi database and the established NinaproDB7, providing insights into the reliability of our sensor layout 
and the quality of the acquired signals. We employed a Long Short-Term Memory (LSTM)47 neural network to 
decode the input signals (EMG, IMU, and FMG, when available) into continuous joint flexion recorded by the 
CyberGlove. The LSTM network utilized a Rectified Linear Unit (ReLU) activation function, and its hyperpa-
rameters were optimized using both the NinaproDB7 and MyoKi databases (number of layers: 2, hidden size: 
4096, dropout rate: 0.1, batch size: 128, learning rate: 5.72589e-05). For training, the network was run for 200 
epochs with an Adaptive Motion Estimation (Adam) optimizer, a weight decay of 0.0001, and mean squared 
error (MSE) loss. The input signals were processed with a 250 ms window size and 150 ms overlap. EMG signals 
underwent preprocessing with a Butterworth filter (low cutoff: 20 Hz, high cutoff: 500 Hz) and a notch filter at 50 
Hz to eliminate power line noise. Data from each input channel and hand kinematics data were then normalized 
to a mean of 0 and a standard deviation of 1. The following features were extracted from their respective input 
signals to serve as inputs for the LSTM network: 

•	 Electromyography (EMG): Mean Value (MV), Variance (VAR), Root Mean Square (RMS), Signal Range 
(SR), Waveform Length (WL), Zero Crossing (ZC), Mean Frequency (MNF), Median Frequency (MDF), 
Spectral Entropy (SE), Skewness (Skew), Kurtosis (Kurt), Entropy, Mean Absolute Value (MAV), Integrated 
EMG (IEMG), Slope Sign Change (SSC), Log Determinant (LogDet), Difference Absolute Standard Deviation 
Value (DASDV), and Average Amplitude Change (AAC).

•	 Accelerometer (ACC): MV, VAR, RMS, SR, WL, ZC, MNF, MDF, SE, Skew, Kurt, Entropy, MAV, IEMG, SSC.
•	 Gyroscope (GYRO): MV, VAR, RMS, SR, WL, ZC, MNF, MDF, SE, Skew, Kurt, Entropy, MAV.
•	 Magnetometer (MAG): MV, VAR, RMS, SR, WL, ZC, MNF, MDF, SE, Skew, Kurt, Entropy, MAV.
•	 Force Myography (FMG): MV, VAR, RMS, SR, WL, ZC, MNF, MDF, SE, Skew, Kurt, Entropy, MAV, IEMG, SSC.

For each participant across all databases (NinaproDB7, NinaproDB7replica, and both MyoKi subsets), the 
data was split by repetition, with four repetitions used for training, one for validation, and one for testing. For 
NinaproDB7, the repetitions were split randomly across all 20 participants without amputation. The same was 
applied for both MyoKi subsets, where repetitions were also split randomly across participants. In contrast, a 
k-fold cross-validation approach was used for the single participant who replicated the NinaproDB7 acquisition 
protocol to account for variations across repetitions. In this case, 6 folds were created where each repetition 
served as a test set once, while the remaining repetitions were randomly divided into training and validation 
sets. Figure 8 presents the performance of the LSTM network as R2 scores (coefficient of determination) across 
participants or folds in decoding the input data from the test set of each participant (one full repetition of each 
task including transitions) into continuous hand motions represented by joint flexion. Those values were then 
compared to the ground truth values recorded by the CyberGlove to compute the R2 scores for each participant. 
The graph presents the performance metrics for NinaproDB7 and its replica (NinaproDB7replica) using our 

Fig. 7  The plot displays the calibrated angles of all MCP joints, alongside EMG data (channels 1-6) and FMG 
data (channel 3 of each module) over time, captured during a rapid transition from a resting hand position to a 
fist gesture and back to rest.
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sensor layout, enabling a direct comparison. Additionally, it includes the decoding performance on both subsets 
of our MyoKi database. It is important to note that the IMU data in NinaproDB7 consists of 3-axis accelerome-
ter, gyroscope, and magnetometer data, whereas both NinaproDB7replica and the MyoKi database contain only 
3-axis accelerometer and gyroscope data. Moreover, to ensure a fair comparison, we used uncalibrated hand 
kinematics data across all databases, as NinaproDB7 does not provide calibrated hand kinematics data.

To compare R2 scores between experimental conditions, we first assessed normality using the Shapiro-Wilk 
test for each pairwise comparison. For comparisons among the three NinaproDB7replica input data combina-
tions, which are based on the same population, we used the paired t-test as all differences were normally distrib-
uted. For comparisons between independent groups (NinaproDB7 vs. NinaproDB7replica and MyoKi subsets), 
we used the independent t-test if both groups were normally distributed, and the Mann-Whitney U test otherwise.

Figure 8 shows higher mean R2 scores on NinaproDB7replica for all tested input data combinations 
(EMG+IMU: 0.911 ± 0.055, FMG+IMU: 0.924 ± 0.050, EMG+FMG+IMU: 0.923 ± 0.058) compared to 
the original NinaproDB7 (EMG+IMU: 0.871 ± 0.035). However, only the differences of the input combina-
tions of FMG+IMU (Mann-Whitney U, p = 0.011) and EMG+FMG+IMU (Mann-Whitney U, p = 0.019) of 
NinaproDB7replica were significant. The graph also shows significantly higher R2 scores for the input data com-
binations FMG+IMU (Paired t-test, p = 0.005) and EMG+FMG+IMU (Paired t-test, p = 0.025) compared to 
EMG+IMU for NinaproDB7replica, highlighting the potential importance of FMG data for robust and reliable 
hand and wrist motion decoding. These results imply that the signal quality from our data acquisition is at least 
on par with the established NinaproDB7.

The results further show a notably lower decoding performance on the presented MyoKi database (sub-
set 1: 0.685 ± 0.089, subset 2: 0.709 ± 0.076) compared to NinaproDB7 using the same neural network. This 
performance difference likely originates from the higher task complexity in our database that involves whole 
body motions, but also different arm orientations that can lead to electrode shift with respect to the underlying 
muscles. Besides task complexity, the main difference between the acquisition protocol to acquire NinaproDB711 
and our database is the order in which tasks were executed. For NinaproDB7, tasks were each repeated 6 times 
consecutively before continuing with the next task. In contrast, we asked participants to perform each task once 
and then repeat the whole taskset 6 times to strike a more even distribution of muscle fatigue across tasks, which 
is known to impact EMG signals48,49.

Looking at the decoding performance differences between both subsets of the MyoKi database shows no 
significant improvement in using FMG as additional input data along with EMG and IMU (Mann-Whitney U,  
p = 0.571). However, a direct comparison is only possible when comparing different input signals on the same 
set of participants. With the added subset that includes FMG data, the MyoKi database gives researchers the 
tools to investigate the benefits of different input signals to control robotic and prosthetic hands in the future.

Fig. 8  R2 scores of the LSTM network decoding input data (combinations of EMG, FMG, and IMU) of 
NinaproDB7, NinaproDB7replica, and the MyoKi database into 18 continuous wrist and finger joint angles. 
The blue circles mark the average scores for each database across participants (applies to the NinaproDB7 and 
the MyoKi database) or across folds when k-fold cross-validation was applied (applies to NinaproDB7replica). 
The central line in each box represents the median, the lower and upper edges of the box indicate the 25th and 
75th percentiles (interquartile range), and the whiskers extend to the most extreme data points not considered 
outliers (shown as individual points). Significance bars above the boxes indicate statistically significant 
differences between conditions (*for p < 0.05, **for p < 0.01), as determined by the appropriate statistical test 
(paired t-test, independent t-test, or Mann-Whitney U test, depending on data structure and normality). Only 
significant comparisons are shown.
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Usage Notes
The primary goal of this database is to support research on improving continuous control of individual joints 
in robotic, virtual, or prosthetic hands using muscular activity. In regression-based approaches, neural net-
works are commonly used to decode the muscular activity from a user’s arm into joint movements. To achieve 
this, EMG, FMG, and IMU data serve as input signals, which are then mapped to finger and wrist joint angles 
recorded by the CyberGlove (used as ground truth). The precise labeling allows the use of the database not 
only for regression but also for classification by mapping each task to the used grasp according to the table in 
“Task_categorization.xlsx”. It is important to note that the EMG signals in this database are not pre-filtered. A 50 
Hz notch filter is typically applied to remove power line interference, along with a bandpass filter (20-500 Hz) to 
enhance the signal-to-noise ratio.

The MyoKi database offers two options for hand kinematics data: non-calibrated data with 8-bit arbitrary val-
ues representing joint flexion or calibrated data with joint angles in degrees [°]. Since neural networks are robust 
to linear scaling, choosing between calibrated and uncalibrated data should not affect decoding performance. 
The calibrated joint angles by the CyberGlove, however, can be useful for kinematic analysis or reconstructions 
of hand motions during daily tasks. Since generalized calibration data was used instead of participant-specific 
calibration, there is a potential for inaccuracies arising from differences in hand shape and size among partici-
pants. However, a previous study showed that generalized calibration data can perform sufficiently well36. The 
kinematics data, covering 18 hand and wrist joints, can further offer insights into which joints or tasks are more 
challenging to decode and whether performance is influenced by task complexity, required force, or motion 
distance.

The database also includes demographic and anthropometric information of each participant, enabling anal-
ysis of how factors such as sex, age, and body fat influence decoding performance. Moreover, by providing exact 
sensor locations it allows researchers to examine the role of specific muscle regions in hand and wrist control. 
The MyoKi database comprises two subsets (subset 1: P01 to P25, subset 2: P26 to P35), which share an identical 
data acquisition protocol. The only difference is that for subset 2, additional FMG data was recorded. The multi-
modal myography data facilitates comparisons between different input signal modalities, helping to determine 
their relative importance for motion decoding.

Code availability
To acquire FMG data for subset 2 of the MyoKi database, the updated version (v2) of the multimodal bracelet 
by Andreas et al.38 was used. The repository (https://github.com/ASM-FAU/Multimodal-Bracelet) contains 
CAD models to 3D print the bracelet, a circuit diagram for the PCB, and provides code to collect data and 
save it at a host PC wirelessly or through a USB serial connection. Further, this repository also contains the 
CAD models of objects used in the experimental setup, such as the block with a vertical and horizontal screw 
or the 3D-printed smartphone with the target layout to simulate tapping. The typing test used in this work is 
from https://10fastfingers.com/, and the mouse click test can be downloaded from http://www.yorku.ca/mack/
FittsLawSoftware/(used settings for a 24-inch 1080p monitor: FittsTask 2D with an amplitude of 750 pixels, and 
a target width of 30 pixels).
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