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CAMS Radiation Service for solar energy users —
how suitable are typical cloud retrieval schemes?
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CAMS Solar Radiation Service Data characteristics Method @ .00

Copernicus Atmospheric Monitoring service (CAMS) offers * Feb. 2004 up to 2 days behind real time, online
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efficiency improvements, and integration of renewable | Copemus 775 - of view

energies into the energy supply grids. CRS is provided by DLR \ 3 W‘% * Gridded data for 2005-2022 with 0.2° grid and 15 D . sc. 2017

with MINES Paris, the SoDa team at Vaisala and with FMI min resolution for Europe/Africa/Middle East | Lefbwe ot al, Atm, Meas, Tech, 2013

(Finnish Meteorological Service). * Provision of all input data in the expert mode © mEEO Sehrosdter-Homscheldt e al, Cantib Alm. 5. 2022

Cloud retrieval schemes : CAMS/APOLLO_NG vs CLAAS-3/CPP COT comparison
Frequency distribution of the COT values of APOLLO_NG and CPP

Clouds are the main cause of variability and also the dominant source of errors in the all sky SSI retrieval. The focus of the presented study .
Example: BSRN location Carpentras, 2016

is the evaluation of the APOLLO-NG cloud properties, as used in the current CRS 4.5, through comparison with the CLAAS-3 (CLoud Histograms of COT. cloudy (in all methods)
property dAtAset using SEVIRI - Edition 3) CPP (Cloud Physical Properties) database provided by CM SAF (Satellite Application Facility for f<E0T e
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Climate Monitoring) services. As Heliosat-4 offers the possibility to use cloud properties from different sources, both products are used in L
the Heliosat-4 scheme for the SSI assessment.
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Time-dependent updated calibration coefficients from KNMI Time-dependent updated calibration coefficients from KNMI
based on Meirink et al., 2013 & updates based on Meirink et al. 2013 & updates
APOLLO NG REL1.1 NWC/PPS version v2018 patch5 + CmsafPpsSeviri 0.5.0 and CPP v6 L
Probabilistic cloud mask, uses 5 threshold tests in VIS and IR Probabilistic cloud mask, trained on collocated cloud observations stto;rar:; Ofgiojo( +25;qe;o;s one :loud; 5 O;h‘:: r:ot clcs)udy)lo
(Kluser et al., 2015). from CALIOP onboard CALIPSO satellite (Karlsson et al., 2020). - e
1% cloud probability 50% cloud probability 1
Single channel approach, VIS 0.6 um (Stephens et al. 1984) Two channel approach, VIS/NIR 0.6/1.6 or 0.6/3.8 um (Nakajima
and King, 1990 & Roebling et al., 2006) ]
low (5), medium (6) and high clouds (7), and thin clouds (8) Not available £
water (1) and ice (2) water (1) and ice (2). .
Extended cloud phase : water (3), supercooled (4), opaque_ice
(6), cirrus (7), overlap (8), overshooting convection (9) Co T we w0 w0 L P

Assessment of SSI obtained from CAMS4.5 APOLLO NG and CLAAS-3 CPP vs ground observations
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* CAMS Radiation Service User’s Guide at http://atmosphere.copernicus.eu/documentation * Nakajima, T., and M. D. King, 1990: Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part 1: Theory. J. Atmos. Sci .,
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