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Tensor-programmable quantum circuits for solving differential equations
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We present a quantum solver for partial differential equations based on a flexible matrix product operator
representation. Utilizing midcircuit measurements and a state-dependent norm correction, this scheme over-
comes the restriction of unitary operators. Hence, it allows for the direct implementation of a broad class
of differential equations governing the dynamics of classical and quantum systems. The capabilities of the
framework are demonstrated for linear and nonlinear partial differential equations using the example of the
linearized Euler equations with absorbing boundaries and the nonlinear Burgers’ equation. For a turbulence data
set, we demonstrate potential advantages of the quantum-tensor scheme over its classical counterparts.
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I. INTRODUCTION

Solving partial differential equations (PDEs) is a core task
in many research and industry areas, ranging from the finan-
cial sector [1,2] and material science [3,4] to computational
fluid dynamics [5–7]. Despite the enormous amount of re-
sources nowadays available in classical computing, solving
PDEs remains a challenge. One example is computational
fluid dynamics, where resolving all relevant spatial scales
quickly demands billions of data points [8], and approxima-
tions and the use of models become mandatory [9–13].

Quantum computers offer an efficient representation of
classical data, as the number of qubits needed for am-
plitude encoding scales logarithmically with the number
of data points [14–17]. To solve PDEs with quantum
computers different approaches have been proposed: (1)
algebraic quantum linear solvers as the Harrow-Hassidim-
Lloyd (HHL) [18] algorithm and its extensions [19–22]; (2)
specific PDEs were solved efficiently with discrete time-
stepping schemes [23,24]; (3) variational quantum algorithms
(VQAs) [25–27] that rely on a hybrid scheme combining
parameterized quantum circuits and a classical parameter
optimization.

Despite the rapid advancement in quantum hardware and
error correction [28–30] and the promises for near-term
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devices with significant numbers of logical qubits [31,32],
quantum linear solvers are expected to stay expensive or even
unfeasible due to the large demand in resources [21] and their
unfavorable scaling with the stiffness of the problem [18].
VQAs instead are characterized by shallow circuit structures,
are predicted to exhibit beneficial scaling [15,21,33], and
were successfully applied in various areas [26,33–35]. While
noisy hardware can limit the accuracy of VQAs [36], noisy
optimization is possible [37–39] and strategies like circuit
recompilation [40,41] can significantly reduce the sensitivity
to noise [42].

In addition to quantum computing, so called quantum
inspired methods are under increasing attention as differen-
tial solvers. A prominent example is matrix product states
(MPSs) [43,44] that exhibit a low-rank representation of many
functions [45] and have proven successful in solving PDEs
on classical hardware, showing potential to compete with
conventional solvers and delivering remarkable results across
various applications [15,46–52].

MPS methods show great promise when combined with
VQAs. While the efficiency of MPS is limited to solutions
with bounded entanglement [15,53], quantum circuits were
shown to feature an exponential reduction in the number
of variables parametrizing the solution [33] for certain use
cases. Further, MPS algorithms scale at least polynomially
better when ported to quantum computers [15,33], offering at
least the same speedup as Grover’s algorithm for unstructured
search [54] and defining an upper bound of the circuit depths
for state encoding. In combination with known methods to en-
code MPS with quantum circuits [55–57], transferring matrix
product operators (MPOs) [58,59] is an important step to fully
translate MPS-based algorithms onto quantum circuits.

Mapping classical PDEs on quantum computers de-
mands mimicking the effect of nonlinear and nonunitary

2643-1564/2026/8(1)/013052(16) 013052-1 Published by the American Physical Society

https://orcid.org/0000-0003-2249-8121
https://orcid.org/0009-0001-9135-7499
https://orcid.org/0000-0002-7154-5417
https://orcid.org/0009-0004-9893-3614
https://orcid.org/0000-0002-9704-3941
https://ror.org/00g30e956
https://ror.org/04bwf3e34
https://ror.org/00g30e956
https://ror.org/0149pv473
https://ror.org/052gg0110
https://crossmark.crossref.org/dialog/?doi=10.1103/2qzh-yf49&domain=pdf&date_stamp=2026-01-20
https://doi.org/10.1103/2qzh-yf49
https://creativecommons.org/licenses/by/4.0/


PIA SIEGL et al. PHYSICAL REVIEW RESEARCH 8, 013052 (2026)

dynamics by linear and unitary quantum operations. Lubasch
et al. significantly advanced the field of quantum differential
solvers (QDSs) by introducing a VQA that solves nonlin-
ear PDEs [33] relevant in classical and quantum physics.
This strategy offers an efficient classical parametrization of
the solution, which allows to circumvent the read-out prob-
lem for each time step and enables the computation of
different observables like velocity moments, coarse-grained
solutions, or spatial means without rerunning the full time
evolution [33,60,61]. While it was used to solve core fluid
dynamic problems as the Burgers’ equation [16,62] and was
extended [63] to various boundary conditions [64] and space-
time methods [37], it is limited to PDEs that directly map onto
known quantum operators. As an additional drawback, cost
functions are build up from numerous contributions where
each requires a quantum circuit that needs to be measured
individually. Furthermore, the cost function is not bounded,
making it difficult to estimate the training progress and ac-
curacy without comparing with a classical solution. Going to
generic PDEs requires an entirely different approach that we
will introduce in the following and apply to a linear and a
nonlinear PDE.

In this article, we introduce a tensor-programmable vari-
ational quantum algorithm which utilizes the operator rep-
resentation as MPO-based quantum circuits and has several
advantages over previous approaches. First, it allows for the
incorporation of nonunitary operators, extending the range of
PDEs and solution techniques on quantum computers. Sec-
ond, the number of quantum circuits M, required to build up
the cost function, can be significantly reduced compared to
previously introduced schemes. In general, all terms of the
PDE can be summarized within one quantum circuit, allowing
to infer the convergence of the training progress directly from
one expectation value. Furthermore, it opens the path to a
broadly applicable and modular scheme for solving problems
in a wide range of scientific and industrial fields.

This paper is structured as follows. Section II introduces
the tensor-programmable quantum scheme, starting with a
general overview to then address the details on the opera-
tor mapping in Sec. II A and iterations steps in Sec. II B.
Furthermore, it explains the necessary norm correction in
Sec. II C and introduces an adaption of the Hadamard test
and a convergence measure for the optimization procedure
in Sec. II D. Section II E extends the introduced scheme to
nonlinear differential equations. In Sec. III, we apply the in-
troduced scheme to the linearized Euler equations (Sec. III A)
and the nonlinear Burgers’ equation (Sec. III B), while a third
use case, the linear advection-diffusion equation is provided
in Appendix D to show the successful application when using
a larger number of qubits. Section IV presents a comparison
of this scheme with classical MPS-based algorithms at the
example of a turbulent dataset and considers the scaling of
the operator. A conclusion is given in Sec. V .

II. METHODS

In this section, we explain the tensor-programmable quan-
tum scheme for linear and nonlinear PDEs. For simplicity,
we first give a general overview of the method for linear
PDEs, which is depicted in Fig. 1, together with the simulation

results. We deepen the discussions in the following subsec-
tions and extend the scheme to nonlinear PDEs in Sec. II E.

The solution φ(x, j) on a discretized grid at iteration step
j is amplitude encoded into a quantum register composed
of n qubits [65]. This state is generated by a quantum gate
Û (θ j ) [see Fig. 1(a)] that is classically parametrized by a real
vector θ j and an additional real number θ0

j setting the norm of
φ(x, j).

Here, we focus on uniform discretizations in one spatial
dimension for simplicity. The extension to higher dimensions
and nonuniform grids is conceptually straightforward. In one
dimension, the state on the quantum register is given by
θ0

j |ψ j〉 = ∑2n−1
l=0 φ(x, j) |xb〉, where xb is the binary form of

x, with |xb〉 representing the computational basis states of the
n qubit quantum register. Therefore, the vector θ j provides a
classical representation of the solution, which is exponentially
compressed for restricted circuit depths [33]. To encode the
initial state into a quantum state, methods like the efficient ap-
proximate encoding of MPS via shallow quantum circuits [66]
can be used if the initial state is not trivial.

The evolution of the system by one step is characterized
by an operator Ô with θ0

j+1 |ψ j+1〉 = Ôθ0
j |ψ j〉. We determine

θ j+1 by solving a problem-dependent cost function C that
is proportional to the overlap C ∝ −〈0| Û †(θ j+1)Ô |ψ j〉. The
overlap is measured via an adapted Hadamard test [Fig. 1(a),
green box] by evaluating 〈σz〉anc of a global ancilla qubit at the
end of the quantum circuit. The overlap is fed back to a clas-
sical computer that variationally updates the parameter vector
θ j+1 until a predefined convergence criterion is reached.

The operator Ô can summarize the terms of the PDE in one
quantum circuit, resulting in a single-cost term or split them
into several contributions. The most suited strategy should be
chosen in dependence on the PDE and the available quantum
hardware resources. The operator is in general nonunitary
and implemented probabilistically [Fig. 1(a), purple box]. The
success probability αsucc of the operator application is fed
back to the classical computer to compute a norm correction,
necessary to obtain the normalization constant θ0

j+1.

A. Operator mapping

To realize the nonunitary operator Ô, we utilize the op-
erator representation in terms of MPOs. Many discretized
differential operators exhibit a low-rank MPO representation
with small bond dimension ζ [47,67,68], including derivatives
of higher order accuracy and various boundary conditions. A
collection of relevant MPOs for the considered PDEs is given
in Appendix B . The classical MPO is translated into a set
of unitaries ÛMPO with an algorithm proposed by Termanova
et al. [59], which is outlined in Appendix C. The algorithm
introduces an MPO consisting out of isometric tensors to
approximate the original operator up to a multiplicative con-
stant cMPO and with relative approximation error E [59] .
This isometric MPO requires a larger bond dimension Z > ζ ,
compensating for the reduced degrees of freedom due to the
isometric constraints. This bond dimension defines an auxil-
iary qubit register of size naux = log2(Z ) [59]. The isometric
MPO is converted into unitary gates ÛMPO, which are part
of the quantum circuit in Fig. 1(a). Subsequent midcircuit
measurements and postselection are employed to ensure that

013052-2



TENSOR-PROGRAMMABLE QUANTUM CIRCUITS FOR … PHYSICAL REVIEW RESEARCH 8, 013052 (2026)

MPO

Gates

FIG. 1. (a) Hybrid quantum-classical routine to solve linear PDEs iteratively in a variational manner. The computation of the unitary
gates ÛMPO representing the operator Ô as well as the optimization routine take place on a classical computer (CC, upper part). The overlap
〈0| Û †(θ j+1)ÔÛ (θ j ) |0〉 that determines the cost function, necessary to compute the solution at the next iteration step is computed on the
quantum computer (QC, lower part) using an adapted Hadamard test. The angles θ j describe a previous iteration step, while θ j+1 are to be
determined during the classical optimization process. This procedure allows to map classical differential solvers to the quantum computer.
(b) Solution of the Euler equations with our QDS for 45 time steps dt encoded into six ansatz qubits. Depicted is the discretized velocity
u(x, t ) evolution over time that arises, which is induced by a periodic pressure point source at x = 0. (c) Solution of the nonlinear Burgers’
equations. Depicted is the discretized velocity field u(x, t ) over time, where initial Gauss peak evolves into a shock wave. A detailed description
of all system and training parameters is given in Appendix A.

the operation corresponds to the actual MPO. Only those
instances are kept where the auxiliary register is measured in
the state |0〉aux.

Tracking the number of successful and total runs deter-
mines the success probability αsucc of the postselection during
the cost function evaluation. No further quantum circuit is
required. An alternative method to estimate αsucc from the
training parameter ϕ is described later in this paper. Im-
portantly, αsucc was shown to have favorable magnitude and
scaling for various examples [59], which can be extended
to all relevant differential operators in this work as shown
in Appendix E. In contrast to other approaches [69], there is
no exponential decay of the overall success probability of the
algorithm with the number of iteration steps j.

B. Computing iteration steps

We identify the parameters defining the next iteration step
j + 1 by solving a problem-dependent cost function C. Using
the parameters from the previous iteration step as the initial
guess for the optimization simplifies the process, as they are
typically close to the solution of the current iteration step. This
closeness leads to a significantly improved trainability even
in the presence of shots and larger qubit numbers [70] (cf.
Appendix F).

C. Norm correction

As the operators are in general nonunitary, the computation
of the normalization constant θ0

j+1 requires to incorporate

several correction factors. One is the constant cMPO, com-
puted in the creation of the isometric MPO. Furthermore,
there is the state- and operator-dependent norm constant fÔ, j
that accounts for the difference stemming from casting a
non-norm-conserving operator into a norm-conserving form
on the quantum computer. The necessary correction for each
iteration step j can be computed from αsucc as

fÔ, j = 1 + αsucc

2 sin(ϕ) − (√
αsucc − 1√

αsucc

)
cos(ϕ)

, (1)

where ϕ ∈ (0, π/2] is the rotation angle of the R̂Y gate on
the global ancilla qubit [cf. Fig. 1 (a)], which has an op-
timal value for each iteration step j. Then, the effect of
the operator Ô can be computed using Ôθ0

j |ψ j〉 |0〉aux =
cMPO fÔ, jP|0〉aux〈0|aux

ÛMPOθ0
j |ψ j〉 |0〉aux, allowing for a correct

estimation of θ0
j+1. Here, |〉aux denotes the auxillary qubit

register for the operator application and P|0〉aux〈0|aux
denotes the

projector of these qubits on |0〉.
The overlap 〈0| Û †(θ j+1)Ô |ψ j〉 in the cost function C

can be computed using the measurement result 〈σz〉anc of a
Hadamard test [33]. There, a global ancilla qubit controls
the applications of the ansätze Û †(θ j+1) and Û (θ j ) and the
operator ÛMPO, and is measured in the computational bases at
the end of the circuit [cf. Fig. 1(a)].

D. Adapted Hadamard test and convergence measure

If the success probability αsucc is smaller than one, the
probabilistic application of the MPO has a negative impact
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FIG. 2. Quantum circuit to encode one time step of a nonlinear PDE. Linear and nonlinear operators are separated into two MPOs and an
additional auxillary qubit is introduced allowing to create a weighted superposition of the linear and nonlinear contributions. Double control of
the global ancilla qubit and the extra auxiliary qubit can be avoided by applying CNOT gates before and after the nonlinear operators, where
the global ancilla acts as control and the extra auxiliary qubit as target. Then, the control on the global auxillary qubit can be omitted. The
concrete decomposition of the CNOT gate is shown for the example of n = 3.

on the Hadamard test. It stems from an increased contribution
of |0〉anc, which is always successful compared to |1〉anc, where
runs may be discarded, compared right after the application of
the operator. This imbalance causes an increased variance of
〈σz〉anc, raising the number of shots required to determine the
cost term with a given accuracy. This nonoptimal behavior can
be mitigated with an adaption of the standard Hadamard test
as shown in Fig. 1(a) (green box). We substitute the second
Hadamard gate by an angle-dependent rotation gate R̂Y (−ϕ).
The rotation angle that maximizes 〈σz〉anc depends on αsucc

(cf. Appendix G). For αsucc = 1, the optimal angle ϕ = π/2
restores the Hadamard gate.

When all operators of the PDE are summarized within one
quantum circuit and the parameters θ j+1 are well trained, there
is an optimal

ϕopt = 2 arctan(
√

αsucc), (2)

which results in 〈σz〉anc = 1. While optimizing θ j+1, the
training progress can be tracked with the fidelity F =
|| 〈0|Û †(θ j+1)P|0〉aux〈0|aux

ÛMPO|ψ j〉 ||2. Combining all operators
in one quantum circuit allows to infer the fidelity directly from
〈σz〉anc according to (cf. Appendix G for derivation details)

F = (αsucc 〈σz〉anc + αsucc cos(ϕopt) + 〈σz〉anc − cos(ϕopt))2

4αsucc sin2(ϕopt)
.

(3)
Then, the fidelity can act as a convergence measure that re-
flects the status of the training without the need for verification
with a classical solution. This is a significant advantage com-
pared with previous approaches [33,64], where each term is
treated individually and this knowledge on the solutions con-
vergence cannot be easily inferred. The parameter ϕopt either
can be computed from the estimated success probability, by
counting the number of discarded shots during the training
process, or can be trained itself. If ϕ is trained and the problem
is described by one quantum circuit, αsucc can be computed
from Eq. (2). As all trainable parameters are placed after the
postselection procedure, the parameter-shift rule [71,72] or
coherent gradient approximations [26,73] apply.

E. Extension to nonlinear differential equations

To make the quantum-tensor scheme applicable beyond
linear PDEs, we consider differential equations of the form

u j+1 = (Ôlin + u jÔnonlin )u j = Ôfullu
j, (4)

where Ôlin and Ônonlin are both linear operators. Promi-
nent examples of such PDEs are the Burgers’ equation and
the Navier-Stokes equations. We cannot summarize Ôlin and
Ônonlin into one MPO, as the nonlinear term has a direct
dependence on u j , which would require to compute unitaries
for each iteration step. To preserve the advantages of the
combined circuit for nonlinear problems, we introduce an
extended circuit shown in Fig. 2. A second weighting ancilla
qubit allows the simultaneous application of the linear and
nonlinear terms. For the nonlinear term, we cast Ônonlin in the
unitary Ûnonlin, while the nonlinearity itself is computed with
CNOT gates as introduced by Lubasch et al. in Ref. [33]. The
angle ϕu in the rotation gate R̂Y (ϕu) on the weighting ancilla
qubit is responsible for the correct weighting of the linear and
the nonlinear term. For explicit Euler time stepping, where the
leading linear term is the identity matrix,

ϕu, j = 2 arctan

(
θ0

j |cMPO,nonlin|
|cMPO,lin|

)
, (5)

where cMPO,lin and cMPO,nonlin are the multiplicative fac-
tors from the unitary creation of Ûlin and Ûnonlin re-
spectively. To compute the norm of the next time step,
we compute fÔ, j as before. Then, the effect of the to-
tal operator Ôfull can be computed as Ôfullθ

0
j |ψ j〉 |0〉aux =√

2 cMPO,lin fÔ, j ruP|0〉aux〈0|aux
Ûfullθ

0
j |ψ j〉 |0〉aux, where Ûfull sum-

marizes the linear and nonlinear operator actions and ru =
ku/kQC

u stems from the difference between the real ratio
ku = θ0

j |cMPO,nonlin|/|cMPO,lin| and its actual application kQC
u =

sin(1/2ϕu, j ) on the quantum computer.

III. APPLICATION TO DIFFERENTIAL EQUATIONS

In the following section, we show the successful applica-
tion of this approach to two use cases. We will first discuss
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FIG. 3. (a) Brickwall ansatz with variational parameters. Each 2-qubit block is composed of two R̂Y (θi ) gates and one CNOT gate. The
ansatz can be used for a variable number of layers L, with each layer consisting of one column of 2-qubit blocks. (b) Evolution of the relative
error ε̄φ (t ) [cf. Eq. (7)] for the Euler’s equation. Here, φ(x, t ) corresponds to the discretized solutions u(x, t ) and p(x, t ) of the Euler equation.
To represent the solutions, a brickwall ansatz with 6 qubits and 14 layers is used. (c) Evolution of the relative error ε̄u(t ) for the Burgers’
equation. To represent the solutions, a brickwall ansatz with 6 qubits and 10 layers is used.

the linearized Euler equation to demonstrate the efficient in-
corporation of complex operators and time-stepping schemes.
Next, we consider the nonlinear Burgers’ equation to demon-
strate the quantum circuit for nonlinear problems and the
working principle of the convergence estimation from the
expectation value. A third use case of the advection-diffusion
equation demonstrating the usability with larger qubit num-
bers is presented in Appendix D. For both use cases, the
ansatz functions are encoded with a brickwall ansatz for the
circuit Û (θ j ) as depicted in Fig. 3(a) and all operators are
casted into highly accurate unitary approximations with bond
dimension Z = 16 and relative approximation error below
E = 5 × 10−10. For all use cases, the reinitialization of the
training weights from the previous iteration step leads to a
well pronounced training landscape, that is close to optimal
for each training parameter even in the presence of shot noise
and hence facilitates the optimization of the generally non-
convex cost function. The gradients around this initialization
point remain pronounced for increasing system size, ensuring
the trainability even for large qubit number. Details are given
in Appendix F.

A. Linear Euler equations

The 1D linear Euler equations describe the evolution of
velocity u(x, t ) and pressure p(x, t ) of an inviscid flow [74]
over time t . To this aim, we employ a noise-free quantum
computing simulator and the explicit fourth-order Runge-
Kutta (RK4) method to compute the solution of the next
time step dt . We consider the particular situation of a peri-
odic pressure point source with constant amplitude A0 and
angular frequency ω in the center of the domain f (x, t ) =
A0δ(x) sin(ωt ). Furthermore, nonreflective boundary condi-
tions are applied using the sponge layer method [75], where a
damping zone near the boundary is introduced via the sponge
function γ (x) (cf. Appendix B).

The coupled system of equations reads

∂ p

∂t
= −ρ̄c2

(
∂u

∂x

)
+ f (x, t ) − γ (x)p,

∂u

∂t
= − 1

ρ̄

∂ p

∂x
− γ (x)u, (6)

with the constants density ρ̄ and the speed of sound c.
We implement eighth-order accurate finite differences with

Dirichlet boundary conditions and a staggered grid to avoid
checkerboard oscillations [76]. For computational simplicity,
we separate the fields into two ansatz circuits. Our scheme
still significantly reduces qubit and circuit count compared
to previously introduced methods [33,63,64], where addi-
tional circuits for each order of accuracy and the boundary
implementations are needed. Instead, we can represent all
operators acting on one field with one circuit of bounded
depth. Furthermore, the sponge operator does not require
an additional qubit register. The resulting cost functions,
using RK4, are given in Appendix H II. Initially, the ve-
locity and the pressure field are zero in the whole domain.
Due to the pressure point source, an increasing pressure
peak forms during the first time steps, leading to a nonzero
contribution in the velocity field. This peak propagates to-
wards the boundaries while additional peaks are formed
by the source as shown in Fig. 1(b). To assess the qual-
ity of the solution, we use the normalized fidelity Fn =
|(φ(x, t )QDS, φ(x, t )cl )|2/‖φ(x, t )QDS‖2‖φ(x, t )cl‖2

[77] as a
measure of closeness between the solution computed with our
QDS (φ(x, t )QDS) and a classical solver (φ(x, t )cl ), with (·, ·)
being the inner product. The relative error is defined as

ε̄φ (t ) = 1 − Fn (7)

and depicted in Fig. 3(b). During the time evolution, the max-
imal relative error is 0.1%, which is better than the error that
would be introduced by current quantum hardware.

B. Nonlinear Burgers’ equation

The nonlinear weakly viscous Burgers’ equation is
defined as

∂u

∂t
= −u

∂u

∂x
+ ν

∂2u

∂x2
, (8)

where u is the velocity and ν the viscosity of the fluid. We
implement a first-order accurate backward derivative ∂

∂x and

a second-order accurate central derivative ∂2

∂x2 with periodic
boundary conditions with x ∈ [0, 2π ).

We consider the particular situation of a Gauss peak as ini-
tial conditions u(x, t = 0) = exp( −(x−π )2

σ
) with σ = 0.5 and

choose ν and dt , such that a shock evolves within a reasonable
simulation time. The detailed simulation parameters and the
used cost function are listed in Appendixes A and H I. The

013052-5



PIA SIEGL et al. PHYSICAL REVIEW RESEARCH 8, 013052 (2026)

velocity evolution is shown in Fig. 1(c), where the initial
Gauss peak evolves into a shock wave. When compared to the
classical solution, the relative error ε̄u reaches values around
10−4, showing a good agreement over the whole time evo-
lution. We observe that the scaling of αsucc of the nonlinear
multiplication over system size behaves similarly as reported
by Lubasch et al. [33] for the expectation value in their non-
linear use case. More details are given in Appendix E.

IV. SCALING ANALYSIS

In addition to the simulation itself, we are interested in the
scaling behavior of the quantum ansatz. To this aim we first
focus on a comparison with MPS-based algorithms, which are
the classical counterpart of the tensor-programmable quantum
scheme [59,78]. Second, we consider the cost arising from the
operator application.

A. Comparison with MPS methods

For the scaling comparison, we focus on the cost caused
by the field encoding, which is normally dominant, as the
operators feature a low-rank MPO representation (cf. Ap-
pendix B). We are mainly interested in two performance
indicators, namely the memory consumption and the compu-
tational complexity. The memory consumption is dominated
by number of parameters necessary to represent the field per
iteration step, which scales as O(nχ2) for the classical MPS
and as O(ηparams) for the quantum ansatz, where ηparams is the
number of parameters θ j in the brickwall ansatz.

Regarding the computational complexity, it is well known
that MPS algorithms scale at least as nχ3 [15] for linear
operations. For the nonlinear Hadamard product, stable simu-
lations with a scaling of nχ4 were reported [15]. The quantum
algorithm scales mainly with the number of parameters neces-
sary to represent the solution [78] as O(ηparams). Additionally,
sampling the expectation value 〈σz〉anc adds an additional cost
O(1/ε2) depending on the allowed sampling error ε. There
are methods that can reduce this cost to values close to
O(1/ε) [79,80]. When all operators are combined in one quan-
tum circuit and the expectation value approaches 〈σ 〉anc = 1,
the sampling cost approaches 1/ε even without additional
modifications. Given the large shot-overhead caused by the
scaling of the sampling error, the quantum-tensor-network
method can clearly not outperform the classical algorithms for
small χ . However, for large-scale simulation where larger χ

are required, this constant shot-overhead decreases in impor-
tance, and the first factor, the number of required parameters
becomes decisive.

We consider the highly relevant use case of a three-
dimensional turbulent flow field, namely a velocity field
of an isotropic turbulent flow on Ntot = 10243 grid points
provided by the Johns Hopkins turbulence database at a
Taylor-scale Reynolds number of Reτ ≈ 433 [81–83]. To re-
duce the problem into numerically feasible sizes, we consider
a three-dimensional box of size N = 23nd at the center of
the domain, where each spatial direction is resolved using nd

qubits. Increasing nd allows to study the scaling behavior with
N and to provide an estimate for the full flow field.

FIG. 4. Representation capabilities of the brickwall and the MPS
ansatz for a three-dimensional turbulent flow defined on N grid
points. (a) Number of parameters to represent an increasing sec-
tion of an isotropic flow field of total size Ntot = 10243 approximated
up to an accuracy of ε̄v = 0.01. (b) Estimate of the minimal required
cost Tmin computed for the given number of parameters from panel
(a) and for an allowed maximal, the sampling error ε = 0.01. The
two minimal costs for the quantum scheme give the best (purple,
circle) and the worst (green, diamond) case scenario for the cost
contribution of the sampling error. The dashed lines correspond to
a linear interpolation in the log-log scale.

Figure 4(a) depicts the number of parameters necessary
for the MPS and the quantum circuit to represent the flow
field of different box sizes, as well as their ratio. For the
MPS, we consider the maximal bond dimension χ required
to represent the y component of the velocity field with a fi-
delity ε̄v < 0.01. For the quantum circuit, we train a brickwall
ansatz to represent the field with increasing layer number until
ε̄v < 0.01. For this, we have replaced the CNOT gates in
the brickwall ansatz with CZ gates, as this allows to initial-
ize additional low-depth layers as an identity. The reduction
in parameters when comparing the quantum circuit and the
MPS representation increases with the system size and the
bond dimension. We expect this advantage to stem from the
better entangling properties of the quantum circuit. Impor-
tantly, while the shown MPS representation was created using
successive singular value decompositions [84] and is hence
already optimal with respect to the l2 norm, the quantum cir-
cuit representation does not possess this optimality. Different
circuit architectures [78] and techniques as incremental struc-
tural learning [40,41] can potentially be exploited to reduce
the number of parameters further, which would also improve
the scaling properties. Additionally, Ref. [85] has provided a
theoretical upper bound when representing each unitary as a κ

design, where the circuit depth scales only polynomially in the
number of qubits and the chosen κ adds a (potentially large)
constant factor.

In Fig. 4(b), we look at the minimal cost Tmin of the
MPS (T MPS

min = nχ3) and the quantum approach (T QC
min =

ηQC
params/ε

(2)), given the computed number of parameters and
assuming a maximal sampling error of the size of the target fi-
delity ε = 0.01. While Tmin is lower for the MPS approach for
small qubit numbers, the quantum scheme shows its potential
for larger scale simulations.

Choosing a suitable training strategy for the quantum
use case is mandatory to preserve the potential advantage.
Gradient-based methods, which rely on the exact computation
of each gradient, add an additional scaling factor O(ηparams),
which would annihilate any advantage. However, strategies
to estimate the gradient coherently, as the simultaneous
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perturbation stochastic approximation (SPSA) can fix the
number of circuit evaluations to a number independent of the
number of trainable parameters [26,73] and is still capable to
train the solution to optimal parameters (cf. Appendix F).

Clearly, this is a simplified scaling analysis. It neglects
the potential additional cost of χ4 of the MPS scheme in
the presence of nonlinear operations and the impact of the
success probability of the quantum circuit. Both depend on
the chosen differential equation and its implementation de-
tails. For small success probabilities, the discussed expected
theoretical advantage might be shifted to larger system sizes
or might require additional strategies as, e.g., amplitude am-
plification, phase estimation or their combination as utilized
by Goswami et al. [86] to be maintained. Standard ampli-
tude amplification techniques would require repeated state
encoding leading to an increased circuit depth with an ad-
ditional factor of O(1/

√
αsucc) contributing to the cost given

above. Furthermore, we have assumed that both the classical
and the quantum-tensor network algorithm involve a com-
parable scaling of the number of training steps with system
size. Importantly, both approaches provide the fidelity F as
convergence measure, which allows to adapt the training hy-
perparameters during the training procedure and improving
the convergence. A significant part of the cost in the quantum
algorithm is caused by the number of required shots. As this
process is inherently parallelizable, practical benefits might
occur even before theoretical advantages are reached.

B. Scaling of the operator

In previous schemes [33,64], the required number of aux-
illary qubits used to encode potentials and finite difference
derivatives scales linear with the number of ansatz qubits n. In
comparison, in our approach the number of auxillary qubits
depends solely on Z , which is expected to be independent
of n. Additionally, the number of quantum circuits M is con-
siderably reduced. This beneficial scaling in qubit and circuit
number is achieved with the same scaling of the circuit depth.
The scaling of the number of 2-qubit gates for the operator
application, N2q,op, is upper bounded [87] by N2q,op = knZ2,
with a universal proportionality constant k.

V. CONCLUSION

This paper demonstrates how generic VQA can be pro-
gramed using MPOs, allowing for the seamless integration
of nonunitary operators. Importantly, higher order differential
operators and various boundary conditions can be incor-
porated with little or no additional cost. Tensor network
algorithms were effectively implemented for many large-
scale simulations but can face challenges in the presence
of complex data. Using the example of a turbulent flow
field, we can show the additional compression capabilities
of the quantum circuit. This leads us to expect success-
ful scaling of the tensor-programmable quantum circuits,
particularly when exploring additional parameter reduction
techniques [40,41]. This potential is further enhanced by em-
ploying advanced optimization strategies, such as multigrid
and local optimization, which have proven extremely success-

ful in classical-tensor network schemes [15,88] and are also
accessible for VQAs [37,89].

Being applicable to linear and nonlinear PDEs, the pre-
sented scheme contains all building blocks for solving PDEs
critical for science and industry, e.g., the Navier-Stokes equa-
tions. This will become especially valuable once quantum
hardware reaches the required capacity for industry rele-
vant use cases, a milestone that, according to projections
from companies like IBM and QuEra, could be achieved
by 2029 [31,32]. Furthermore, the flexible operator repre-
sentation of this scheme would enable interfacing between
quantum algorithms and existing classical software packages.

The tensor-programmable quantum algorithms allow to en-
code all operators of a PDE into a single quantum circuit. This
bears two main advantages. First, it increases the expectation
value of the global ancilla qubit. Second, this expectation
value is directly connected to the fidelity between the trained
and the correct solution and can hence act as a global measure
of convergence. This allows to estimate the quality of the solu-
tion without expensive comparisons to classical solution and
yields the potential for adaptive optimization strategies, where
hyperparameters and circuit depths are improved within the
training loop. Finally, these improvements can potentially be
augmented by utilizing the potential of phase estimation tech-
niques [90,91] to improve the precision of the cost function
measurements. In the presence of low success probabilities,
additional techniques as amplitude amplification [86] should
be considered to decrease the number of required shots. These
questions will be investigated in future studies.
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APPENDIXES

First, we present the parameters employed for our two use
cases, namely the linearized Euler equations and the Burgers’
equation in Appendix A. Next, we explain the construction
of the MPOs from the differential operators and providing
especially details on the differential operators and the sponge
MPO, which facilitates nonreflective boundary conditions in
Appendix B. In Appendix C, we explain how we compile
the necessary quantum operations from the MPOs. Next, we
show the performance of the algorithm for large qubit num-
bers for the advection-diffusion equation in Appendix D. In
Appendix E, we show the scaling of the success probability
for different qubit numbers. Next, in Appendix F we analyze
the trainability and the sensitivity of the loss landscape to
shot noise. Next, the computation of the normalization con-
stant fÔ, j , the derivation of the angle ϕ used in the adapted
Hadamard test, and the derivation of the convergence mea-
sure, i.e., the fidelity, are given in Appendix G. Next, we
present in Appendix H I the cost functions used for Euler time
stepping of the Burgers’ and the advection-diffusion equation.
Finally, we present the cost functions and quantum circuits
obtained using the fourth- order Runge-Kutta time stepping
scheme in Appendix H II. We use the same notation and
definitions as in the main text.

APPENDIX A: SYSTEM AND TRAINING DETAILS

Here, we shortly outline the specific parameters that de-
scribe the system as well as the choose circuit sizes and
training details.

Euler equation. The specific parameters used in our exam-
ple of the linear Euler equation with a periodic point source
are density ρ̄ = 1.225 kg/m3, the frequency and amplitude of
the point source ω = 100 Hz and A0 = 0.4c, and the sound of
speed c = 340.2 m/s. We study a spatial domain of size x ∈
[−4, 4]. The ansatz is encoded into six qubits, correspond-
ing to a discretization of the domain into Nx = 26 = 64 data
points. This domain includes the inner zone xinner ∈ [−2, 2]
of unperturbed spatial evolution as well as the outer zones
xouter ∈ [−4,−2] and ∈ [2, 4], where the sponge damps the
signal to implement nonreflective boundary conditions. We
discretize the space with first-order finite differences and use
a fourth-order Runga-Kutta time stepping scheme with a step-
size of ydt = 2.5 × 10−4 s. The corresponding cost function
are detailed in Appendix H II. We use the expression of
the bounded sponge operator explained in Appendix B, with
κ = 0.13, ñ = 4, and γmax = 1500.

We perform the optimization using an Adam Optimizer,
followed by additional training epochs with a limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithm (LBFGS). For
the simulation of the results shown in Figs. 1(b) and 1(c), we
used a brickwall ansatz with 14 layers. We trained it using a
learning rate of lrAdam = 0.05 and lrLBFGS = 0.5 and a number
of epochs of nepochs,Adam = 751 and nepochs,LBFGS = 75. All
runs are performed using the quantum computing software
framework PennyLane [93] together with pyTorch for the
parameter optimization [94].

Burgers’ equation. For the Burgers’ equation we consider
a spatial domain of size x ∈ [0, 2π ] and discretize it on a
uniform grid with Nx = 26 = 64 lattice points with lattice

spacing dx = 2π/Nx. We choose ν = 0.001 and dt = 0.5dx,
such that a shock evolves within the first 60 Euler time steps.
The choice of such a large dt leads to a small time evolution
error, but which is smaller than the introduced grid error. For
the simulation of the results, we use a circuit with ten layers,
a learning rate of lr = 0.005 and 1000 training epochs using
the Adam optimizer. All runs are performed using the quan-
tum computing software framework PennyLane [93] together
with Jax [95] for the parameter optimization. The weights
that encode the initial conditions are trained prior to the the
application of the tensor-programmable quantum scheme by
minimizing the relative error εu(t = 0) ≈ 1.5 × 10−6. In prin-
ciple, it is also possible to start from a delta peak, and evolve
this with the diffusion equation until the correct Gauss width
is reached.

APPENDIX B: MATRIX PRODUCT OPERATOR
REPRESENTATION OF DIFFERENTIAL OPERATORS

We introduce the MPO of matrix O in its generic form [84]:

O =
∑
ζ,σ,σ ′

O[1]σ1,σ
′
1

ζ0,ζ1
· · · O[n]σn,σ

′
n

ζn−1,ζn
|σ〉 〈σ ′| , (B1)

where ζ (σ) denotes the virtual (physical) indices, respec-
tively, and O[·] the MPO cores, which are four-dimensional
tensors. We assume ζ0 = ζn = 1 and define the maximal bond
dimension ζO = max(dim(ζ j )), with j = 0, . . . , n. Whenever
O admits a sum of simple tensor products, it can be written in
a factorized “matrix-of-operators” form O = A[1] �� · · · ��
A[n], where each block entry of A[ j] is a local 2 × 2 operator
Bσ j ,σ

′
j
. The symbol �� indicates that block multiplication is a

tensor product on the physical legs and an ordinary matrix
product on the virtual legs. We use the elementary 2 × 2
projectors I1, I2, and the shift J and JT as a convenient local
operator basis:

I1 =
(

1 0
0 0

)
, I2 =

(
0 0
0 1

)
,

J =
(

0 1
0 0

)
, JT =

(
0 0
1 0

)
. (B2)

These generators yield compact MPOs for common gates and
for banded matrices while keeping the MPO bond dimension
small. For two qubits, CNOT decomposes into a sum of two
product terms and thus admits an MPO with bond ζO = 2.
The first core selects the control state via (I1, I2), the second
core applies either I or σx on the target conditioned on the
virtual index, now written as

CNOT =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠

= {
ζ0

[t]

ζ1︷ ︸︸ ︷
(I1, I2) ��

{
ζ1

[t]

ζ2︷ ︸︸ ︷(
I
σx

)
= I1 ⊗ I + I2 ⊗ σx,

(B3)

with Pauli matrix σx. Similarly, tridiagonal Toeplitz matri-
ces TriDiag(α, β, γ ) have a standard three-block MPO with
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constant bond ζO = 3 [67]

TriDiag(α, β, γ ) =

⎛
⎜⎜⎜⎜⎝

α β

γ α β

γ α β
. . .

. . .
. . .

γ α

⎞
⎟⎟⎟⎟⎠

= (αI + βJ + γ JT , γ J, βJT )

��

⎛
⎝ I 0 0

JT J 0
J 0 JT

⎞
⎠n−2

��

⎛
⎝ I

JT

J

⎞
⎠.

(B4)

In this MPO form, standard finite-difference operators with
at most nearest-neighbor coupling admit compact repre-
sentations. For instance, the central, second-order accurate
first-derivative stencil on a uniform grid with spacing �x
corresponds to the tridiagonal Toeplitz choice,

α = 0, β = 1

2�x
, γ = − 1

2�x
,

i.e., TriDiag(α = 0, β = 1
2�x , γ = − 1

2�x ). The block struc-
ture above directly encodes operators under Dirichlet bound-
ary conditions. If different boundary conditions are required
(e.g., periodic or Neumann), the needed corrections can be
added as low-rank modifications to the base TriDiag(α, β, γ ).
Each added nonzero matrix element (such as a periodic link
between the first and last grid point) increases the MPO bond
dimension by at most one, so boundary corrections preserve a
small bond dimension [47].

The respective decomposition for a bounded 1D sponge
operator, with maximal factor of 1, are given by

A[ j] = 1

e(2ñ−1)κ − 1
(I2, I1 I2, I1), for j = 1, (B5)

A[ j] =

⎛
⎜⎜⎝

I2

I1

I2

I1

⎞
⎟⎟⎠2 � j � n − ñ, (B6)

A[ j] =

⎛
⎜⎜⎝

J1( j)
Jt

1 ( j)
I

I

⎞
⎟⎟⎠, for n − ñ < j � n − 1,

(B7)

A[ j] =

⎛
⎜⎜⎝

J1( j)
Jt

1 ( j)
I
I

⎞
⎟⎟⎠, for j = n, (B8)

where t refers to a mirroring with respect to the antidiagonal.

APPENDIX C: MATRIX PRODUCT OPERATORS TO
QUANTUM GATES

The algorithm for determining quantum gates that prepare
an arbitrary MPS is well known [55–57]. This approach yields
an exact encoding and provides an upper bound on the circuit
depth for generating a certain amount of entanglement [33].
Recently, also the translation of MPOs into quantum gates has

been reported [58,59]. The latter work by Termanova et al.
will be outlined in the following. Its reduced requirements in
qubit numbers made it a promising candidate for integration
into the VQA framework. Let us start by introducing the MPO
as [84]

O =
∑
ζ,σ,σ ′

O[1]σ1,σ
′
1

ζ0,ζ1
· · · O[n]σn,σ

′
n

ζn−1,ζn
|σ〉 〈σ ′| , (C1)

where ζ (σ) denotes the virtual (physical) indices, respec-
tively, and O[·] the MPO cores, which are four-dimensional
tensors. We assume ζ0 = ζn = 1 and define the maximal bond
dimension ζO = max(dim(ζ j )), with j = 0, . . . , n.

We introduce the MPO Q, which shall approximate target
MPO M while satisfying isometric constraints. To account
for the limitations on dimensionality and degrees of freedom
imposed by these constraints, we expand the search for Q
to encompass a larger Hilbert space. This is done implicitly
by setting its bond dimension ZQ = 2�, where � is a positive
integer and ZQ > ζM.

Following this, the search procedure is then formulated as
a constrained optimization problem, which reads as [59]

C = min
cMPO,Q̂

‖cMPOQ − M‖2

subject to Q[1]† ∈ St(r, s)

Q[ j] ∈ St(r, s) ∀ j = 2, . . . , n, (C2)

where cMPO is a normalization constant, ‖ · ‖ the Frobe-
nius norm, and St(r, s) the Stiefel manifold, which is the
set of all r × s matrices with orthonormal columns, where
r � s [97]. Here, we introduced Q[ j] := Q[ j](ZQ,σ j ),(σ ′

j ,ZQ )

as the reshaped, isometric cores for 1 < j < n, and Q[1] :=
Q[1]σ j ,(σ ′

j ,ZQ ) and Q[n] := Q[n](ZQ,σ j ),σ ′
j
, respectively. The

normalization constant cMPO can be determined via [59]

cMPO = Re
tr[Q†M]

‖M‖2
. (C3)

With all of this in place, we briefly outline the constraint
minimization of Eq. (C2), graphically depicted in Fig. 5: (1)
initialize the isometric cores of Q, (2) compute normaliza-
tion cMPO, (3) perform a single Riemannian gradient step on
all tensors Qj [97], and (4) repeat steps (2) and (3) in an

alternating manner until the error measure ε = ‖cMPOQ−M‖2

‖M‖2

reaches the set tolerance. In step (3), the gradient g = ∂C
∂Q[ j]∗

is projected onto the tangent space of the core, resulting in
G. A retraction is then performed in this direction, scaled
by the learning rate, i.e., −μG. This retraction can be per-
formed, for example, by a QR decomposition or a Cayley
transformation [96,97]. The QR decomposition allows to
rewrite a matrix A as A = QR, where Q is an orthogonal and
R is an upper triagonal matrix.

As soon as the algorithm has reached the set conver-
gence criterion, the boundary isometric cores Q[1] and Q[n]
with the shapes 2 × (2ZQ) and (2ZQ) × 2, respectively, need
to be raised to unitaries. To do so, the remaining columns
(rows) are filled using Gram-Schmidt orthonormalization pro-
cedure [98], respectively. This results in the target matrix only
being applied probabilistically, as the padding also enables a
trajectory within the nullspace.
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FIG. 5. Sketch of the execution of a single Riemannian gradient step on the tensors of a unitary MPO Q that approximates a target MPO M.
It can be divided into three sub-steps: (I) for each core Qj the gradient is computed by deriving the cost function C with respect to its complex
conjugate Q∗

j , we denote the result by g, (II) the gradient g is projected onto the tangent space of Qj via g − 1
2 Qj (QT

j g + gT Qj ) := G [96],
where we have defined the Riemannian gradient G, (III) the Qj is found by a retraction antiparallel to the Riemannian gradient, where the
magnitude of the update step is controlled by the learning rate μ. Using the QR decomposition as a retraction map, this last step has the form
RetrQR

Q j
(−μG) = QR(Qj − μG). We note that for the core Q1, which is not in the Stiefel manifold, special measures must be taken. After step

(I), Qj and the gradient g must be transposed, then steps (II) and (III) are carried out, and the transposed result then gives the different Qj .

APPENDIX D: ADVECTION-DIFFUSION EQUATION

Next to the examples given in the main text, we imple-
mented the advection-diffusion equation

∂φ

∂t
= ν�φ − c∇φ, (D1)

with ν = 0.1, c = 20, and periodic boundary conditions us-
ing the proposed quantum-tensor scheme. Its simple structure
and reduced qubit requirements compared to the nonlin-
ear use case makes it a suitable candidate for larger-scale
simulations and the analysis of the cost function given in
Appendix F. We consider the same initial condition as for the
Burgers’ equation, a Gauss peak with σ = 0.5 resolved with
Nx = 210 = 1024 lattice points, a lattice spacing of dx =
2π/Nx and using a circuit with 15 layers. Figure 6 depicts
the field evolution and the relative error over time, showing a
good agreement with the classical solution.

APPENDIX E: SCALING OF THE SUCCESS PROBABILITY
WITH SYSTEM SIZE

The value of the success probability αsucc plays a crucial
role in the determination of the norm correction fÔ, j . As it

FIG. 6. Time evolution of the field according to the advection-
diffusion equation. (a) Evolution of the initial Gauss peak u(x, t = 0)
over 400 evolution steps and (b) the relative error ε̄u over time.

depends on both the operator and the field it acts on, it is a use-
case-dependent quantity. Here, we look at the average success
probability of all differential operators implemented for this
work, following the procedure introduced by Termanova et al.
[59]. They recognize that the average success probability ᾱsucc

of a matrix M is directly connected to its Frobenius norm as

ᾱsucc = ‖A‖
2n

, (E1)

where A = 1
cMPO

M, and cMPO is the multiplicative factor from
the mapping of the MPO to a unitary. To study the scaling of
the success probability over the system size, we consider the
optimal c, being the leading singular value of M. Then, we
find constant or converging average success probabilities for
all differential operators used within this work as shown in
Fig. 7(a).

Next, we are interested in the scaling of the success prob-
ability of the nonlinear multiplication implemented by the
CNOT gates. While for random vectors, the point-wise multi-
plication might result in an exponential decay of the success
probability with system size, for the discussed use case of the
Burgers’ equation the situation is more subtle. Figure 7(b)
shows αsucc over the system size for different widths of the
Gauss peak. We observe that its value remains constant until
the peak is resolved, and only then decays with system size.
This is a behavior also observed by Lubasch et al. [33] for
their example of the nonlinear Schrödinger equation. The
implications of that get clearer in Fig. 7(c), where, we consider
the success probability over system size, considering different
Gauss widths σ and choosing the number of required qubits
by restricting the grid error below a threshold: Considering
a constant grid error, the quantum circuit is capable to re-
solve increasingly narrow peaks with an increasingly better
resolution without gaining any loss in the success probability.
Furthermore, we expect techniques as phase estimation and
amplitude amplification to mitigate the challenges that arise
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FIG. 7. (a) Scaling of the maximal average success probability ᾱsucc for all differential operators used throughout this work. The success
probability of the sponge operator highly depends on its width compared to the system size. (b) Scaling of the success probability αsucc, the
point-wise multiplication u∇u, as present in the Burgers’ equation for a Gauss peak of width σ . (c) Scaling of αsucc when considering different
Gauss peak widths and choosing the number of qubits according to a maximal allowed root-mean-square error <0.001 between the solution
and the next better resolution.

for use cases that result in low αsucc and will investigate their
potential in future works.

APPENDIX F: ANALYSIS OF THE TRAINABILITY

In this section, we study the shape of the cost landscape
of the training parameters, its sensitivity to shot noise and
the variance of gradients. We consider the first time step
of the advection-diffusion equation, as it allows us to go to
larger qubit number as the nonlinear use case with signif-
icantly reduced resource requirements. Please note that we
observe qualitatively the same cost landscapes for the other
use cases. We were mostly concerned with the following ques-
tions: First, considering initializations of the weights from the
previous time step, how pronounced and optimal is the cost
landscape for the single parameters. Second, how is this cost
landscape affected by noise. Third, how does this cost land-
scape and its gradients change with system size. The results
in Fig. 8(a.I) show clearly that weight reinitialization leads to
a well pronounced loss landscape, especially when compared

to a random initialization for each parameter. A comparison
with the optimal cost landscape (all parameters well trained
and one varied) shows that weight reinitialization leads to a
close-to-optimal cost landscape, featuring a maximal differ-
ence of 10−4, further indicating close to optimal trainability.
While the cost landscape roughens slightly in the presence
of shots, the impact of shots on the loss landscape seems to
remain constant over the system size as shown in Fig. 8(a.II).

Furthermore, we consider the variance of the gradients of
the cost functions for increasing system size. When this vari-
ance decreases exponentially with system size, it is a strong
indicator for barren plateaus [99,100], which makes training
quickly unfeasible for larger systems. However, gradients also
vanish close to the optimum, hence low variances at a certain
parameter set, do not necessarily connect to a barren plateau.
To allow for meaningful statistics, we therefore consider both
the variances of the gradient [cf. Fig. 8(b.I)] and the mean of
the corresponding cost [cf. Fig. 8(b.II)]. To allow for statistic
in the case of the weight reinitialization (often referred to
as warm-start [100]), we vary each reinitialized parameter

FIG. 8. Analysis of the cost landscape C(θ i
j+1) = 1 − 〈σz〉anc of one representative training parameter i for different shot numbers and the

shot-free analytical solution. (a.I) Cost landscape of a Gaussian peak with σ = 0.5 evolved according to the advection-diffusion equation and
resolved with ten qubits when using weight initialization from the previous time step. We note that the biggest deviations in the cost landscape
for small shot numbers appear far from the optimum. The black dotted line shows the cost landscape for random weight initialization. (a.II)
Root-mean-square error between the shot based and the analytical cost landscape over the system size. (b.I) Variances of the gradients of the cost
landscape over the system size. We consider a completely random initialization of weights (black dashed line, crosses) and a warm-start using
the previous time step as the initial guess, but changing each parameter slightly by random numbers in the the range [−∂θ, ∂θ ]. (b.II) Mean
of C for the examples used in panel (b.I). To compute variance and mean, we considered 1000 random samples. All quantities were computed
with dx = 2π/Nx and a time step of 0.1νdx, such that a stable simulation is possible. All cost landscapes are plotted using ϕ = 0.6126.
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randomly within a certain threshold ∂θ . The variance de-
creases roughly exponentially with system size for random
weight initialization, while the cost remains large. We do not
observe the same effect in the presence of warm starts. There,
the variance seems to remain close to constant. Additionally,
we initialize the parameters already close to the optimum,
which is reflected by an increase in both the variance and the
cost when increasing ∂θ .

We tested the trainability of the next time step for
the advection-diffusion equation with shots using the exact
gradient computed with parameter-shift rule or a gradient
approximation obtained from the SPSA algorithm [26,73]
combined with an Adam optimization. With both strategies,
we reach the best possible resolved loss for different shot
numbers.

APPENDIX G: DERIVING THE NORM CONSTANT fÔ, j ,
THE OPTIMAL ANGLE ϕopt, AND THE CONVERGENCE

MEASURE F

In the following Appendix, we present the calculation of
the norm constant fÔ, j for the standard and adapted Hadamard

test. Furthermore, we determine the optimal rotation angle ϕ

and derive the convergence measure accessible via the adapted
Hadamard test.

As explained in the main text, applying the operator Ô
with the help of the unitaries ÛMPO on the quantum computer
implements the correct operation up to the factor fÔ, jcMPO:

〈Ô〉 = cMPO · Re 〈�| P|0〉aux〈0|aux
ÛQ |�〉

= cMPO · fÔ, j · 〈σz〉anc . (G1)

Here, the operator ÛQ summarizes all controlled unitaries,
|0〉anc |�〉 is the initial state. For linear differential equa-
tions, we have ÛQ = Û (θ†

j+1)ÛMPOÛ (θ j ) and |0〉anc |�〉 =
|0〉anc |0〉. While cMPO is known from the algorithm that de-
termines the unitaries from the initial MPO, fÔ, j needs to be
determined from the success probability.

The quantum circuit of the adapted Hadamard test pro-
duces, prior to measurement, the state

R̂Y (−ϕ)P|0〉aux〈0|aux
ÛQĤ |1〉anc |0〉

= 1√
2

1

1 + αsucc
P|0〉aux〈0|aux

[
|0〉anc

(
− cos

(ϕ

2

)
|0〉 + sin

(ϕ

2

)
ÛQ |0〉

)
+ |1〉anc

(
sin

(ϕ

2

)
|0〉 + cos

(ϕ

2

)
ÛQ |0〉

)]
, (G2)

For optimally trained θ j+1, measuring the global ancilla qubit
yields the expectation value

〈σz〉anc =
2 sin(ϕ) − (√

αsucc − 1√
αsucc

)
cos(ϕ)

1 + αsucc
Re 〈0| ÛQ |0〉

= 1

fÔ, j

Re 〈0| ÛQ |0〉 . (G3)

This yields

fÔ, j = 1 + αsucc

2 sin(ϕ) − (√
αsucc − 1√

αsucc

)
cos(ϕ)

(G4)

for the norm constant fÔ, j of the adapted Hadamard test with
the special case of the standard Hadamard test (ϕ = π/2):

fÔ, j (ϕ = π/2) = 1 + αsucc

2
. (G5)

With this norm constant fÔ, j , which depends on the suc-
cess probability αsucc and the rotation angle ϕ of the adapted
Hadamard test, 〈Ô〉 can then be calculated according to
Eq. (G1).

If all operators of a differential equation are summarized
within Ô and assuming optimally trained θ j+1, there is an
optimal angle ϕopt = 2 arctan(

√
αsucc) that leads to 〈σz〉anc = 1

and fÔ, j = √
α.

Furthermore, we can derive a measure of convergence
from Eq. (G2), which allows to compute the fidelity F =
|| 〈0|P|0〉aux〈0|aux

ÛQ‖0〉 ||2 between the normalized trained so-
lution and the real solution from 〈σz〉anc. For simplicity, we
assume optimal ϕ = ϕopt. For general θ j+1, ‖ 〈0| ÛQ |0〉 ‖2 =

αsuccF and the global expectation value can be computed from
Eq. (G2), reading

〈σz〉anc = 2
√

αsuccF sin(ϕopt) − (αsucc − 1) cos(ϕopt)

1 + αsucc
, (G6)

which allows us to infer the fidelity of the trained solution
during the training as

F = (αsucc 〈σz〉anc + αsucc cos(ϕopt) + 〈σz〉anc − cos(ϕopt))2

4αsucc sin2(ϕopt)
.

(G7)

APPENDIX H: COST FUNCTIONS

In this Appendix, we introduce the utilized cost functions
for the Euler time stepping and the fourth-order Runge Kutta
scheme.

1. Euler time stepping

To simulate the time evolution of the Burgers’ equation and
the advection-diffusion equation, we employ the explicit Euler
time stepping and summarize both PDEs within one quantum
circuit. Hence, the equation we need to solve can be summa-
rized as (

1 + dt
∂

∂t

)
φ(x, t ) = Ôφ(x, t ). (H1)

013052-12
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When the solution at time step t j = n · dt is known, φ(t j+1) is
computed according to

φ(x, t j+1) = (1 + dt
∂

∂t
)φ(x, t j ) = Ôfullφ(x, t j ),

t j+1 = t j + dt . (H2)

This results in a cost function

C(θ j+1) = ‖ |φt j+1〉 − Ôfull |φt j 〉 ‖2

∝ −�〈φt j+1 | Ôfull |φt j 〉 + constant. (H3)

2. Fourth-order Runge Kutta time stepping

To perform the time evolution of the linearized Eulers’
equation shown in the main text, we implemented a fourth-
order Runge Kutta (RK4) scheme. Consider a differential
equation of form

∂φ(x, t )

∂t
= g(t, φ(x, t j )). (H4)

When the solution at time step t j = n · dt is known, φ(t j+1) is
computed according to

φ(x, t j+1) = φ(x, t j ) + dt

6
(k1 + 2k2 + 2k3 + k4),

t j+1 = t j + dt, (H5)

where

k1 = g(t j, φ(x, t j )),

k2 = g

(
t j + dt

2
, φ(x, t j ) + dt

2
k1

)
,

k3 = g

(
t j + dt

2
, φ(x, t j ) + dt

2
k2

)
,

k4 = g
(
t j + dt, φ(x, t j ) + dtk3

)
. (H6)

For the quantum solver, we need to translate this procedure
into cost functions that are to be minimized. Accord-
ing to the five equations required to compute the final
φ(x, t j,m+1), we define five different optimization steps. The
steps do not compute the km directly, but instead the sum of
φ∗

j,m = cst
mφ j + crk

m km, choosing cst
m and crk

m such that φ∗ corre-
sponds to the right-hand side of Eq. (H6) for each RK4 step:

Cφ

1 = ∥∥|φ∗
1 〉 − |φ j〉 − 1

2 dt |k1〉
∥∥2

,

Cφ

2 = ∥∥|φ∗
2 〉 − |φ j〉 − 1

2 dt |k2〉
∥∥2

,

Cφ

3 = ∥∥|φ∗
3 〉 − |φ j〉 − dt |k3〉

∥∥2
,

Cφ

4 = ∥∥|φ∗
4 〉 + 1

3 |φn〉 − 1
6 dt |k4〉

∥∥2
,

Cφ

5 = ∥∥|φfinal〉 − 1
3 |φ∗

1 〉 − 2
3 |φ∗

2 〉 − 2
3 |φ∗

3 〉 − |φ∗
4 〉∥∥2

, (H7)

where |φ∗
m〉 = θ0

j,mÛ (θ j,m) |0〉 and |φfinal〉 = θ0
j+1Û (θ j+1) |0〉.

The indices j and m refer to the index of the time step
and the Runge Kutta step, respectively. In the considered
example, the linear Euler equation, pressure and velocity are
coupled. Hence, the right-hand side of Eq. (H6) depends on
both the pressure and velocity field, i.e., f (t, |φ(x, t j )〉) →
f (t, |p(x, t j )〉 , |u(x, t j )〉). In the quantum register, the pres-
sure and velocity field are encoded as |p(x, t j )〉 = θ0

n P̂(θ j ) |0〉
and |u(x, t j )〉 = θ0

j Û (θ j ) |0〉. The first four cost functions Cm

can be constructed from Eq. (6) and follow the scheme

Cp
m(θ j,m+1)

= ‖ |p∗
j,m+1〉 − cst

m |p j,m〉 + crk
m · dt (ρ · c2∇̂ |u j,m〉

+ ˆγ (x) |p j,m〉 − A0 sin(ωt ) |δ(x)〉)‖2

= (
θ0

j,m+1

)2 − 2θ0
j,m+1θ

0
j,m� 〈0| P̂†(θ j,m+1)P̂(θ j,m) |0〉

+ 2dtρc2 f u
∇̂, j

θ0
j,m+1θ

0
n � 〈0| P̂†(θ j,m+1)∇̂MPOÛ (θ j,m) |0〉

+ 2 f p
γ̂ , j,m�θ0

j,m+1θ
0
j,m 〈0| P̂†(θ j,m+1)γ̂MPOP̂(θ j,m) |0〉

− 2A0 sin(ωt )�θ0
j,m+1θ

0
j,m 〈0| P̂†(θ j,m+1) |δ(x)〉

+ const. (H8)

and

Cu
m(θ j,m+1)

=
∥∥∥∥ |u j,m+1〉 − cst

m |u j,m〉 + crk
m · dt

(
1

ρ
· ∇̂ |p j,m〉

+ γ̂ (x) |u j,m〉
)∥∥∥∥2

= (
θ0

j,m+1

)2 − 2θ0
j,m+1θ

0
j,m� 〈0| Û †(θ j,m+1)Û (θ j,m) |0〉

+ 2
dt

ρ̄
f p
∇̂, j,m

θ0
j,m+1θ

0
j,m� 〈0| Û †(θ j,m+1)∇̂MPOP̂(θ j,m) |0〉

+ 2 f u
γ̂ , j,mθ0

j,m+1θ
0
j,m� 〈0| Û †(θ j,m+1)γ̂MPOÛ (θ j,m) |0〉

+ const. (H9)

The last cost functions Cu/p
5 only depend on one field, and

hence do not differ from Eq. (H7).

[1] F. Black and M. Scholes, The pricing of options and corporate
liabilities, J. Political Econ. 81, 637 (1973).

[2] S. T. Lee and H.-W. Sun, Fourth-order compact scheme with
local mesh refinement for option pricing in jump-diffusion
model, Numer. Methods Partial 28, 1079 (2012).

[3] X. Bian, C. Kim, and G. E. Karniadakis, 111 years of Brown-
ian motion, Soft Matter 12, 6331 (2016).

[4] X. Wu, Y. Zhang, and S. Mao, Learning the physics-consistent
material behavior from measurable data via PDE-constrained

optimization, Comput. Methods Appl. Mech. Eng. 437,
117748 (2025).

[5] R. Courant, K. Friedrichs, and H. Lewy, On the partial differ-
ence equations of mathematical physics, IBM J. Res. Dev. 11,
215 (1967).
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