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ABSTRACT

The increasing complexity and adoption of machine learning (ML)
pipelines has led to a rising demand for effective visualization tools.
This paper presents a comprehensive review of existing tools for
visualizing data flow in machine learning (ML) pipelines. We high-
light the tools’ purposes, integration methods, and visualization
techniques. We collected and analyzed 22 open-source tools and
concepts, analyzing their features and classifying them based on
their primary purpose. Our analysis revealed six main purposes of
visualization tools: exploration, explanation, visual development,
comparison, monitoring, and domain-specific tools. We provide
an analysis of their integration methods, from standalone visual
interfaces to code-level libraries, as well as a review of various vi-
sualization techniques, including Directed Acyclic Graphs (DAGs),
pipeline matrices, and annotated visualizations. Our findings high-
light the importance of visualization in enhancing the interpretability
and efficiency of ML workflows. Moreover, the paper provides
key limitations and challenges in current visualization methods to
promote future research directions enhancing the usability and func-
tionality of ML pipeline visualization tools.

Index Terms: Human-centered computing— Visualization—
Visualization systems and tools; Computing methodologies—
Machine Learning

1 INTRODUCTION

Visualization tools play a critical role in enhancing the understand-
ability of machine learning (ML) systems, particularly as these
systems grow increasingly complex and handle vast amounts of data.
From data preprocessing to model evaluation, each stage of an ML
pipeline involves numerous interconnected steps that can be chal-
lenging to track and optimize, especially as the size and complexity
of datasets and models continue to grow. Using visualization tools
is one of the strategies to overcome this challenge. Beyond their
utility in the development phase, visualization tools are also valuable
for debugging, monitoring, and understanding ML models and data,
helping practitioners maintain transparency and control over their
workflows [15].

While numerous tools have been developed to address these needs,
their functionalities, the stages of the ML pipeline they support, and
their target audiences vary considerably. Additionally, each tool is
designed to work with specific models, data types, and integration
requirements, making tool selection and usage highly dependent on
the context of an ML task.
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In this paper, we explore various visualization tools designed
specifically to cover the whole ML pipeline. We examine their
integration specifications, purposes, and visualization techniques
used.

Thus, the purpose of this paper is twofold. First, it aims to help
anyone seeking to choose the most appropriate visualization tool for
their ML workflows, whether they are practitioners, educators, or re-
searchers. Moreover, it provides insights into different visualization
methods for those who aim to implement their visualizations. Fi-
nally, it identifies gaps and challenges in current solutions for future
tool development. Our study provides the following contributions:

* A list of visualization tools used for data flow visualization of
ML pipelines and their classification by purpose of use and
integration methods.

¢ A description of the current common and applied methods of
visualization for data flow in ML pipelines.

* An analysis of challenges and limitations of the existing visu-
alization tools.

The remainder of the paper is structured as follows: Section
2 presents relevant background information on ML pipelines and
related work. Section 3 describes the research procedure of this
study. Section 4 provides the results on the identified visualization
tools, integration methods, and their purposes. In Section 5, the main
visualization methods are shown and described, whereas Section 6
highlights the challenges and limitations of the visualization tools.
Finally, Section 7 concludes the paper.

2 BACKGROUND

This section explains the main concepts and stages of the ML
pipeline and provides information on the related work in the field of
ML visualization.

2.1 Machine Learning Pipeline

A machine learning (ML) pipeline is a sequence of steps for the de-
velopment, deployment, and maintenance of ML models. It provides
a systematic approach for data ingestion and preparation for further
model training and evaluation.

A generalized ML pipeline was described by Amershi et al. [1].
They distinguish nine main stages of an ML pipeline: model re-
quirements, data collection, data cleaning, data labeling, feature
engineering, model training, model evaluation, model deployment,
and model monitoring. However, depending on the data type and
type of the ML model, additional stages can be included in the ML
pipeline structure. The complexity varies depending on the project
requirements and the domain of application. For instance, simple
pipelines may focus on basic data preprocessing and model training,
while more advanced pipelines may include complex feature engi-
neering, multiple model comparisons, or ensembling techniques.
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Figure 1: The main stages of a generalized machine learning pipeline. Data-related stages include data ingestion, data preprocessing, and feature
engineering. Model-related building contains model design, model training, and model optimization. The pipeline includes the stages that can be

visualized and benefit from visualization tools assistance.

Overall, an ML pipeline can be divided into two main stages: data
preparation and model building. Each of these stages and several
steps within them could benefit from visualization aid. Figure 1
illustrates the steps within an ML pipeline that could be visualized.

2.2 Related Work

The visualization of ML pipelines is a broad area of research, driven
by the increased complexity of ML workflows and the need for
interpretability and understanding. A lot of work is done to visualize
one particular stage of an ML pipeline.

A large number of tools prioritize solely model development
[20,35,38]. Such tools focus on the interpretability of the training
process, especially in Deep Learning (DL) models, where tool sup-
port is needed to monitor a plethora of model parameters during the
training process.

Several works provide an overview of visualization techniques for
ML model visualization. The survey of Hohman et al. [15] addresses
visualization for deep learning (DL) and provides an overview of
visualization tools for DL training. The survey covers the tools useful
for each component of neural networks that could be visualized and
visualization techniques specific to certain purposes. Choo and
Liu [4] made an overview of the visualization tools for explainable
deep learning. Seifert et al. [29] focused on the visualization of
DL in computer vision. Chatzimparmpas et al. [3] summarize the
findings on ML model visualization by providing a survey of surveys,
including the surveys mentioned above.

Other tools focus on data visualization and understanding. Differ-
ent tools prioritize different types of data, such as tabular [2], highly
multidimensional data [8], or unstructured text [32]. Furthermore,
several surveys explored data visualization tools and techniques for
training data [34,37].

Although the tools that prioritize specific steps of ML develop-
ment are undeniably important and highly useful, there are situations
where it is crucial to have an overview of the entire pipeline. To the
best of our knowledge, there are a lot of tools focusing on the ML
pipeline as a whole, but there is no overview of such tools and their
classification.

3 METHODOLOGY

In this section, the research methodology is defined, detailing the
approach taken to conduct the research. First, we defined the re-
search questions we aim to answer. Afterward, we specified the
search engines and the search terms used to conduct the research.
‘We then defined the selection criteria. To systematically collect all
tools relevant to this study, we followed the multivocal literature
review (MLR) guidelines [10] [18]. The full list of the accepted
and rejected tools, the selection process, and their evaluation are
available on Zenodo'.

1https ://zenodo.org/records/14185646

3.1 Research Questions

With this paper, we aim to enhance the understanding of the cur-
rent state of the art of data flow visualization in machine learning
pipelines. Therefore, we derive the following research questions:

RQ1: What are the existing methods and tools for visualizing data
flow within machine learning pipelines?

RQ2: Which types of visualization are utilized for machine learning
pipelines?

RQ3: What are the limitations and challenges of the tools for visu-
alizing data flow within machine learning pipelines?

RQ4: What are the future research directions in data flow visualiza-
tion for machine learning pipelines?

For the first research question, the goal is to investigate the exist-
ing tools designed for visualizing data flow within machine learning
pipelines. This exploration aims to provide an overview, benefit-
ing researchers, practitioners, and others seeking insight into ML
visualization resources.

Regarding the second research question, the objective is to deter-
mine which types of visualization are utilized for specific stages and
contexts within the ML pipeline. Since the ML pipeline involves
several distinct steps, understanding where these tools fit and their
suitability for each phase is crucial. We consider the following
phases: data ingestion, data validation, data preprocessing, model
training, and model validation.

The third research question focuses on identifying the limita-
tions, weaknesses, and challenges in current visualization tools and
methods. With that, we aim to provide guidance on tool selection.
Understanding potential limitations offers insights into what may go
wrong or what may not be achievable beforehand.

The last research question aims to explore new ideas and innova-
tions for enhancing data flow visualization in ML pipelines. This can
be seen as a follow-up to the preceding question, helping identify
areas in need of further exploration within data flow visualization
techniques.

3.2 Search Strategy

In our research, we included the usage of multiple search engines.
Google and Google Scholar were substantial since they cover a
wide range of sources, especially for less formal or grey literature.
Additionally, we made use of the ACM Digital Library to focus on
more academic or white literature sources.

The search strategy targets resources discussing data flow in
machine learning pipelines combined with terms like visualization,
graphical representation, monitoring, and dataflow analysis. By
using this approach, we created the search string shown in Listing 1
to gather a wide range of information.


https://zenodo.org/records/14185646

("visualizing dataflow" OR "dataflow visualization
< tools" OR "graphical representation" OR "monitor
— dataflow" OR "dataflow analysis")

AND
("machine learning pipelines" OR "ml pipelines" OR "ml
— workflows")

Listing 1: The search string for the review.

Finally, we planned one iteration of backward snowballing to
identify literature that we possibly missed with the search term.
This approach ensures that we gather a diverse set of materials,
covering different types of information about data flow visualization
in machine learning pipelines.

3.3 Selection Criteria

To refine and limit the search results and to identify the most ap-
propriate resources related to the research questions, we defined
inclusion and exclusion criteria:

Inclusion Criteria:

* Has to be relevant to the research questions, specifically ad-
dressing data flow visualization within the context of machine
learning pipelines.

* Where several studies have reported the same results, only the
most recent paper will be considered.

* The publication date is within the last 10 years.

Is written in English.
Exclusion Criteria:
* The paper is not accessible.

* Only the abstract but not the full text is available and accessi-
ble.

* The paper is not related to at least one aspect of the research
questions.

Visualization is only a side topic.
* Duplicate or redundant sources.

3.4 Conducting the Review

In total, we retrieved 130 publications from ACM, 170 from Google
Scholar, and 100 from Google. We then filtered these publications,
based on the previously defined inclusion and exclusion criteria.
After checking the titles, we excluded 250 papers. We checked
the abstracts of the remaining 150 papers and excluded another 99
papers. We then checked the full text of the remaining 51 papers
and included 16 for analysis.

In many cases, the primary focus of these papers was not on
visualization methods, or they only referenced relevant GitHub
repositories without further discussion. To address this gap, we
employed backward snowballing, which led to the identification of
an additional 13 relevant sources.

By utilizing Research Rabbit, we identified additional, more spe-
cialized papers—such as those on visualization techniques for Natu-
ral Language Processing (NLP) that we did not find with the initial
search terms. After checking the abstracts and full texts of these pa-
pers, this process resulted in the inclusion of four additional sources.

However, after analyzing the functionality of the selected tools,
a part of them prioritized one particular ML pipeline stage and not
the pipeline as a whole, e.g., some tools focused on data ingestion
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Figure 2: Retrieved sources and included sources in the literature
review.

and monitoring or model training stages. These tools were excluded
from the final list.

Overall, we incorporated a total of 16 sources from white litera-
ture and 6 from grey literature in this review. The overall process
leading to these sources is also shown in Figure 2.

To identify the characteristics and purposes of the tools, two re-
searchers independently reviewed each tool and assigned descriptive
labels to them. The final set of labels from all tools was analyzed and
coded to derive high-level themes representing the purposes. Simi-
larly, different visualization strategies were collected and recorded
from each tool to present the various ways of ML pipeline visualiza-
tion.

4 RQ1: PIPELINE VISUALIZATION TOOLS

After selecting and analyzing the available pipeline visualization
tools, certain characteristics and specifications were discovered. The
tools varied largely in their integration and compatibility require-
ments. Moreover, they were developed to support various purposes
although all of them focused on the visualization of ML pipelines.
This section uncovers the different ways visualization tools are inte-
grated with ML development and the different goals of such tools.
Table 1 provides an overview of the tools and their integration and
purpose specificity. The thematic distribution of the visualization
tools by integration specification and purpose is also shown in Fig-
ure 3.

4.1 Integration Specifications

Developers have implemented various methods to integrate visu-
alization tools in ML pipelines, each having specific requirements
and covering certain user needs. Some tools are implemented as
full systems with a visual interface that offer comprehensive en-
vironments for pipeline visualization [6, 13, 14,26]. These systems
can function in two primary ways. One way requires the usage of
ML pipeline artifacts, such as pre-existing data processing scripts,
models, and metadata, in a specific format to generate visualizations.
Such tools may require either that models be developed in a particu-
lar ML framework, such as TensorFlow [2], or datasets or metadata
to be in specific formats, e.g., CSV or JSON, to generate compatible
visualizations.

Another way is by providing end-to-end capabilities that allow
users to design, develop, and visualize entire pipelines within the
tool itself using the in-built functions and methods [19,27,28]. Such
tools are known as visual development or no-code software. They
are represented by browser-based systems or full stand-alone soft-
ware. The systems can be running locally or using cloud capabilities.
Moreover, already existing software systems provide an option to
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Figure 3: Thematic distribution of the visualization tools by integration specification and purpose. Since one tool might have more than one
integration method and purpose, the sum of all topics does not add up to the number of tools described.

implement plugins expanding the capabilities of the original sys-
tem [31].

Alternatively, many visualization tools are integrated at the li-
brary level, offering flexibility through packages and APIs that
developers can incorporate directly into their code and generate vi-
sualizations in the development environments [5,7,11,23]. These
library-based tools are typically available in popular programming
languages like Python and JavaScript. Given Python’s extensive use
in the ML community and compatibility with many ML frameworks,
Python was the most identified language in the visualization tools.

4.2 Tools Classification

In addition to integration methods, visualization tools for ML
pipelines serve specific purposes that further highlight their dif-
ferent development workflows. After screening various visualization
tools, we identified six main purposes: exploration, explanation,
visual development, comparison, monitoring, and domain-specific
tools. Each purpose is described in more detail in the following
subsections.

4.2.1 Exploration

One of the most frequently provided purposes of visualization tools
for ML pipelines is exploration. Tools focused on exploration enable
users to facilitate the understanding of datasets, model structures,
and data transformations at various stages of the pipeline. The
exploratory function aims to provide an overview of the pipeline and
its stages and generates information about the characteristics and
quality of the data, the main functions, methods, and libraries, and
the sequences of steps in the pipeline. By breaking down the pipeline
into sequential stages, from data preprocessing to model training and
evaluation, these tools provide a structured view of the entire process.
The tools aim to make complex workflows more accessible allowing
more efficient knowledge transfer and an increased understanding
of the underlying ML pipeline operations.

Different tools providing exploration support vary in their inte-
gration methods and supported models. [35] provides a step-by-step
visual representation of pipeline construction based on the models
created in TensorFlow. [30] is a visualization tool for PyTorch and
TensorFlow models visualization, that works in Jupyter Notebook
and allows real-time visualization during ML training. [24] provides
a Python library for pipeline logging and supports common model
structures, such as Paddle, ONNX, and Caffe, providing detailed

static and dynamic graphs, i.e., the graphs that indicate the direction
of data flow.

4.2.2 Explanation

Explanation is another purpose of visualization tools in ML pipelines,
aimed at making complex models and processes understandable to
diverse audiences. Tools designed with explanation purposes often
include features that generate hints or notes to provide contextual
insights about specific elements within an ML pipeline. Such annota-
tions can offer explanations of the functions used regarding their pur-
pose, parameters, and impact on the outputs, which facilitates both
learning ML development and understanding a developed pipeline.
Additionally, some tools might highlight areas of the pipeline or
lines of code where issues such as bias or errors may have a higher
likelihood of arising. For example, if certain preprocessing steps
or model training functions are susceptible to introducing data im-
balance or skew, the tool might flag these steps, prompting users to
review and potentially adjust them.

There are several examples of explanation goals in visualization
tools. [11] provides explanations and notifications about possible
data distribution bugs in the preprocessing pipeline, highlighting
potential issues. Similarly, [36] focuses on pipeline functions that
could contribute to data biases with the main objective of improving
fairness. [31] provides a plugin for TensorBoard for explanations of
the functions of ML algorithms.

4.2.3 Visual Development

Visual development, also referred to as no-code or visual ML, is a
purpose of visualization tools that enables users to build, modify,
and deploy ML pipelines without requiring extensive programming
knowledge. These tools provide an intuitive, drag-and-drop interface
where users can assemble pipeline components visually, connecting
blocks or modules that represent different pipeline stages, such as
data preprocessing, model training, and evaluation. Visual ML tools
come with pre-configured blocks containing widely used methods
and functions for common ML tasks. Visual development also pro-
motes collaboration, as it enables team members across disciplines
to participate in model design and understand the overall workflow
structure.

Visual development tools provide similar functionalities with pre-
defined blocks that can be used to build an ML pipeline and differ
in the levels of granularity and supported methods. [6] focuses on
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collaboration processes and quick and easy application and experi-
mentation. [13] provides an extensive library that can be extended
manually and a minimalistic interface.

4.2.4 Comparison

Comparison is a key purpose of some visualization tools, designed
to facilitate the side-by-side evaluation of various models, configura-
tions, and pipeline versions within an ML workflow. Comparison-
focused tools allow users to visually assess different pipeline ele-
ments, such as model performance metrics, data preprocessing tech-
niques, or feature engineering methods, across multiple experiments.
For example, users can quickly compare stages and methods con-
tained in each pipeline and the outcome of each model represented
by accuracy, precision, recall, or other commonly applied model
performance metrics. Such visualizations provide a quick compari-
son of different model configurations and promote an overview of
developed pipelines.

Most of the tools focus on comparing the performance metrics of
the pipelines [5,7,31]. On the other hand, [23] explores and com-
pares combinations of preprocessing steps, feature transformations,
and ML models.

4.2.5 Monitoring

Monitoring is another essential purpose of visualization tools in
machine learning pipelines, focused on providing real-time insights
into the performance and health of models once deployed. Moni-
toring tools track various metrics, such as accuracy, precision, data
drift, latency, and resource usage, ensuring that models continue
to perform consistently within the predefined thresholds. This is
particularly important in production environments, where model
performance can degrade over time due to changing data patterns
or unexpected shifts in input data distributions. These tools often
include dashboards or time-series graphs that illustrate the trends of

key metrics over time, allowing for quick diagnostics if issues arise.
Some advanced monitoring tools also support anomaly detection,
flagging unusual patterns that could indicate a need for retraining or
pipeline adjustments.

[31] explores the model in runtime and during training providing
capabilities for global provenance. [7] examines different perfor-
mance metrics and can provide a report on pipeline performance.

4.2.6 Domain-Specific Tools

We distinguish domain-specific tools as a separate purpose, even
though these tools often align with one or more of the previously
described purposes, such as exploration, monitoring, or visual devel-
opment. Domain-specific tools can represent the whole ML pipeline,
but they aim to address the specialized needs of particular fields,
dealing with unique data types, workflows, and challenges that
general-purpose tools may not fully capture. For example, in ge-
nomics, visualization tools focus on representing complex genomic
data [26]. They integrate with specialized genomic databases and
provide visual interfaces designed to handle the massive datasets
common in genomic research. In another instance, a visualization
tool provides capabilities for no-code visual development of ML
pipelines for cyber attack prevention in edge devices [40]. Domain-
specific tools provide targeted solutions for specific ML application
fields, however, they are not limited to the examples provided.

5 RQ2: VISUALIZATION METHODS

When visualizing an entire ML pipeline, several techniques can
be employed to represent the flow and relationships or improve
understanding of the pipeline. We identified two main techniques
to visualize a pipeline including a directed acyclic graph and its
extensions and a pipeline matrix. Additionally, different types of
labels can be implemented for explanatory purposes.

5.1 Directed Acyclic Graph

Directed Acyclic Graph (DAG) is the most common approach to
visualizing a sequence of elements in an ML pipeline [5,13, 14,19,
30,40]. These diagrams use blocks to represent individual stages
connected by arrows that indicate the flow of data. The method
visually maps the entire process, showing a clear, top-down, or
left-to-right progression through each pipeline stage. A DAG of a
simplified ML model is shown in Figure 4.

DAGs are especially valuable for ML pipelines because they visu-
ally represent the logical flow from data ingestion to preprocessing,
feature engineering, model training, and evaluation, making it easy
to trace the sequence of operations. Each node in the DAG represents
a distinct stage in the pipeline, such as loading data, transforming
and cleaning data, or training a model, while edges show the de-
pendencies between these stages. This highlights which stages rely
on previous outputs and helps to understand and manage complex
dependencies.

DAGs can vary in complexity and can be adapted to represent
various pipeline architectures including simple linear flows and more
complex branched structures with different models or transforma-
tions run in parallel, thus, making it suitable for both visualization
of already developed pipelines and no-code development of new
pipelines.

Some DAGs enhance their interpretability by incorporating color
coding to convey additional information, adding a new dimension to
the visualization. Colors can be used to represent various attributes,
such as the type of operation, e.g., data transformation, model train-
ing, evaluation; the status of each stage, e.g., completed, in progress,
failed; or performance metrics like accuracy or processing time.

5.1.1 DAG with Annotations

In some cases, adding annotations to DAGs enhances their inter-
pretability by including detailed information directly on nodes or
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Figure 4: Directed acyclic graph (DAG) representation of a machine
learning pipeline. Each node represents a specific stage. The nodes
are connected by directed edges indicating the order of execution.

edges. Annotations can describe the type of transformation or func-
tion being performed, highlight key parameters, or provide metric
summaries (e.g., accuracy, data quality) [6,24,35]. This method
enriches the visualization and provides more context. Figure 5 repre-
sents an exemplary extension of some steps within an ML pipeline.

Annotations can appear in various forms, such as text labels
within or outside a node, or they can be displayed when hovering
over specific elements. For instance, a node representing a data
preprocessing step might include information about data distribution,
mean, and variance values. Likewise, nodes representing the model
training stage may provide information about accuracy, loss, or
training time.

5.1.2 DAG with Collapsing Elements

To manage the complexity of larger pipelines, DAGs with collapsing
elements allow users to expand or collapse sections of the graph [24,
31]. Figure 6 shows an example of a collapsed data preprocessing
element.

In a typical ML pipeline, certain processes like data preprocessing
or model training can involve multiple steps and sub-tasks. Data
preprocessing might include missing values handling, normalization,
scaling, and other functions, each of which could be represented as
a separate node. However, in larger pipelines with extensive data
preprocessing stages, representing each function as an individual
node would increase the complexity of the visualization and decrease
the initial understanding of the core processes. Thus, these nodes can
be grouped into a single collapsible node. Thus, users are provided
with a high-level overview with an option to expand this node if
they want to inspect the detailed steps involved. This is particularly
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Figure 5: Directed acyclic graph (DAG) with added annotations. The
annotations include additional information within each stage of the
pipeline.

beneficial when different stakeholders interact with the pipeline and
have varying needs for information.

5.2 Pipeline Matrix

The pipeline matrix is a grid-like visualization method where stages
of the pipeline are organized in rows and columns [23]. The rows rep-
resent different versions of an ML pipeline and might correspond to
a specific configuration, experiment, or set of hyperparameters. The
columns represent stages or distinct functions of the ML pipeline,
depending on the degree of abstraction of such visualization. More-
over, each column may contain specific details about the techniques
or parameters applied at that stage.

The matrix design provides several key benefits. The primary
advantage of a pipeline matrix is a facilitated comparison across mul-
tiple pipelines. Users can easily compare the influence of different
preprocessing methods (e.g., missing value handling or normaliza-
tion techniques) and model types on the performance metrics of the
model.

Moreover, the pipeline matrix is highly scalable with the addition
of new experiments and configurations. New columns and rows can
be added at any time without disrupting the overall structure of the
visualization. An example of a pipeline matrix is shown in Figure 7.

5.3 Side Labels with Descriptive Information

Adding side labels or comments to visualizations is an effective
method for including context or descriptive information about certain
functions or stages. Such labels can be added for two purposes: they
either provide additional explanatory information [5,27,31,35] or
highlight potential risks or issues [11,36]. An exemplary setting is
shown in Figure 8.
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Figure 6: Directed acyclic graph (DAG) with collapsible elements. The
functionality allows users to expand or collapse specific stages of the
ML pipeline for a more abstract or detailed view.

Blocks with additional information can enrich the ML pipeline.
Such descriptions can provide explanatory information about the
code blocks or particular functions and include links to external
resources such as documentation, related datasets, or code snippets.

Annotations added for notification purposes might indicate where
bias is likely to occur, which is especially relevant for training dataset
formation and feature balance. Furthermore, annotations or flags can
be added to the functions and steps with a high risk of introducing
errors, e.g., data transformation steps including merging and joining
datasets.

The labels can appear in the sidebar of the coding environment
with explanatory information about certain functions or can be imple-
mented within the pipeline visualization highlighting areas requiring
additional attention.

System 1.0
System 1.1
System 2.0
System 2.1

Figure 7: Pipeline matrix visualization of machine learning pipelines.
The rows represent different ML pipelines and their versions. The
columns correspond to individual steps or functions within each stage.
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Figure 8: Machine learning pipeline with side labels and explanatory
annotations. The visualization provides additional information on data
distribution and preprocessing and explanatory comments on each
ML stage.

6 CHALLENGES AND FUTURE RESEARCH DIRECTIONS

In this section, we discuss the limitations and challenges of current
tools and future research directions, answering research questions 3
and 4.

6.1 RAQ3: Limitations and Challenges

There were several papers which reported integration challenges
[9,11,31]. The compatibility of visualization tools is essential, mean-
ing that some tools may only be suitable for specific contexts, such
as certain types of neural network architectures (e.g., LSTM / RNN
/ CNN) or specialized tasks like genome detection. With this, the
structure and complexity of machine learning pipelines can vary sig-
nificantly. Not only the structure plays a major role, but also how the
visualization tools can be integrated into existing libraries, settings,
and use cases. The provided interfaces (e.g. AutoML, tensorflow)
also pose integration challenges. Furthermore combining various
visualization methods for different stages of the machine learning
pipeline adds another layer of complexity and further compatibility
concerns [17].

Machine learning algorithms are primarily designed for com-
putational efficiency and accuracy rather than visualization. This
inherent focus can lead to challenges in visualizing data flows effi-
ciently [20-22]. Online analysis, where visualization tools need to
keep up with rapidly changing data, can pose significant efficiency
challenges. Additionally, there may be overhead from repeatedly
executing visualization tasks [12], especially when dealing with
large datasets or deep models like recurrent neural networks that
involve complex graph structures [22].

Visual scalability is essential for ensuring clear visualization
when handling extensive datasets and complex models. However, as
data size and complexity grow, maintaining clarity becomes increas-
ingly difficult [21,23,28]. A simple example is the limitations that
may arise with color palettes, as they may not effectively adapt to



large datasets [25]. Additionally, issues with granularity can occur.
If the visualization’s granularity remains constant regardless of the
data size it can lead to difficulties in interpretation when analyzing
significant amounts of data.

Similar to visual scalability, also the overall usability is crucial
for ensuring that visualization tools are accessible and beneficial to a
wide range of users. Sources report on the challenge of simplifying
the learning process for individuals with varying levels of expertise
in machine learning and data analysis. These tools should be de-
signed to meet the needs of both experts and non-experts. However,
a limitation of current tools is that they typically offer only one view,
which is either designed for experts with extensive configurability or
non-experts at a very high level [17,31]. Additionally, incorporating
features like versioning and collaboration tools can improve usability
by allowing users to track changes and work together on visualiza-
tion tasks. However, some of the existing tools focused either on
management tasks, such as version control, and the others focused
only on visualization without the management capabilities [31].

6.2 RQ4: Future Research Directions

The topics of integration and compatibility are not only challenges
but are also relevant for future research. Efforts will be made to
increase compatibility by addressing different pipeline schemes
[9,35], such as diverse machine learning algorithms and data types.
This could involve exploring methods to generate visualizations
directly from existing, unmodified pipeline code and enhancing
interoperability with common ML frameworks [11].

Further enhancements in the ease of use could be achieved by
addressing visual scalability issues and developing real-time visu-
alization capabilities, particularly for lengthy training processes
[16,20,21]. Additionally, two-way visualizations, that allow for
interactive feedback between users and the visualization tool were
discussed [11]. Furthermore, designing views tailored for both ex-
perts and non-experts, while simplifying integration and reducing
the user learning curve, are areas of focus [17,21].

Research in the field of machine learning is increasingly shifting
towards the development of visual techniques for representing trust
in machine learning models, known as trustworthy Al [33]. An
illustrative example of this trend is the growing demand for GDPR
justifications for decisions made by machine learning models. How-
ever, achieving this goal poses significant challenges. Therefore,
there is a need to explore explainable AI methods that can provide
justifications for model decisions in compliance with such regula-
tions through explanations, which constitutes an important future
research direction [31].

These XAl methods can also be used to provide users with sug-
gestions and support in the application and analysis of machine
learning models. In addition, anomaly detection techniques are be-
ing explored within visualization tools to detect irregular patterns
in the data flow and guide the user as intelligent analytics. Finally,
an interesting direction in the use of Al is the application of natu-
ral language queries and large language models for generating and
interacting with visualizations, as for instance Flowsense [39] is
doing.

7 CONCLUSION

Due to the growing complexity of ML pipelines and their wide
deployment, ML pipeline visualization tools become a crucial part
of ML development. These tools play a critical role in assisting
with different tasks ranging from model development to monitoring
and explanation. By categorizing these tools into six main purposes
such as exploration, explanation, visual development, comparison,
monitoring, and domain-specific applications, we have outlined the
essential functions they serve while visualizing ML processes.
Furthermore, the paper discusses various integration methods,
such as standalone visual systems and library-based tools, each

offering different levels of flexibility and accessibility. Additionally,
the main visualization techniques used in these tools are described
and presented. They include Directed Acyclic Graphs (DAGs),
pipeline matrices, and annotated visualizations.

Despite the impressive advancements in ML pipeline visualiza-
tion, challenges remain, particularly in terms of tool integration
flexibility and scalability. As machine learning continues to impact
various industries, these tools will play an increasingly important
role in Al advancement and make ML development accessible to a
larger population.
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