®

Check for
updates

Automated Test Generation
Taxonomy and Tool Applications

Eduard Enoiu!®®, Nasir Mehmood Minhas®, Michael Felderer®3®,
and Wasif Afzal®

1 School of Innovation, Design, and Engineering, Milardalen University,
Vasteras, Sweden
{eduard.paul.enoiu,nasir.mehmood.minhas,wasif.afzal}@mdu.se
2 Institute of Software Technology, German Aerospace Center (DLR),
Oberpfaffenhofen, Germany
michael.felderer@dlr.de
3 Department of Mathematics and Computer Science, University of Cologne,
Cologne, Germany

Abstract. Automated test generation is an area that has seen a lot of
research and development, resulting in many test automation methods
and tools for test design. However, practitioners often face challenges in
adopting these tools. This is not only due to the immaturity of some
tools but also because of varying perspectives, confusing terminology,
and, most importantly, the lack of a clear framework to guide the selec-
tion of the most suitable approach for their needs. We propose a tax-
onomy that characterizes the methods for automated test generation.
The taxonomy was constructed using a process that involved analyzing
secondary studies on automated test generation and existing taxonomies
in the scientific literature. Direct observations and iterative refinements
were included, followed by validation through conceptual evaluation and
practitioner feedback. The resulting dimensions characterize automated
test generation and its use in software testing. The taxonomy is organized
into several dimensions: software artifact (i.e., type, notation, interfaces),
test generation (i.e., objectives, methods, and monitoring), test execu-
tion, and test oracle. We demonstrate the taxonomy’s use by applying
it to several automated test-generation tools. This paper provides the
necessary concepts and a generic process for categorizing and assessing
automated test generation approaches.

Keywords: Test automation - automated test generation - taxonomy

1 Introduction

Software testing is a crucial phase of the software development life cycle; it
ensures that the system under test meets the specified requirements and, under
different circumstances, behaves as expected. Software testing is a repetitive,

© IFIP International Federation for Information Processing 2025
Published by Springer Nature Switzerland AG 2025

H. Hojjat and G. Caltais (Eds.): FSEN 2025, LNCS 15593, pp. 27-41, 2025.
https://doi.org/10.1007/978-3-031-87054-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-87054-5_3&domain=pdf
http://orcid.org/0000-0003-2416-4205
http://orcid.org/0000-0001-8177-4355
http://orcid.org/0000-0003-3818-4442
http://orcid.org/0000-0003-0611-2655
https://doi.org/10.1007/978-3-031-87054-5_3

28 E. Enoiu et al.

complex, and time-consuming activity, especially for large-scale systems with
complex requirements [16,17]. Automated Test Case Generation (ATG) is a
solution to address the complexity and time constraints of manual testing [5].

Despite the abundance of research on different testing techniques and tools,
the results are difficult to adopt by practitioners [1]. In recent decades, software
professionals or researchers have faced problems developing effective, applicable,
and practically relevant test generation techniques and tools [6]. With so many
approaches in automated test generation, there is a risk of not assessing and
adopting these properly in practice, making it harder for practitioners to choose
and use these tools. It is difficult for practitioners to adopt these techniques and
tools, such as using different terminologies. Among many, one significant reason
is the absence of a conceptual model to help practitioners choose a method or
tool that fits their context [1].

Many software testing standards, such as ISO/IEC/IEEE 29119 [14], OMG
UML Testing Profile [7], and TTCN-3 [27], aim to provide guidelines for the use
of test techniques and test automation. However, these standards often lack the
depth required to address the wide variety of techniques employed by automated
test generation methods. For instance, ISO/IEC/IEEE 29119 has been critiqued
for its generality and inability to accommodate automated testing practices’
complexity and evolving nature fully [2]. This generality makes it challenging
to address the specific needs of various testing approaches, including automated
test generation. Similarly, the OMG UML Testing Profile and TTCN-3 have lim-
itations in adapting to the particular needs of diverse test automation techniques
[26]. Furthermore, despite the efforts to standardize software testing practices in
automated test generation [1,10,26,29], no comprehensive overview includes the
many perspectives and techniques of automated test generation. While these tax-
onomies aim to categorize and organize the different techniques, methods, and
approaches, they often focus on specific areas without providing a unified view of
automated test generation. This gap highlights the need for a broader framework
to integrate automated testing techniques’ diverse and complex landscape.

This paper provides this overview as a taxonomy, how it can be used to
categorize rather different automated test generation tools, and how to use it to
identify the right tools.

The paper is organized as follows: Sect.2 summarizes related work, Sect. 3
describes steps for creating the ATG taxonomy, and Sect.4 introduces the
generic test generation process. Section 5 details the ATG taxonomy, its appli-
cation to tools in Sect. 6, and evaluation results in Sect. 7. Discussion and limi-
tations in Sect. 8, and conclusions in Sect. 9.

2 Related Work

Various authors have proposed software testing taxonomies across different test-
ing categories, such as regression testing [1,9], automated software testing [5],
risk-based testing [10,13], and model-based testing [16,22,26,29]. Table 1 shows
a comparative summary of these taxonomies that aim to categorize and organize

Automated Test Generation 29

Table 1. Comparison of Testing Taxonomies Focused on Test Creation and Selection

‘Author(s) Testing Category Focus/Criteria |Key Contributions
Bin et al. [1] Regression Test-|Industry ~ Rele-Proposed a taxonomy for regression test-
ing vance ing.
Minhas et al. [16] Model-Based Model, Test|Categorized test case generation tech-
Testing Type, Capabili-niques, providing an inventory and docu-
ties mentation of capabilities and limitations.
Felderer et al.Security Testing Security = Prop-Developed a taxonomy to show insights
(2016) [11] erties, Coverageiinto model-based security testing.
Criteria
Felderer et al.Risk-Based Test- Risk Assessment Developed a taxonomy to understand,
(2014) [10] ing assess, and compare risk-based testing,

applied in various phases of testing.

Saeed et al. [22]

Search-Based
Techniques

Experimental
Applications

Developed a taxonomy to categorize exper-
imental applications of search-based tech-
niques.

Zander et al. [29]

Model-Based

Test Generation,

Expanded on earlier taxonomies, adding

Testing Execution, Eval-|a category for test generation tailored to

uation embedded systems.
Ramli et al. [21] |Combinatorial |Algorithmic Reviewed algorithms and tools for com-
Testing Approaches binatorial testing contributing to a struc-

tured understanding of the field.

various techniques, methods, and approaches in software testing to understand
better and apply them in practice. Table1 summarizes key taxonomies across
different categories, highlighting their focus areas and contributions.

For example, Bin et al. [1] conducted reference searches and consulted
industry experts to propose regression testing (RT) taxonomies that encom-
pass aspects of industry relevance regarding regression testing techniques. They
mapped 26 industry-relevant regression testing techniques to the proposed RT
taxonomies. By categorizing techniques based on industry relevance, the authors
aim to provide a structured framework to help practitioners select appropriate
regression testing techniques for their specific contexts. Minhas et al. [16] cat-
egorized model-based test case generation techniques based on the underlying
model used, test type, capabilities, and industry relevance. The authors aimed
to provide practitioners with an inventory of results and documentation of the
capabilities and limitations of these approaches.

Felderer et al. [11] proposed a taxonomy for model-based security testing
methods, which includes filter and evidence criteria. The authors analyzed 119
publications on model-based security testing based on these criteria, offering
insights into the current landscape. The analysis covers aspects such as secu-
rity properties, coverage criteria, and the practicality and cost-effectiveness of
such testing. In another work, Felderer et al. (2014) introduced a taxonomy of
risk-based testing, which provides a framework for understanding, categorizing,
assessing, and comparing risk-based testing approaches. The authors aligned the

30 E. Enoiu et al.

taxonomy with considering risks in all phases of the testing process and it has
been applied to selected work on risk-based testing.

Saeced et al. [22] performed a systematic literature review that included 72
experimental studies on search-based techniques (SBTs) for model-based testing
(MBT). Based on the results of the review, the authors developed a taxonomy to
categorize the current experimental applications of SBTs. Saeed et al. concluded
that this taxonomy would help researchers explore existing research efforts and
identify limitations requiring further investigation.

Zander et al. [29] expanded on the model-based testing taxonomy introduced
in Zander et al. [28], which itself built upon the taxonomy presented in Pretschner
et al. [19]. In addition to the original categories of classes model, test genera-
tion, test execution, and test evaluation outlined in Zander et al. [28], the authors
included a new category for the test generation class called “result of the gener-
ation”.

Ramli et al. [21] presented a review of algorithms and tools on combina-
torial testing proposed from 2010 to 2017. All these studies are intended to
contribute to the structured understanding of the software testing landscape.
Collectively, these works enrich the taxonomy landscape in software testing.

Although these taxonomies classify and organize various techniques, meth-
ods, and approaches in automated test generation, they focus on particular
aspects, lacking a comprehensive, unified perspective on automated test gen-
eration. Table1 shows a comparative summary of these taxonomies, demon-
strating their diverse points and the existing gap in providing one view of the
work done to categorize automated test generation and selection. This empha-
sizes the need for a more extensive taxonomy to integrate the varied landscape
of automated test generation techniques.

3 Taxonomy Development Process

The automated test generation taxonomy development followed a structured and
iterative approach, as shown in Fig. 1, inspired by the methods used in [1,15].
The process involves multiple stages, each contributing to refining the taxonomy
and ensuring its applicability to real-world automated test generation tools.

Using Secondary Studies and Personal Ezperience. The taxonomy develop-
ment process is based on the guidelines proposed by Ralph [20], using secondary
studies and personal experiences as strategies for taxonomy generation (Step 1
in Fig.1). Since we were not limited to techniques generating test data fully
automated, we focused on the only secondary study [5] on automated test gen-
eration techniques regardless of their input software artifacts. This study still
remains a good reference in automated test generation because the techniques
it categorizes are still fundamental to current practices. Their orchestrated sur-
vey of methodologies provides a broad study on automated test generation that
continues to be relevant. Based on this study, we chose to scope our focus to
the following test generation categories: structural testing, model-based testing,

Automated Test Generation 31

Secondary studies and
personal experience used
as strategy 0

Refactoring
v v |

e N\ N)
Identification of common Identification of sub- _/a||dat.|ng identified
dimensions and sub-

dimensions of atest [» dimensions of atest |- dimensions with
generation process generation process ™
ractitioners
(2) ©) p 0)

. |
Iterating ¢
4) () 4)
Conceptual evaluation by Taking inspiration from
Industry Evaluation by i instantiating the taxonomy ¢ Creating test generation existing taxonomies by
senior testing practitioners on representative test taxonomy incorporating direct
generation tools (@) observations @
\. v, /, \. J

Fig. 1. Steps to create the automated test generation taxonomy

combinatorial testing, random testing, and search-based testing. We reflected on
our own experience in automated test generation and used existing taxonomies
for model-based testing [11,26]. While there are common characteristics among
all these existing studies, we argue that these are insufficient to cover generic
aspects of automated test generation regardless of their input software artifact
and inner workings. We employed direct observation and reviewed these existing
taxonomies and our chosen secondary study [5] to collect data and take notes
on how a generic test generation process would look like (shown in Sect. 4).

Identification of Common Dimensions of Test Generation. We analyzed this
process and built the taxonomy in step 2 (in Fig. 1). We evolved the taxonomy
by reviewing existing studies (mentioned in Sect.5), identifying each dimension
common to all test generation techniques.

Identification of Sub-Dimensions of Test Generation. After identifying the com-
mon dimensions, we moved on to identifying the sub-dimensions within each
category (Step 3 in Fig. 1). For example, within a top dimension, sub-dimensions
were defined. This level of detail ensured the taxonomy could cover a wide range
of test generation techniques and provide specific categories for each.

Validating Dimensions with Practitioners. To ensure the identified dimensions
and sub-dimensions were relevant to real-world automated test generation tools,
they were validated by practitioners in the field of software testing during a
workshop with four engineers (Step 4 in Fig. 1). This validation process involved
obtaining qualitative feedback from these engineers who have experience with
automated test generation. The identified dimensions and sub-dimensions were
refactored based on practitioner feedback to address any gaps or inconsistencies.
This allowed for fine-tuning the taxonomy.

Creating the Test Generation Taxonomy. After the validation and refactoring
stages, the taxonomy for test generation was finalized for evaluation (Step 6 in

32 E. Enoiu et al.

Fig.1). The result is a categorization that captures the essential characteristics
of test generation approaches, offering a unified view of the landscape, which
can be applied to tools and methods across the field. This step involved drawing
inspiration from pre-existing taxonomies in software testing and automated test
generation (Step 5 in Fig. 1).

Conceptual Evaluation on Representative Tools. In step 7 in Fig. 1, we performed
an initial conceptual evaluation by instantiating the taxonomy on representa-
tive test generation tools covering all of the methodology categories outlined by
Anand et al. [5].

Industry FEvaluation by Senior Testing Practitioners. The final step in the pro-
cess (step 8 in Fig.1) was an industry evaluation conducted by eight testing
practitioners. This evaluation aimed to assess the practicality of the taxonomy
when choosing a test generation tool. The feedback from this evaluation was used
to further iterate on the taxonomy, ensuring it met the needs of both researchers
and practitioners.

4 A Generic Test Generation Process

Software
Artifact

Test
Objective/
Method

The process of automated test generation
aims to find suitable test cases using a
description of the test objectives that guide
towards a desirable property. These test cases
could contain parameters to start the soft-
ware, a sequence of steps and inputs and the

Test
Generation

timing when these steps should be supplied. © A
In some cases, test cases might need to con- @ v “
tain other information for a complete execu- [Tost Monitor |)

tion and evaluation of the system under test. i

In Fig. 2, a typical setting for automated test Environment
generation is identified based on the testing < o le)
process outlined by Utting et al. [26] and
extended using the methodology categories (8UT)

for automated test generation [5]. A generic [Testorade]

process of automated test generation pro-
ceeds as follows: (Step 1) A software artifact
is used or created to guide the test genera-
tion. It is either a specification of what the System-under-Test (SUT) should do
or the actual code of the SUT in different forms (e.g., source, executable code).
(Step 2) A test objective and method formally encodes the test criteria and
describes how the test generator should choose the resulting tests. This can
relate to the structure of the software artifact (e.g., code or model coverage),
random test goals, or fault-based objectives. (Step 3+4) A test suite is gen-
erated by running the software over many possible executions using a specific

Fig. 2. A Test Generation Process.

Automated Test Generation 33

method. Each method needs to monitor if the test objectives are met, which can
be achieved during test generation or just for test execution and evaluation of the
test results. This can be invasive (e.g., at code level) or non-invasive by focusing
on the available external interfaces. (Step 5) Once Steps 1 to 4 are completed, a
test suite is executed by running the software online or offline. (Step 6) The test
evaluation compares the actual outputs of the SUT with the expected outputs
provided by the oracle so that the test results are generated.

5 The Automated Test Generation Taxonomy

Automated test generation approaches can be quite different, but all of them
have common underlying dimensions that can be quite helpful when adopting
automated test generation in a certain software development project. Given the
generic test generation process shown in Fig. 2, we identified several dimensions
corresponding to these steps (i.e., Software Artifact (Step 1), Test Generation
(Steps 2, 3 and 4), Test Execution and Evaluation (Step 5 and 6)). Even though
there can be other steps in software testing used in practice, we argue that
the identified steps are most commonly conducted when using automated test
generation.

This taxonomy of automated test generation approaches has five categories
shown in Fig. 3. This gives an overview of the taxonomy where the tree leaves
indicate options that are not incompatible (for example, some approaches may
use more than one generation objectives). The initial taxonomy, which outlined
dimensions such as software artifact, test generation methods, test execution, and
evaluation, was validated by four experienced professionals in software quality
assurance and test automation with careers ranging from 3 to over 20 years in
roles such as software tester, test architect, QA coordinator, and consultant. Each
practitioner provided insights into the use of automated test generation tools
and the applicability of the taxonomy when choosing a tool. One significant
addition was the dimension Test Oracle. Practitioners emphasized the need to
clearly differentiate between the types of test objectives and test oracles. The
taxonomy was updated to provide more granularity, separating oracles from test
objectives.

5.1 Software Artifact

Creating the software artifact is reflected by the three dimensions within the
software artifact category: type, notation, and interface. These are used in the
software artifact type categorization of Pfeiffer [18] and the model-based testing
taxonomy [26]. The first dimension refers to the type of software artifact used as
input to the test generation process. Software is multidimensional and consists of
a variety of artifacts related to data (i.e., test results®, graphical user interface,
database), code (source or executable) and documentation (i.e., requirement,

! Test results refer to the data as execution logs and evaluation outcomes.

34

design and test specifications) [18]. The second dimension refers to the nota-
tion style used to describe the software artifact. Many different notations have
been used for representing the expected or the actual behavior of software arti-
facts. To differentiate between language styles [25], we group them into textual,
graphical and hybrid languages. The last dimension relates to the input-output
interfaces [26], which answers the following question: does the software artifact
specify only the test inputs (or the sequence of test inputs), or does it spec-
ify the input-output behavior of the SUT? This is an “x/y” tree leaf alternative
that indicates incompatible alternatives. For example, combinatorial test gener-
ation tools will be used to represent test inputs and do not specify the expected

E. Enoiu et al.

Software
Artifact

Data

Test Results

Graphical User Interface

Code

Documentation

Database
Executable Code

Source Code

Requirement Specifications
Design Specifications

Test Specifications
Textual Languages
Graphical Languages

Hybrid Languages

Test Inputs / Test Inputs & Test Outputs

Interfaces

Test Objective

Test
Generation /|

Test Method

Test Monitor

Test
Execution

Test Oracle

Online/Offline

Structural Coverage

Combinatorial Coverage

Requirement Coverage

Random

Fault-Based/Mutation Coverage

Random/Adaptive Random

Meta-Heuristic Search

Model Checking

Fuzzing
Symbolic Execution

Theorem Proving

Invasive

Non-Invasive

Online Test Execution

Offline Test Execution

Specified Oracle

Derived Oracle

Implicit Oracle
Human Oracle

Fig. 3. Overview of the Test Generation Taxonomy.

outputs.

Automated Test Generation 35

5.2 Test Generation

This test generation category includes three dimensions defining test objec-
tives for generating and monitoring test cases. Since it partially aligns with
test generation dimensions in model-based testing taxonomies [12,26], we use
their categorization of test objective criteria and monitors, which include struc-
tural, combinatorial, requirement, random, and fault-based /mutation coverage?.
We classify test generation methods as graph search algorithms, meta-heuristic
techniques, model checking, symbolic execution, theorem proving, and fuzzing.
The test monitor dimension evaluates whether test objectives are met, referenc-
ing model-based testing processes [26] and automated test generation needs [5].
It includes two types: invasive and non-invasive. Invasive monitoring uses instru-
mentation at code and interface levels, and non-invasive monitoring is suitable
for cases like embedded systems where invasive methods may alter behavior
and obtain coverage information via static analysis or external interfaces. For
example, code coverage data may be derived directly from source code without
altering execution.

5.3 Test Execution

The test execution dimension defines how test case generation relates to
their execution, a concept also employed in the model-based testing taxon-
omy [26]. Test execution can occur offline, where test cases are generated and
executed later, or online, where test cases are dynamically generated and exe-
cuted during runtime. Some tools, such as GraphWalker, support both modes,
showing flexibility to adapt to specific testing scenarios.

5.4 Test Oracle

The last category relates to how automated test generation tools determine
whether a given test case is acceptable. This should not be confused with the
abstract information in the requirement and design specification. An oracle
implements a specification and is used to judge the correctness of the generated
test data. We use the categorization of test oracles of Barr et al. [8] in which
the test generation tools can use specified oracles (formally specified models),
derived oracles (derived from the software artifacts or system executions, e.g.,
metamorphic testing), implicit oracles (by relying on general, implicit knowledge
to distinguish between a system’s correct and incorrect behavior), and human
oracles when a human being is checking the results of the generated test cases.
For example, metamorphic testing [24] derives oracles based on metamorphic
relations that must hold across different software executions.

2 The objectives, based on a model-based testing taxonomy [26], align with automated
test generation tools, focusing on specific criteria unlike broader classifications [4].

36 E. Enoiu et al.

6 Tool Classification via Test Generation Taxonomy

This section categorizes some typical automated test generation tools about the
automated test generation taxonomy presented before. We show the character-
istics of these tools and how the taxonomy can be used to differentiate between
different automated test generation approaches by covering all the categories of
test generation methodologies outlined in Anand et al. [5]. The results of apply-
ing the taxonomy on four tools (i.e., ACTS, Sapienz, SLDV, GraphWalker, and
Randoop) are shown in Table 2.

Table 2. Results of applying the taxonomy on automated test generation tools.

‘Dimensions /Tools ACTS Sapienz SLDV Randoop GraphWalker
Software Artifact Type Test Specifica-Source/Exec. Design Spec-[Source Code |[Requirement Speci-
tion Code ification, fication, Test Spec-
Source Code ification, Design
Specification
Software Artifact Notation Graphical, Tex-Textual Graphical, Textual Graphical
tual Textual
Software Artifact Interface Inputs Inputs & Out-Inputs Inputs Inputs & Outputs
puts
Test Generation Objective |Combinatorial |Structural Structural, | Random Structural, Require-
Requirement ment, Random
Test Generation Method |Model CheckingMeta-Heuristic |Theorem Random Graph-Based
Search Proving,

Model Check-
ing

Test Generation Monitor Non-Invasive |Invasive/Non- |Invasive Non-Invasive [Non-Invasive
Invasive
Test Ezecution Offline Offline/Online |Offline Offline Offline/Online
Test Oracle Human Implicit Specified, Implicit, Specified, Derived
Derived, Specified
Implicit,
Human
6.1 ACTS

ACTS? is a tool designed to generate test input that ensures t-way coverage
of input parameters with support for constraints. ACTS works with test spec-
ifications, focusing on input parameter combinations. The tool operates with
input-only interfaces, meaning test inputs are generated without expected out-
put specifications. Driven by the goal of combinatorial coverage, ACTS sys-
tematically explores input combinations through model-checking. It follows a
noninvasive approach for test monitoring; it does not require instrumentation or
alteration to the system under test. Tests are generated offline, requiring man-
ual or semi-automated execution, and based on the provided input combinations,
ACTS typically relies on a human oracle to validate test results.

3 https://csre.nist.gov/projects/automated-combinatorial-testing- for-software.

https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software

Automated Test Generation 37

6.2 Sapienz

Sapienz? is a test generation tool using a search-based evolutionary algorithm,

guided by a fitness function. Sapienz supports both offline and online test exe-
cution with an implicit test oracle. It can generate tests dynamically during
execution (online) or analyze tests post-execution (offline). Sapienz works with
source and binary code, specifically Android Package (APK) files. It builds its
internal model of the system through textual and graphical Ul interactions,
using both input-output interfaces to handle user actions and system responses.
For test generation, Sapienz focuses on structural coverage, ensuring that the
code paths are explored. It employs a meta-heuristic search, with invasive and
non-invasive monitoring at the Ul and method levels for coverage tracking.

6.3 SimuLink Design Verifier

Simulink Design Verifier (SLDV?) is the de-facto standard for validating and
verifying Simulink-described systems. SLDV works with Simulink and C/C++
specifications, supporting graphical and textual notations via input-output inter-
faces to ensure coverage objectives like statement coverage and requirements.
SLDV’s test generation leverages theorem-proving and model-checking with an
invasive monitoring approach that instruments models or code for coverage track-
ing. SLDV supports both offline and online execution and runs tests in environ-
ments such as X-in-the-Loop (XIL). It supports specified, derived, and implicit
oracles for validation through formal specifications, inferred properties, or sys-
tem behavior monitoring.

6.4 Randoop

Randoop® is a feedback-directed random test generation tool. It inputs a set of
programs and generates random test cases and assertions. Randoop works with
source and binary code and targets Java and .NET environments. It generates
a sequence of method calls using textual notations at the method level. It also
uses input-output interfaces, where inputs are method invocations and outputs
are system states or exceptions. Using random and structural coverage, Ran-
doop generates method call sequences through feedback-directed random test-
ing, using prior successes for future cases. Its non-invasive monitoring requires
no code instrumentation. Randoop executes tests online, dynamically generating
and running tests with oracles that detect exceptions and allow user-specified
contracts to define expected behavior.

* https://github.com/Rhapsod /sapienz.
5 https://www.mathworks.com/products/simulink- design-verifier.html.
5 https://randoop.github.io/.

https://github.com/Rhapsod/sapienz
https://github.com/Rhapsod/sapienz
https://github.com/Rhapsod/sapienz
https://github.com/Rhapsod/sapienz
https://github.com/Rhapsod/sapienz
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://randoop.github.io/
https://randoop.github.io/
https://randoop.github.io/
https://randoop.github.io/

38 E. Enoiu et al.

6.5 GraphWalker

GraphWalker” is a model-based testing tool that reads models as directed graphs
(finite state machines) and generates test paths based on user-defined generator
rules (e.g., structural, requirement, or random objectives) and stop conditions.
GraphWalker models the system using requirement, test, and design specifica-
tions, employing graphical and textual notations to depict states and transitions.
Operating with input-output interfaces, it traverses the model to define paths
representing action-state sequences. For test generation, GraphWalker focuses on
structural and requirement-based coverage. It can also produce random paths
based on the specified objective. It identifies paths through the system model
using graph traversal algorithms like A star. Its non-invasive approach requires
no system instrumentation. GraphWalker supports online and offline test exe-
cution, allowing for real-time path generation or pre-execution analysis. Test
oracles in GraphWalker include specified oracles (for predefined behaviors) and
derived oracles, inferring correct behavior based on state transitions during
execution.

7 Evaluation of the Taxonomy

The participants in this static evaluation have extensive software industry expe-
rience, with backgrounds spanning 10 to over 20 years in roles including devel-
oper, tester, and test manager, specializing in embedded systems, automated
testing, and sectors such as railway and telecommunications. Based on this
exploratory evaluation conducted by the eight testing practitioners, feedback
revealed insights into the practical application of the developed taxonomy for
selecting automated test generation tools. Several themes were identified through
thematic analysis of notes taken during the workshop, where the taxonomy was
presented, applied, and discussed. Practitioners agreed that the taxonomy offers
a structured view of various test generation tools (1), particularly highlighting
relevant characteristics like monitoring techniques, test generation objectives,
artifact type, and test oracles. These features were beneficial for understand-
ing test generation functionality and selecting tools suited to specific software
testing contexts and different project scopes. Practitioners noted that the tax-
onomy’s dimensions were broad (2), especially for categorizing tools based on
the software artifact dimension. A recurring observation was that specific terms
within the taxonomy, such as invasive/non-invasive monitoring or implicit oracle,
were challenging due to subtle differences in industry versus academic contexts
(3). Practitioners recommended more precise definitions to bridge this gap, par-
ticularly for terms with varying practical applications. The taxonomy was found
well-suited for classifying tools like Pynguin and EvoMaster (4). Practitioners
emphasized the importance of understanding specific test generation charac-
teristics, such as fault types detected, practical coverage levels, and resource
requirements (5). Expanding the taxonomy to include dimensions related to
effectiveness and cost could enhance its practical relevance.

7 https://graphwalker.github.io/.

https://graphwalker.github.io/
https://graphwalker.github.io/
https://graphwalker.github.io/
https://graphwalker.github.io/

Automated Test Generation 39

8 Discussions and Limitations

A practitioner interested in identifying a certain tool for generating test cases in a
certain project can use this taxonomy to show and compare the characteristics of
these approaches to target various application domains and testing aspects. The
results in Table 2 indicate that the provided taxonomy can be useful for choosing
between different automated test generation tools. We see a variety of ways in
which this taxonomy can be used. Depending on the individual characteristics
of a project, engineers can determine the automated test generation tool of
interest. Based on these selections, relevant attributes can be analyzed in terms
of the software artifact, test generation, test execution, and test oracle categories.
More work is needed to refine and evaluate this taxonomy by applying it to more
tools and industrial settings. The result of using this taxonomy can be enhanced
by coupling it with a measurement framework for test efficiency and effectiveness
analysis as mentioned also by the practitioners in the industrial evaluation.

Generative Al has recently been applied to test generation and augmentation
[3,23]. These tools demonstrate how LLMs can enhance automated test gener-
ation by iterative refining and creating test cases to cover previously untested
software. In our taxonomy, Generative Al-based tools would fit well under the
Test Generation Method category, with a potential new subcategory for LLM-
based approaches that leverage iterative test generation capabilities. We have not
yet included this, as it is a rather recent development requiring more established
research before proper integration.

Based on secondary studies and personal experience, the taxonomy devel-
opment may introduce bias and limit comprehensiveness. Built on a secondary
study [5], it systematically classifies current software testing methods yet risks
omitting emerging techniques. Practitioner input was gathered in two phases
to address potential bias and ensure relevance. Additionally, the taxonomy was
mapped to five test generation tools to showcase relevance, though this may not
include all relevant tools. A further limitation is that practitioners evaluated
the taxonomy statically, which may affect assessing its practical applicability; a
larger, more varied group is needed for broader validation.

9 Conclusions and Reflections

The generic test generation process and the presented taxonomy help to clarify
the main characteristics of the automated test generation area and show the
possible alternatives and directions. This information can be used to classify test
generation tools and to help testers or users of these tools understand which
approaches fit their specific needs most closely. Automated test case generation
has matured, and large-scale deployments of this technology are underway in
many industries. Given the variety of approaches available, a taxonomy like this
could be valuable for researchers and practitioners. Applying it in research and
practice may lead to ongoing validation and refinement.

40

E. Enoiu et al.

Acknowledgements. This work has received funding from the MATISSE project, an
EU-funded initiative under Horizon Europe GA no. 101056674, and support from the
SmartDelta project funded by Vinnova and the Software Center project.

References

10.

11.

12.

13.

14.

15.

16.

. bin Ali, N., et al.: On the search for industry-relevant regression testing research.

Empirical Software Engineering, pp. 1-36 (2019)

Ali, S., Yue, T.: Formalizing the iso/iec/ieee 29119 software testing standard. In:
2015 ACM/IEEE 18th International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS), pp. 396-405. IEEE (2015)

Alshahwan, N., et al.: Automated unit test improvement using large language mod-
els at meta. In: Companion Proceedings of the 32nd ACM International Conference
on the Foundations of Software Engineering, pp. 185-196 (2024)

. Ammann, P., Offutt, J.: Introduction to software testing. Cambridge University

Press (2017)

Anand, S., Burke, E.K., Chen, T.Y., Clark, J., Cohen, M.B., Grieskamp, W., Har-
man, M., Harrold, M.J., McMinn, P., Bertolino, A., et al.: An orchestrated survey
of methodologies for automated software test case generation. J. Syst. Softw. 86(8),
1978-2001 (2013)

Arcuri, A.: An experience report on applying software testing academic results in
industry: we need usable automated test generation. Empir. Softw. Eng. 23(4),
1959-1981 (2018)

Baker, P.: Model-Driven Testing: Using the UML Testing Profile. Springer, Hei-
delberg (2009)

Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem
in software testing: a survey. IEEE Trans. Software Eng. 41(5), 507-525 (2014)
Felderer, M., Fourneret, E.: A systematic classification of security regression testing
approaches. Int. J. Softw. Tools Technol. Transfer 17, 305-319 (2015)

Felderer, M., Schieferdecker, I.: A taxonomy of risk-based testing. Int. J. Softw.
Tools Technol. Transfer 16, 559-568 (2014)

Felderer, M., Zech, P., Breu, R., Biichler, M., Pretschner, A.: Model-based secu-
rity testing: a taxonomy and systematic classification. Softw. Testing Verification
Reliability 26(2), 119-148 (2016)

Fraser, G., Rojas, J.M.: Software testing. In: Handbook of Software Engineering,
pp. 123-192. Springer (2019)

Grofimann, J., Felderer, M., Viehmann, J., Schieferdecker, I.: A taxonomy to assess
and tailor risk-based testing in recent testing standards. IEEE Softw. 37(1), 40-49
(2019)

ISO/TEC/IEEE: Iso/iec/ieee international standard - software and systems engi-
neering —software testing —part 1: general concepts. ISO/IEC/IEEE 29119-
1:2022(E), pp. 1-60 (2022). https://doi.org/10.1109/IEEESTD.2022.9698145
Minhas, N.M., Borstler, J., Petersen, K.: Checklists to support decision-making in
regression testing. J. Syst. Softw. 202, 111697 (2023)

Minhas, N.M., Masood, S., Petersen, K., Nadeem, A.: A systematic mapping of
test case generation techniques using uml interaction diagrams. J. Softw. Evol.
Process 32(6), €2235 (2020)

https://doi.org/10.1109/IEEESTD.2022.9698145
https://doi.org/10.1109/IEEESTD.2022.9698145
https://doi.org/10.1109/IEEESTD.2022.9698145
https://doi.org/10.1109/IEEESTD.2022.9698145
https://doi.org/10.1109/IEEESTD.2022.9698145
https://doi.org/10.1109/IEEESTD.2022.9698145
https://doi.org/10.1109/IEEESTD.2022.9698145
https://doi.org/10.1109/IEEESTD.2022.9698145

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Automated Test Generation 41

Minhas, N.M., Petersen, K., Borstler, J., Wnuk, K.: Regression testing for large-
scale embedded software development - exploring the state of practice. Inf. Softw.
Technol. 120, 106254 (2020)

Pfeiffer, R.H.: What constitutes software? an empirical, descriptive study of arti-
facts. In: Proceedings of the 17th International Conference on Mining Software
Repositories, pp. 481-491 (2020)

Pretschner, A., Utting, M., Legeard, B.: A taxonomy of model-based testing.
Department of Computer Science, University of Waikato, Tech. Rep (2006)
Ralph, P.: Toward methodological guidelines for process theories and taxonomies
in software engineering. IEEE Trans. Software Eng. 45(7), 712-735 (2018)
Ramli, N.; Othman, R.R., Khalib, Z.I.A., Jusoh, M.: A review on recent t-way
combinatorial testing strategy. In: MATEC Web of Conferences, vol. 140, p. 01016.
EDP Sciences (2017)

Saeed, A., Ab Hamid, S.H., Mustafa, M.B.: The experimental applications of
search-based techniques for model-based testing: Taxonomy and systematic lit-
erature review. Appl. Soft Comput. 49, 1094-1117 (2016)

Schéfer, M., Nadi, S., Eghbali, A., Tip, F.: An empirical evaluation of using large
language models for automated unit test generation. IEEE Trans. Softw. Eng.
(2023)

Segura, S., Fraser, G., Sanchez, A.B., Ruiz-Cortés, A.: A survey on metamorphic
testing. IEEE Trans. Software Eng. 42(9), 805-824 (2016)

Tse, T., Pong, L.: An examination of requirements specification languages. Com-
put. J. 34(2), 143-152 (1991)

Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Testing Verification Reliability 22(5), 297-312 (2012)
Willcock, C., Deif, T., Tobies, S., Keil, S., Engler, F., Schulz, S.: An introduction
to TTCN-3. John Wiley & Sons (2011)

Zander, J., Schieferdecker, I.: Model-based testing of embedded systems exemplified
for the automotive domain. In: Behavioral modeling for embedded systems and
technologies: Applications for design and implementation, pp. 377-413. IGI Global
(2010)

Zander, J., Schieferdecker, I., Mosterman, P.J.: A taxonomy of model-based testing
for embedded systems from multiple industry domains. (2011)

	Automated Test Generation
	1 Introduction
	2 Related Work
	3 Taxonomy Development Process
	4 A Generic Test Generation Process
	5 The Automated Test Generation Taxonomy
	5.1 Software Artifact
	5.2 Test Generation
	5.3 Test Execution
	5.4 Test Oracle

	6 Tool Classification via Test Generation Taxonomy
	6.1 ACTS
	6.2 Sapienz
	6.3 SimuLink Design Verifier
	6.4 Randoop
	6.5 GraphWalker

	7 Evaluation of the Taxonomy
	8 Discussions and Limitations
	9 Conclusions and Reflections
	References

