®

Check for
updates

pyStorageLess: Leveraging Von
Neumann’s Architecture to Abstract
Storage Heterogeneity in Serverless
Applications

Sashko Ristov!®) @, Mika Hautz'®, Philipp Gritsch'®, Isabella Schmut!,
Peter Koll', and Michael Felderer!:2:3

! University of Innsbruck, Innsbruck, Austria
sashko.ristov@uibk.ac.at
2 Institute of Software Technology, German Aerospace Center (DLR), Cologne,
Germany
3 University of Cologne, Cologne, Germany

Abstract. A novel approach PYSTORAGELESS introduces storage inter-
operability for serverless functions in federated serverless infrastructures.
The serverless functions are deployed only once, and the storage can be
dynamically linked to the functions at runtime by the user through con-
trol data inputs while invoking the serverless functions. PYSTORAGELESS
uses the Von Neumann approach to abstract the function to have com-
puting resources, memory, storage, and input/output data, regardless of
the provider that hosts each part. PYSTORAGELESS splits data inputs
into value and control, allowing users to dynamically attach the storage
at runtime. With such extreme flexibility, users may distribute parts of
the function across different providers to improve performance.

Keywords: Federated clouds - FaaS - storage interoperability -
serverless

1 Introduction

Function-as-a-Service (FaaS) is a widely used serveless computing model that
allows the execution of serverless applications without maintaining the under-
lying cloud infrastructure. Recent approaches, such as federated Faas [14] and
Sky computing [18], offer more cost-effective and faster execution of serverless
applications. Various techniques exist to FaaSify a method [1,2,15] or a code
block [9] and deploy it as a serverless function across multiple providers. Despite
achieving a high level of abstraction in terms of FaaS portability, interoperability
remains a challenge. Functions are not pure computing units and are not iso-
lated [6]. The stateless nature of serverless computing necessitates storing state in
persistent storage, or functions call other managed cloud services [3]. Migrating
such non-isolated code from on-premises to the cloud or between cloud providers

© IFIP International Federation for Information Processing 2025
Published by Springer Nature Switzerland AG 2025

C. Pahl et al. (Eds.): ESOCC 2025, LNCS 15547, pp. 171-178, 2025.
https://doi.org/10.1007/978-3-031-84617-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-84617-5_14&domain=pdf
http://orcid.org/0000-0003-1996-0098
http://orcid.org/0000-0001-7091-1238
http://orcid.org/0009-0008-9435-7364
http://orcid.org/0000-0003-3818-4442
https://doi.org/10.1007/978-3-031-84617-5_14

172 S. Ristov et al.

often requires migrating the associated storage due to data locality [17], thereby
adapting the SDKs to the target storage.

Unfortunately, the existing approaches for storage interoperability lag signifi-
cantly behind solutions for function portability. For example, while the libraries,
such as Apache Libcloud or jclouds, offer a common interface for storages of
different providers, their abstraction is at the low level because developers still
need to recode the function to change the provider and redeploy the updated
function. Therefore, in this paper, we first investigate the weaknesses of the cur-
rent storage interoperability methods, which motivate our novel approach for
achieving storage interoperability at a high level of abstraction. We introduce a
publicly available storage interoperability library PYSTORAGELESS!, which we
used to develop several serverless workflows? utilizing our Abstract Function
Choreography Language (AFCL) [4,13].

2 Von Neumann’s Abstraction of the Serverless Function
in PyStorageLess

The state-of-the-art approaches include open-source libraries such as Apache
Libcloud or jclouds, or the Lithops storage API [16], which provide a single
interface for accessing storages like AWS S3 or GCP Cloud Storage. Developers
specify the driver for the respective storage, allowing for interoperable storage
access without changing the interface. Figure 1 (left) presents the semi-dynamic,
two-layered approach of Apache Libcloud. At the top layer, developers must
select the driver (provider), and at the second layer, they use developer APIs
for access and provisioning. While this approach allows developers to choose
the specific driver, they must recode and redeploy functions if they want to
change the driver. PYSTORAGELESS (Fig. 1, right), on the other side, employs
a different approach. At the top, PYSTORAGELESS abstracts all providers and
their regions, enabling developers to focus on their APIs instead of selecting
the appropriate driver first. This approach allows for the dynamic selection of
buckets from specific cloud providers at runtime without requiring recoding and
redeployment of the functions.

(/) Apache Libcloud SDK [pyStorageLess SDK
_ [I] [Developer APIs]
Developer APIs J [Dynamic Storage Selection |

[Recode and Redeploy] MJ m E]

Fig. 1. Apache Libcloud 2-layers vs. pyStorageLess dynamic 3-layers.

! https://github.com/FaaSTools/pyStorage.
2 https://github.com/AFCLWorkflows /.

https://github.com/FaaSTools/pyStorage
https://github.com/AFCLWorkflows/

pyStorageLess: Abstract Storage Heterogeneity in Serverless Applications 173

We leverage Von Neumann’s architecture to represent an abstract view of
a serverless function that persist the state, i.e., accesses an abstract persistent
storage, as depicted in Fig. 2. A serverless function comprises portable comput-
ing code that utilizes host memory, CPU, and the file system where it’s deployed.
During the deployment, the user selects the memory assigned to the function.
Cloud providers often scale CPUs accordingly; for instance, AWS Lambda can
utilize up to six CPUs when assigned the maximum allowed memory of 10 GB [8].
GCP, on the other side, allows developers to configure CPU resources of a func-
tion. The default hard drive is 512 MB, which is configurable during deployment.
We denote all these portable and re-configurable computing resources with the
gray lambda function in Fig. 2.

)—| inval - — — — — » - - - - > outVal
R)

r [
| computng | T »{outConf|
| memory FaaS
— —
7}
2
£ H

Fed. storage infrastructure

Fig. 2. Abstraction based on the Von Neumann’s architecture.

Users invoke serverless functions with a payload, which is a key-value struc-
ture in JSON. Typically, functions receive small data explicitly by value through
the payload when invoked. We denote this data port as inVal. Additionally,
users pass large data implicitly by reference to files, which is provided in the
payload. Unfortunately, existing libraries like Apache Libcloud restrict the stor-
age to the provider whose driver is hardcoded in the function code. To address
this limitation, we introduce an additional input data port inConf. Through
inConf, users implicitly configure the driver that the function uses to access
the referenced file. PYSTORAGELESS parses the given URI in the inConf and
automatically detects the required driver and the location of the target data
(e.g., files). It’s important to note that inConf is not only used for URIs for
downloading large data but also to specify the drivers and locations for large
data outputs. Based on the extracted drivers and locations, PYSTORAGELESS
uses a third data port, inRef, to access the given data by reference. This setup
allows for more flexible and dynamic management of storage resources within
serverless functions.

Once all data is placed in the file system or memory of the function, the
processing begins. After processing finishes, the small data outputs of the com-
puting are explicitly delivered to the output port outVal of the function. On

174 S. Ristov et al.

the other hand, large data outputs are first stored via the outRef data port at
the location that was received from the inConf data port. Once the large out-
put data is stored, references to the stored output data are implicitly delivered
to the output port outPort. This final step enables other functions within the
serverless application (e.g., serverless workflow) to use the data through their
inConf data port. Cloud providers often restrict direct message passing between
functions, and serverless workflows typically exchange large data through cloud
object storage to overcome this limitation [7].

3 pyStorageLess Architecture and Implementation

PYSTORAGELESS introduces an interoperable library that supports dynamic
selection of storage attachments in serverless functions through control data
inputs, as presented in Fig. 3. Developers can send bucket URL parameters as
function data inputs and dynamically choose the bucket of the specific FaaS
provider at runtime, rather than at the design phase (as in state-of-the-art
Apache Libcloud and jclouds approaches). For example, if the function is invoked
with source and destination URLs that refer to AWS S3 and GCP storages,
respectively, the function will download the input data from AWS S3 and upload
the results on GCP storage. Without any change in the function, the function
can be now invoked with source and destination URLs that refer to GCP and
AWS S3 storages, respectively, to download the input data from GCP storage
and store the results in AWS S3.

--» {"source": " "}

=] \’\ ownloa
@ « duploladd

- -» {"dest": "gs://bucket-name/key-name"}

- » {"source": "gs://bucket-name/key-name"} —_—_—

o \’Q—download

‘ : upload
-
e {idest' " S A |

Fig. 3. Dynamic storage selection through the data inputs to the function.

& <l

Moreover, developers use a single copy (source, dest) method to download
files from the bucket source to the function’s local file system, upload results
to the dest bucket, or copy from one storage to another, even across different
providers. For the latter case, developers need to create two objects of Apache
Libcloud, while PYSTORAGELESS handles copies files with a single object.

Figure 4 presents an example of a function written in Python that downloads
the file with the reference source and uploads it to a set of destinations targets.
The developer imports the PYSTORAGELESS as a library and codes the function
to load the source and destination URLs (lines 6-7). In line 11, developer uses
the copy interface to download the file from the source location. Further on, for
each given target URL, developers code the function to upload the downloaded

pyStorageLess: Abstract Storage Heterogeneity in Serverless Applications 175

file (line 14), with the same object and copy method. Note that developers
simply read values from the event (function’s payload) and pass the source and
destination to the copy method, which enables dynamic selection of the storages.

1 import json

2 from storage.pyStorage import pyStorage

3

4 def lambda_handler(event, context):

5

6 source_url = event['source ']

7 targets = event['dest ']

8

9 response = []

10 local_filename = source.split('/')[—1]
11 pyStorage.copy (source, local_filename)
12

13 for t in targets:

14 x = pyStorage.copy(local_filename , t)
15 response .append (x)

16

17 return {

18 'statusCode ': 200,

19 'body ': json.dumps(response)

20 1

Fig.4. An example of a serverless function written in Python that downloads a file
from the source and uploads it to multiple destination buckets dest. source and dest
are provided at runtime and can span across various cloud providers.

3.1 Overview of Developer APIs

Figure 5 presents the high-level overview of the PYSTORAGELESS architecture.
PYSTORAGELESS provides various APIs for dynamically attaching storage to
serverless functions. For simplicity, Fig. 5 presents two APIs only. The interface
downloadFile(srcStorage, destLocal) is used to download a file from the
srcStorage and stores the file in the local file system of the function in the
local file path destLocal. Unlike Apache Libcloud, where the developer needs
to change the driver and change and redeploy the function, PYSTORAGELESS
allows the developer to pass the input data to the srcStorage at design time and
then simply invoke the function with the URL of another provider at runtime.
With this approach, downloadFile() attaches one or multiple abstract storage
backends and dynamically selects the URIs of the files to be downloaded.

Similarly, the interface uploadFile(srcLocal, destStorage) uploads a file
from the local file path srcLocal to an abstract storage destStorage that is
attached to the function. The target storage is determined dynamically by the
input data that is passed to destStorage at runtime, using the same proce-
dure that was already explained for downloadFile(srcStorage, destLocal).
PYSTORAGELESS supports three other interfaces for an entire bucket, such as
copy-bucket (source, target), create_bucket(bucket name, region), and
delete_bucket (bucket, delete_if not_empty).

176 S. Ristov et al.

uploadFile(srcLocal, destStorage) parse(URI) Jj
downloadFile(srcStorage, destLocal) [IibloudRegion(region)} @
pyStoragelLess
SDK

@» Ges
\LJ/ downIoad_object_as_stream()} getDriver() @ ‘

Libcloud

Fig. 5. pyStorageLess overview (partial view).

PYSTORAGELESS extends Apache Libcloud with a mechanism to dynam-
ically switch between different storage backends without impacting function
execution. Figure 5 shows the main components and APIs of PYSTORAGELESS.
The PYSTORAGELESS interfaces downloadFile(srcStorage, destLocal) and
uploadFile(srcLocal, destStorage) call the parse(URI) with the respective
parameters srcStorage and destStorage. Then, parse (URI) parses the given
URI and determines the provider and its region. Since Apache Libcloud uses
a separate driver for each AWS region, while GCP has only one driver for all
regions, get_driver() is invoked with the translated Apache Libcloud region
from the method libloudRegion(region). This method takes an AWS region
label as input and returns an Apache Libcloud region label. Finally, for upload-
ing and downloading a file, PYSTORAGELESS uses the Apache Libcloud methods,
e.g., the download_object_as_stream() for downloading a file.

3.2 pyStorageLess in AFCL Workflows

The input data in the AFCL workflow json file can specify the location of input
data (AWS S3 or GCP), that is, by replacing the field <bucket> from Fig. 6 with
either AWS S3 or GCP cloud storage URI. Additionally, inside the workflow
json, one can update the respective locations of the functions that should be
invoked, either on AWS or GCP. With this approach, users can dynamically
attach storages to workflow functions each time the AFCL workflow is invoked.

"key_input": "<bucket>/input/ALL.chr22.80000.vcf.gz",
"key_columnsfile": "<bucket>/input/columns.txt",
"output_bucket": "<bucket>",

"AFR": "<bucket>/input/AFR"
"ALL": "<bucket>/input/ALL"
"AMR": “"<bucket>/input/AMR"
"EAS": "<bucket>/input/EAS"
"EUR": "<bucket>/input/EUR"
"GBR": "<bucket>/input/GBR"
"SAS": "<bucket>/input/SAS"

¥

Fig. 6. Example of the workflow input that is sent to the xAFCL serverless workflow
management system to attach the storages dynamically during runtime.

pyStorageLess: Abstract Storage Heterogeneity in Serverless Applications 177

4 Conclusion and Future Work

The contributions of PYSTORAGELESS’s approach, enabling users to manage
storage dynamically at runtime, are manifold. Firstly, it facilitates the devel-
opment of portable functions with interoperable storage, enhancing flexibility
and reducing vendor lock-in. Secondly, it expands data access capabilities with
an interoperable method, copy(source, dest), which simplifies file operations
by requiring only a single object, regardless of whether it involves downloading,
uploading, or copying files between storage providers. Thirdly, PYSTORAGELESS
allows users to deploy identical functions across both AWS and GCP, enabling
dynamic selection of storage drivers and data input/output locations. Users can
choose between AWS S3 or GCP Cloud Storage for their data inputs and outputs,
enhancing flexibility and interoperability across multiple cloud providers. Lastly,
community can utilize other serverless workflows (Montage, BWA, Genome1000,
celebrityCollage [10], etc.), whose functions are coded with PYSTORAGELESS and
allow interoperable storage in federated FaaS.

We will extend our work into several directions. First, we will introduce run-
time mechanisms in PYSTORAGELESS to dynamically select the provider of the
destination target storage by considering data locality. Second, we will develop
a multi-objective scheduler (e.g., as an extension of our FaaSt scheduler [11])
to optimize the conflicting objectives cost and performance. Third, we will con-
sider dynamic bandwidth between functions and storage, which depends on the
assigned memory to the functions [5]. Finally, we will extend our SimLess math-
ematical model [12] to reuse data from not only computing part of a function,
but also data access to storages in federated FaaS.

Acknowledgments. This work was supported by Land Tirol under the contract
F.35499 (TIM) and KDT JU (grant agreement 101140216, MATISSE).

References

1. Carvalho, L., de Aradjo., A.P.F.: Remote procedure call approach using the
Node2FaaS framework with terraform for Function as a Service. In: International
Conference on Cloud Computing and Services Science - CLOSER. SciTePress
(2020)

2. Cordingly, R., et al.: The serverless application analytics framework: enabling
design trade-off evaluation for serverless software. In: International Workshop on
Serverless Computing (WoSC 2020), pp. 67-72 (2020)

3. Eismann, S., et al.: The state of serverless applications: collection, characterization,
and community consensus. IEEE Trans. Softw. Eng. 48(10), 4152-4166 (2022)

4. Hautz, M., Ristov, S., Felderer, M.: Characterizing AFCL serverless scientific work-
flows in federated FaaS. In: International Workshop on Serverless Computing,
WoSC 2023, pp. 24-29. ACM, Bologna (2023)

5. Klimovic, A., Wang, Y., Stuedi, P., Trivedi, A., Pfefferle, J., Kozyrakis, C.: Pocket:
elastic ephemeral storage for serverless analytics. In: Symposium on Operating Sys-
tems Design and Implementation (OSDI 2018), pp. 427-444. USENIX Association,
Carlsbad (2018)

178

10.

11.

12.

13.

14.

15.

16.

17.

18.

S. Ristov et al.

Larcher, T., Gritsch, P., Nastic, S., Ristov, S.: BaaSLess: backend-as-a-service
(baas)-enabled workflows in federated serverless infrastructures. IEEE Trans.
Cloud Comput. 1-15 (2024)

Mahgoub, A., Shankar, K., Mitra, S., Klimovic, A., Chaterji, S., Bagchi, S.: SONIC:
application-aware data passing for chained serverless applications. In: Annual Tech-
nical Conference (ATC 21), pp. 285-301. USENIX Association (2021)

Mahgoub, A., Yi, E.B., Shankar, K., Elnikety, S., Chaterji, S., Bagchi, S.: ORION
and the three rights: sizing, bundling, and prewarming for serverless DAGs. In:
Symposium on Operating Systems Design and Implementation (OSDI 2022), pp.
303-320. USENIX Association, Carlsbad (2022)

Pedratscher, S., Ristov, S., Fahringer, T.: M2FaaS: transparent and fault tolerant
FaaSification of node.js monolith code blocks. Future Gener. Comput. Syst. 135,
57-71 (2022)

Ristov, S., Brandacher, S., Hautz, M., Felderer, M., Breu, R.: CODE: code once,
deploy everywhere serverless functions in federated FaaS. Futur. Gener. Comput.
Syst. 160, 442-456 (2024)

Ristov, S., Gritsch, P.: FaaSt: optimize makespan of serverless workflows in feder-
ated commercial FaaS. In: International Conference on Cluster Computing, CLUS-
TER 2022, pp. 182-194. IEEE, Heidelberg (2022)

Ristov, S., Hautz, M., Hollaus, C., Prodan, R.: SimLess: simulate serverless work-
flows and their twins and siblings in federated FaaS. In: Symposium on Cloud
Computing, SoCC 2022, pp. 323-339. ACM, San Francisco (2022)

Ristov, S., Pedratscher, S., Fahringer, T.: AFCL: an abstract function choreography
language for serverless workflow specification. Fut. Gen. Comp. Syst. 114, 368-382
(2021)

Ristov, S., Pedratscher, S., Fahringer, T.: xAFCL: run scalable function choreogra-
phies across multiple FaaS systems. IEEE Trans. Serv. Comput. 16(1), 711-723
(2023)

Ristov, S., Pedratscher, S., Wallnoefer, J., Fahringer, T.: DAF: dependency-aware
FaaSifier for node.js monolithic applications. IEEE Softw. 38(1), 48-53 (2021)
Sampé, J., Sdnchez-Artigas, M., Vernik, G., Yehekzel, 1., Garcia-Lépez, P.: Out-
sourcing data processing jobs with lithops. IEEE Trans. Cloud Comput. 11(1),
1026-1037 (2023)

Sethi, B., Addya, S.K., Bhutada, J., Ghosh, S.K.: Shipping code towards data in
an inter-region serverless environment to leverage latency. J. Supercomput. 79(10),
11585-11610 (2023)

Yang, Z., et al.: SkyPilot: an intercloud broker for sky computing. In: Sympo-
sium on Networked Systems Design and Implementation (NSDI 23), pp. 437-455.
USENIX Association, Boston (2023)

	pyStorageLess: Leveraging Von Neumann's Architecture to Abstract Storage Heterogeneity in Serverless Applications
	1 Introduction
	2 Von Neumann's Abstraction of the Serverless Function in PyStorageLess
	3 pyStorageLess Architecture and Implementation
	3.1 Overview of Developer APIs
	3.2 pyStorageLess in AFCL Workflows

	4 Conclusion and Future Work
	References

