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Abstract
Text mining techniques, particularly those leveraging machine learning for natural language
processing, have gained significant attention for qualitative data analysis in software testing.
However, their complexity and lack of transparency can pose challenges, especially in safety-
critical domains where simpler, interpretable solutions are often preferred unless accuracy
is heavily compromised. This study investigates the trade-offs between complexity, effort,
accuracy, and utility in text mining and clustering techniques, focusing on their application
for detecting functional dependencies among manual integration test cases in safety-critical
systems.Using empirical data froman industrial testingproject atALSTOMSweden,weeval-
uate various string distance methods, NCD compressors, and machine learning approaches.
The results highlight the impact of preprocessing techniques, such as tokenization, and
intrinsic factors, such as text length, on algorithm performance. Findings demonstrate how
text mining and clustering can be optimized for safety-critical contexts, offering actionable
insights for researchers and practitioners aiming to balance simplicity and effectiveness in
their testing workflows.
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1 Introduction

Software testing is a crucial activity for ensuring the quality of software-based systems. How-
ever, it is labor-intensive, particularly at the system level,where natural language requirements
are manually transformed into test cases executed by human testers (Tahvili &Hatvani, 2022;
Felderer et al., 2023).

Various Natural Language Processing (NLP) approaches have been proposed to automate
the conversion of requirements into test cases. A systematic review of 67 papers on NLP-
assisted software testing identified 38 tools (Garousi et al., 2020), but only a small fraction of
them (11%)were available for download, andmany papers (45%) provided only a superficial
exploration ofNLP aspects.Whilemachine learning (ML) and artificial intelligence (AI) have
entered software engineering, they can only support but not fully replace conventional testing,
which relies heavily on human judgment. AI is used cautiously in testing, with the potential to
combine AI-generated recommendations with human verification. However, the complexity
of certain AI solutions may impede their adoption in the industry (Lönnfalt et al., 2024).
Therefore, achieving the right balance between complexity, accuracy, effort, and utility is
essential to bridge the gap between research advancements and industrial applications. This
study focuses exclusively on test caseswritten in structured natural language templates,which
are commonly used in industrial software testing. It does not address test cases formatted
as tuples of values, structured data models, or executable test programs. Our objective is
to analyze dependencies and clustering techniques applied to these natural language test
specifications, ensuring that the proposed methods are directly applicable to real-world test
case management in software development.

Basic algorithms typically involve straightforward, interpretable techniques, such as key-
wordmatching or rule-based approaches, which rely on predefined patterns and explicit rules.
In contrast, advanced algorithms often leverage sophisticated techniques, such as machine
learning models, deep learning architectures, or ensemble methods, which can capture com-
plex patterns and relationships in data but may be harder to interpret and implement. Building
on the premise that advanced algorithms might provide better performance in dependency
detection compared to basic ones, this study explores the following research question:

RQ1 Do more complex text mining algorithms outperform basic algorithms in detecting
dependencies between test cases?

Additionally, to investigate factors that may influence the effectiveness of text mining
algorithms, we explore the following sub-research questions:

• RQ1.1 What is the impact of text tokenization on the performance of text mining algo-
rithms for dependency detection?

• RQ1.2Howdoes the length of the text influence the effectiveness of textmining algorithms
in detecting dependencies?

The sub-research questions will be addressed in this paper by conducting an industrial
case study. Themotivation for studying dependency detection arises from industrial practices,
where test engineers commonly design andwrite test cases. Functionally dependent test cases
are frequently created to test either the same function or different aspects of the same function.
As a result, these test cases often share semantic similarities or exhibit similar specifications,
making the identification of dependencies essential. Neglecting test case dependencies can
lead to redundant failures, increased manual effort, and inefficiencies (Tahvili et al., 2016b).
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Early detection helps reduce redundancy and streamline the testing process (Ansari et al.,
2016). In industrial settings, clustering test cases enables efficient selection, prioritization, and
scheduling (Tahvili, 2018), supports test automation, and aids in test suite reduction by iden-
tifying and removing redundant cases (Tahvili & Hatvani, 2022; Felderer et al., 2023). This
study applies various text analysis algorithms-categorized as distance-based, compression-
based, and neural network-based-in an industrial case study at Alstom in Sweden. The goal
is to find the optimal trade-off between complexity, accuracy, and effort to reduce time, cost,
and resources while maintaining high testing quality.

2 Background & related work

Understanding the similarities and dependencies between test cases is critical for improving
test execution efficiency, reducing costs, and optimizing resources (Arlt et al., 2015; Feldt et
al., 2016b; Tahvili et al., 2016b, 2019b, 2016a; Landin et al., 2020a). These insights enable
more effective test case selection, prioritization, scheduling, and parallel execution. In indus-
trial settings, large test suites often include functionally dependent test cases, designed to test
the same function or its different aspects. Clustering and classifying such test cases based on
their dependencies canmitigate redundant test failures and improve testing processes (Landin
et al., 2020b). This study aims to advance test optimization by clustering test cases based
on dependencies, improving upon earlier approaches (Tahvili et al., 2019a), utilizing ground
truth data for supervised learning, and applying novel text analysis methodologies. To evalu-
ate and compare text analysis techniques with varying complexity levels, the study employs
distance-based, compression-based, and neural network-based methods. Simpler algorithms
use distance matrices for similarity detection, while more complex methods involve lexical-
semantic analysis or neural network models. Finding the right balance between complexity,
accuracy, and effort is challenging, particularly for integration test cases with substantial
interaction between software modules. The algorithms convert text specifications into dis-
tance metrics or vectors, which are subsequently used for clustering. Visualization of test
case similarities helps identify redundant tests, streamline test repositories, and inform deci-
sions to optimize cost, time, and resources (Neto et al., 2018; Tahvili et al., 2019a). Natural
language processing has become a cornerstone in software testing, addressing challenges
across multiple dimensions (Garousi et al., 2020; Roy et al., 2014; Chen et al., 2016). For
example, Fischbach et al. (2020) utilized dependency parsing to generate test cases from
acceptance criteria, while Tahvili et al. (2020) applied latent semantic analysis to classify
integration test cases as dependent or independent. Beniwal et al. (2021) explored opinion
mining for user acceptance testing, and Sutar et al. (2020) selected regression test cases based
on semantic similarity measures. Similarly, Malik et al. (2020) automated test oracle gener-
ation using regex patterns and string distance functions, while Lin et al. (2019) transferred
test cases between apps based onWord2Vec similarity. Greiler et al. (2012) proposed mining
test connections between high- and low-level tests using shared word counts. Other works
explored test case prioritization using topic models (Thomas et al., 2014), diversity measure-
ment (Shi et al., 2016; Feldt et al., 2016b), and clustering unit test cases using normalized
compression distance (Feldt et al., 2008a).

Table 1 categorizes the input, characteristics, and output of the text analysis algorithms
used in this study. These algorithmsgenerate either distancemetrics or vectors, often requiring
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Table 1 Categories and key characteristics of text analysis algorithms

Algorithm Category Main Characteristics
Input
Output

Distance-based Provides deterministic predictions based on token or q-gram

Tokenized/Non-tokenized text counting, making results explainable and interpretable. Typically

Distance matrix very fast in execution.

Compression-based Produces deterministic predictions but is harder to interpret as

Tokenized/Non-tokenized text similarities are not based on simple token counts. Typically fast but

Distance matrix less explainable to humans.

Neural network-based Stochastic due to random seeds, meaning performance depends on

Non-tokenized text training data and hyperparameter selection. Models are complex and

High-dimensional vectors opaque, reducing predictability and explainability.

post-processing to derive metrics for clustering. Additionally, the impact of test specification
size on algorithm performance is analyzed by segmenting longer text strings into smaller
fragments, enabling sensitivity assessment. By advancing clustering and dependency detec-
tion techniques, this study contributes actionable insights for optimizing software testing and
balancing the trade-offs between complexity, accuracy, and resource allocation in industrial
contexts.

An example of amanual test case is provided inTable 2,where any type of test specification
from the table can serve as input to the proposed solution. This table illustrates the raw data
that forms the foundation for our approach, highlighting the diverse formats and structures
of test specifications. These specifications, whether they are detailed procedural steps, high-
level requirements, or descriptive scenarios, are processed and analyzed by the proposed
solution to detect functional dependencies and optimize clustering. By leveraging this input
data, the solution demonstrates its applicability across various types of test specifications,
ensuring its relevance to industrial testing practices.

3 The proposed solution

This section introduces a framework for categorizing manual integration test specifications
into clusters, primarily aimed at supporting various test optimization objectives.However, this
study specifically examines dependency detection on manual integration test cases. Rather
than presenting the methodology itself as a standalone contribution, we use it as a structured
process to apply and evaluate various text mining and clustering techniques for dependency
detection. The core contributions of this work lie in the defined research questions and
their empirical investigation. The proposed approach consists of two mandatory steps and
three optional steps, as shown in Fig. 1, where the optional steps are represented by dashed
boxes. The input comprises manual test cases written in natural text, typically derived from
requirements specifications by testers and test engineers. The specifics of each step are
outlined as follows:
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Table 2 Example of a test case specification designed at Alstom

Attribute Details

Test case name: Auxiliary Compressor Control

Date: 2020-03-20

Test case ID: 3EST001845-2032 - RCM (v.1)

Test level(s): Sw/Hw Integration

Comments: None

Test Configuration Details

TCMS baseline TCMS 1.2.3.0

Test rig VCS Release 1.16.5

VCS Platform VCS Platform 3.24.0

Requirements Details

Requirement 1 SRS-BHH-Line Voltage 1707

Requirement 2 SRS-BHH-Speed 2051

Tester ID BR-1211

Initial State Details

Initial State No active cab

Test Steps Action and Expected Reaction

Step 1 Lock and set Auxiliary reservoir pressure < 5.5 bar.

Reaction: Signal Command auxiliary compressor.

Step 2 Activate cab A2 lock and set signal braking mode from ATP to 109.

Reaction: Signal braking mode to IDU is set to 109.

Step 3 Lock and set Auxiliary reservoir pressure > 5.5 bar.

Reaction: Signal Auxiliary compressor is running to IDU is set to FALSE.

Step 4 Wait 20 seconds.

Reaction: None.

Step 5 Reset dynamic brake in the train for 5 seconds.

Reaction: IDU in B1 car is set to On.

Step 6 Set Auxiliary reservoir pressure < 5.5 bar.

Reaction: Signal Auxiliary compressor is running to IDU is set to FALSE.

Step 7 Clean up.

Reaction: None.

Input: the input to the proposed solution in Fig. 1 is a set of manual test cases written using
structured natural language templates, an example of which is presented in Table 2.

Step 1: Data Preprocessing: this step, while optional, can significantly enhance the perfor-
mance of the proposed solution by removing redundant or irrelevant information from the
test specifications. Whether this step is necessary depends on the quality of the input data.
For example, if test cases contain inconsistent formatting, excessive noise, or unnecessary
details, data preprocessing ensures cleaner textual input. However, if the test specifications
are already in a structured format, this step may be skipped to preserve original textual char-
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Fig. 1 Overview of the input, process, and output of the proposed solution

acteristics. The decision to apply preprocessing is data-driven, ensuring minimal impact on
the overall approach (Table 3).
Step 2: Derive DistanceMatrices Using TextMining Techniques:manual test cases, being
in textual form, can benefit from various text mining methods for dependency detection. In
this study, the methods presented in Tables 4, 5, and 6 have been utilized. To ensure general
applicability, a range of text mining techniques has been considered, ranging from traditional
edit distances to machine learning-based embedding techniques. This selection allows for a
systematic evaluation of how different approaches impact dependency detection.
Step 2′: Dimensionality Reduction: depending on the chosen text mining method in Step 2,
we may obtain a large set of high-dimensional data points. Utilizing dimensionality reduc-
tion techniques like principal component analysis (PCA) or t-distributed stochastic neighbor
embedding (t-SNE) can enhance the efficiency of handling these vectors. However, for other
text mining techniques suggested (e.g., edit distance), this step may not be necessary.
Step 3: SplittingDistanceMatrices intoClusters: in this step, all test cases are grouped into
clusters, which are then categorized as either dependent or independent using the clustering
algorithms listed in Table 7. Rather than applying all clustering algorithms to all distance
metrics in a brute-force manner, this step adopts a systematic evaluation to identify the
most effective combinations for dependency detection. Each clustering approach is carefully
selected based on its compatibility with the specific text representation, ensuring meaningful
and interpretable results. The effectiveness of these combinations is demonstrated through
experimental validation (see Sections 8.3 and 8.4).
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Step 3′: Data Visualization: this step aids in presenting an easily understandable overview
of the clustered test cases, highlighting valuable information, trends, and outliers for testers.
Early visualization of results is crucial for optimizing the testing process. We propose
employing data visualization techniques compatiblewith the suggested clustering algorithms.
However, this step is also optional.
Output: Industrial Applications: themethodology illustrated in Fig. 1 serves as a structured
framework for applying text mining techniques to support dependency detection. However,
this work does not claim the methodology itself as a core contribution. Instead, the main
contribution lies in the experimental evaluation of different text mining and clustering tech-
niques for their effectiveness in identifying test case dependencies. While the methodology
has been applied here specifically for detecting dependencies among manual integration test
cases, it can be extended to support a range of test optimization objectives:

i. Test case selection, prioritization, and scheduling: selecting clusters of test cases for
execution and ranking them according to their dependencies and similarities.

ii. Test suite minimization: removing redundant test cases from each cluster by analyzing
their relationships with other cases, thereby streamlining the test suite.

iii. Parallel test execution: scheduling test cases for parallel execution based on their
clustering. For instance, clusters of similar or dependent test cases can be executed
sequentially in one test station, while other clusters are executed in parallel on different
stations (Landin et al., 2020b; Tahvili, 2018; Tahvili et al., 2018b).

iv. Test data visualization: providing insights into test suite structure and dependencies
through visual representations of clusters, aiding in identifying inefficiencies or gaps in
test coverage (Tahvili & Hatvani, 2022).

v. Customizable test workflows: enabling teams to design tailored workflows based on
clustered dependencies, such as targeted retesting or automated fault isolation (Makki
et al., 2018).

4 Text mining techniques for information extraction

As stated earlier, the primary objective of this study is to evaluate the effectiveness of three
categories of textmining algorithmsdistance-based, compression-based, andneural network-
based in detecting dependencies among manual integration test cases within safety-critical
systems. Using a ground truth of functional dependencies (Tahvili et al., 2018a, 2019b),
an industrial case study at Alstom evaluates selected algorithms from each category. These
algorithms process key textual information from test artifacts, including input, output, test
sequences, and execution logs, to effectively identify and cluster dependent test cases.

4.1 Data preprocessing

Data preprocessing is a critical step in datamining and significantly enhances the performance
of supervised machine learning algorithms. Industrial-scale datasets often contain challenges
such asmissing values, out-of-range data, and inconsistencies, which, if not properly handled,
can lead to inaccurate or unreliable results. Common preprocessing techniques include data
cleaning, integration, transformation, and reduction (Kotsiantis et al., 2006). The selection
of appropriate techniques depends on factors such as data quality, size, format, and specific
application requirements. In software testing, manual test specifications are often stored in
diverse formats, including rich text documents and spreadsheets. These formatsmay introduce
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Table 3 The tokenized version of the test case presented in Table 2.

no active cab lock and set auxiliary reservoir pressure 5.5 bar signal command auxiliary compressor activate

cab a2 lock and set signal braking mode from atp to 109 signal braking mode to idu is set to 109 lock and

set auxiliary reservoir pressure 5.5 bar signal auxiliary compressor is running to idu is set to false wait 20

seconds reset dynamic brake in the train for 5 seconds idu in b1 car as on set auxiliary reservoir pressure

5.5 bar signal auxiliary compressor is running to idu is set to false clean up

issues such asmisspellings, ambiguities, and inconsistencies, requiring careful preprocessing
to ensure accuracy and consistency in subsequent analyses. One essential preprocessing step
is tokenization, which plays a fundamental role in structuring textual data for analysis.

Definition 1 Tokens are meaningful segments of a text, which can be individual words or
larger units like word sequences, paragraphs, sentences, or lines, used for text analysis (Man-
ning et al., 2008).

Tokenization involves splitting text into meaningful units called tokens, often including
steps like removing punctuation and converting text to lowercase (Welbers et al., 2017). It
plays a crucial role in modern natural language processing, enabling models to analyze word
sequences, understand context, and interpret textual meaning (Mohan, 2015). However, the
impact of tokenization on text clustering and similarity computations varies depending on
the dataset and methodology used. While Fig. 2 provides an illustrative example, further
analysis across multiple datasets is necessary to fully understand its broader implications.

As shown in Fig. 2, the original and tokenized text share 67.9% of their content, with
32.1% comprising minor changes in capitalization and word spacing. However, this example
is not meant to generalize tokenization effects across all cases. The influence of tokenization
on clustering and similarity measures depends on various factors, including text structure,

Fig. 2 Comparison of the original and tokenized versions of the test case from Tables 2 and 3, using the
Levenshtein distance
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preprocessing choices, and algorithmic sensitivity. Future work should systematically exam-
ine these aspects using diverse datasets to derive more generalizable conclusions.

4.2 String distances

This study explores various distance functions commonly used for approximate stringmatch-
ing, such as Levenshtein, Jaccard, and Hamming. These functions assess the similarity
between text pairs within test artifacts. Different research efforts (de Oliveira Neto et al.,
2018, 2016; Feldt et al., 2008b; Noor & Hemmati, 2015; Ledru et al., 2012) analyze the
trade-offs among these functions in tasks like test selection prioritization and test suite min-
imization. The choice of the most suitable function depends on the specific context. For
example, functions such as Levenshtein often excel in detecting subtle faults due to their

Table 4 Details of the string distance algorithms used in this study

Algorithm Category & Definition Characteristics

Cosine Token-based. Measures the cosine of
the angle between two non-zero fea-
ture vectors.

Commonly used for document simi-
larity based on subject matter (Sing-
hal, 2001). Less effective in low-
dimensional spaces (Ye, 2015).

Jaccard Token-based. Computes similarity
based on the intersection between two
sets of q-grams.

Efficient for large texts when com-
bined with other techniques (Miranda
et al., 2018). Sensitivity varieswith the
choice of q (Navarro et al., 2005).

Jaro Edit-based.Measures similarity based
on common characters and their trans-
positions, using a prefix scale p (here,
p = 0).

Well-suited for shorter strings and
names (Cohen et al., 2003). Enhances
string matching when combined with
TF-IDF (Cohen et al., 2003).

Levenshtein Edit-based. Computes the minimum
number of insertions, deletions, or
substitutions to transform one string
into another.

Effective for detecting similarities in
text artifacts (de Oliveira Neto et al.,
2018). Computationally expensive for
long strings.

Overlap Coefficient String-matching. Measures the over-
lap between two sets, similar to Jac-
card similarity.

Commonly used in distribution com-
parisons; has favorable mathematical
properties. Less frequent in string dis-
tance applications.

q-gram Token-based. Computes similarity by
summing the absolute differences
between substrings of length q.

Faster than edit distance methods;
runs in linear time (Navarro et al.,
2005). Highly sensitive to the choice
of q (Sidorov et al., 2013).

Ratcliff-Obershelp String-matching. Measures similar-
ity based on matching character
sequences relative to total string
length (Black, 2004).

Provides a confidence percentage to
indicate similarity.

Sorensen-Dice Coefficient String-matching. Measures spatial
overlap between segmentations A and
B (Prescott et al., 2009).

Sensitive in heterogeneous datasets;
reduces the impact of outliers (Zou et
al., 2004). Counts true positives only
once in calculations (Dalirsefat et al.,
2009).
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sensitivity to small changes in string patterns (de Oliveira Neto et al., 2018), whereas Jaccard
or token-based measures may be more effective in reducing the number of redundant tests by
focusing on structural or semantic overlaps between test artifacts (Noor & Hemmati, 2015).
While fault detection benefits from functions sensitive to small textual variations, test reduc-
tion relies more on measures that emphasize broader similarities or dissimilarities, such as
token overlap. Understanding the advantages and limitations of each function is crucial for
practitioners to make informed decisions that align with specific testing goals. To this end,
string distance measures can be categorized into two groups: edit distance, which quantifies
minimal operations to transform one string into another, and token-based distance, which
counts common tokens between strings. Edit distance measures assess dissimilarity based
on the minimum number of operations required for transformation (Ledru et al., 2012), mak-
ing them suitable for detecting subtle variations. In contrast, token-based distances focus on
structural similarity, often prioritizing efficiency in clustering and test minimization tasks.

The Levenshtein distance, commonly known as edit distance, finds extensive application
in spell checkers, DNA sequencing, and comparing test inputs and sequences. Other variants
of edit distance, like Jaro distance, prioritize matching strings from the beginning. Token-
based distances, such as the Jaccard index and cosine distance, quantify the similarity based
on similar substrings of length q between two strings. These metrics are utilized in diversity-
based testing to identify diverse test subsets revealing various faults. However, token-based
techniques can be computationally intensive due to the creation of q-grams and pairwise
similarity comparisons. Alternative approaches like Shingling and Minhashing have been
proposed to enhance efficiency by comparing entire test suites. Table 4 provides a summary,
including examples and distinctions between each string distance measure. It’s important to
note that most string distance measures are limited to lexicographical similarity and may
not capture semantic similarity unless complemented with NLP techniques. Additionally,
these measures are suitable only for textual data, whereas numerical data may require other
distance measures such as Euclidean or Manhattan distance.

4.3 Normalized Compression Distance (NCD)

NCD approximates the information distance based on the lengths of compressed entities
x and y. This approach evaluates the similarity between entities by compressing x and y
separately using a compression algorithm C and comparing their lengths to the compression
of their concatenation (Cilibrasi & Vitányi, 2005).

NCD(x, y) = C(xy) − min{C(x),C(y)}
max{C(x),C(y)} (1)

Moreover, NCD finds application across various domains, including software testing, where
recent evidence suggests its effectiveness in black-box test prioritization (Miranda et al.,
2018). However, its computational cost can render it impractical for large test suites. To
address this, Feldt et al. (2016a) propose adapting NCD for multisets instead of pairwise
comparison. Additionally, the choice of compressor C can significantly influence distance
values, impacting parameters like throughput, compression, decompression speed, andmem-
ory usage. Different compressors have been compared across diverse domains, such as image
processing and genome data sequencing. Table 5 provides a summary of various compres-
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Table 5 Details of the lossless compressors C used in this study

Compressor Definition Characteristics

bzip2 Converts frequent sequences of characters
into repeated letter strings.

Achieves high compression ratios but has
slow performance due to multiple stacked
compression techniques.

DEFLATE ALempel-Ziv algorithmcombinedwithHuff-
man coding (Deutsch, 1996), compressing
data using encoded literals and matching
strings found in the preceding uncompressed
data.

Effectively finds and encodes text redun-
dancy. Available in many programming lan-
guages but has slower performance compared
to the Lempel-Ziv family (e.g., LZ4).

gzip Based on the DEFLATE algorithm, which
combines LZ77 and Huffman coding.

Requires significant CPU resources for com-
pression, making it a time-consuming pro-
cess.

XZ A Lempel-Ziv algorithm using a Markov
chain-based prediction model (LZMA) to
estimate probabilities for each bit.

Achieves higher compression ratios than gzip
and bzip2 but has slower compression speeds.

Zlib An abstraction of the DEFLATE algorithm
used in gzip file compression.

Can compress and decompress data of any
length. Requires parallel processing or CPU-
level optimization for efficiency.

Zstd Provides compression ratios comparable to
DEFLATE.

Uses long-range search and deduplication
similar to zip/gzip. Less flexible for small
datasets.

sors used with NCD, highlighting their trade-offs. Compression rates and speeds are based
on large text benchmarks as reported by Mahoney (2023), and the evaluation in this work
builds upon these benchmarks with additional comparative analysis. Additionally, we assess
NCD’s effectiveness compared to other textual similarity measures, incorporating insights
from both prior studies and our independent evaluations.

4.4 Machine learning approaches

To overcome the limitations of basic text similarity approaches, which struggle to capture
word context (Wang & Kuo, 2020) and semantic meaning (Ledru et al., 2012), advanced
techniques such as Doc2Vec and BERT have been developed (Devlin et al., 2019; Le &
Mikolov, 2014). These methods transform textual content into numerical vector representa-
tions, enabling a more effective analysis of semantic and contextual relationships within the
text. Doc2Vec, also known as Paragraph Vector, generates vector representations for entire
documents by encoding both paragraph-level context andword-level information. This allows
for a higher-level analysis of textual semantics, making it effective for detecting dependencies
and similarities in textual data (Le &Mikolov, 2014). Although Doc2Vec is computationally
demanding, it remains a practical choice for clustering test artifactswhen appropriately tuned.
BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019) is
a deep neural network designed for language modeling and understanding complex seman-
tics. By pre-training on large datasets and fine-tuning for specific tasks, BERT captures
nuanced relationships between words and sentences. Due to its high computational cost,
we use SBERT (Sentence BERT), an optimized variant that maintains high accuracy while
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Table 6 Details of the Machine Learning approaches used for textual analysis

Algorithm Description Characteristics

Doc2Vec Represents words and corresponding para-
graphs as feature vectors to capture semantic
relationships.

Provides a good balance between capturing
sentence semantics and computational effi-
ciency (Le & Mikolov, 2014). Performs well
for test artifacts (Tahvili et al., 2019a) but is
less efficient than simpler approaches (e.g.,
string distances) and requires parameter tun-
ing (Le & Mikolov, 2014).

SBERT A deep neural network trained for language
inference and understanding tasks, capturing
relationships at bothword and sentence levels.

Achieves state-of-the-art performance on
multiple benchmarks (Devlin et al., 2019).
However, SBERT requires significantly
more computational time than simpler
approaches, limiting its efficiency for clus-
tering tasks (Devlin et al., 2019; Reimers &
Gurevych, 2019).

significantly reducing computational requirements (Reimers & Gurevych, 2019). This study
evaluates the effectiveness of these advanced techniques in clustering test artifacts and detect-
ing functional dependencies, comparing them with simpler methods such as string distances
and generic approaches like NCD. The comparison highlights trade-offs between computa-
tional efficiency, semantic richness, and applicability to large-scale industrial datasets. Table 6
summarizes Doc2Vec and SBERT, outlining their differences in computational efficiency,
semantic depth, and practical usability. The evaluation includes a comparative analysis of
their performance in clustering and dependency detection tasks, providing insights into their
suitability for various textual similarity measures.

5 Clustering analysis

This section elaborates on the clustering algorithms utilized in the study, along with the
method applied for data visualization. Clustering algorithms are commonly employed to
identify groups of similar objects in multivariate datasets (Xu &Wunsch, 2005). These algo-
rithms often rely on similarity (or dissimilarity) measures between data points (Xu & Tian,
2015). While similarity is appropriate for qualitative data features, dissimilarity (distance) is
preferred for quantitative data features to identify relationships between data points (Xu &
Tian, 2015; Xu & Wunsch, 2005). The clustering algorithms used in this study are summa-
rized in Table 7.
Graph-based: This algorithm does not require prior assumptions about the number, size,
density, or shape of clusters, making it adaptable to various data structures (Blondel et al.,
2008).
Density-based: This method defines clusters as contiguous regions of high point density,
separated by areas of lower density (Sander, 2010).
Hierarchical-based: This approach constructs a cluster tree, where each group is linked to
two or more subgroups, allowing for multi-level cluster representation (Cohen-addad et al.,
2019).
Partition-based: This method divides a dataset into disjoint clusters, ensuring that each data
point belongs to exactly one cluster (Mann & Chawla, 2020).
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Table 7 Details of the clustering algorithms used in this study

Algorithm Category & Description Characteristics

Affinity Partition-based clustering algorithm that iden-
tifies “exemplars” as representative members
of clusters based on similarity metrics (Frey
& Dueck, 2007).

Efficient for small datasets and directly pro-
vides exemplars as cluster centers. However,
it can converge to suboptimal solutions, espe-
cially for large similarity matrices (Brusco et
al., 2017).

Agglomerative Hierarchical clustering technique where each
observation starts in its own cluster, and pairs
of clusters are iteratively merged up the hier-
archy (Frigui & Krishnapuram, 1997).

Does not require a predefined number of
clusters. However, it has high time com-
plexity, making it less efficient for large
datasets (Visalakshi et al., 2016).

DBSCAN Density-based clustering method that groups
closely packed points while marking low-
density regions as outliers (Ester et al., 1996).

Effectively handles outliers and does not
require specifying the number of clusters.
However, it struggles with datasets of varying
densities and high-dimensional data (Dang,
2015).

HDBSCAN An extension of DBSCAN that extracts flat
clustering based on cluster stability across
multiple density levels (McInnes & Healy,
2017).

Suitable for high-dimensional data and
datasets with varying densities. However, it
is sensitive to hyperparameter choices and
may not perform well with overlapping clus-
ters (Guan et al., 2006).

Spectral Graph-based clustering algorithm that utilizes
the spectrum of a similarity matrix for dimen-
sionality reduction before clustering (Kempe
& McSherry, 2004).

Does not assume specific cluster shapes.
However, its performance depends on the
choice of initial centroids and similarity mea-
sures (Kannan et al., 2004).

These algorithms represent a diverse range of clustering techniques, each offering distinct
advantages and trade-offs for grouping test cases based on textual similarity. Given the
variety of clustering methods available, we selected those frequently used in NLP research
and relevant to the objectives of this study.

6 Data visualization & dimensionality reduction

A large set of measured variables can significantly increase the computational load for data
processing (Kaski & Peltonen, 2011). Additionally, data visualization is a crucial component
of exploratory data analysis, often requiring dimensionality reduction to effectively interpret
patterns (Kaski & Peltonen, 2011). Dimensionality reduction involves decreasing the number

Table 8 Details of dimensionality reduction and visualization techniques

Algorithm Description Characteristics

UMAP Utilizes an exponential probability distri-
bution in high-dimensional space rather
than strictly relying on Euclidean dis-
tances.

Does not normalize probabilities in either high
or low-dimensional spaces. Susceptible to small
data changes and requires careful parameter tun-
ing (Espadoto et al., 2020).

MDS Reduces stress between optimally scaled
data and distances by identifying a new
configuration of points.

Uses fewer data points to represent the entire
dataset. However, it introduces subjectivity, as
modeling tabular data into a multidimensional
scale requires decision-making (Bergener et al.,
1976).
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of input variables (the feature set dimension) in a dataset (Blum et al., 2013). Traditional
techniques, such as eliminating low-variance columns and highly correlated features, help
remove redundant information and improve computational efficiency (van der Maaten et
al., 2008). Table 8 summarizes the advantages and limitations of different dimensionality
reduction and data visualization techniques.

In this study, dimensionality reduction plays a key role in analyzing the effects of text
tokenization (RQ1.1) and text length (RQ1.2) on text mining algorithms. Visualizing clus-
tering structures helps us better understand how different textual representations influence
dependency detection. Specifically, these techniques allow us to observe how various clus-
tering algorithms handle tokenized versus non-tokenized text and how text length variations
impact the organization of test cases. This enhances the validation of our research questions
by providing an additional perspective on the clustering results. Given the large industrial
dataset analyzed in this study, we employed two well-established techniques capable of both
dimensionality reduction and data visualization: Manifold Approximation and Projection
(UMAP) andMultidimensional Scaling (MDS). While the results from UMAP are presented
later in this study, the MDS results can be found in the appendix1.

7 Empirical evaluation

To assess the trade-off between performance and effort in text mining and clustering tech-
niques, an industrial case study was conducted at Alstom in Sweden, following the guidelines
of Runeson and Höst (2008). Alstom employs both manual and automated testing, with man-
ual integration testing being the predominant approach. This study focused on integration
test cases from the ongoing BR490 project, aiming to optimize testing processes by identi-
fying functional dependencies. These dependencies were previously determined through an
analysis of internal signal communications between software modules (Tahvili et al., 2018a).
However, since such data is not always available, test cases often serve as the primary data
source in testing projects. The text mining techniques described in Section 3 were applied
to identify similarities and semantic relationships between test cases. Given that complex
algorithms may require additional data and computational effort, selecting appropriate meth-
ods is crucial for optimization. The empirical evaluation specifically addresses RQ1.1 and
RQ1.2, analyzing the impact of text tokenization and text length on the performance of text
mining algorithms.

7.1 The ground truth

Functional dependencies between test cases are defined by the transfer of internal signals
between software modules. If a signal flows from one module to another, the modules are
considered dependent, and this dependency extends to their associated requirements and test
cases. Figure 3 illustrates the traceability graph within the Train Control Management Sys-
tem (TCMS) platform, analyzed in the BR490 project. The dependency data in this study is
extracted from system-level artifacts such as internal signal transfers, module interactions,
and requirement traceability; however, such structured data is often unavailable in industrial
settings and requires cross-department collaboration. To address this, we propose an alterna-
tive text analysis and NLP-based approach that leverages readily available test specifications.

1 Additional figures in the appendix can be downloaded from https://github.com/leohatvani/Comparative-
Analysis-Functional-Dependency
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Fig. 3 Traceability and functional dependencies among modules, requirements, and test cases, with arrows
indicating signal transfer, requirement-to-module traceability, and parameter-setting relationships

While companieswith structured dependency data (as in our ground truth)may not need addi-
tional methods, our approach offers a practical solution for handling incomplete or missing
information, helping test teams cluster test cases effectively and streamline prioritization and
execution.

Dashed blue arrows in Fig. 3 represent signal transfers between modules, highlighting
internal communications and dependencies. Dotted red arrows depict requirement-to-module
traceability, representing the linkage between high-level requirements and software compo-
nents that implement them. Solid black arrows indicate parameter-setting relationships,where
a test case influences a requirement by setting its parameters or conditions.

It is important to clarify that dependencies between modules are directional (i.e., asym-
metric). If Module1 sends signals to Module3, then Module3 depends on Module1 because
it receives an internal signal transfer. However, this dependency is one-way, meaning that
Module1 is not necessarily dependent on Module3 in return. Since Module3 depends
on Module1, all requirements associated with Module3 also depend on the requirements
associated with Module1. In Fig. 3, Requirement3 depends on Requirement1 because its
implementation is influenced by signals originating from Module1. Consequently, all test
cases verifying Requirement3 (i.e., Test Case5 and Test Case6) are dependent on those ver-
ifying Requirement1 (i.e., Test Case1 and Test Case2). Using this information as a ground
truth can help the testing team gain a better overview of the testing process. By identify-
ing functional dependencies, testers can rank requirements for verification and prioritize
test cases for execution. Dependencies significantly impact test execution, particularly when
redundant or dependent test cases are executed sequentially. If a dependent test case fails,
others relying on it may also fail (Tahvili et al., 2018a). Detecting these dependencies is
crucial for optimizing execution order and reducing redundancy. Test cases are often struc-
tured as a directed graph, where independent cases should ideally precede dependent ones to
enhance testing efficiency. The relationships in Fig. 3 are based on ground truth established in
prior research (Tahvili et al., 2018a), offering a clear visualization of dependencies within the
TCMS platform. This structured approach aids in effective test prioritization, ensuring that
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critical requirements and test cases receive the necessary focus. Further details and figures
related to the ground truth utilized in this study are available in the appendix.2

7.2 Unit of analysis and procedure

The units of analysis in this case study are 1, 748 manually designed integration test cases
for a safety-critical train control subsystem at Alstom. The study follows these steps:

• The BR490 project is selected as the case study.
• A total of 1, 748 test specifications are extracted from Alstom’s database.
• Each test case is stored in a separate comma-separated values (.CSV) file.
• Irrelevant details, such as tester names, dates, and timestamps, are removed.
• The .CSV files serve as input to the text mining techniques described in Section 3.
• Outputs from the textmining techniques are clustered and visualized using the algorithms

and methods outlined in Sections 5 and 6.

7.3 Case study report

The initial results of the proposed approach in this study were obtained by following the steps
outlined in Fig. 1. Test specifications designed for integration testing in the BR490 project at
Alstom served as input for detecting dependencies between test cases. After preprocessing the
data, applying text mining techniques, and performing clustering, a set of clusters containing
test cases was generated. Notably, the number of clusters varied depending on the clustering
algorithm employed.

Table 9 summarizes these results, highlighting that even when using the same clustering
technique, variations in the number of clusters arise due to differences in the distancematrices
used as input. The clustering outcomes vary significantly depending on the algorithm and
text-mining technique employed.

Since ML-based approaches require numerical vector representations, tokenization was
applied only to these techniques, while other approaches used standard text representations.
This distinction is necessary because traditional similarity measures, such as Levenshtein
distance and q-gram, operate directly on raw text and do not rely on tokenization. Given
this methodological difference, Table 9 should be interpreted with caution: comparisons
within the same category (ML-based or non-ML-based) are valid, while direct comparisons
between the two categories may be influenced by preprocessing differences. For example,
DBSCAN consistently produces a single cluster for all test cases except when using Leven-
shtein distance and q-gram. In contrast, HDBSCAN consistently generates a large number
of clusters, regardless of the text mining technique. Agglomerative and Spectral clustering
algorithms consistently produce five and eight clusters, respectively, across all text mining
techniques. However, the number of clusters obtained using the Affinity algorithm varies.
Unlike DBSCAN, Affinity groups all test cases into one cluster when applied with Leven-
shtein distance and q-gram. In summary, the minimum number of clusters is one, where all
1, 748 test cases are grouped into a single cluster, while the maximum number of clusters
is 311, achieved by HDBSCAN when using XZ for text mining. These variations highlight
the impact of text preprocessing choices on clustering results. While ML-based techniques
generate embeddings that capture contextual meaning, traditional similarity measures rely
solely on surface-level textual differences. Consequently, different distance metrics produce

2 https://github.com/leohatvani/Comparative-Analysis-Functional-Dependency
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distinct cluster structures. To enhance the understanding and analysis of these results, the
UMAP model is employed for dimensionality reduction and visualization. The visual repre-
sentations of selected results are provided in the Appendix (Hatvani & Tahvili, 2024).

8 Performance evaluation

This section evaluates string distance methods, NCD compressors, and machine learning
approaches against the ground truth, addressing RQ1.1 on the impact of text tokenization on
clustering performance. In this section, we assess the performance of the text mining and
clustering techniques detailed in Table 9 against the established ground truth (GT) outlined
in Fig. 3. The evaluation aims to compare the accuracy of detecting functionally dependent
and independent test cases across different techniques. The number of resulting clusters
varies depending on the combination of text mining technique and clustering algorithm.
To measure performance, we employ the F1-Score, which considers both precision and
recall. Precision denotes the ratio of correctly identified dependencies to the total detected
dependencies, while recall represents the ratio of correctly identified dependencies to the
total existing dependencies. The F1-Score provides a balance between precision and recall,
considering false positives and false negatives, making it suitable for cases with uneven class
distribution. This metric is preferable when the costs of false positives and false negatives
differ significantly.

8.1 Experimental setup

Since the distribution of dependent and independent test cases is not equal in this problem
(there are more dependent test cases compared to the independent test cases), the initial
problem is an imbalance problem. The imbalance ratio (IR) is a well-known measure in the
imbalanced domain (Tahvili et al., 2020). It is a ratio between the number of samples in the
majority class and the number of samples in the minority class (see (2)):

I R = Majorityexamples

Minorityexamples
(2)

Some researchers consider that a dataset suffers from an imbalance problem if the IR is
higher than 3. Employing (2), the imbalance ratio is equal to 4.33 for the BR490 project.
Therefore, some performance metrics, such as accuracy, cannot be applied here. To address
the imbalance problem, we applied random under-sampling by removing random entries
from the majority class until we reached a one-to-one ratio between observed classes. This
step ensures balanced classes for subsequent analysis. The experimental setup then proceeds
to compare the performance of applied text mining techniques with different clustering algo-
rithms. Tables 10, 11, 12, 13 and 14 respectively present the results, where the highest
F1-Score values for each method are highlighted.

8.2 Parameters

Implementation of these approaches requires several different parameters to be set. To
increase reproducibility, we are focused on employing the default parameters wherever pos-
sible. However, several choices were implemented and they are listed here. To apply the
SBERT model, we have used the pre-trained model bert-base-nli-mean-tokens
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(Reimers & Gurevych, 2019) and kept all of the other default settings at their default values.
For the Doc2Vec implementation (Ilenic, 2017), we have used 2 noise words, vector dimen-
sions of 100, batch size of 32, learning rate of 0.001, and 100 epochs. With these parameters,
we trained our model on the same preprocessed dataset of manual test used throughout this
study that then resulted in the document vectors. In our experiments, we observed that altering
the default parameters rarely resulted in significantly improved results, whereas a significant
deviation from these parameters often led to much worse outcomes. This observation high-
lights the sensitivity of parameter selection to the dataset being analyzed. While we relied
on the default parameters provided by the MultiDistances.jl3 package, we acknowledge that
fine-tuning parameters tailored to specific datasets could enhance clustering performance.
However, determining optimal parameters for generic use cases requires the analysis of a
more diverse set of datasets. This remains an area for further exploration in future work.
While a full replication package is not provided for this study, we have ensured that all essen-
tial elements required for experiment replication are open-source and publicly available.
Specifically, the dataset used in this work can be accessed, and all software components uti-
lized, such as theMultiDistances.jl package for Julia and the scikit-learn package for Python,
can be freely obtained from their corresponding repositories. Additionally, all methodology
steps, parameter settings, and implementation details are described to allow researchers to
reproduce the experiments independently. Although variations in execution environments
and parameter fine-tuning may lead to slightly different results, the overall approach remains
fully replicable using the provided information.

8.3 Performance comparison of string distancemethods against the ground truth

The combination of various string distance algorithms with different clustering methods
results in the segmentation of test cases into multiple clusters. To ensure comparability with
the ground truth, clusters are converted into dependencies between individual test cases.

While machine learning-based methods inherently require tokenized data due to their
reliance on vectorized text representations, some string distance methods may also benefit
from tokenization. Therefore, in this study, tokenization was selectively applied to certain
string distance methods based on their mathematical formulation and sensitivity to raw text
structure. InTable 10,we report the performance of string distancemethods on tokenized data,
ensuring their compatibility withML-based approaches. In contrast, Table 11 presents results
for string distance methods on non-tokenized data, maintaining a separate analysis to avoid
mixing heterogeneous preprocessing strategies. This separation ensures that each method is
evaluated under conditions most suitable for its intended usage. The highest F1-Score, as
presented in Table 10 for tokenized data, is achieved with the Sorensen-Dice algorithm and
the Affinity propagation clustering method (F1=0.633). Conversely, for non-tokenized data,
presented in Table 11, the highest F1-Score is attained with the combination of Jaro distance
and the Agglomerative clustering algorithm (F1=0.652). These observations suggest that
tokenizeddata has a noticeable impact on somedistancemeasures. Sorensen-Dice and Jaccard
demonstrate strong performance with the Affinity clustering algorithm in the tokenized data
setting, whereas Jaro distance excels for non-tokenized data, particularly when handling
shorter strings. The lowest F1-Score is observed with the combination of cosine distance and
Jaro distance with the spectral clustering algorithm, recording values of 0.240 and 0.379 for
tokenized data and non-tokenized data, respectively. Sorensen-Dice demonstrates sensitivity
in heterogeneous data, potentially contributing to its superior performance. However, both

3 https://github.com/robertfeldt/MultiDistances.jl
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Table 10 Results of string distance methods on tokenized data against the ground truth

Distance Measure Clustering Algorithm Precision Recall Accuracy F1-Score

Cosine Affinity 0.504 0.820 0.568 0.624

Cosine Agglomerative 0.419 1 0.421 0.590

Cosine DBSCAN 0.423 1 0.423 0.595

Cosine HDBSCAN 0.643 0.576 0.680 0.608

Cosine Spectral 0.424 0.167 0.542 0.240

Jaccard Affinity 0.470 0.957 0.529 0.630

Jaccard Agglomerative 0.427 0.996 0.433 0.597

Jaccard DBSCAN 0.412 1 0.412 0.583

Jaccard HDBSCAN 0.667 0.538 0.699 0.596

Jaccard Spectral 0.385 0.760 0.395 0.511

Jaro Affinity 0.527 0.480 0.601 0.502

Jaro Agglomerative 0.500 0.787 0.585 0.611

Jaro DBSCAN 0.417 1 0.417 0.588

Jaro HDBSCAN 0.470 0.526 0.534 0.496

Jaro Spectral 0.507 0.302 0.583 0.379

Levenshtein Distance Affinity 0.422 1 0.422 0.593

Levenshtein Distance Agglomerative 0.425 1 0.428 0.597

Levenshtein Distance DBSCAN 0.414 1 0.421 0.586

Levenshtein Distance HDBSCAN 0.488 0.489 0.576 0.489

Levenshtein Distance Spectral 0.438 0.892 0.494 0.587

Overlap Coefficient Affinity 0.503 0.462 0.578 0.482

Overlap Coefficient Agglomerative 0.438 1 0.445 0.609

Overlap Coefficient DBSCAN 0.430 1 0.430 0.601

Overlap Coefficient HDBSCAN 0.562 0.393 0.618 0.462

Overlap Coefficient Spectral 0.643 0.391 0.654 0.486

q-gram Affinity 0.407 1 0.407 0.578

q-gram Agglomerative 0.422 0.992 0.422 0.592

q-gram DBSCAN 0.427 1 0.435 0.599

q-gram HDBSCAN 0.503 0.473 0.575 0.488

q-gram Spectral 0.446 0.218 0.561 0.293

Ratcliff-Obershelp Affinity 0.486 0.456 0.561 0.470

Ratcliff-Obershelp Agglomerative 0.437 0.998 0.442 0.608

Ratcliff-Obershelp DBSCAN 0.433 1 0.433 0.604

Ratcliff-Obershelp HDBSCAN 0.588 0.576 0.629 0.582

Ratcliff-Obershelp Spectral 0.586 0.385 0.613 0.465

Sorensen-Dice Coefficient Affinity 0.473 0.957 0.526 0.633

Sorensen-Dice Coefficient Agglomerative 0.410 1 0.413 0.582

Sorensen-Dice Coefficient DBSCAN 0.417 1 0.417 0.589

Sorensen-Dice Coefficient HDBSCAN 0.677 0.538 0.696 0.600

Sorensen-Dice Coefficient Spectral 0.395 0.716 0.410 0.509
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Table 11 Results of string distance methods on non-tokenized data against the ground truth

Distance Measure Clustering Algorithm Precision Recall Accuracy F1-Score

Cosine Affinity 0.449 0.896 0.506 0.598

Cosine Agglomerative 0.422 1 0.422 0.593

Cosine DBSCAN 0.438 1 0.438 0.609

Cosine HDBSCAN 0.647 0.578 0.686 0.610

Cosine Spectral 0.361 0.480 0.409 0.412

Jaccard Affinity 0.455 0.979 0.510 0.621

Jaccard Agglomerative 0.417 1 0.419 0.588

Jaccard DBSCAN 0.415 1 0.415 0.587

Jaccard HDBSCAN 0.663 0.576 0.697 0.616

Jaccard Spectral 0.372 0.797 0.373 0.508

Jaro Affinity 0.627 0.557 0.677 0.590

Jaro Agglomerative 0.5 0.938 0.579 0.652

Jaro DBSCAN 0.405 1 0.405 0.577

Jaro HDBSCAN 0.411 0.461 0.522 0.451

Jaro Spectral 0.456 0.259 0.550 0.331

Levenshtein Distance Affinity 0.411 1 0.411 0.583

Levenshtein Distance Agglomerative 0.427 1 0.428 0.598

Levenshtein Distance DBSCAN 0.436 1 0.444 0.607

Levenshtein Distance HDBSCAN 0.515 0.534 0.587 0.524

Levenshtein Distance Spectral 0.437 0.892 0.463 0.587

Overlap Coefficient Affinity 0.555 0.584 0.625 0.569

Overlap Coefficient Agglomerative 0.424 1 0.429 0.596

Overlap Coefficient DBSCAN 0.423 1 0.423 0.595

Overlap Coefficient HDBSCAN 0.532 0.480 0.601 0.505

Overlap Coefficient Spectral 0.637 0.385 0.659 0.480

q-gram Affinity 0.419 1 0.419 0.591

q-gram Agglomerative 0.429 0.992 0.428 0.599

q-gram DBSCAN 0.422 1 0.422 0.594

q-gram HDBSCAN 0.55 0.557 0.615 0.553

q-gram Spectral 0.425 0.920 0.438 0.581

Ratcliff-Obershelp Affinity 0.442 0.407 0.528 0.424

Ratcliff-Obershelp Agglomerative 0.415 1 0.423 0.586

Ratcliff-Obershelp DBSCAN 0.411 1 0.411 0.583

Ratcliff-Obershelp HDBSCAN 0.579 0.576 0.652 0.578

Ratcliff-Obershelp Spectral 0.579 0.415 0.636 0.483

Sorensen-Dice Coefficient Affinity 0.488 0.979 0.546 0.651

Sorensen-Dice Coefficient Agglomerative 0.433 1 0.436 0.604

Sorensen-Dice Coefficient DBSCAN 0.436 1 0.436 0.607

Sorensen-Dice Coefficient HDBSCAN 0.671 0.576 0.699 0.620

Sorensen-Dice Coefficient Spectral 0.398 0.789 0.404 0.529
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Sorensen-Dice and Jaccard perform well with the Affinity clustering algorithm, suggesting
a favorable combination. Additionally, Jaro distance exhibits high performance for non-
tokenized data (0.65), particularly suitable for shorter strings.

8.4 Performance comparison of the NCD compressor methods against the ground
truth

The results obtained by combining the presentedNCD compressor with clustering algorithms
are summarized in Tables 12 and 13.

HDBSCAN demonstrates superior performance compared to other clustering algorithms,
achieving F1-Scores of 0.654 and 0.620 for the tokenized and non-tokenized versions of

Table 12 Results of NCD compressors on tokenized data against the ground truth

Compressor Clustering Algorithm Precision Recall Accuracy F1-Score

bzip2 Affinity 0.533 0.467 0.607 0.498

bzip2 Agglomerative 0.422 0.973 0.436 0.588

bzip2 DBSCAN 0.430 1 0.430 0.602

bzip2 HDBSCAN 0.699 0.614 0.717 0.654

bzip2 Spectral 0.653 0.418 0.670 0.510

Deflate Affinity 0.479 0.605 0.564 0.535

Deflate Agglomerative 0.414 1 0.422 0.586

Deflate DBSCAN 0.419 1 0.419 0.591

Deflate HDBSCAN 0.652 0.572 0.682 0.609

Deflate Spectral 0.619 0.296 0.614 0.400

Gzip Affinity 0.436 0.760 0.489 0.554

Gzip Agglomerative 0.413 0.974 0.441 0.597

Gzip DBSCAN 0.414 1 0.414 0.585

Gzip HDBSCAN 0.636 0.570 0.674 0.601

Gzip Spectral 0.601 0.301 0.621 0.401

Xz Affinity 0.398 0.822 0.400 0.536

Xz Agglomerative 0.408 0.985 0.408 0.578

Xz DBSCAN 0.434 1 0.434 0.605

Xz HDBSCAN 0.678 0.527 0.700 0.593

Xz Spectral 0.593 0.305 0.614 0.403

Zlib Affinity 0.462 0.681 0.530 0.551

Zlib Agglomerative 0.424 0.976 0.435 0.592

Zlib DBSCAN 0.419 1 0.419 0.590

Zlib HDBSCAN 0.626 0.572 0.673 0.598

Zlib Spectral 0.600 0.297 0.620 0.398

Zstd Affinity 0.475 0.538 0.548 0.505

Zstd Agglomerative 0.439 1 0.441 0.610

Zstd DBSCAN 0.406 1 0.406 0.577

Zstd HDBSCAN 0.628 0.613 0.679 0.620

Zstd Spectral 0.594 0.372 0.633 0.458
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Table 13 Results of NCD compressors on non-tokenized data against ground truth

Compressor Clustering Algorithm Precision Recall Accuracy F1-Score

bzip2 Affinity 0.486 0.405 0.573 0.442

bzip2 Agglomerative 0.428 0.923 0.431 0.585

bzip2 DBSCAN 0.415 1 0.415 0.586

bzip2 HDBSCAN 0.637 0.575 0.691 0.605

bzip2 Spectral 0.556 0.320 0.606 0.406

Deflate Affinity 0.508 0.630 0.587 0.563

Deflate Agglomerative 0.431 1 0.439 0.603

Deflate DBSCAN 0.450 1 0.450 0.620

Deflate HDBSCAN 0.650 0.578 0.686 0.612

Deflate Spectral 0.538 0.223 0.581 0.315

Gzip Affinity 0.452 0.717 0.522 0.555

Gzip Agglomerative 0.405 1 0.409 0.576

Gzip DBSCAN 0.410 1 0.410 0.582

Gzip HDBSCAN 0.628 0.606 0.687 0.617

Gzip Spectral 0.563 0.225 0.602 0.321

Xz Affinity 0.375 0.778 0.378 0.506

Xz Agglomerative 0.441 0.908 0.466 0.594

Xz DBSCAN 0.424 1 0.424 0.596

Xz HDBSCAN 0.665 0.519 0.693 0.583

Xz Spectral 0.529 0.288 0.584 0.373

Zlib Affinity 0.485 0.657 0.652 0.558

Zlib Agglomerative 0.432 0.976 0.447 0.599

Zlib DBSCAN 0.414 1 0.414 0.585

Zlib HDBSCAN 0.659 0.614 0.708 0.636

Zlib Spectral 0.552 0.232 0.606 0.327

Zstd Affinity 0.522 0.386 0.604 0.444

Zstd Agglomerative 0.420 1 0.422 0.592

Zstd DBSCAN 0.437 1 0.437 0.608

Zstd HDBSCAN 0.678 0.638 0.718 0.657

Zstd Spectral 0.618 0.305 0.628 0.409

test cases, respectively, when using bzip2 and Zstd compressors. The term “superior perfor-
mance” in this context refers to HDBSCAN’s ability to form clusters that align closely with
the functional dependencies and relationships in the test cases, as measured by F1-Scores.
This capability is particularly evident in its handling of tokenized test cases, where it identi-
fies clusters with a balance of precision and recall. It is important to note that smaller, highly
specific clusters, which HDBSCAN can produce, may offer advantages in pinpointing subtle
dependencies between test cases. However, managing a large number of small clusters can
increase the complexity of test case prioritization and scheduling. Conversely, larger clusters
may simplify handling but risk including dissimilar test cases, reducing cluster utility. For
example, in scenarios with hundreds of elements in a cluster, the diversity within the cluster
might complicate deriving actionable insights. Our findings suggest that HDBSCAN’s hier-
archical clustering approach strikes a balance, producing clusters that are neither excessively
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granular nor overly broad. This balance enables efficient handling of test cases while pre-
serving meaningful relationships. Furthermore, the analysis of Tables 12 and 13 suggests that
high compression may not effectively detect similarities in short texts. For longer texts, the
Xz compressor may be more suitable, while for the analyzed test cases, the bzip2 compressor
and Gzip compression yield satisfactory results.

8.5 Performance comparison of themachine learningmethods against the ground
truth

As previously mentioned, the tokenization process is inherent in the machine learning algo-
rithms used for text analysis, resulting in the presented results in Table 14 consisting solely
of the tokenized version of the test cases.

Doc2Vec emerges as the best-performing algorithm, despite its relatively simple approach
to semantics compared to SBERT. As described in Table 6, Doc2Vec performs well in
capturing sentence-level semantics. However, Doc2Vec’s exceptional performance is only
observed when paired with Agglomerative clustering; for all other clustering algorithms,
Doc2Vec exhibits a lower F1-Score compared to the top string distances and compressors.
The strong performance of Doc2Vec with Agglomerative clustering could be attributed to the
hierarchical nature of the algorithm. Agglomerative clustering progressively merges clusters
based on similarity, which aligns well with the textual semantic representations generated
by Doc2Vec. These representations are relatively simple yet effective for identifying hier-
archical relationships, particularly in structured test data. In contrast, clustering algorithms
like DBSCAN or HDBSCAN are density-based and may be less effective with Doc2Vec’s
output due to its tendency to produce evenly distributed embeddings rather than dense clus-
ters. On the other hand, SBERT, which leverages transformer-based embeddings, performs
consistently well across multiple clustering algorithms. Its ability to capture fine-grained
semantic relationships makes it more adaptable to a variety of clustering techniques. How-
ever, its performance does not surpass that of Doc2Vec when paired with Agglomerative
clustering, likely due to the hierarchical clustering algorithm’s ability to exploit Doc2Vec’s
simpler embedding structure effectively. The implications of these findings are significant
for test optimization. While Doc2Vec coupled with Agglomerative clustering provides an

Table 14 Results obtained using machine learning algorithms against the ground truth

NLP Algorithm Clustering Algorithm Precision Recall Accuracy F1-Score

Doc2Vec Affinity 0.853 0.101 0.610 0.181

Doc2Vec Agglomerative 0.580 0.973 0.693 0.727

Doc2Vec DBSCAN 0.413 1 0.413 0.585

Doc2Vec HDBSCAN 0.574 0.586 0.646 0.580

Doc2Vec Spectral 0.425 0.126 0.574 0.195

SBERT Affinity 0.690 0.554 0.712 0.615

SBERT Agglomerative 0.429 1 0.439 0.600

SBERT DBSCAN 0.412 1 0.412 0.584

SBERT HDBSCAN 0.564 0.548 0.621 0.556

SBERT Spectral 0.339 0.088 0.548 0.140
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efficient and effective solution for capturing hierarchical dependencies, SBERT’s versatility
across clustering algorithms makes it a robust choice for scenarios requiring flexibility in
clustering approaches. This suggests that the choice of machine learning algorithm and clus-
tering technique should consider the specific characteristics of the test data and the desired
outcomes. Across Tables 10, 11, 12, 13 and 14, the F1-Score results are consistently close
to each other, often varying by only 0.1 F1-Score. It’s worth noting that to achieve an addi-
tional 0.1 F1-Score, models would need to predict an additional 100 true positives. Figure 4
illustrates the relationship between the obtained F1-Score and true positives.

8.6 Explicit answer to RQ1.1

The results in Tables 10, 11, 12, 13, and 14 show that text tokenization significantly enhances
algorithm performance. For example, Jaccard with HDBSCAN achieves an F1-Score of
0.630 with tokenized data, compared to 0.510 without. Similarly, Zstd with HDBSCAN
improves from 0.605 to 0.654, and Doc2Vec with Agglomerative clustering reaches 0.727
for tokenized data. Tokenization boosts recall, precision, and F1-Scores, underscoring its
value as a preprocessing step for detecting functional dependencies.

9 Impact analysis

This section examines the impact of text length on the proposed solution’s performance,
addressing RQ1.2 by evaluating how text length variations influence clustering accuracy and
dependency detection. The evaluation is conducted against the ground truth (GT) to assess
the reliability of the results.

Fig. 4 A scatter plot to compare the F1-Score and the number of true positives
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Table 15 Descriptive statistics of
the utilized tokenized data

Statistic Value

Mean 1605.36

Standard Error 39.11

Median 1168

Mode 332

Standard Deviation 1629.43

Sample Variance 2, 655, 048.38

Kurtosis 37.47

Skewness 4.02

Range 26, 618

Minimum 75

Maximum 26, 693

Count 1, 736

Confidence Level (95%) 76.70

Quartiles

First Quartile (Q1) [75, 607)
Second Quartile (Q2) (Median) [607, 1168)
Third Quartile (Q3) [1168, 1949.75)
Fourth Quartile (Q4) [1949.75, 26, 693]

9.1 Impact of text length on performance

The impact of text length on algorithm performance was analyzed by dividing the dataset
into quartiles based on descriptive statistics (Table 15), with text length considered in terms
of document length, measured as the number of tokens.

The quartiles ranged from a minimum of 75 tokens in the first quartile to a maximum of
26, 693 tokens in the fourth quartile. This approach allowed for a systematic evaluation of
the F1-Scores for both dependent and independent test cases. The second research question
examines the relationship between text length and the performance of text mining and clus-

Table 16 Comparison of text length and performance results for dependent test cases

Tokenized Method 1st quartile F1-Score 2nd quartile F1-Score

String Distances SoDi / Agglo 0.004 SoDi / Agglo 0.002

✔ String Distances Jaccard / Agglo 0.002 Jaccard / HDBSCAN 0.002

NCD Compression XZ / HDBSCAN 0.003 XZ / HDBSCAN 0.003

✔ NCD Compression XZ / HDBSCAN 0.003 XZ / HDBSCAN 0.003

✔ Machine Learning Doc2Vec / Affinity 0.008 Doc2Vec / Agglo 0.025

Tokenized Method 3rd quartile F1-Score 4th quartile F1-Score

String Distances Jaccard / HDBSCAN 0.005 RaOb / Agglo 0.038

✔ String Distances Cosine / HDBSCAN 0.005 RaOb / Agglo 0.051

NCD Compression Bzip2 / Agglo 0.006 Bzip2 / Agglo 0.059

✔ NCD Compression XZ / HDBSCAN 0.006 Gzip / Agglo 0.059

✔ Machine Learning Doc2Vec / Agglo 0.034 Doc2Vec / Agglo 0.106
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Table 17 Comparison of text length and performance results for independent test cases

Tokenized Method 1st quartile F1-Score 2nd quartile F1-Score

String Distances Levensthein / DBSCAN 0.943 Levensthein / DBSCAN 0.852

✔ String Distances Levensthein / DBSCAN 0.912 Levensthein / DBSCAN 0.856

NCD Compression Zstd / DBSCAN 0.831 Zstd / DBSCAN 0.834

✔ NCD Compression Deflate / DBSCAN 0.817 Zstd / DBSCAN 0.854

✔ Machine Learning Doc2Vec / DBSCAN 0.878 Doc2Vec / DBSCAN 0.827

Tokenized Method 3rd quartile F1-Score 4th quartile F1-Score

String Distances Levensthein / DBSCAN 0.789 Levensthein / DBSCAN 0.682

✔ String Distances Levensthein / DBSCAN 0.793 Levensthein / DBSCAN 0.676

NCD Compression Zstd / DBSCAN 0.751 Zlib / DBSCAN 0.694

✔ NCD Compression Zstd / DBSCAN 0.756 Deflate / DBSCAN 0.694

✔ Machine Learning Doc2Vec / DBSCAN 0.723 Doc2Vec / DBSCAN 0.675

tering algorithms. The data used in the study are summarized in Table 15, where test cases are
divided into quartiles based on test specification length, ensuring that the analysis considers
both tokenized and non-tokenized representations.

Table 16 presents the results for dependent test cases. The combination of the Doc2Vec
algorithm with Affinity and Agglomerative clustering achieved the highest F1-Scores, par-
ticularly in the fourth quartile, indicating that longer texts provide richer semantic content,
which enhances the detection of dependencies. This trend highlights the positive correlation
between text length and performance for dependent test cases.

Table 17 shows that shorter text lengths (first and second quartiles) yield higher F1-Scores
for independent test cases. Levenshtein distance with DBSCAN consistently performs best,
highlighting the advantage of reduced noise in shorter texts for distinguishing independent
cases. To improve readability and avoid redundancy, string distance approaches have been
grouped under a single category labeled “String Distances” in Tables 16 and 17. Although
minor variations exist between different string distance measures, these differences were
found to be negligible in terms of their impact on the overall results. By merging them into
a single category, we ensure that the key findings remain clear while maintaining a concise
presentation of the data.

9.2 Explicit answer to RQ1.2

The results demonstrate that text length significantly influences the performance of text min-
ing algorithms, with its impact differing between dependent and independent test cases. For
dependent test cases, longer texts (4th quartile) consistently achieve higher F1-Scores, partic-
ularly for machine learning methods like Doc2Vec combined with Agglomerative clustering.
The richer semantic content of longer texts provides more contextual information, improving
the detection of dependencies. In contrast, shorter texts (1st and 2nd quartiles) perform better
for independent test cases, yielding higher F1-Scores. For example, Levenshtein distance
with DBSCAN consistently outperforms other methods for shorter texts, as reduced noise
and complexity allow the algorithms to better distinguish between independent cases. These
findings highlight the need to tailor algorithm selection based on text length. Longer texts
should be leveraged for dependent cases to enhance dependency detection, while shorter
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texts are better suited for independent cases to improve cluster separation and reduce redun-
dancy in computation. This dual trend provides valuable guidance for optimizing algorithmic
performance based on the characteristics of the textual data.

10 Threats to validity

The threats to the validity, limitations, and challenges faced in conducting the present study
are discussed in this section. Given that our study is an experiment in a controlled setting
and based on already collected data the internal threats to validity could more readily be
controlled. We see few threats to our use of the proposed solution, or in collecting and
interpreting their output. The main threat to our study is concerning the external validity.
Since this is an industrial case study and uses data from a single company we cannot claim
what results would be for other companies and projects. While our study would be even
stronger if it also includedmultiple projects and, for example, open-source data could provide
additional context we leave this for future work due to reasons of brevity.We note though that
experiments on open-source data are more common, overall, in the community and that we
also need industrial cases as a complement. Construct validity is focused on whether a study
measures what it intended to measure (Tahvili et al., 2019b). The key construct validity threat
in this study is concerning the ground truth: canwe trust the functional dependencies provided
by the engineers? In general, we can not since it and the test specifications themselves might
suffer from ambiguity and inconsistencies. We thus acknowledge the threat but also highlight
that this will always be the case even if a fully manual analysis of dependencies would be
conducted. However, we tried to mitigate this threat by analyzing the traceability graph so
we could augment the data derived from the clustering of test cases (such as the presented
ground truth in this study). Conclusion validity is concerned with whether the treatments
we used, here different text mining and clustering algorithms and tools, are related to and,
ultimately, causing the outcomes that we identify and evaluate them on. In particular, if
any claimed differences are statistically significant and can be trusted. We provide a more
detailed analysis in the following to further study the sensitivity of our results. Furthermore,
a sensitivity analysis using the Mantel4 model is also provided in the appendix (Hatvani &
Tahvili, 2024).

11 Discussion & future work

Knowing the dependencies between test cases at an early stage of a testing process can
help testers and test managers schedule test cases for execution in a more efficient way. The
obtained clusters in this study have been actively used at Alstom to address critical challenges
in test scheduling and optimization. For example, the clusters were employed to prioritize
test case execution, with independent clusters being executed first to minimize downstream
failures caused by dependent test cases. This approach has helped the company streamline
its test execution process, reducing delays caused by unanticipated failures in the dependent
test cases. The clusters were also utilized to reduce redundancy in the test suite by identifying
similar test cases within each cluster. In practice, testers at Alstom reviewed clustered test
cases and eliminated those deemed redundant, which reduced the overall size of the test

4 Mantel test is a non-parametric statistical method that computes the correlation between two distance
matrices (Guillot & Rousset, 2011).
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suite without compromising coverage. This action alone contributed to a significant reduc-
tion in test effort while maintaining quality. The relationship between similar and dependent
test cases is central to the clustering process. Clusters of dependent test cases helped the
company identify critical functional relationships between modules, ensuring that interde-
pendencies were addressed early in the testing process. These clusters have been integrated
into Alstom’s test planning workflow to inform decisions on resource allocation and schedul-
ing. For example, dependent test cases clustered together are now executed sequentially in the
same test environment to avoid unnecessary context-switching and to ensure dependencies
are resolved systematically. Furthermore, the actionable insights provided by the clustering
approach have informed discussions across teams, fostering better communication between
development and testing departments. By sharing cluster-based dependency and similarity
insights, teams have been able to align their efforts more effectively, leading to improved col-
laboration and reduced ambiguity in test planning. These practical applications demonstrate
the value of the proposed workflow beyond theoretical benefits. While the results are specific
to the case study at Alstom, the workflow is designed to be adaptable to other industrial
contexts with similar challenges. For example, the use of natural-language test specifications
and clustering-based dependency detection can be generalized to production environments
where formalized test cases are not readily available. The comparison of clustering methods
and text mining techniques in this study provides actionable insights for practitioners. For
instance, selecting the appropriate clustering algorithm (e.g., DBSCAN for independent test
cases or HDBSCAN for non-clusterable cases) allows practitioners to tailor the approach
to their specific needs. By integrating these findings into existing test processes, organiza-
tions can achieve tangible improvements in test efficiency and effectiveness. These examples
demonstrate the practical value of the proposed approach and its applicability beyond the
specific case study. Future work will involve additional case studies to explore these impacts
further and integrate the approach into real-time test processes. This will help bridge the gap
between post-mortem analysis and proactive dependency detection, ultimately improving the
effectiveness and efficiency of testing in practice.

11.1 Guidelines for researchers and practitioners in software testing

Drawing on the empirical findings of this study,we propose a set of evidence-based guidelines
aimed at supporting researchers and practitioners in effectively detecting dependencies and
clustering test cases within software testing processes. These recommendations are derived
from observed trends across various text mining and clustering techniques and are intended
to inform the design and implementation of test optimization strategies in industrial settings:

(i) Choice of Text Mining Technique: For scenarios requiring deeper semantic analysis,
advanced methods such as Doc2Vec or SBERT are recommended. In contrast, simpler
approaches (e.g., string distance algorithms) may suffice for well-structured or shorter
test specifications, offering a trade-off between computational cost and interpretability.

(ii) Tokenization Strategy: Tokenization should be carefully aligned with the structure of
the test cases. For highly structured test descriptions, minimal tokenization is advised
to retain key phrases, whereas unstructured inputs may benefit from comprehensive
preprocessing to enhance clarity and consistency.

(iii) Consideration of Text Length:The effectiveness of dependency detection improveswith
longer test cases, as they tend to provide richer contextual information. Consequently,
clustering algorithms should be calibrated to accommodate the increased complexity
introduced by longer textual inputs.
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(iv) Clustering Algorithm Suitability: Algorithms such as Agglomerative and HDBSCAN
have shown strong performance in identifying functional dependencies among test
cases. However, their effectiveness is contingent upon the nature of the text representa-
tion employed, necessitating careful pairing with the appropriate similarity measures.

(v) Reproducibility and Adaptability: To ensure transparency and facilitate replication, it
is recommended to adopt open-source libraries such as MultiDistances.jl and
scikit-learn. These tools support the application of the proposed methodology
across varying industrial contexts and enable further customization by the testing com-
munity.

12 Concluding remarks

In this study, we analyzed the trade-off between performance and effort when employing text
mining and clustering techniques for grouping manual integration test cases based on their
functional dependencies, as identified through their test specifications.

We evaluated and applied the proposed approach using various text mining and clustering
techniques in a real industrial case study at Alstom, Sweden. While our solution has been
demonstrated in the domain of software testing, it is not limited to this context. The approach
is generalizable to other problems where text documents must be clustered based on shared
characteristics or dependencies. In summary, we have made the following contributions:

(i) Applied multiple text mining and similarity estimation techniques, with different levels
of complexity, to a real, industrial case,

(ii) Proposed the use of clustering algorithms of similarity estimates to understand depen-
dent and independent test cases,

(iii) Evaluated the performance of the different text processing pipelines (similarity estima-
tion followed by clustering) against the ground truth based on F1-Scores,

(iv) Evaluated the impact of data preprocessing (with or without tokenization), and
(v) Analyzed how text length affects the performance of the different techniques.

While the Doc2Vec approach combined with agglomerative clustering achieved the high-
est F1-Score overall, the supposedly more advanced SBERT-based methodology fell short.
Doc2Vec’s performance was heavily influenced by the choice of clustering algorithm, per-
forming poorly without agglomerative clustering. SBERT and simpler compression-based
methods showed less sensitivity to clustering choice but still exhibited considerable variation.
Surprisingly, even basic string distance measures like Jaro and Sorensen-Dice approached
or surpassed the performance of SBERT. Our experiments also revealed that algorithm
performance is affected by the length of test cases, with Doc2Vec declining as test cases
grew longer, while compression-based methods excelled in identifying independence among
lengthy cases. Despite the promise ofAI/ML in software engineering, their adoption in testing
practices remains limited, potentially due to perceived complexity and resource requirements.
Our study emphasizes the importance of considering simpler algorithms alongside complex
neural network-based approaches, as their utility may not always justify their complexity.
The optimal choice of technique depends on available information and specific goals, and
simpler algorithms can offer speed and ease of use for engineers without specialized exper-
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tise. Researchers should explore a variety of approaches rather than assuming that the latest
AI/ML advancements will universally benefit software engineering.
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