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Abstract

In human-machine interfaces, the neuromuscular system can be monitored through a variety
of sensor modalities in order to infer and transmit the intended movement and force output
from a user to a machine. Likewise, the neuromuscular system can be stimulated through
many mechanisms to relay somatosensory feedback from a sensing system to the user or to
provide support. Over the last decades, wearable robotics has focused on aiding human users
in executing arduous tasks and in enhancing their force output by encasing them in fully rigid
robotic exoskeletons. More recently, there was a transition towards lighter structures, finally
converging on continuum-based soft exosuits which rely on the user’s own skeleton as a load-
bearing structure. Currently, a new paradigm is being investigated, which relies increasingly
on the user’s own musculature. Through functional electrical stimulation, it is possible to
implement movement and force control by injecting electrical currents directly into the user’s
motoneurons, effectively acting in parallel to the peripheral nervous system. The possible
applications have not yet been fully investigated. This work presents the sensor modalities,
the control architectures, and the hardware necessary to drive human limb movements
through functional electrical stimulation. Firstly, a self-developed upper body tracker based
on inertial measurement units is introduced. Secondly, the focus shifts onto theoretical and
experimental assessments of various approaches to measure and estimate human force output,
as well as to provide assistance through exosuits and lightweight exoskeletons. Finally, a
self-produced, wearable functional electrical stimulation system is introduced, which can
enforce impedance control of human limbs. This system is shown to be capable of producing
multi-joint movements, and of driving the user’s limb to arbitrary poses in the peri-personal
space. The combination of external muscles and nerves opens many possible research venues
in the field of human-machine interfaces, blurring the boundary of the human’s and machine’s
agency and capabilities.
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Zusammenfassung

Bei Mensch-Maschine-Schnittstellen kann das neuromuskuldre System durch eine Vielzahl von
Sensormodalitdten iiberwacht werden, um die beabsichtigte Bewegung und Kraftabgabe eines
Nutzers an eine Maschine zu ermitteln und zu tibertragen. Ebenso kann das neuromuskulédre
System durch viele Mechanismen stimuliert werden, um somatosensorisches Feedback von
einem Sensorsystem an den Nutzer weiterzugeben oder externe Unterstiitzung zu bieten. In
den letzten Jahrzehnten konzentrierte sich die Forschung im Bereich der tragbaren Robotik
auf die Unterstiitzung menschlicher Nutzer bei der Ausfithrung korperlich fordernder Auf-
gaben und bei der Ausiibung einer erhohten Kraft, indem sie in vollstindig starre robotische
Exoskelette gehiillt wurden. In jlingerer Zeit ging man zu leichteren Strukturen tiber und
kam schliefslich zu kontinuumsbasierten weichen Exosuits, die sich auf das eigene Skelett des
Nutzers als tragende Struktur stiitzen. Derzeit wird ein neues Paradigma erforscht, das sich
zunehmend auf die Muskulatur des Nutzers selbst stiitzt. Durch funktionelle elektrische Stim-
ulation ist es moglich, Bewegungs- und Kraftsteuerung zu implementieren, indem elektrische
Strome, parallel zum peripheren Nervensystem, direkt in die Motoneuronen des Nutzers einge-
speist werden. Die moglichen Anwendungen in der rehabilitativen und assistiven Robotik
wurden noch nicht vollstindig untersucht. Diese Arbeit stellt die Sensormodalitdten, die
Steuerungsarchitekturen und Hardware vor, die erforderlich sind, um die Bewegungen der
menschlichen Gliedmafien durch funktionelle elektrische Stimulation zu steuern. Zunéchst
wird ein selbst entwickeltes Oberkorpertracker vorgestellt, das ausschliefSlich aus Inertialmess-
gerdten besteht. Zweitens fokussiert man sich auf der theoretischen und experimentellen
Bewertung verschiedener Ansétze zur Messung und Schédtzung der menschlichen Kraftleis-
tung sowie zur Unterstiitzung durch Exosuits und leichte Exoskelette. SchliefSlich wird ein
eigens fiir diesen Zweck konstruiertes, tragbares funktionelles elektrisches Stimulationssystem
vorgestellt, das eine Impedanzsteuerung der menschlichen Gliedmafien ermoglicht. Es wird
gezeigt, dass dieses System in der Lage ist, mehrgelenkige Bewegungen zu erzeugen und die
Gliedmafien des Nutzers in beliebige Posen im peri-personalen Raum zu bringen. Die Kom-
bination von externen Muskeln und Nerven eroffnet viele Moglichkeiten fiir die Forschung
auf dem Gebiet der Mensch-Maschine-Schnittstellen und verwischt die Grenze zwischen den
Handlungsmoglichkeiten und Fahigkeiten von Mensch und Maschine.
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Nomenclature

{c}
et

Ia><h

AT

A—T

la]

A scalar. Scalars are non-bold, both upper and lower case.

A vector, e.g. a € R™. Vectors are noted in bold lower case. The i-th individual
component of a vector a is denoted as 4;. In expressions, vectors can behave like
matrices of dimensionality R”*1.

This notation indicates a Cartesian coordinate frame.
This notation indicates a vector a expressed in a coordinate frame {c}.

A matrix, e.g. A € R"™*". Matrices are noted in upper case and bold script. The
element of a matrix belonging to the i-th row and the j-th column is denoted as A; ;.
Occasionally, vectors might be presented as column matrices of the form A € R"*1.
In such cases, the vector and matrix notation is interchangeable.

This indicates a square unit matrix of unspecified dimensionality. For all the matrix
elements on the diagonal we have [;; = 1, while all other elements are 0.

This indicates a unit matrix of a columns and b rows, s.t. its elements I;; = 1if i = j
and [;; = 0 if i # j.

This indicates the transpose of a matrix A € R™*", s.t. AT € R™™_ Each element
T ; of the transposed matrix is equal to the element A;; of the original matrix A. If
applied to a vector a € IR, the transpose operator turns it into a row vector of the
form aT € R/

This indicates the inverse of a matrix A € R"*", so that A”1A = AA™' = I,,.,,.

This indicates the left Moore-Penrose pseudo inverse of a matrix A € R"*", which

is defined as (ATA)f1 AT € R"™™_ If such a matrix can be calculated, which is
contingent on ATA being full rank, we have that A*A = I, but unlike the proper
inverse of a square matrix, AA* is not defined, and would require a right pseudo
inverse.

. . . _ -1
This indicates the inverse of the transpose of a matrix 4, s.t. A~ = (AT) =
_I\T
(A7)
Vectorial cross product. Both a and b have to be 3-dimensional vectors.

The skew symmetric matrix derived from a, s.t. |a|«b =a x b, with a,b € R3 and
la]« € R¥S

XX



a-b

Scalar product of two vectors of same dimensionality a,b € R™. This notation
is distinct from matric product, which has no symbol. If vectors are converted to
matrices A, B € R"*1 st. Ai1 = a; and B;; = b;, the scalar product can be expressed
as ATB € R.

This notation indicates a variation in a scalar, vector or matrix.

This notation indicates a unit vector or direction of arbitrary dimensionality, i.e. a
vector whose Euclidean norm is 1.

This notation indicates a small, but not differential, variation in a scalar, vector or
matrix.

This notation indicates a vectorial partial derivative operator over a vector a € R™
of the form [%, ey %]T. This operator is applied on either scalars or vectors.

This notation indicates the first order derivative over time ¢t € IR, and is equivalend
d

to +.
dt

This notation indicates the second order derivative over time t € IR, and is equivalend
d d
to 7 (%).

This notation indicates the null space of a matrix A € R™*", which is the subset of
R" comprising all non-zero vectors a € R" s.t. Va € Null(A) Aa =0

This notation indicates a measurement unit. Unless otherwise specified, SI standard
units are used everywhere. On plots, if no unit is specified, or if the notation [] or [x]
is used, the indicated property is normed, and has no physical dimension. In these
cases, the plots are meant to convey qualitative properties.

Approximately equal.

Normal (or Gaussian) probability density distribution with mean y and standard
deviation o.

Asymptotic upper complexity bound.

Continuous uniform probability density distribution defined over an interval [a,b] C
R.

Must be equal, usually based on previous considerations.
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1 Introduction

Assistive robotics as a branch of medical robotics studies solutions that have the main goal of
aiding the functioning of a patient, ideally enabling them to perform as well as an able-bodied
individual, or to augment the physical capabilities of an able-bodied user [15, 16]. While the
ultimate goal of assistive robotics is to facilitate and assist movement, these systems can be
seen as having the fundamental goal of amplifying the voluntary force output of their user, so
as to improve their mobility or enable them to perform tasks in their surroundings or even
remotely [15].

In the context of assistive robotics, one of the most common device classes used to aid the
movement of motion-impaired patients is that of exoskeletons [17]. These consist of segmented
robotic mechanisms connected to individual body segments of the user. Exoskeletons are, in
general, robotic devices built in accordance with the traditional design philosophy of rigid
components and joint-link chains. These features offer many advantages, most crucially exact
observability of the system’s state and ease of control. However, the stiffness and rigidity of
traditional exoskeletons can lead to uncomfortable and potentially unsafe interactions with the
user [18].

In recent years, with the improvement of computational power and the progress in machine
learning techniques, alternative solutions have emerged, with the potential to improve Human-
Robot Interaction (HRI) and potentially open new possibilities in regard to rehabilitation. First
and foremost, many passive or semi-passive exoskeletons are now commercially available
and have been demonstrated to reduce fatigue and strain on the user during several types
of activities, such as overhead work using heavy tools, as well as to lower the incidence
of Work-Related Musculoskeletal Disorders (WRMSDs), at least in the short term [19, 20,
21]. These commercial devices can typically be seen as lighter, under-actuated versions of
conventional robotic exoskeletons, which still rely on a rigid structure, but offer transparent,
often passive support. This capillary diffusion has nonetheless sparked renewed interest in
research seeking to improve on these concepts. An example is adaptive assistance capable
of regulating the support forces provided by these lighter exoskeletons based on the user’s
posture and lifted mass [21, 22]. This integration of active elements should still make good use
of the developments in ergonomics that these commercial devices have brought over recent
years.

Besides these lightweight passive or semi-passive support devices, compliant versions of
traditional exoskeletons, called exosuits [23], have seen a rise in popularity. These devices
propose to aid the actuation of movements by exerting forces and pressures on the user, but
do not usually feature load-bearing structures in the traditional sense, as opposed to typical
exoskeletons. Some exceptions exist in particular devices that can arguably bear weight thanks
to inflatable elements [24, 25, 26], as opposed to tendon-driven exosuits, which can only pull




on the user through a harness. For this reason, exosuits, and especially tendon-driven exosuits,
are sometimes called exomuscles [27]. These devices pose several challenges from the point
of view of system observability, actuation and control, but they do lead to generally safer
human-machine interactions, as well as increased comfort for the wearer [18]. Because of the
absence of the load-bearing structure, exosuits are also typically lighter and more promising
for the purpose of active assistance, which would require complete portability in the ideal
case.

Functional Electrical Stimulation (FES) is a technique by which, through the injection of
electrical currents, motor neurons are caused to fire, therefore causing muscular contractions
[28], thereby exploiting the user’s existing anatomy to assist movements even further. FES
could be seen as going one step beyond exosuits, not even applying support forces through
artificial muscles, but merely providing a control signal of sorts that activates the user’s own
muscles, thus causing the desired motion. If exoskeletons can be seen as operating in parallel to
the user’s muscular-skeletal system and exosuits as operating in parallel to the user’s muscles
only, FES systems could be seen as operating parallel to the nervous system. If exosuits
are sometimes called exomuscles, by the same token FES systems could be designated as
exonerves. Figure 1.1 shows an artistic rendition of the progression from kinematics modeling
to assistance through exonerves and wearable robotics.

FES has gained traction in the last few decades as a way to both assist movement and
facilitate rehabilitation of patients affected by a variety of ailments, first and foremost Spinal
Cord Injury (SCI) [29, 30] and stroke [31, 32, 33], as well as Traumatic Brain Injury (TBI) [34,
35]. FES presents some advantages compared to functional assistance of movement through
external aids such as exoskeletons and exosuits, mainly because, under stimulation, the work
is provided by the user’s own muscles. This has potential benefits in terms of rehabilitation
and neurological recovery [36], and can avoid various secondary ill-effects of inactivity such
as atrophy. Unfortunately, FES poses more challenges from a control standpoint than even
exosuits, which themselves are typically more difficult to drive than exoskeletons. Because of
this, many hybrid solutions have been proposed that integrate FES and traditional wearable
as well as endpoint-coupled robotics [32, 37], i.e. robotic mechanisms only connected to the
user’s extremities, and not to any other body segment, as well as exosuits [38].

1.1 General scope

The core publications presented in this dissertation deal with some of the main issues pertain-
ing to the assistance of movement through FES. These are subdivided into posture tracking [1,
5], the monitoring and estimation of force output [2, 3], assistance through compliant wearable
exosuits [2] and lightweight exoskeletons [3], and general-purpose multi-joint force control
through FES [4, 6]. Other discussed topics comprise the role of force feedback as well as force
output estimation in telerobotics and assistive robotics.

When attempting to assist movements through electrical stimulation currents, it quickly
becomes clear that the human musculoskeletal system presents more technical challenges
from a control science standpoint compared to traditional robot systems. For most intents and




purposes pertaining to functional movements, the skeletal system can be modeled as a series
of quasi-rigid links connected by rotational joints, as opposed to prismatic ones. Even with
these approximations, it is not trivial to implement a practical and sufficiently precise method
to monitor the configuration of this kinematic chain. The reason for this is that, even though
the quasi-rigid structure of the skeleton would make it easy to compute forward kinematics on
it, it is challenging to accurately measure its joint positions. This is due to the compliance of
the superficial soft tissues, which would cause any sensor worn on top of them to shift relative
to the skeletal structure during movement, leading to so-called Soft Tissue Artefacts (STA)
[39]. Furthermore, if we are interested in computing the force output in joint or Cartesian
space, we have to consider that the muscular system is inherently compliant, with geometrical
characteristics that can vary greatly across different postures [40, 41]. Additionally, muscles
exhibit hysteretic and time-variant or transient behavior [42, 43]. Consequently, the torque
output of a given muscle group at the joint level can be hard to predict. The same applies, in
some respects, to certain assistive devices such as tendon-driven exosuits, with the difference
that such devices can be more easily fit with sensors suitable to monitor their full dynamic
state, i.e. both in terms of positional coordinates as well as in terms of endogenous and
exogenous forces. FES presents an additional complication; namely, the dependency between
muscular force output and electrical stimulation is less predictable than the response of an
actuator which might be employed in an exosuit or an exoskeleton, adding an ulterior layer of
non-linear behavior to the system [44].

This gap can be bridged by integrating some form of force sensing in the control loop of
the FES system either online or during a calibration sequence prior to normal operation, as
illustrated in Chapters A.4 and A.6. At any rate, it is an imperative requirement for stable
control to provide a fitting form of feedback to the system, be it in the form of direct sensing
or of an estimate. In human users, typical sensors to measure positional parameters are
usually less cumbersome compared to those measuring force outputs, and they generally
entail less interference with normal movements. This is exemplified in Chapters A.1 compared
to, e.g., Chapters A.2, A4, and A.6. Positional data have to be converted into generalized force
outputs through body dynamics [45] or, as illustrated in Chapter A.2, by imposing a known
dependency between positional and force coordinates. The latter approach still requires some
interference with the user’s natural movements, as imposing this dependency usually entails
some form of (semi-) rigid harness. If, however, the imposed position-to-force dependency
can be actively changed, for example through an impedance control, the trade-off between
precision in force output measurement and interference to natural motion could be negotiated
based on the task at hand. A further way to directly measure the force output of a user without
constraining the limb is by making use of an actuated set of tendons fitted with longitudinal
force sensors, as presented in [46], which should imitate the function of the proprioceptors
detecting muscle load and tension forces, acting in parallel to the user’s muscular system, as
discussed in Section 2.2.

On the other hand, it is possible to estimate force output caused by muscle contractions by
sensing muscular activity [47], as exemplified in Chapters A.2 and A.3. This can generally be
done without interfering with movements, even though many studies in this sense present
results gathered from isometric setups [12, 48]. Nevertheless, sensing muscular activity can




provide an estimation of force output both at the joint level and in the task space, provided
that it is possible to measure the contraction of all independently controlled muscle groups
involved in the movement of interest. This topic is discussed in Sections 4.5 and 4.6.

Provided a fitting form of force output monitoring or estimation, in order to project this
force output from a generalized task space onto joint space and actuator space, it is necessary
to know the user’s posture. Besides the use of protractors, which have the advantage of
directly measuring kinematic angles as opposed to absolute body segment orientation, but
can lead to large projection errors in case of misalignment, most posture trackers involve the
use of stationary equipment. In recent years, wearable solutions tend to make use of Inertial
Measurement Unit (IMU) devices. The core publications of the present thesis that discuss this
topic are mainly concerned with this sensor modality for posture tracking [1].

1.2 Structure of the thesis

The works presented in this dissertation focus on the development of sensor modalities and
actuation strategies to facilitate movement assistance through both FES as well as external aids.
Each of the core publications focuses on one main aspect of the practical implementation of a
transcutaneous FES-based assistive and rehabilitative device.

The main body of the dissertation presents the state of the art, discussed in Chapter 2, the
aims of this thesis and the Research Questions (RQs) in Chapter 3, while Chapter 4 presents
the methods employed in the core publications, as well as pertaining to some yet unpublished
results. The main results are presented in Chapter 5, and their significance and contribution
is also discussed therein. The conclusions and prospects for future research are presented in
Chapter 6.

In Appendix A, the core publications are reported in full-text form and subdivided into
chapters. The relevant information regarding citation style and copyright is reported before
each full-text copy.

Chapter A.1 presents the BodyRig, a self-contained posture tracker based on IMU devices,
which can provide posture data to the control loop of a FES-based system. The BodyRig was
used in several of the other core publications.

Chapter A.2 presents a wearable grasp-assisting glove driven through Electromyography
(EMG), which demonstrates some of the principles of using a compliant exosuit to provide
assistance in movements while monitoring output forces in a non-static setup, which represents
a proof of concept for an assistive device also used as a force output sensor.

Chapter A.3 presents a semi-active shoulder exoskeleton able to provide adaptive support
based on Force Myography (FMG) measurements. This is a further proof of concept for a force
output estimator that does not limit the user’s range of motion and can successfully be used to
provide adaptive assistance when lifting weights overhead, and could also be used for intent
prediction in FES setups.

Chapter A.5 presents the MyoCeption, a prototype Transcutaneous Electrical Neuro-Muscular
Stimulation (TENS)-based device designed to test various control and hardware concepts to




provide electrical stimulation for movement support, force output control, and force feedback.
In particular, this chapter focuses on a comparison of the MyoCeption’s musculoskeletal model
and a third-party benchmark model.

Chapter A.4 presents the results of a user study with the aim of characterizing the quality of
force output control of the MyoCeption driven by the musculoskeletal model presented in
Chapter A.5.

Finally, Chapter A.6 presents an early analysis of a larger cohort testing the MyoCeption in a
positional control task. In this experiment, the MyoCeption does not employ a musculoskeletal
model, but rather a Ridge Regression (RR) predictor that provides an estimate of the joint
torque output based on the stimulation currents injected. This model is then integrated into a
loop featuring an impedance control able to drive the user’s arm toward a given target.

Appendix B reports the relevant information about the related publications. Pending patents
are not reported.

Appendix C contains the copyright statements relevant to the publications reported in full
text and to the original images produced for this thesis.




Figure 1.1: Artist representation of the progression from kinematic model to combined assis-

tance through external nerves and external muscles.
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2 State of the art

The implementation of wearable devices for the assistance of movements requires the solution
of many different problems pertaining to many diverse aspects. In this chapter, the state of the
art shall be discussed as it pertains to the core publications. The first topic is posture tracking
through self-contained wearable sensors, as well as real-time muscle geometry estimation based
on posture. Secondly, the core publications deal with force output estimation and measurement
obtained through muscular activity sensors and wearable exosuits, respectively, as well as
examining the role played by force output and posture measurement in the calibration and
control of FES-based systems. Finally, the performance of FES-facilitated movement and force
control are explored.

2.1 Body posture tracking and muscle routing

Many possibilities exist for the monitoring of human posture. Due to the compliant nature
of the tissues enveloping the skeleton, it is not trivial to measure joint angles or absolute
orientation of individual body segments, as any wearable sensors coupled to the user’s body
could experience misalignment w.r.t. the underlying skeletal structure. Therefore, the best
results, in terms of precision, accuracy and bandwidth, can be achieved through absolute
position monitoring by means of, e.g., optical tracking using either cameras and, in some cases,
light sources mounted around the user. Commonly used devices that employ this approach are,
for example, the Vicon marker-based tracking systems [49, 50] and the VIVE VR systems [51].
However, setups which rely on optical tracking through external cameras are not wearable.
This does not exclude the use of this technique in rehabilitative applications, but it is a major
argument against its use to provide assistance during Activities of Daily Living (ADL).

Some setups propose to use egocentric cameras mounted on the user in order to directly
observe the wearer’s limb pose [52, 53]. A commercially successful example in this sense is
Microsoft’s HoloLens [54]. These approaches have the advantage of allowing for the measure-
ment of the complete transform from the camera or light sensor to the light source or marker,
in terms of both translation and rotation. However, in the case of HoloLens, the performance
can be insufficient when the marker itself is moving, as would be the case when attempting to
track the position of the wearer’s limbs, and the user’s range of motion might be limited due
to the necessity of an uninterrupted line of sight existing between the optical sensor and the
target [52].

Most wearable body trackers use a different approach, namely to measure the orientation
of individual body segments, either in relative or absolute terms. The positions are then
computed by using Forward Kinematics (FK) and, in some cases, various kinds of sensor
fusion applied to IMU-derived signals [55]. The most immediate implementation is that of




fitting the user with protractors measuring the relevant joint angles [56] through goniometric
techniques. This method can also be used if the user is wearing an exoskeleton. This approach,
however, might lead to sizable estimation errors or cause discomfort to the user due to the
possibility of misalignment between the protractors and the joints themselves [55].

IMUs are sensors that encompass several modalities. These are capable, in most cases, of
detecting acceleration through a seismic mass, rotation rate through a gyroscope, and direction
of the magnetic field through a magnetometer. These measurements can be used to track
the sensor’s orientation and, to some extent, its position. Wearing IMUs is generally more
comfortable than wearing protractors, as the sensors can be worn away from joints, and while
IMU-based kinematics calculations can still suffer from sensor misalignments, the sensors
generally do not need to be exactly aligned to the joints and the functional axes.

The de facto state of the art in IMU-based body tracking setup is the Xsens motion capture
suit [55]. This setup allows for high bandwidth measurements of the human movements, and
can even detect different gait schemes. The system is, however, arguably ill-fitted for bespoke
applications, such as those in patient assistance. The Xsens system is not sufficiently modular,
and is rather designed to be a general-purpose whole-body tracking device. Furthermore, the
system autonomy is arguably too limited for daily use, which would be a requirement for an
assistive device.

Wearable
Distributed IMU

Egocentric

Non wearable IMU only

IMU/optical hybrid

Figure 2.1: Taxonomy of various non-goniometric posture tracking techniques subdivided
based on wearability and use of optical tracking as opposed to distributed IMUs.
From left to right, an exemplification of a body tracking system relying on external
equipment, like the Vicon tracking system or the VIVE VR setup, HoloLens 2, a
hybrid IMU/egocentric camera system, and the Xsens IMU-based motion capture
suit. Images from [1, 52, 55, 57]




In recent years, the advent of cheap Micro Electro-Mechanical Systems (MEMS)-based IMUs
has rendered them much more cost-effective and widely used. The BNOO055 integrated IMU
platform has been shown to provide precision that is in some cases comparable to the mit-300
IMUs used in the Xsens suit. Overall, the mt-300 provides better performance, but the price
per unit is two orders of magnitude higher compared to the BNO055, which has served as the
basis for at least one further generation of MEMS.

Posture tracking is paramount for the projection of desired forces from task space or Carte-
sian space onto joint space, but also for the estimation of muscle geometry. In the research
community, one of the most widely used software for biomechanical modeling of the human
body, and for the integration of real-life posture measurements in such models, is OpenSim
[45]. This is an open-source software suite that includes, among other things, a number of
solvers for direct and inverse kinematics, dynamics, biophysical modeling of, e.g., muscle
activation dynamics and interactions with the environment. Not all of these solvers are capable
of working in real-time, although some of them can and have been used in online applications
for the control of, e.g., exoskeletons and exosuits [58]. In offline analyses, OpenSim muscu-
loskeletal models can be used as benchmarks to compare against, as illustrated in Chapter A.5.

Musculoskeletal models often rely on the concept of line of action or line of force, by which
a bundle of muscle fibers is approximated by means of a series of line segments along which
the muscular force is assumed to act [59]. Such models associate one or several lines of action
to each simulated muscle group, as exemplified in [60]. Canonically, a model based on line of
action relies on a line running through the average centroid of the physiological cross-section
along the whole length of the stimulated muscle groups, as introduced in [61] and, more
recently, in [41]. Many studies have demonstrated how inhomogeneities in muscle activation
can lead to great effects on joint torques. In the case of the musculoskeletal model used in
[4] and [5], the line of action routing is based on the observation of functional effects during
muscle contraction on the musculoskeletal system in a given position, as first introduced
among others in [62].

In general it can be arduous to find a ground truth for muscle routing, especially during
functional movements. In [41] Hainisch and colleagues demonstrated how muscle routing
can be inferred from tomographic images. This approach, however, is only practical with
the user at rest or with very specific motions and poses. Ultrasound imaging could provide
information with regards to both muscle routing and contractile state [63, 64, 65], but in order
to be useful in a functional setup this information needs to be coupled with a posture tracking
setup, in order to project the measured muscular state onto joint space and then task space.

The main role of a musculoskeletal model in, e.g., a FES system is to estimate the direction of
the torque vector that would be caused on the user’s joints if a stimulation current were injected
across one given electrode pair, as illustrated in Chapters A.4 and A.5. A properly calibrated
musculoskeletal model can provide an estimate of both the direction of the stimulation-
caused torque and its magnitude given the user’s posture and the injected current intensity.
Musculoskeletal models can be used in various further applications that do not require real-
time capabilities, such as ergonomics. In this field, musculoskeletal models may be used to




Figure 2.2: Left: An Opensim model including several muscle groups from the right upper
limb. Right: Diagram of a Hill-type model including a compliant tendon of stiffness
Kt and rest length Lt as well as an active muscle of resting length Lj; with in-
parallel arrangement of the muscle fiber stiffness Ky;. The model includes the
pinnation angle . The force along the tendon is denoted as Fr, and the force along
the muscle fiber’s orientation is denoted as Fj,.

identify the muscle groups most used during a given movement, or the foreseeable load the
musculoskeletal system might be subjected to when performing a given task or activity [66, 67].

By contrast, an application requiring real-time capabilities and relying on musculoskeletal
models is teleimpedance. In this case, an estimate of the joint stiffness is used to regulate
robotic teleoperation controls. The intended stiffness can be inferred by calibrating a multi-
muscle hill-type [68] musculoskeletal model [69], as depicted in Fig. 2.2. This provides a
stiffness estimate for every muscle group, which can then be projected to joint space, provided
that the muscular geometry is known. The direct observation of joint stiffness is not trivial, as
stiffness is determined by muscle co-contraction which occurs in the muscular null space of
net force output. In other words, muscular co-contraction, does not lead to measurable force
output, which is instead determined by the net difference in contractile force. Furthermore,
it is possible to demonstrate that muscular stiffness cannot be assumed to be linear w.r.t.
contraction [70, 71]. Because of this, Hill-type muscle models feature a transfer function where
the passive spring-like elements are typically modeled as having a contraction-dependent
stiffness. It is therefore possible to increase the overall impedance of the muscle element by
contraction, and by extension increase the stiffness of the joint. At any rate, if real-world
stiffness measurements are used for the calibration of such models, they usually have to be
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acquired at the joint level [69]. Measuring the stiffness of muscles in vivo is however arguably
possible through techniques like elastography [72], or generally by monitoring the propagation
of mechanical shear waves along the muscular tissue [63, 73].

As is the case for force estimation, intended stiffness estimation can be implemented without
explicit modeling of the muscle geometry and without real-world stiffness measurements. In
[10], for example, a single joint example is presented. Therein, a Random Fourier Features
(RFF)-based linear predictor is used to directly infer the intended rotational stiffness at the
wrist based on EMG measurements acquired at the forearm. The model is calibrated on
artificial labels, whereby a state of full co-contraction is associated with an arbitrary maximum
joint stiffness value. The user is then relied upon in order to adjust their commands to the
observed system behavior.

2.2 Exoskeletons and exosuits

Exoskeletons and exosuits both belong to the broader category of wearable robotics. Exoskele-
tons arguably represent the most affirmed subset of devices in wearable robotics [74], as they
consist of non-compliant robots designed largely according to traditional design philosophy
set up to surround the wearer and move alongside them, even though the types of controls
to achieve this synergy have changed greatly over the years. More recently, other classes of
devices have emerged, with different implications concerning the physical and functional
interactions between the device and the wearer [75, 76]. In the following, some of the salient as-
pects of wearable robotics to be used to support movement in concurrence with both volitional
efforts by the user and FES are examined.

2.2.1 Safety and human-device interactions

Traditional exoskeletons have gone through multiple paradigms. From early attempts, which
often relied on pure position controllers [77], to more recent iterations with a higher emphasis
on physical Human-Robot Interaction (pHRI), as presented in [78]. In recent times, lightweight,
(semi)passive exoskeletons have emerged as the most practical solution for the general market
[79, 80]. As it stands, however, these machines are rarely able to provide truly adaptable
support. If they are, this support is seldom regulated based on muscular activity. Instead,
usually a conscious and explicit effort by the user is required, such as shifting the center of
mass in the case of lower-limb exoskeletons or giving commands through a wrist-worn input
device. This is the case also for some active exoskeletons [81].

In recent years, so-called exosuits have attracted much interest in research. Exosuits are
compliant, wearable devices. Various options exist for their actuation [23, 26]. For the purposes
of movement assistance through FES, it is desirable that the exosuit be usable to both provide
assistance against gravity in the more proximal joints, as well as to monitor the force output in
real-time without limiting the user’s range of motion [37, 38]. The support is necessary, as grav-
ity compensation on proximal joints might not be possible or practical solely through electrical
stimulation. This is the case e.g. in [29], where a robotic support is needed to counteract gravity.
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Figure 2.3: Classification of wearable robots for the upper limb based on DoF redundancy up
to and including continuum-based soft robotic systems [82].

Fig. 2.3 shows a taxonomy, with examples, of wearable robotics systems based on structural
redundancy and compliance. Actuated, rigid exoskeletons can largely be controlled like tradi-
tional robots, with most modern control concepts centered around the human-robot power
exchange [78]. Exosuits, on the other hand, while typically featuring less complex hardware,
often present more challenges from a control standpoint. For one, exosuits often present
finite degrees of actuation, but potentially infinite degrees of freedom, in the case of a flexible,
continuum-based wearable structure, such as is the case in [2]. Semi-active exoskeletons can
be a practical compromise in that they often feature relatively simple, lightweight hardware, as
they tend to offer a limited amount of actuated degrees of freedom. In the case of such devices,
the most challenging aspect resides in controlling the system in a transparent and intuitive
manner, without burdening the user with any excessive cognitive load. Furthermore, in order
for such controllers to be viable in the industry or in the clinical field, the sensor modalities
employed to provide such controllers with inputs should be practically and commercially
viable.

On the topic of clinical viability, the clearance of wearable robotics as medical devices is a
long and arduous one, which is largely informed by the observed potential risks entailed by
human-robot interactions with conventional exoskeletons. The Food and Drug Administration
(FDA), which is the agency competent for the risk assessment of exoskeletons as medical
devices in the United States, released a comprehensive list of potential dangers associated
with wearable robotic devices [83]. Therein, the FDA identifies numerous risks stemming
from an inconvenient interaction between the user and the exoskeleton, both due to potential
user error and to intrinsic properties of the materials and structures in contact with the user.
While the FDA does not classify exosuits separately, many of the risks reported in [83] could
be mitigated by the use of soft, bio-compatible materials and by avoiding rigid structures. The
FDA does, however, make a distinction between active or powered and passive or non-powered
exoskeletons, classifying the former as a class II medical device, generally requiring special
controls to mitigate potential risks given by the active electro-mechanical components, and
the latter as class I, thus requiring no special controls besides pre-market approval [84]. Ac-
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Figure 2.4: Example depiction of a hip exoskeleton controller based on minimization of net
interaction forces between the user and orthosis.

cording to European regulations, exoskeletons are classified as medical devices in any case [85].

2.2.2 Control strategies

As reported in [78], the interaction forces between the user and the wearable robot can be
used to control the robot’s output force so as to augment the force imparted by the user onto
the environment, under the condition that this interaction only happens through the robot
itself. In such a setup, the control problem could be stated as trying to move the robot so as to
minimize the interaction forces between the user and the robot. As depicted in Fig. 2.4, where
a hip-assisting exoskeleton is depicted schematically, the interaction forces f,, f, € R3 can
lead to the calculation of a net interaction torque Tyt € R® by calculating the cross product
with the positions 71,72 € R? relative to the joint. The pHRI-controlled torque delivered to
the hip motor TpHRI € R3 is then computed by a Proportional Integrative Derivative (PID)
controller with coefficients P,I,D € IR. Besides the fact that for this control to work the
user interaction with the environment has to be mediated by the exoskeleton [78], in the
case that the user is not able to sustain their own weight with their own musculature, the
exoskeleton would not be able to assist in this regard. This makes pHRI potentially unsuitable
for assistive or rehabilitative applications, unless it is applied on top of a control with the goal
of compensating for a fraction « € [0,1] of the user’s own weight and the pose-dependent
interaction forces g(q) € R? deriving from it, as shown for example in Fig. 2.5. This would
necessitate some form of dynamics model of the user’s body, where Q € IN would be the
number of Degree of Freedom (DoF) considered therein. In the case of a tendon-actuated
exosuit, the controller would operate in terms of tension force f ;. In some cases, a system
integrating both a wearable robot and FES could bypass this issue, as voluntary muscular
activity could be amplified to sustain the user’s own weight.

Alternatively, if the interaction between the user and the environment should not be medi-
ated by the robot, biosignal-based control could be used [12, 47, 48]. These control paradigms
can be borrowed from the larger field of prosthetic controls. Figuratively, prostheses work in
series to the user, as opposed to in a parallel fashion like exoskeletons, exosuits, and exonerves.
Although a prosthesis wearer can typically interact with the environment only through the
prosthesis itself, self-powered prosthetic devices normally feature degrees of freedom with

13



[l = force sensor Il = strain sensor

_ [ - ;
Belt !M‘: [l = tendon guide

Belt
Thlgh Demux Demux
fastener Tmot (Mo ToHRI St -_ fonri
Shin
; agla) guide f ag(@)
/ 0<ac<1 Osacs1
Shin o
fastener [} /§

Shoe &’ § Shoe

Figure 2.5: Left: Depiction of pHRI-based control for exoskeletons. Right: Depiction of pHRI-
based control for exosuits. Both controls are added to a gravity compensation term.

which the user can not directly exchange mechanical power. Therefore, in the case of trans-
parent, intent detection-based controls, the prosthetic can be driven based on some form of
muscle activity measurement, which is used to infer the intended force output or movement.
Although relatively rare in exoskeleton and exosuit control, this biosignal-based concept could
be employed in the same manner as pHRI, substituting direct measurement of user-robot
interaction forces through the inferred intended force output. Muscle activity-based inference
of force output would not require the user-environment interaction to happen through the
mediation of the robot, would also decrease the impairment on the user’s range of motion [47].

While interaction force measurement and inferred volitional force output can be used as a
control input for wearable robots, it is also true that wearable robots themselves can be used to
provide various levels of precision in the measurement of force output for diagnostic purposes
or real-time control. As stated in the introduction, direct force measurement entails exerting
some form of resistance onto the user, which leads to a general trade-off: the more resistance
is applied, the greater the range and the better the achievable force measurement precision.
On the other hand, applying resistance to the user’s movements obviously impairs natural
motion, and can be especially counter productive for users with reduced mobility. As stated
above, inference of intended force output based on muscular activity can largely sidestep this
problem, as the range of motion is typically not decreased by most available sensor setups
[47]. Such force output predictions are however prone to estimation errors. On the other hand,
exoskeletons and, in some cases, exosuits, can tune their compliance, and could therefore be
set to operate at any desired operational point is needed given the current force measurement
requirements.

Similar considerations can be made for the measurement of limb stiffness, as the trade-off, in
this case, is determined by the necessity of measuring the deflection caused by an interference
of known force and direction in order to calculate the stiffness itself.
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2.3 Functional electrical stimulation

Functional Electrical Stimulation (FES) represents an integral part of the rehabilitation of
certain neurological patients. As stated previously, FES causes the firing of peripheral motor
neurons through the injection of electrical currents [28]. This can be useful in rehabilitation,
which, at its root, has the purpose of re-forming damaged neural connections, typically be-
tween the central and the peripheral nervous systems. FES offers many advantages with
respect to rehabilitation facilitated through external aids, chief among them the fact that the
user employs their own muscles in order to complete the movements, thus avoiding secondary
complications such as muscle atrophy. In the early phase of rehabilitation, FES is an effective
tool in a task-specific, restorative therapy program to foster neurological recovery [36, 86]. In
the chronic phase after a neurological disease or trauma, FES may be used as a neuroprosthesis
for compensation of completely lost or very weak motor functions. Particularly in individuals
affected by SCI and the associated impairments of the reaching and grasping function, FES
has been successfully employed for assistance in ADLs, both using transcutaneous [30] and
intramuscular electrodes [29]. FES has also been used to aid patients affected by stroke
[31, 32, 33], as well as TBI [34, 35]. Besides rehabilitation and assistance, FES, or more in
general Electrical Muscular Stimulation (EMS) techniques, are also becoming an accepted
clinical practice for diagnostic purposes to assess certain aspects of patient functionality [87, 88].

In the following, the salient aspects of both the physical and the software implementation of
FES concepts are discussed.

2.3.1 Intramuscular vs. transcutaneous FES

Transcutaneous FES relies on adhesive electrodes kept in constant contact with the user’s skin.
The currents are injected into the motor nerves through the tissue lying between it and the
electrode. This leads to an inherently harder-to-predict current distribution, as represented
in Fig. 2.6, with additional difficulties caused by the fact that muscles will shift under the
skin across different positions. Furthermore, transcutaneous FES generally does not allow the
selective stimulation of deeper muscle groups while leaving superficial ones inactive, as the
current distribution within the muscular tissue is likely to show higher current densities closer
to the skin, as depicted in Fig. 2.6.

This leads to increased difficulties in predicting the direction and magnitude of the force
output caused by injecting a given current through the electrode pair, in a similar fashion as
what occurs in EMG-controlled prostheses due to the limb position effect [89]. Due to these
factors, the non-linear superposition of the effect of injected currents in transcutaneous FES
has been identified in some experiments as a significant source of error [90]. Transcutaneous
FES is however much less invasive than intramuscular FES, and therefore it is also used in
applications outside of the medical field, e.g. Virtual Reality (VR) and Augmented Reality
(AR) [91, 92]. Besides the rendering of force vectors, it is possible to provide different forms of
haptic cuing through electrical stimulation: for instance, virtual barriers or force fields can be
rendered, which could potentially be employed to train specific movements. FES has also been
used to inform users about affordances that can be applied to objects in a scene [93].
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Intramuscular or nerve-cuff electrodes, as opposed to transcutaneous electrodes, allow
for selective and precise stimulation of the muscle group in which they are implanted, but
they entail invasive interventions. The increased spatial and time resolution they can afford,
however, leads to great precision in force control applications [94]. Furthermore, many studies
report that stimulation delivered through this type of electrodes is linear in the produced force
output. [44, 95].

In all kinds of FES techniques, the force as a function of stimulation current can be ap-
proximately represented as a sigmoid [44, 90], which leads to further non-linearities being
introduced in the system.

2.3.2 Control science considerations

The context of rehabilitation can offer some advantages, as the repetitive, task-specific nature
of the movements typically performed during a therapy session makes it possible to implement
iterative learning, which allows to calibrate inertial parameters and to differentiate the user’s
own volitional efforts from electrical stimulation [96, 97]. However, many of these setups rely
heavily on the assumption of repeated movements, and might be ill-fitted to aid motions that
are not periodic. Furthermore, currently available FES systems, both in the medical field and
beyond, tend to use static stimulation schemes in order to generate predefined multi-joint
movements. Most setups available can successfully induce task-specific movements requiring
the stimulation of muscle groups directly associated with them in a bijective fashion (that is
to say that one specific functional movement, such as elbow flexion, is associated, usually by
experts, with the stimulation of a specific anatomical muscle group) [32].

There is a fair amount of literature regarding single joint motions involving few or only one
DoF. Within these confines, many trends have emerged proposing possible solutions for the
control of FES systems. Finite-state controllers, which transition between different (usually
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Figure 2.6: Depiction of transcutaneous electrodes injecting currents into a group of skeletal
muscles and the associated distribution of current density.
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feed-forward) control modes based on the measured state of the system, have been proposed
[98]. Continuous controllers, such as PID [99, 100] and sliding-mode [101, 102], have also
emerged, and have been used together with exoskeleton systems in a closed-loop fashion.
Artificial neural networks have also been employed to this end [103, 104], as well as non-linear
predictive controllers [105, 106].

On the other hand, examples of general-purpose frameworks capable of associating arbitrary
movements or force outputs to more than a few stimulated muscle groups, in particular
without relying on the assumption of repeated actions, are fairly rare. The applicability of the
single-DoF control systems mentioned above to more degrees of freedom has mainly been
reported in simulations [99, 100]. FES presents many difficulties from the point of view of
movement control in multi-joint systems, as determining the forces and torques exerted by a
muscle group stimulated through surface electrodes can prove to be difficult. Some examples
of setups that are able to enforce a general-purpose movement control of multiple joints are
presented in [44, 94, 107, 108]. Schearer and colleagues, in their works, present the results
of experiments performed on an SCI patient with implanted electrodes, which, as stated in
the previous section, are in many ways less challenging from a control perspective. In [44],
in particular, the authors show evidence that force output components due to stimulation
currents seem to combine linearly. This finding is corroborated by other similar studies, such
as [95] and [109]. In [94], Schearer and colleagues report the performance of a force controller
introduced in [44] for movement control, and the force output predictor is only calibrated in
one arm position. The upper limb’s dynamics, however, have to be calibrated by moving the
arm across different postures. Razavian and colleagues, on the other hand, present a setup
featuring transcutaneous FES and a controller formulated in task space, as opposed to joint
space [108]. As such, the control system has to be calibrated in various postures across the
task space, which in this case is planar.

2.3.3 Model-mediation

As can be inferred from the above-mentioned considerations, designing a multi-joint FES
system that can be easily adapted to any individual user is still very much an open topic.
Besides considerations about the physical delivery of stimulation currents, some space should
be dedicated to the discussion of the practicality and convenience of the control concepts upon
which FES setups are based. For the purposes of this discussion, some distinctions have to be
drawn based on which kind of model is used to control the FES setup.

In this regard, two main paradigms can be identified in the design of FES control systems.
On the one hand, musculoskeletal systems can be employed to infer the general routing of
the muscles, and consequently of the force that they would exert if stimulated [110]. Besides
the model proposed by Chadwick and colleagues, a further real-time model that includes
muscular as well as arm dynamics, and that is capable of real-time functionality, was proposed
by Sartori and colleagues in [111]. While these latter models are mainly concerned with pre-
dicting movements given the EMG measurements sampled from the user, the two problems are
inherently linked, so much so that certain setups from the literature use EMG measurements
associated with gestures to perform spatial calibration of the FES injection pattern associated
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with those same gestures [112]. In [113], on the other hand, surface Electromyography (sEMG)
is used to detect the electrophysiological response to sub-threshold EMS injections, as opposed
to measuring stimulation-caused twitches or force outputs. The models presented in [110]
and [111] are both based on the OpenSim modeling framework. Such musculoskeletal models
require some anatomical expertise to be set up, as they usually call for manual routing, at least
to some degree, of the muscle groups. Adjusting such a model to an individual user’s anatomy
can require the use of costly and time-consuming imaging techniques, as exemplified in [41].
However, because they rely on an anatomically informed muscle placement, musculoskeletal
models can inherently account for variation in muscle routing due to changes in posture. They
might require some level of functional calibration in order to compute the transfer function
from stimulation to force output, but once there is an indication of which muscle groups are
going to contract under a given electrode pair, an educated guess can already be made as for
the force output direction caused by single-channel FES pulses.

On the other hand, black-box Machine Learning (ML)-based controllers are directly trained
based on real-world measurements of force output caused by the injection of stimulation
currents. ML models need to be trained specifically for any given electrode placement and
need samples at various current intensities in order to compensate for the stimulation to force
output sigmoid transfer function [44]. The thus obtained force output prediction can be used
also to provide a solution in terms of stimulation that would elicit a desired force output,
if necessary by considering additional constraints, such as keeping the overall current to a
minimum. Unlike musculoskeletal models, such an approach can not inherently generalize
well over different postures, and the predictor would need to be trained on data sampled
in different limb poses in order to do so, as is the case for example in [107] and [108]. The
advantage of ML-models is that they do not require particular anatomical expertise in order to
be set up, and can inherently adapt to individual users.
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3 Aim of the thesis

The main aim of the works presented here is to characterize and explain the key aspects
of the design and implementation of a FES-based, wearable device usable for assistance,
rehabilitation, and other applications. Each presented work focuses mainly on one aspect
or subsystem that can be used in a FES assistive or rehabilitative setup. As the translation
from laboratory to clinics is a major focus of the research presented here, certain aspects of
these concepts aim at providing a self-contained, easy-to-use, practical solution that could be
deployed in a clinical or even domestic setting.

The BodyRig posture tracking system is an example of this philosophy, as it can be donned
in seconds, and is extremely versatile and low-cost. While an optical system would almost
certainly provide more precise and accurate posture tracking, most such systems require
non-portable equipment and are susceptible to non-ideal lighting problems or line-of-sight
interruptions.

The BodyRig proposes to be a cheaper, more specialized alternative to the Xsens. This
is achieved by employing recent integrated IMU modules, namely the BNOO055 from Bosch
[114], which provide comparatively good performance, relative to the cost [115]. The system is
presented in the publication in Chapter A.1 and was prominently featured in [8, 9].
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Figure 3.1: Explanatory depiction of accuracy and precision. The former is the vicinity of an
estimate or an experimental outcome to a reference (true) value, while the latter
refers to the consistency or repeatability of the experimental outcome [116].
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Both the featured exosuit and semi-active exoskeleton are also designed to provide the
user with force support while featuring extremely lightweight structures. Furthermore, the
presented experiments introduce setups where these devices are used to indirectly monitor
force output in non-static tasks.

Finally, the main goal of the MyoCeption FES system is to provide a model usable in
movement control that can be easily adapted to an arbitrary user, as well as to test various
options to provide electrical stimulation with the best possible trade-off between fitting and
calibration time and precision.

In the core publications in Chapters A.4 and A.6, two main concepts are presented, one based
on a musculoskeletal model and one on an RR-based predictor of the stimulation-induced force
output. Both models feature a specific calibration procedure the advantages and disadvantages
of which will be analyzed in greater detail in the following chapters.

3.1 BodyRig and posture monitoring

The BodyRig is designed to be a versatile and easy-to-use body tracking system. IMUs are
particularly well suited from a practical standpoint, as they can be worn above clothing
without the need for any rigid structure, as a mechanical joint protractor would require, for
example. IMU-based body tracking can be very practical in certain applications, provided
that the requirements for precision and especially accuracy are met, as IMUs can guarantee
good repeatability, but accuracy in posture tracking can be lacking. Fig. 3.1 depicts the salient
attributes of a precise and of an accurate measurement.

The BodyRig system was originally designed to integrate data pertaining to body posture
in intent predictors for prosthesis control [13]. However, it was mainly used in experiments
involving teleoperation, as shown in [8, 9]. In either case, the posture tracking was to put more
emphasis on precision or repeatability, rather than on accuracy. This is to say that the forward
kinematics estimate of the user’s End Effector (EE) position should not necessarily be close
to the real pose of the user, as long as the estimate is consistent every time the user assumes
a given posture. The actual pose of the user’s body segments in space is not as important
as repeatability and transparency in most applications involving teleoperation or prosthesis
control. In such scenarios, the users can easily adjust to any bias errors between their actual
hand pose and that transmitted to the robotic avatar’s end effector. Furthermore, most ML
algorithms for prosthesis control only need qualitative measurements in order to provide a
prediction of movement intention. In [9], for example, offsets in the inferred position of the
user’s hands could be added in order to make it more practical for the study participants to
teleoperate the humanoid platform TORO without self-colliding during bimanual tasks. This
does lead the body tracking measurement away from the real posture of the user but does
not influence the precision of the measurement. The participants of that study were able to
press keys on a telephone keypad through the humanoid robot with only visual feedback,
collocating the attainable precision of the setup in the sub-centimeter range.

For the purposes of FES, on the other hand, the accuracy of the body tracking measurements
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does play a bigger role, as these measurements are then used to align a musculoskeletal
model to be as close as possible to the real position of the user, and to then compute the
stimulation needed to induce a desired force output or movement. The BodyRig can be used
to perform this alignment in real-time, provided that the length of the body segments has been
measured with sufficient accuracy and that the angular offsets between each sensor and the
respective body segment are also well assessed, and that the sensor fixture ensure that this
offset does not change too much during movement. The identification of functional joint axes
is also of relevance for the use of musculoskeletal models in FES applications. In Chapter 4, a
few strategies for the computation of such axes that were used in experiments involving the
BodyRig are discussed.

While the skeletal segments can be more easily aligned, it is less trivial to provide a
reasonably good inference of the muscle geometry as a function of body posture. Nonetheless,
with a few assumptions on how the muscle should be routed, it is possible to infer the geometry
of a given muscle group’s line of action, as shown for instance in [110] and confirmed for the
MyoCeption’s controller in [5]. The present work also aims at comparing the performance
of an expert model, i.e. a musculoskeletal model designed with some anatomical expertise,
and a more general ML-based model. The BodyRig plays a role even in the latter case, as it is
employed to infer the position and orientation of the joints. This is in turn used to compute
the joint torques needed to achieve a given force output in Cartesian space to be matched by
FES-caused muscle contractions.

This leads to RQ1, which regards the performance attainable using a portable, self-contained
body tracking system.

Research Question 1: what is the realistic precision and accuracy attainable by using a
self-contained IMU-based body tracking system to monitor both skeletal kinematics as
well as muscular geometry? What degree of precision is required in order to control a
FES system?

3.2 Wearable robotics and force output measurement

The main roles of wearable robotics in FES setups are to provide additional support when
stimulation-induced joint torques are not sufficient to perform the desired movement, as well
as to monitor force output. As stated in previous sections, such wearable devices can be used
to measure interaction forces with the user in real-time, ideally with negligible limitations to
the user’s range of motion.

With regards to force output measurements, the relation between this and injected stimu-
lation currents in a quasi-static setup is explored in Chapter A.4. The intent is to assess the
possibility of integrating force output measurements in a calibration procedure for a FES-based
assistive device prior to online operation. Concretely, force output measurements in this sense
can be performed by locking the user’s forearm in a cuff, which is itself connected to a load
cell. This can be used to monitor force and torque output as well as to project these onto joint
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space. This technique, however, entails locking the user’s arm and preventing it from moving.
Such a calibration procedure was used in A.6.

Chapters A.2 and A.3 investigate two separate solutions with the goal of assessing force
output without limiting the user’s range of motion while providing adaptive support. In
Chapter A.2, the force measurement is obtained by imposing a known compliance to infer
interaction forces by measuring displacements. The compliance is enforced by an admittance-
controlled handle, which the users had to grasp during the experiment. The admittance was
used to project an sSEMG-based estimation of the grasping force onto positional coordinates of
the hand closing movement, which for the purposes of this experiment was reduced to one
single DoF. The control loop was tasked with minimizing the error between the estimate of
the desired hand grasp angle and the actually measured angle.

In a further proof of concept presented in Chapter A.3, FMG is used to estimate the torque
at the shoulder caused by lifting various weights. This technique does not entail a closed
loop like the solution presented in A.2, but it does not require the imposition of a known
compliance and therefore decreases the limits on the user’s range of motion.

In both cases, the assistive device provides support forces and torques tuned on the basis of
the desired output force. In the concepts presented in A.2 and A.3, the support force provided
by the wearable robot is based on the momentary volitional muscular activity, with the intent
of decreasing the slope of the volitional effort over the force output curve.

Chapters A.3 and A.2 are conducive to RQ2, which relates to alternatives to rigid exoskele-
tons and static force and torque sensing setups for the purposes of force output measurements.

Research Question 2: what alternatives exist to traditional rigid exoskeletons to provide
assistance to functional movements while monitoring intended as well as actual force
output without constraining the user? What benefits would such modalities offer in
terms of performance and efficiency?

3.3 Functional electrical stimulation

While posture tracking and force output estimation are all paramount aspects of multi-joint
Functional Electrical Stimulation systems, FES entails an entirely separate series of control
problems, and therefore deserves its own sub-topic.

As can be surmised from the State of the Art, implementing an easily adaptable multi-joint
FES system is still very much an open topic. Regarding the method of delivering the stim-
ulation currents to the peripheral nerves, intramuscular or otherwise implanted electrodes
would automatically make the system more adapted to the recipient, as such implantation
interventions are inherently highly individualized. On the other hand, surgeries have well-
known potential complications and do require a remarkable commitment from the recipient.
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It is therefore fair to assume that ease of use and adoption by a general population is not the
main focus of such systems as those proposed by Schearer et al. [94], which are all based
on implanted electrodes. Assuming that an ideally versatile system should rely on surface
electrodes to provide FES, the placement of these should be easy to rearrange. Furthermore,
the model upon which the system’s controller relies should be easily modifiable to better fit
each individual, ideally without the need for much anatomical expertise, and if possible even
automatically.

With regard to FES, various concepts are presented and reported in this dissertation. The
main benchmark to test these is the MyoCeption. The MyoCeption prototype is a surface FES
device featuring a wearable Velcro-lined jacket. The MyoCeption framework’s development
led to the filing of a patent [14]. While FES applied through surface electrodes has been used
in many previous publications for both assistive and rehabilitative purposes, the concepts
described therein usually stimulate single joints in order to achieve specific movements. A
general-purpose framework to apply FES to any given body segment is, however, still missing.
Furthermore, few of the setups presented in the literature are self-contained.

As far as the MyoCeption setup is concerned, the aims of the experiments presented in this
dissertation are to investigate the benefits of integrating posture tracking, muscle activity, and
force/torque output sensor modalities in the control loop in order to improve the effectiveness
of the electrical stimulation in aiding movements. This includes the investigation of approaches
that allow for a short calibration allowing the system to adjust to individual users.

The MyoCeption prototype has been assessed in the achievable precision and functional
performance in both [4] and [6]. In the modeling of the human musculoskeletal system, the
skeleton can be approximated like a series of effectively rigid links connected by revolute (that
is to say, rotational) joints.

Based on these assumptions, a musculoskeletal model is introduced and described in
Chapter A.5. In Chapter A.4 the performance of a FES force control relying upon such a
musculoskeletal model is assessed. In particular, the performance of the non-calibrated model
was compared to that of the same model calibrated through a procedure that automatically
adjusts the line of force routing. The results demonstrate the advantages of musculoskeletal
models, namely that they can perform to some degree even with no calibration performed.
The force control is achieved through a computationally efficient Nearest Neighbour (NN)
muscular recruitment strategy. This technique requires the association of every line of action in
the musculoskeletal model to a given joint, and for each one, it individuates the muscle group
the stimulation of which would cause the torque output closest in direction to the desired
one. The experiment from A.4 also allowed for an offline analysis to assess the reliability with
which it is possible to predict the wrench output at the end effector, or the torque output at
the joint level given the stimulation currents injected.

Based on the offline results presented in Chapter A.4, an ML-based concept is presented in
Chapter A.6, where real-world force measurements are used to calibrate a joint-space torque
predictor based on the injected currents. This predictor is then integrated into a control loop
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and used to find an optimal stimulation vector to cause a desired output force through gradient
descent.

Chapters A.4 and A.6 are concerned with RQ3, which ultimately regards the attainable
performance of FES-based force controls and their use in impedance-mediated movement
assisting controls.

Research Question 3: what precision and accuracy can be achieved with a FES-driven
force control of the human limb? How can this be translated to movement control? How
can such control systems be calibrated in a practical way?
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4 Methods

In the core publications, the main aspects relating to posture tracking, muscle geometry
estimation, adaptive assistance, force output prediction and FES-facilitated force control are
characterized and validated. In addition to these core publications, this dissertation includes
some unpublished results, mainly derived from pre-tests or relating to direct comparisons
between available datasets. The results are presented in the following chapters. Here the
methodological aspects are discussed, as well as some of the empirical considerations that
have led to some design and experimental decisions.

The first sections in this chapter present fundamental aspects relevant to the core publications,
which are reported here as a means of familiarization for readers who might be unfamiliar
with some of the disciplines upon which the proposed assistive devices are based.

4.1 Fundamentals in robotics and multi-body system modeling

Traditional robotic arms are typically modeled as an arrangement of rigid links connected by
joints. Joints can either be rotational, also known as revolute, which rotate by an angle 6 € R
around a rigidly defined axis of direction e € R3, or prismatic, which elongate or shorten
by a length | € R along a similarly defined axis. More complex joints, like ball-and-socket
articulations for instance, can be modeled as combinations of many elementary revolute and
prismatic joints. These internal system coordinates can be grouped in a vector, which we
will denote g € R?, where Q € N is the number of DoFs of the robot. Fig. 4.1 depicts an
example kinematic chain consisting of both prismatic and revolute joints, where all axes and
joint parameters are numbered with an index indicating the joint number.

Skeletal structures can also be modeled to a good degree of approximation for most practical
intents and purposes as a series of links connected by typically revolute joints [39]. For this
reason, many of the aspects discussed in the following are of interest also for the direct control
of human limbs through FES.

In task-oriented applications, it is usually necessary to achieve a given pose in a task space
p € RT. In many cases, the task space is comprised of coordinate vectors p € IR®, which define
a pose in three-dimensional Euclidean space [E® in terms of 3 translational and 3 rotational
DoFs. The group of all possible rigid isometric transformations in IE3, i.e. the transformations
which preserve the handedness of a set of points, are grouped in the so-called Special Euclidean
group SE(3), which is of interest in robotics as it defines all operations useful to convert a
pose between different coordinate systems [117, 118]. Many options exist to formulate the
coordinate vector to signify the EE’s pose w.r.t. a coordinate system {0}. In the following, the
pose vector p is formulated as being comprised 2 sub-vectors h € R® and p € [0,27[*> which
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Figure 4.1: Example of a series link-joint kinematic chain consisting of both revolute and
prismatic joints.

encode 3 translational and 3 rotational coordinates expressed as angles in radians, respectively,
s.t. p can be defined as

p' =", p"]. 4.1)

Many options exist to express the orientation of an object in IE3. For the intents and purposes
of this chapter, it is sufficient to assert that the rotational coordinate vector p is expressed in
the same frame as the Cartesian torque 7, € R3, which will be better defined in the following
sections, so that the scalar product of 7, and p gives the kinetic power output in the Cartesian
rotational DoFs.

4.1.1 Multi-body kinematics

The problem of FK, for a robotic system or generally for any system that can be modeled in
a similar fashion, consists in calculating the pose p € RT of the system in task or Cartesian
space given the system’s internal coordinates g € RY. Conversely, the problem of Inverse
Kinematics (IK) consists of finding a set of internal coordinates, if at least one exists, that can
put the system’s EE in a given desired pose p4,, € RT in task space. In the case of series
link-joint systems, i.e. systems where links that can be assumed to be rigid are connected by
joints, such as the one depicted in Fig. 4.1, where at most two links are connected by one joint,
the problem of inverse kinematics is typically of considerably harder tractability, and often no
explicit general solution exists [119].

Since standardized methods exist to create the forward kinematics function p(g) : RC —
RT of series link-joints systems, e.g. the Denavit-Hartenberg notation and the associated
geometrical projections [120], it is possible to solve the inverse kinematics problem numerically
by identifying the system’s Jacobian J(g) € R7*Q as follows

J(q) =Vip(q). (4.2)
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This gives us a relation between the differential variations of p and g, namely

dp = J(q)dq (4.3)
or, in terms of first-order time derivatives,
p=171)q (4.4)

and, therefore, if we can invert the Jacobian, we can solve the inverse kinematics problem to
any desired precision numerically. The process of finding the solution g such that p(g) = p 4.,
is implemented in iterative, discrete steps. Given an initial set of joint parameters g, € R%, the
solution ¢ is updated by adding a small increment defined as 6g = J~!(q)dp, with the error in
task or Cartesian space w.r.t. a desired configuration p,., € R” at every step being computed
as 0p = a(Pges — P(q))- In this context, « € R is a small gain that should be set in such a way
that a single increment is lower in module compared to the desired precision of the IK solver.
Provided an initial set of joint parameters q, € R, for the k-th step, we have the following
solution update

T = G+ 0] (9) (Paes — P(40))- (4.5)

It is important to note that, in general, multiple solutions to the IK problem exist. Such
iterative solvers, if all parameters are suitably set, should converge towards whatever solution
is closest in R€ to the initial joint parameter vector g,.

It can however be that the Jacobian is not invertible, i.e. when it does not have full rank,
which is the case if, for example, the system has a degree of redundancy, which is to say that
it has more internal coordinates than the ones presented in task or Cartesian space and we
therefore have Q > T. Furthermore, even if J(q) can generally be inverted, it can happen that,
in the vicinity of certain configurations g, € R%, called singularities, the increment defined in
Eq. 4.5 would assume very large values, which could lead to non-converging behavior of the
algorithm, and if the solver is controlling an actual physical system, to unsafely fast movements.

In the case of redundancies, it is possible to use a form of pseudo-inverse of the Jacobian,
such as the left-hand Moore-Penrose pseudo inverse J# [121] instead of the Jacobian inverse
J'(g) in Eq. 4.5. In order to avoid singularities g,, safety checks have to be put in place. This
form of IK solver has quadratic convergence rate for p(g) in the neighborhood of p,, [122].

An alternative IK solver which is inherently more stable in the vicinity of singularities comes
from a generalization of Newton’s method for the identification of function roots. The solver
minimizes the error function H(g) : R? — R defined as

H(a) = 2l paes — P@OIP = 5 (Pacs — P(@) (Pacs — p(@) @6

by gradient descent, which leads to the following update rule

Gis1 = 9 — BVqH(ay) = g+ BT () (Paes — P4k)), (4.7)

with B € R again being a gain that influences the update step’s magnitude, and therefore the
solver’s resolution. A commonly used thumb rule is setting g < ﬁ, with Apax € R being
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the greatest eigenvalue of the matrix J*J. The gradient descent method is inherently more
stable in that, unlike inverse Jacobian solvers, its increment tends to 0 when in the vicinity of a
singularity. The implementation is furthermore simpler and more computationally efficient, as
it does not require a matrix inversion. The convergence rate is however slower [123], and the
algorithm is prone to the possibility of not converging if it ends on a joint parameter vector g,
for which the gradient V,;H(q,) is 0. However, it never diverges, which can be the case when
using inverse Jacobian solvers in the vicinity of singularities.

4.1.2 Multi-body robot dynamics

In parallel to positional coordinate vectors, generalized force vectors can be defined in any
coordinate system. Generalized force vectors are defined in such a way that their scalar product
with the first-order time derivative of the corresponding positional coordinate vectors result in
a measure of the system’s power output. For instance given a joint parameter vector g € R%
consisting of both revolute and prismatic joint coordinates, its associated generalized force
vector T € R should consist of components T; that are torques if g; is the angle of a revolute
joint 6;, and conversely 7; should be a force if g; is the state of a prismatic joint /;, using the
notation shown in Fig. 4.1. The same is true for any coordinate system, e.g. in the case of EE
pose coordinate vectors p € R® in E?, as defined in Eq. 4.1, the corresponding generalized

force vector, or wrench, w € R® is defined as w! = { fZ), TZ,], with f € R?® and 7, € R3

being the force and the torque applied to the EE, respectively. Given these definitions, w - p
has the physical dimension of power.

Multi-body dynamics are functions associating a generalized force to a given dynamic state
of the system, i.e. a given set of values for the system’s internal coordinates and their time
derivatives. Various methods of identifying system dynamics exist, such as the Euler-Lagrange
formalism [124], usually starting from considerations about kinetic and potential energy of the
system.

In general, the dynamics of a multi-body, rigid link-joint system in a gravitational field can
be represented in joint space in the form

T=Mij+C(q,q9)q+8(q)+n(q,q)+ Text, (4.8)

where M € RO*€ represents the generalized inertia of the system, C(gq,4) € R9*Q is the
so-called Coriolis term and includes all gyroscopic effects that are a direct result of spinning
masses. g(q) € R€ is the effect of gravity, n(q, §) € R€ is the effect of frictions, and Text € R?
is a term that includes the total external forces [125, 126]. It is important to note that the
system dynamics can be represented in any set of coordinates, and the conversions from one
coordinate space to another can be identified by applying the principle of energy conservation.
This same principle allows for a further important consideration, namely that forces can easily
be projected onto joint torques in a series links and joints system, in a dual fashion w.r.t. the
kinematics, for which a projection from joint space to Cartesian or task space is easier, in that
it does not require to identify the Jacobian’s inverse, which is a computationally expensive
step. Under the assumption of constant force, Without Loss Of Generality (WLOG), at any
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given time, power can be represented in task space as
P = pr = pTw, (4.9)

and in joint space as
P=1g=4"r (4.10)

Due to energy conservation, the two formulations should give the same result at any given
time, and therefore we have
wlp =1y, (4.11)

and, by plugging in Eq. 4.4

w']g=1"4. (4.12)

Since the equation holds for arbitrary g, we can say 7 = w']J, and, by transposing both
sides of the equation,

= JTw. (4.13)

As stated above, the importance of this result lies mainly in the fact that it is possible to
easily project forces from Cartesian or task space onto joint space in systems constituted by
links and joints arranged in series, without the need to identify the Jacobian’s inverse. This is
one great advantage of force controllers in robotics, as opposed to positional controllers.

4.1.3 Impedance and admittance

Impedance controls were first formalized by Hogan and colleagues in [127, 128]. As a concept,
impedance is borrowed from electrical engineering. In its original definition, impedance (often
denoted by the letter Z) is defined as a function defined in a space of arbitrary dimensionality
T € N associating a force or wrench w € R” to a positional error Ap € RT and its time
derivatives in an analogous way as a spring-dampener-mass system dynamics, with Z, in the
form

w(Ap) = MAp + DAp + KAp, (4.14)

with M € RT*T being a matrix gathering the inertial terms of the system, D € RT*T gath-
ering the dampening terms, and K € RT*T the system’s spring stiffnesses. The first-order
time derivative Ap can be seen as analogous to the current in an electrical circuit, and the
spring, dampener and mass are equivalent to the circuit impedance’s capacitive, resistive and
inductive terms, respectively. Analogously to a mechanical impedance, an electrical impedance
associates a voltage to the electrical current, charge, which is the current’s first order time
integral, and to the current’s first order time derivative.

In a more general definition, a mechanical impedance can be seen as any function associating
a force to a positional error and its time derivative or integral of any order. In manipulator
control, impedance can be used to enforce positional control indirectly through force control,
by setting the arm’s joint torques T € R? to JTw(Ap) using Eq. 4.13. It is worth noting the
parallelism between the concept of impedance and the gradient descent solver presented in
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equation 4.7. These two are equivalent if w(Ap) is given by an impedance only consisting of a
scalar stiffness, which would then have the same role as the gain § in Eq. 4.7.

All these considerations also apply to the concept of admittance, often denoted as Y, which
is the inverse of an impedance, and associates a positional coordinate to a generalized force.
As will be discussed later, the tuning of impedance and admittance can serve the enforcement
of a certain energetic behavior, for instance in Time Domain Passivity Approach (TDPA) [129],
or to enforce a desired sensitivity to perturbations [10].

4.2 Regression

As a general concept, regression in ML can be defined as a continuous, as opposed to discrete,
projection of an independent variable x € RP, onto a dependent variable y € R, which is
assumed to be a scalar here WLOG, with the intent of predicting some sort of outcome. The
core publications of this thesis feature examples of linear regression, ridge regression, and
kernelized ridge regression.

4.2.1 Linear regression

Linear regression tunes the weights of a vector m € RP projecting an input vector x € RP
onto a dependent variable y € R [32].

In linear regression, the prediction of the dependent variable given the independent variable
or input x is

y=m-x= m’x. (4.15)

The tuning of m is based on a set of N € IN known pairs (y;, x;), which form a so-called train-
ing set 7 C R x RP. These pairs can be arranged in one so-called design matrix X € RN*D
and a vector y € RY, the components of which are the individual x; € RP and y; € R samples
from the training set, respectively.

The weight matrix m is calculated by minimizing the loss function £(m) : R® — R

1Y 1
Lim) =5 Y m-xi—yill* = 5 (Xm —y)" (Xm —y). (4.16)
i=1

A closed-form solution exists to this minimization problem, and it can be demonstrated that
the weight matrix w that minimizes the loss function £(m) is

m= (XTX)"1xTy = x*y. (4.17)

The solution has computational costs O(D? + ND?) [2]. Through incremental machine
learning, it is possible to reduce the computational costs of the training procedure to O(ND?)
[2, 130]. As the name suggests, in incremental ML a training step of time complexity O(D?) is
executed incrementally for every new sample. In all cases, the complexity of the prediction

step is O(D).
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4.2.2 Ridge regression

First introduced in [131], RR is a form linear regression. RR includes soft constraints on the
magnitude of the individual weights in the m vector. Here, the constraint is enforced by
formulating the loss function in the form

1 N
L(m) = §Z\|m'xi—yi||2+ [Am|?, (4.18)
i=1

where the regularization term A € R can be seen as the precision with which the weights in
m are to be selected, or as the inverse of the standard deviation they should fall within. The
higher the value of A, the narrower is the range within which the elements of W have to fall.
The closed-form solution that minimizes the loss function in 4.18 is

m= (X'X + Alp.p) ' XTy. (4.19)

4.2.3 Regression kernels

A kernel function k(x;, xj) : RP x RP — R, in the context of regression, is based on the scalar
product of a mapping function ¢ (x) : RP — RX that has the intent of providing a regression
machine with a vector that makes the outcome prediction easier to match to the training
examples. Kernel functions should therefore circumvent the linearity of the RR method. For
the purposes of the kernel function, the mapping function ¢ (x) does not strictly have to be
tractable, and could for example have infinite dimensionality (K = o0), as is the case e.g. for
the Radial Basis Function (RBF) kernel [132]. In order for the kernel function to be defined,
only the internal product of two mapped vectors ¢ (x;) and ¢(x;) has to be defined, so that
the kernel function is

k(xi, xj) = (,b(xi)T(,b(x]-). (4.20)

For the purposes of ridge regression, it is possible to reformulate the prediction from Eq.
4.15 by plugging in Eq. 4.19 substituting the samples x with their mapping ¢(x), and the
prediction can be formulated as

y =y (K+Apyp) 'k(x). (4.21)

Here, the square and symmetric kernel matrix K € RN*N has elements K;; defined as the
kernel function k(x;, x;), and the vector k € RN has components ki|1§i§ ~ defined as the kernel
function k(x;, x), where x;|,_; is a sample among the ones forming the training set 7, and
x is the vector for which the label is to be predicted [133]. Notice that the mapping function
¢ (x) does not appear anywhere in 4.21, and does not need an explicit formulation for the
purposes of the prediction step. This is known as the kernel trick [134]. If ¢(x) is not known,
however, the Sherman Morrison formula [130] cannot be applied, and incremental learning is
likewise not possible. The training step then has complexity O(N?), and the prediction step
has complexity O(N).
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4.2.4 Random Fourier features

In order to use the Sherman-Morrison formula and use incremental learning, assuming that
the kernel function of choice is the RBF, various approximations of the underlying mapping
function ¢(x) : RP — R* exist. Introduced in [135] and demonstrated in [136] for their
utility in Human-Machine Interface (HMI) applications, the RFF kernel approximates a radial
basis function by means of coefficients randomly drawn from two specific distributions. The
approximated mapping function ¢(x) : RP — RX is defined as having single components
$il1 i<k of the form

¢i(x) = V2cos(Qx +b), Q2 ~ N(0,0%),b ~ Uz, (4.22)

where b € R is sampled from a continuous uniform distribution defined over the [0,27]
interval, and Q € RP is sampled from a Gaussian distribution with 0 mean and standard
deviation o € IR, which is one of the hyperparameters of the RFF kernelized ridge regression,
together with the mapping function’s dimensionality K and the regularization term A. This
approximation renders it possible to formulate the training step and the prediction step com-
pletely separately, and furthermore to apply the Sherman-Morrison formula and incremental
learning, bringing the time complexity of the training step back to O(ND?) cumulatively. The
closed form solution for the weight matrix is defined analogously to 4.19

m=(®T® + Al '@oTy. (4.23)

by substituting X for ® € RN*X, the rows ¢; € RX of which are defined as the mapping
¢ (x;) of the i-th sample comprised in the training set 7.

This kernel allows to compensate for non-linearities, and was used in A.4 in an offline
analysis to assess the precision with which it is possible to predict force output given the
stimulation currents. Because RFF can compensate for non-linearities, a comparison with RR
served to assess the error contribution due to non-linear effects.

4.3 Posture and kinematics tracking

The BodyRig, which is a wireless constellation of sensors structured as shown in Fig. 4.2, can
be used with either 5 or 7 peripherals. The BodyRig was mainly evaluated as an input device
in [1], reported in Chapter A.1. The attainable precision and accuracy of the system were
evaluated separately. For an exemplary depiction of the difference between the two, see Fig. 3.1.

The BodyRig'’s precision was tested in a virtual reality simulation environment. There, the
attainable performance in a target-following task was assessed. The target followed a few
pre-recorded trajectories at two speed levels. Additionally, the participants were also asked
during separate runs to hold the avatar’s hand as close as possible to a static target. The target
motions to be followed by the participants were recorded using the BodyRig as body tracking.
This experiment consisting of participants following the prerecorded trajectory can therefore
be considered a repeatability test across repetitions as well as across different users.
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Figure 4.2: Block diagram of the sensor constellation used in the BodyRig [13].

The results presented in [1] present the main limitation that they speak to the precision of
the BodyRig as a posture tracking device, but not to its accuracy. Similar proofs performance
can also be inferred from the results presented in [8] and [9], where the BodyRig is used to
teleoperate a humanoid robotic platform. The results from these studies mainly focus on
task outcome metrics over a more extensive number of repetitions, thus allowing for some
inferences about the learning curve in teleoperation tasks with the BodyRig as an input device.

An assessment of the BodyRig’s accuracy as a posture tracking device for the user’s upper
limbs was conducted by comparing the BodyRig’s prediction of the hand’s pose with the hand
pose as measured by an optical system, namely the VIVE VR setup from High Tech Computer
(HTC) Corporation. These results are reported in [13], which is available on request. The more
relevant results from all the aforementioned studies are also reported in Chapter 5.

The BodyRig is used for posture tracking in the works from Chapters A.4, A.5 and A.6, and
is instrumental in computing both the arm and the muscular Jacobians (see equations 4.24-4.27
and 4.41-4.43, respectively), which are important for FES-facilitated control of movements, as
shown in 4.5.

The arm Jacobian can be computed starting from the BodyRig’s posture measurements as
shown in Fig. 4.3. There, the vectors j € R?>, h € R® and e € R represent the position of a
given joint, the position of the end-effector or, generally, the point of attack of a generalized
force, and the direction of the axis around which the joint rotates, respectively. Following
the definition from Section 4.1, the EE wrench w € R® is assumed to be comprised of both
translational force components f,, € R? and torques 7, € R3. Depending on the joint, more
than one rotational axis can be associated with it. In the case depicted in Fig. 4.3, the example
of the elbow is shown, with e indicating the elbow flexion/extension axis” direction. With these
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Figure 4.3: Representation of the wrench projection from Cartesian space onto the flexion/ex-
tension axis of the elbow.

elements, we can calculate individual column vectors J, € R®*! which form the full arm
Jacobian J,., € R®*9, Q € IN being the total number of revolute joint axes considered in the
skeletal model. The arm Jacobian projects the elbow movement velocity to the corresponding
Cartesian velocity as follows

r=h—j (4.24)
Tol =1 X fo+ Tw = |1]xfy, + Tw =[] x, Bxs] w (4.25)
T =e Ty = TeTle = <wT [Mﬂ> e = wT]el (4.26)
I3xs3
T
Ja = [ZJ j e (4.27)

The sub-matrices J; € R®*! corresponding the i-th DoF can be found analogously, and the
full arm Jacobian J,,,, € R®*Q features these sub-matrices as columns, so that

Jarm = Ul/"'/IQ] (4.28)
The right side of equation 4.26 is obtained by plugging in equation 4.13.

For specific joints, such as hinge joints, of which the elbow is an example, it might be of
interest to find a robust way to pinpoint the anatomically correct direction of the functional axis
in space. Such rotational axes can be identified in various ways. OpenSim, for example, usually
starts from a kinematic chain created based on anatomical expertise, where all functional axes
and joints are based on realistic bone geometries. OpenSim then finds the joint parameters
which minimize the squared difference between the orientations and/or positions which it
receives from real-life measurements and the orientations and positions of the kinematic chain

34



of the model, effectively adopting a gradient descent IK solver on a link-per-link basis [45].
Because the model is based on bone geometry, the joint axes are always rigidly defined with
respect to the involved skeletal segment. Because of the linear convergence rate, this type of
solution can have high time costs, and can also lead to undesired results if the loss function is
not properly weighed, where for example the solution involves bones that may not be directly
monitored by a sensor ending up in wholly unnatural configurations, and the error propagates
in the calculation of muscular geometry.

In [5, 8, 9], the joint axes are determined on a purely functional basis, without considering
the geometry of the bones in an anatomical sense, but rather by directly performing vector
computations on the orientations of the IMUs. This approach takes some liberties, as it starts
with a kinematic chain where all joints, including hinge joints, are assumed to be ball-socket,
3-DoF joints, and then the functional axis of the hinge joint is identified, if needed, a posteriori,
based on the observed movements. Specifically, in the experiment presented in [8] and [9], for
instance, a few joint angles had to be inferred in order for amputees to be able to use the control
interface for the humanoid platform TORO [137]. In order to do so, using the notation shown in
Fig. 4.4, the axis ex € R® of the elbow flexion-extension movement is identified by calculating
the cross product between the z axis of the humeral and forearm IMU’s coordinate frame, i.e.
ey, € R3 and e Hz € R3 respectively. These directions are expressed in a common coordinate
frame, but importantly the translation h between the sensor’s frame and the common frame
are not considered. The functional axis is then formulated as

e, = —cHz X €Fz_ (4.29)
HeH,z X er |

This gives a direction e perpendicular to both the humerus” and the forearm’s longitudinal
axis, which both provides the direction of the elbow flexion-extension axis, as well as a
reference for the pronation-supination movement, the angle of which can be calculated as the
one between the elbow flexion-extension axis and the z axis of the forearm’s IMU. In [8] and
[9], the pronation-supination angle can be offset by an angle 6t € [—7, 77[ and multiplied
by a gain v € R as needed, in the case where a trans-radial amputee is using the BodyRig, so
that the pronation-supination angle expressed in radians Opron-sup € [0, 277[ transmitted to the
avatar is

Gpron-sup = 'Ycosil (€>< : eF,y) + Oottset- (4.30)

This method is robust if the elbow flexion is clearly detectable, which is the case if the elbow
is flexed beyond 10°-20°. If the elbow flexion angle fejpow € R falls below this threshold, a
possible option is to maintain the last known flexion axis in the coordinate system of the
proximal body segment, which in this case is the humerus.

This type of alignment of the body’s rotational axes offers some advantages w.r.t. the IK
procedure used in OpenSim or similar software suites. While somewhat less versatile, as it
only allows to identify the axes of hinge joints such as the elbow, it is computationally more
efficient, and it does not cause mismatches in the calculated and real orientation of the limbs
when the IMU peripherals slip during movement with respect to the skeletal structure, which
is an effect that should be kept into consideration, as external IMUs and markers lie on top of
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Figure 4.4: The vector calculation necessary to find the direction of the elbow flexion/extension
axis and the magnitude of the pronation/supination angle [13].

soft tissues with high mechanical compliance, and are therefore subject to changes in position
w.r.t. the skeletal structure. In OpenSim, markers or IMUs can be assigned to skeletal segments,
and are assumed to be rigidly coupled to them. The loss function of the IK solver can be
regularized in such a way that specific joint parameters have an increased influence on the
loss function’s value [45]. However, because of the assumption of the sensors being coupled
with bones in the anatomical sense, mismatches in the angular offsets between sensors and
body segments can lead to higher errors in posture estimation as opposed to a model like that
proposed in [4], where all joints of the IMU-tracked skeleton are assumed to have 3 axes, and
any functional axis is identified a posteriori based on functional movements. In the OpenSim’s
IK solver, on the other hand, in the case of segments separated by hinge joints, the kinematic
chain has to compensate for this mismatch with a limited amount of DoFs, which can lead to
unnatural poses.

4.4 External support

A wearable robotic platform can be used in order to both provide assistance to the user and in
order to measure the force output without limiting the user’s mobility. In order to minimize
weight and maximize usability, comfort and range of motion, a lightweight platform should
arguably be preferred. On the other hand, bulkier apparatuses can of course host more precise
sensing equipment and more powerful actuators [17], and, if compared to soft structures, can
be more easily controlled. Considering lighter robotic assistive devices, the open question
which lies at the center of the experiments presented in [2] and [3] (chapters A.2 and A.3,
respectively) is how to integrate appropriate sensor modalities that would provide the user
with transparent and natural control of the robot’s actuators, which is also the core of RQ2.
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The experiments presented in [2] and [3] assess various outcome metrics attainable when
driving an assistive soft glove with two degrees of actuation and a semi-passive shoulder
lightweight exoskeleton, respectively, through muscular activity measurements (SEMG and
FMG, respectively).

In [2], a 2-Degree of Actuation (DoA) flexible tendon-driven assistive glove is controlled by
means of SEMG sensors which estimate the intended grasp force. This estimation is then used
to drive the motors which drive the tendon spools, which are controlled in velocity. In order
to convert the force estimation into a velocity command, an admittance is used. The finger
movement is monitored in real time by way of a set of flex sensors mounted on along the
glove’s fingers. The experiment consisted in a series of force-reaching tasks to be performed
on a handle comprised of two shell segments separated by an actuated, admittance-controlled
mechanism that regulated the distance between the two segments given the applied force.
Because of this setup, the characteristic admittance of this specific force reaching task was
nearly constant.

In [3], a semi-passive rigid frame exoskeleton, the adaptive PAEXO by Ottobock, was driven
based on an estimate of the lifted mass obtained by measuring muscular activity in the fore-
arm by means of FMG sensors first introduced in [138]. The estimated weight of the lifted
object is used to compute the torque at the shoulder level, and, conversely, the appropriate
assistive torque. This is provided by shifting the attachment point of a tense rope w.r.t. the
exoskeleton’s shoulder joint, thus influencing the length of the lever arm at which the assistive
force is applied, and therefore the resulting torque. The experiment is designed to assess
the performance of the real-time lifted mass estimation by means of FMG and the muscular
activity under stress with and without adaptive assistance. The participants were asked to
hold three distinct weights with an outstretched arm both statically and while performing
oscillatory movements at a mandated rate of approximately 1 Hz. To record muscular activity
at the shoulder level, the participants were fitted with a set of three sSEMG probes (Trigno
AVANTI, Delsys inc.), monitoring the EMG on anterior, superior and posterior deltoid. The
recorded muscular activity was used in [3] as a marker of muscular effort in order to assess the
effect of adaptive support on the user physical load, as compared to non-adaptive assistance.
The PAEXQO’s shoulder angle sensor is also used to evaluate any impact of adaptive assistance
on periodic oscillatory motions.

In addition to the results reported in [3], a later analysis of correlation between low-pass
filtered rectified EMG and motion as recorded by the PAEXO’s internal protractors also lead
to interesting results with regards to muscular recruitment in order to compensate for gravity.
The results are discussed in detail in Section 5.3.2. They mainly pertain to the Pearson cor-
relation coefficient between the low-pass filtered rectified sSEMG and the band-pass filtered
exoskeleton protractor measurements. Prior to the Pearson coefficient calculation, the two
signals were shifted by the delay for which the cross correlation is highest. This is done
because, while the protractors are measuring the momentary angle, it stands to reason that
the sEMG could show higher correlation to some linear combination of the shoulder angle
and its derivatives, such as angular velocity and acceleration, which in the case of a nearly
sinusoidal movement is a sinusoidal signal with a phase shift. Furthermore, detectable EMG
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signals are known to precede measurable force output and movement by a margin of around
1s. The identification of the lag through cross correlation should compensate for these factors.
Thus, the lag-compensated signals were compared in terms of correlation coefficient, and the
Pearson’s R was compared across different loading conditions.

4.5 Force output monitoring

The direct and indirect measurement of force output is the basis for the calibration and, in
some cases, for the online control of the assistive setups presented in the core publications.
Direct measurement, here, means the monitoring of force output by some form of force-sensing
sensor modality. This measurement can occur in muscle space for example through FMG, in
joint space through, e.g., joint-connected load cells [17] or in Cartesian/task space, also by
using load cells. As shown in Fig. 4.5, a force output can be projected to and from each of
these spaces if the relevant kinematics are known.

Indirect measurement implies the use of a sensor modality that does not directly measure
force. EMG is of course a proxy for muscular activity and therefore force. In [3], FMG is
used to estimate the mass lifted by the user. The type of sensor employed here was presented
originally in [138] and [139], and was demonstrated to provide an output that correlates well
with applied force and is clearly separable across different hand gestures when the sensors
are applied in bracelet-like arrangement. Sensor placement and mounting is of the utmost
importance in FMG setups, as external forces can directly influence the output signals of these
sensors, and it might not be possible to distinguish signals caused by muscle bulging and
collisions. In [3], force output monitoring is achieved by placing FMG sensors both on the
arm as well as on the forearm of the user. The sensors on the forearm especially offer the
advantage of mainly monitoring muscle groups that are not aided by the exoskeleton device
used in the experiment. The adaptive assistance provided by it does not therefore influence the
measurements of this sensor group. The estimation of the lifted mass is then converted into an
estimate of the torque at the shoulder by projecting the corresponding force downwards by
the estimated lever arm.

In [4] and [6], a 6-DoF force/torque sensor is used to directly measure the wrench at the
cuff holding the user’s arm in place. The arm is constrained, and the wrench measurements
are only used during calibration in [6], as it is not possible to move the arm when it is cuffed.

In all cases, the force measurement in muscle space and Cartesian space is projected onto
joint space (see Fig. 4.5 for reference). In [3], muscle force is first projected into Cartesian
space via a ridge regression predictor, and then onto joint space via a simplified arm Jacobian
(as the pose of the arm is assumed to be constant in that case). In [4] and [6], the measured
Cartesian wrench is projected onto joint space by calculating the arm Jacobian as illustrated in
eqs. 4.24-4.27.

In [2], on the other hand, grasp force is estimated based on sSEMG signals gathered on the
flexor digitorum and on the flexor pollicis brevis. The sensors were applied following the SENIAM
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guidelines [140], and the predicted grasp force was then included in the control loop of the
assistive glove by means of an admittance. The idea of implementing admittance controls to
translate a force measurement into a positional control input for a wearable assistive device
has been implemented before, among others in [141]. Some considerations about admittance
tuning for the purposes of force output measurement are however in order here. Starting from
the series-system dynamics (Eq. 4.8), WLOG, we can assume a quasi static case, where § ~ 0
and g ~ 0. Furthermore, if we imagine a setup like that in [2], we can set T = KAg, as the
only external force besides gravity acting on the fingers is that of the impedance controlled
force measurement device. This gives us the simplified dynamics

T=g(q)+n(q q)+KA\g. (4.31)

From this simplified dynamics equation, it is easy to see that, by setting a high gain (either
as a scalar k € R or as a matrix K € R9*Q), so that KAq > g(q) + n(q, q), the effect of gravity
and friction can be made negligible, and therefore we’d have a nearly proportional relation of
the form T ~ KAgq, or in the form of an admittance dynamic, Ag ~ K~ '7. The disadvantage
of this approach is that a high stiffness hinders the movements of the user. Therefore, as
mentioned in previous chapters, as well as in the conclusion of [2] in Chapter A.2, it would be
desirable to tune the K gain based on the real-time requirements of both force amplification,
as well as force output measurement.

4.6 FES

Most details regarding the MyoCeption are explained in the works presented in Chapter
A4, A5, and A.6. The MyoCeption itself comprises both a biomechanical model or control
system, and a wearable device for the delivery of stimulation currents. The latter consists
of a compressive jacket lined with Velcro, where the electrodes can be easily placed. The
stimulation currents can be regulated over wireless through an independent control device.

4.6.1 Hardware

The stimulation signals consist of current-controlled monophasic pulses reaching voltage peaks
in the order of magnitude of 10V to 50V, depending on the electrical impedance between
the stimulation electrodes. The pulse width can be set at 100 ps or 200 ps, and the pulse rate
can be set between 0.5Hz and 100 Hz. The comparatively short pulse width means that the
voltage gradient over time is comparatively high. This causes non-negligible parasitic inductive
effects, which lead to cross-talk between different stimulation channels. For this reason, it is
imperative that the control device keep the stimulation channels electrically insulated from
each other.

As the control device should not electrically interfere with the EMS, the stimulation elec-
trode circuit is galvanically insulated. The control device is able to regulate the stimulation
currents through optocouplers driven by the main micro-controller through current drivers.
This is mainly done to compensate for the non-linearities in the voltage to current curve
of the optocouplers diode, which closely resembles an exponential curve. Fig. 4.6 shows
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Figure 4.5: Schematic representation of the relevant positional and force coordinates necessary
to control limb movements [4].

both an in-parallel and an in-series arrangement of the control electronics with respect to the
stimulation channels. In both cases, as the control electronics are galvanically insulated from
the stimulation lines, no current can be injected from the power source of feeding the control
electronics. The wireless communication is facilitated by a micro-controller, which can output
pulse-width modulated control signals with 16-bits resolution in duty cycle setting.

In later tests, which focused on high density Functional Electrical Stimulation (hdFES), the
described circuit was expanded by using a demultiplexer, which allowed to connect single
electrodes on a matrix to the stimulation source [142]. The possible arrangements of such
high-density electrode arrays are shown in Fig. 4.7 and 4.8. The tests involving hdFES, the
results of which are reported in Chapter 5, mainly focused on establishing whether different
spatial stimulation injection patterns in the forearm would lead to clearly distinguishable
force output patterns, both in muscular space and in terms of fingertip force output. The
tests were conducted on one able-bodied participant, on the setup depicted in Fig. 4.9. The
electrode matrices (depicted in Fig. 4.10) are HD10MMO0804 Semi-Disposable flexible Printed
Circuit Board (PCB) (OT Bioelettronica s.r.l., Turin, Italy) which has 32 electrodes with 10 mm
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Inter-Electrode Distance (IED).

4.6.2 Musculoskeletal model

The model used to control the MyoCeption in [4], which is described in detail in [5], has the
function of computing the force output caused by a certain stimulation, in order to compute
the currents to be injected in order to induce a desired movement or force. As shown in Fig.
4.5, the model has to take into consideration both the kinematics of the arm, the geometry of
the muscles, and the stimulation to contractile force transfer function. The latter is approxi-
mated trough a squared, diagonal matrix I' € RM*M M e N being the number of muscles
considered in the model, and also the number of stimulation channels, with the proportion-
ality constants between the stimulation current and the respective muscle force on the diagonal.

The musculoskeletal model of the MyoCeption can be calibrated by monitoring the twitch
resulting from a sharp stimulation signal [4]. Specifically, the twitch is associated to an angular
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velocity vector wmax € R3 centered on the affected joint, the location of which is j € R3. The
calibration procedure assumes that the line of action corresponding to the stimulated muscle
group should lie in the plan of motion in which the distal body segment moves during the
twitch. As shown in Fig. 4.11, the calibration procedure adjusts the points where the line of
action lies to be as close as possible to the twitch plane, which includes the joint j and has
the angular velocity vector wmayx as the plane normal. This is done by finding the cylindrical
coordinate 67 € [0,27[ that minimize the cost function given by the distance of the routing
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Figure 4.9: Picture of the HD-FES test setup, the FMG setup and FFLS device.

point a; € R3 from the aforementioned plane, as per the relation

67 = argmin (2 ((ar(61) —7j) - wmax,i)2> . (4.32)

1 i

This cost function can be minimized by gradient descent. In order to do this, we define the
dependency of ay from the cylindrical coordinate 6; € [0,27], using the notation shown in Fig.
4.11, as follows

0) wi0}]
Winax = | 1 (4.33)
Wl
yz |
{0} al" a;EO}
a; = {0} = Rlsin(91) (434)
Byz Rjcos(0)
Loy _ 9y T Rycos(6y) (4.35)
2o 00 - —RISiI’l(QI) '
(4.36)

Figure 4.10: Picture of one of the electrode matrices used in the initial tests about hdFES.
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Figure 4.11: Schematic representation of a twitch occurring due to a sharp stimulation signal
and the calibration of the lumped muscle origin and insertion point.

The twitch analysis can be executed based on one or more samples. In the following, it
is assumed that N € IN samples have been gathered. Once the components of the anchor
point and angular twitch velocity that are perpendicular to the body segment’s length axis,
aég} € R? and wég} € R?, have been defined for every sample, the perpendicular components
are arranged a matrix Q3 € RV*2 and the parallel components in a single-column matrix
R € RN*1, with the individual samples as rows. The loss function £(6;) : [0,277]— R can be
formulated as a function of these matrices, and its gradient can then be computed and used to

formulate the iterative update step, with a fitting scalar gain & € R.

(wi)] (@i™]
Q= : ;R = : (4.37)
(W) (@™
L) = 2 Y (@1(6) ~ ) - wmoni) = 5 (Qage + Ray)" (Qaye + Ray)  (438)
L= dﬁdgjl) — al'0T0alY + all QT Ra, (4.39)
OFt = 0f —arL (4.40)

The error function £(0;) is minimized over the possible values of 0; by gradient descent
using the formulas presented in 4.33-4.40. In these formulas, as shown in Fig. 4.11, the
origin of the coordinate system {0} used coincides with the joint position j, which leads
to simplifications of the formula WLOG. Furthermore, the x-axis of the coordinate system
coincides with the body link’s length axis. All points along which the line of force is routed
can be positioned applying the procedure in an analogous manner.

Once the muscle geometry is known, the muscular Jacobian J,,,,c € RM*Q can be computed
as exemplified in Fig. 4.12. For this purpose, the muscles can be approximated as prismatic
actuators acting across one or more joints. In Fig. 4.12, a model representation of the elbow
joint is shown. Lines of action are not necessarily straight lines, but are generally modeled as
curves. Based on the approximated muscle displacement for small variations in joint angle, we
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can calculate the sub-matrix of the muscular Jacobian projecting joint angular velocity onto
elbow muscle displacement as follows

| = {13] (4.41)
I
2L sin(4) L1d6
dl = [ MURE RS (4.42)
2Rsin(—%) —Rad]|,, .,
_di (L
Fanss = do d6—0 a [—R] . @8)

Here as well, the complete muscular Jacobian is obtained by concatenating the sub-matrices
for every joint obtained as shown in equations 4.41 - 4.43. In a more complex musculoskeletal
system, where, in general, not all joints are affected by all muscles, ], is built by setting the
element corresponding to the m-th muscle and j-th joint as illustrated above. If a joint’s move-
ment is not influenced by a muscle’s movement, the corresponding element is 0. As illustrated
in Chapter A.4, the muscular Jacobian can also be calculated based on force considerations.

The muscular Jacobian is also used to relate the muscular stiffness Ky,s € RM*M to the
joint stiffness Kjoints € RQ*Q through a quadratic form [70] as follows

Kjoints - I rqrwmsKmus] mus* (444)

Figure 4.12: Model representation of the elbow joint, with the bicep and triceps muscular
groups lumped in two prismatic joints antagonistically pulling and causing torques
on the elbow joint to cause flexion and extension movements.
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4.6.3 Ridge regression stimulation solver

An alternative to a musculoskeletal model to calculate the dependencies between stimulation
currents and joint torques is presented in [6] and elucidated in Chapter A.6. There, a gradient
descent-based solver is presented, which provides a stimulation current vector given a desired
joint torque vector. The solver’s update step is formulated in Eq. 4.46, which is obtained by
taking the update step from Eq. 4.7 and substituting the joint parameters g € R? with the
stimulation current vector s € RM, the pose p € RT with the joint torque T € R?, and the
Jacobian transpose JT € RT*Q with JI T € RO*M, using the notation from Fig. 4.5. As

muscle
explained in Chapter A.6, the solver actually employs an approximation of ]Emsdel" obtained by
calibrating a RR model to predict the joint torque T based on the injected stimulation currents
and retrieving its weight matrix W € RO*M, s.t. W~ JT T and 7(s) ~ Ws. Comparing Eq.
4.46 and Eq. 4.7, one can notice an additional term. This is used to impose additional control
goals on the solution update without influencing the net torque output. This is achieved by
employing a null-space projection matrix Wp; € RM*M formulated in Eq. 4.45 by using the
left pseudo-inverse W* € RM*Q. The additional control goals have to be formulated in the
form of a scalar cost function H(s) : RM — R to be minimized, the gradient VsH € RM of

which is then projected onto the null-space by multiplication with W .

Wnull = (IM><M - W#W) (4.45)
ki1 = S+ PWT (Tdes — Wsg) — YWiun Vs H (s1) (4.46)

Here, v € R is a gain designed to tune the influence of the null projection term on the update
step. In Chapter A.6, the solver aims at providing as little stimulation current as possible
for a desired joint torque. In that case, we have H(s) = ||s|| and, therefore, V H(s) = s.
Additionally, s; > 0 is imposed for every component of s, as stimulation currents can only
be in the positives. With sufficient redundancy, the solver still converges to the nearest
solution minimizing the difference between T4 and the stimulation-caused joint torques. It
could be worth substituting the scalar 7y with a matrix gain, in order to ensure homogeneous
convergence across all components of the solution vector in case that I' be ill-conditioned,
e.g. if the different stimulation channels have much variation in how they influence the force
output. The gain would have to be set based on the absolute value of the elements of the
(inferred) diagonal elements of I'.

4.6.4 Frequency domain considerations

In order to find a sensible rate to drive the controller, a few pre-tests were conducted in order
to, among other things, characterize the force output response to electrical stimulation of the
human limb in the frequency domain. The setup for these pre-tests is similar to that presented
in [4] in Chapter A.4. The subject sat in a chair with the forearm locked to a static robotic arm
through a cuff. In this case, the robot’s joint torque sensors were used to calculate the output
force caused by FES.

In these pre-tests, the MyoCeption was controlled with an impedance control associating a
translational force f € R? to a positional error Ap € R calculated as the difference between
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the current user’s hand position and a desired target position. The impedance control was
comprised of proportional and integrative terms P, € R of the form

f=PAp+1 / Apit, (4.47)

meaning that the desired force output would build up with time. Fig. 4.15 and Fig. 4.16 show
a representative comparison of the commanded force and the actually measured stimulation-
induced force output. The actual force output was also analyzed in terms of spectral power
density in order to determine the minimal rate at which the MyoCeption’s controller should
be working. During these pre-tests, the user was instructed to relax as much as possible, so
that no co-contraction happens. This causes the musculoskeletal structure to behave more
compliantly than it would if co-contraction occurred. The power spectral density analysis
of both the commanded force signal and the output force show that more than 99% of the
signal power lies in the band from 0 Hz and 5Hz. This test does not however give an estimate
of what are the highest frequency components that can be successfully transmitted as force
output using electrical stimulation. This can be assessed with a sweep test where the frequency
of the stimulation is changed within a given range and both the muscular activity and the
force output are monitored and assessed in terms of power spectral density.

Later tests show that force output measured at the fingertips has a lower power bandwidth
than the muscular activity as measured in the close proximity of the stimulation electrodes
through force myography. The setup for this test is shown in Fig. 4.9. The force output is
monitored through a Force Sensing Resistor (FSR) sensor in Cartesian space and through FMG
in muscular space. The test consists in a manual sweep of the pulse rate of the stimulation
injected in proximity of the flexor digitorum. As shown in Fig. 4.13, the frequency of the
stimulation signal was increased progressively. Above a certain frequency, the contraction of
the muscle does not show a pulse, but rather a constant contraction showing an increase with
rising pulse rate. During the test, the pulse rate was manually swept from 1 Hz to a maximum
of ca. 30 Hz. This test shows that higher frequencies, which can be measured through FMG,
are attenuated when transmitted through the full length of the muscle to the extremities, which
in this case were the fingertips. The results of this tests show that the FES controller can be
driven at a lower rate, as the compliance of the muscle tissue renders a higher control rate
useless, as higher frequencies would be attenuated through transmission anyway. Fig. 4.14
shows the periodograms of the force output and force myography measurements. The red
band shows the bandwidth in which 99 % of the total signal power falls. As is the case for the
signals shown in Fig. 4.15, this bandwidth is around 5Hz for the force output measurements.
The muscular activity measurements seem to have a higher bandwidth of ca. 20Hz. This
result is in line with observations presented in [143], which presents the results of a similar test
executed on animal models. While the particular transmission properties in any given muscu-
loskeletal system depend on macroscopic factors and dimensions such as muscle length and
position, besides the level of co-contraction and pre-tension, the results are qualitatively similar.

As stated above, looking at Fig. 4.13, one can see that muscles seize to show a pulsating
contraction if the electrical stimulation pulses have a rate higher than a certain frequency,
and beyond that threshold, force output simply shows a constant contraction which increases
together with the pulse rate. The pulse rate delimiting this threshold in this test is shown to
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Figure 4.13: Top: Representative example of the fingertip force output under stimulation.
Bottom: Representative example of the FMG-measured muscular activity under
stimulation. A zoomed-in section of the transition from pulsating to sustained
contraction is also depicted, with the pulse frequency f specified at 1s intervals
around the transition point.

be between 10 Hz and 15 Hz. Many factors could have an influence on the rate at which the
pulsing behavior stops, such as the current amplitude, the pulse shape, electrode placement,
and the electrical impedance of the tissues lying between the electrode and the motor neurons.
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At any rate, this imposes a limit to the useful pulse rate that can be used to inject stimulation.
This limit has repercussions also for the rate at which a current amplitude controller can be
driven, as the the current amplitude can not be practically changed mid-pulse. The maximum
FES pulse rate should therefore be the highest frequency at which a current amplitude FES
controller makes sense. This would of course not be the case if the controller could modulate
pulse frequency or pulse width, as this parameter could be tuned at any rate. There are limits
given by the electrical impedance of the tissues lying between a surface electrode and the
axons of the motor neurons (see Fig. 2.6).

4.6.5 Machine learning models

As elaborated in [4] and in the previous chapters, the principal categories of solvers that
can be used to compute a stimulation current that would bridge the gap between a cur-
rent and a desired end effector pose are on the one hand using a musculoskeletal model
and on the other using a ML-model. ML-models cannot inherently account for changes in
muscular geometry due to changes in posture, in most cases. In order to account for such
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Figure 4.14: Top: FFT-obtained periodogram of the FMG-measured muscular activity under
stimulation with 99 % power band marked in red. Bottom: FFT-obtained peri-
odogram of the fingertip output force induced by stimulation with 99 % power
band marked in red.
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changes, most solutions presented in the literature train the ML-system over different limb
postures [108]. In [94] and [107], it is the limb’s dynamics that are identified in various postures.

In [4], on the other hand, the ML-model is completely based on isometric contraction
measurements gathered by constraining the arm. The setup proposed in [6], which is reported
in Chapter A.6, seems to perform independently of the target position, as will be discussed in
Section 5.4.2, in spite of adopting a ridge regression model to predict the output force given
the stimulation currents. This is due to the fact that the regression is formulated in joint space,
and the predicted output torque are expressed in the coordinate system of the proximal body
segment, thus minimizing the expected influence of posture changes to what is due to muscle
shifting w.r.t. the body segments they span over.
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Figure 4.15: Representative comparison between the commanded force and the measured
force’s individual components.
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Figure 4.16: Representative plot of a commanded force ramp vs. the measured force gathered
during a pre-test. This is to show the capability of the system to modulate force
output through application of different current amplitudes.

4.7 Outcome metrics

This section describes some of the outcome metrics used in the experiments presented in the
core and related publications of this thesis.

4.7.1 TAC test

The Target Achievement Control (TAC) test is a form of online assessment of the performance
achievable when controlling a prosthetic device through myoelectric controls. In [6], this
definition was extended to include the performance achievable when controlling human limbs
through electrical currents. A TAC test consists in having the end effector reach a certain target
configuration. The end effector is to reach a position within a range » € R from the target
within a certain amount of time Thax € R, and to remain within range for at least the minimal
dwelling time ty;, € R. Only then is the target considered reached. The main difference
resides in the fact that the participants in the study from [6] were instructed to not perform
any movement of their own volition, and therefore, ideally, human cognition is not part of the
loop, contrary to the typical case of a prosthetic user.

It is important to note that the main parameters of a TAC test are not standardized in the
literature, but vary depending on the experiment.For the target pose to be reproduced correctly,
in [6], the end effector must lie within 10 cm radius of the target position. The distance from
the target is calculated as the Euclidean distance. In [6], it is important to note that the range
from target was not adjusted based on the total area of the reachable peri-personal space.
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The TAC test allows to extract several outcome metrics [144]. The ones that are most relevant
for the publications at the basis of this thesis are reported in the following:

Task Completion Time (TCT): The TCT is the time necessary for the participant to achieve
the target configuration and maintain it for at least ty,in. This metric is mainly interesting for
successful tasks as it is otherwise bounded at Tiax.

Success Rate (SR): The success rate is defined by the ratio of successful tasks to all tasks
performed by the participant. The SR is usually defined for each task over all repetitions for
one participant.

Number of Attempts: this metric refers to the number of times the end effector enters
within range of the target and before a task is accomplished or failed. This metric can indicate
the likelihood of the control overshooting, for example.

Traveled path and speed of motion: When time-free actions are performed, such as in the
the evaluation of a learning curve [8, 9], possible metrics are the traveled path and speed of
motion. If the hand speed over the repetitions of a task increases, this could imply better
control of the device and possibly higher confidence. If an optimal path for a motion is
available, the deviation of the traveled path from the cumulative minimal distance between the
targets can be evaluated.

Final distance: the distance from target at the end of a task, whether successful or unsuccess-
ful, can be used to evaluate target reachability and control precision. It is however important
to consider that, because the task is considered complete after a typically small time tyn, after
which the target is shifted, that the end effector might not be able to reach a distance from
the target comparable with its actual precision after entering the minimum range r. The final
distance should therefore not be considered a direct measurement of precision, but should
only be considered an indirect indicator thereof.

Accuracy: Final distance as a metric can be hard to properly evaluate, as it is only measured
at the point in time at which a TAC task is failed or accomplished. Furthermore, it might be
useful to evaluate the system accuracy trying to exclude the influence of scenarios such as
oscillatory overshooting, where the end effector oscillates around the target position. Operating
on the assumption that the mean of the EE position over the oscillation is the controller’s best
attempt at approximating the target position, as shown in Fig. 3.1, it can be useful to average
the distance from target over a moving window of a set length. The minimal dwelling time
tmin can be seen as a sensible width for the time window [6]. The accuracy in Chapter A.6 is
the minimum value of the EE distance from target averaged over a moving window during a
task.

4.7.2 Predictor performance metrics

The metrics for the evaluation of the performance of a predictor, such as that used to infer the
lifted mass as shown in Chapter A.3 and to predict the force output based on injected currents
in Chapter A.4, vary based on whether it is a regression or a classifier that is being examined.
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For regression, as the prediction is a continuous value, if a reference is available, the main
performance metrics are the correlation coefficient (in most cases Pearson’s R € [—1,1]) or
its square R?, and the Root Mean Square error (RMSe), or the normalized Root Mean Square
error (nNRMSe) [145]. Additional metrics are used in this thesis an introduced in the following.

nRMSe: The prediction accuracy, in the case of a regression algorithm, can be measured
using the nRMSe) between the prediction Y € RN*M and the ground truth ¥ € RN*M values.
The individual components of these matrices yi,i|; <<y 1<i<p @0 Fkil1<p<n 1<i<p are defined
as the i-th component of the k-th sample of the predicted and ground truth, respectively.
Also called a scatter index, the nRMSe is the primary offline error indicator method used to
evaluate regression models. To start with, the non-normalized RMSe € RM is to be calculated.
In time-discrete signals, the i-th component of the RMSe is calculated over a horizon of N
samples as

N
RMSe; = Z Wi — 9s) y’“ . (4.48)

The nRMSe is derived by dividing the individual components of the RMSe by the difference

between the maximum Ymax; = 1r<1r}<ax (yk,i) and the minimum Ypin; = 1r<r11(1n (yk;) of the i-th
component
RMSe;
nRMSe; = L (4.49)
Ymax,i — Ymin,i

It is worth mentioning that other types of normalization are possible. Depending on the
case at hand, the normalizing range might be defined differently.

Pearson’s R: Pearson’s correlation coefficient is the covariance between two lists of N
samples x € RN and y € RN with average ¥ € R and 7 € R, respectively, normalized by
the own variance of x and y. As introduced in [146], Pearson’s correlation coefficient R is
computed as

Zk l(xk —X (yk _y) (450)

\/Zk 1 (X = %) \/Zk 1k =7

Lag: depending on the choice of input signal x, as well as on the characteristics of the
regression algorithm, there might be a non-negligible lag between the prediction and the
ground truth. Furthermore, if for example a muscle activity-based prediction is used to control
a wearable robotic appliance, it might be of interest to measure the delay between the onset
of muscle activity and measurable output of assistive force from the device. For the core
publications, only a time-discrete formulation is relevant, where signals are defined over a
discrete index k € IN. The prediction and the ground truth are then denoted as 7(k) : N — R
and y(k) : N — R, respectively. The two signals both have an average over k designated as
7 € Rand § € R. A possible way to assess the lag, which was used e.g. in Chapter A.2, is the
cross correlation function between the two time discrete signals of interest Ry,9 (j):IN —- R,
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which is computed as the covariance between the first signal shifted by a lag j € IN and the
second signal as follows

N
Ry5(j) = 3 (k=) = 9)(9(k) = ). (4.51)
k=1
Provided that the two signals are highly correlated, the value of I for which the cross
correlation function R, ; has its highest absolute value should correspond to the lag between
the two signals, so that

lag = argmax(]Ry,y(j)|). (4.52)
]
Usually it is necessary to limit the search for the value of | that corresponds to the lag
within a certain range, as in the case of periodic signals the cross-correlation function can have
multiple maxima [147].

Principal Component Analysis (PCA): PCA is a method used for projecting a multivariate
data-set onto a new coordinate system where (most of) the variation in the data can be
described with fewer dimensions than the initial data [148]. Starting from a data-set of N
d-dimensional samples x € RP in matrix form X € RN*D, PCA is based on the diagonal
quadratic form decomposition of the covariance matrix Q € RP*P

Qx XX =WAWT, (4.53)

where A € RP*P is a diagonal matrix gathering all the eigenvalues of X' X and W € RP*P
gathers the corresponding eigenvectors as columns. The axes across which the data variance is
highest can then be selected looking at the eigenvalue matrix A, and the projected data set Xw
can be then considered only in the axes along which the diagonal elements of A are highest
[148]. PCA can be employed as a linear dimensionality-reduction method for the benefit of
classification or regression algorithms the costs of which increase steeply with the number of
dimensions of the independent variable, but can also be used for the purpose of visualization
(see for example Fig. 5.9). For instance, selecting the two axes across which falls most of the
variance can provide a 2D view of the data clusters, their separateness (for example through
Fisher’s separateness index [149]), and the path taken to reach an action. It is important to
note that PCA, usually, is applied only on the independent variable data-set, and is not in
any measured determined by the dependent variable or prediction value that a regression or
classification algorithm might assign to a given input vector. In the example from Fig. 5.9, the
color-code is assigned manually.

4.8 Effect size calculation

In the core publications, as well as in Chapter 5, various forms of tests meant to assess the
influence of independent variables on various outcome metrics are used.

Pearson’s R: while Pearson’s R and its square are a widely used metric for the performance
of regression algorithms, they are also widely use to quantify the degree to which two variables
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influence each other [146].

T-test : The t-test calculates a statistical probability p that two lists of data points are sampled
from one normal (or Gaussian) distribution. This proposition is called the null hypothesis. In
certain cases, the null hypothesis can be formulated in a more strict form by postulating that
the mean of the data points in the first set is greater or equal than that of the second set
(left-tailed), or conversely that the mean of the first set is smaller equal than the mean of the
second set (right-tailed). Conventionally, the null hypothesis is considered rejected if p < 0.05.
This threshold is arbitrary, and should not be considered the only metric of significance [150].
Two principal variants of the t-test exist, namely the paired and the unpaired t-test. The paired
t-test should be used when it is possible to assume that each sample in the first set of data
points can be paired to one sample in the second set. This is the case, for example, when the
paired data points come from the same individual in the test population, as is the case for
example in Chapters A.2 and A.3. The unpaired t-test does not assume that the samples from
the first and the second set can be paired, but assumes that the two distributions have the
same standard deviation [151].

ANalyis Of VAriance (ANOVA): analysis of variance (ANOVA) can be seen as an extension
of the t-test to more than two sets of data [152]. Various forms of ANOVA exist, based on
whether the considered variables are assumed to be dependent of each other and how the data
points are grouped based on discrete values of one or more independent variables. At its core,
ANOVA conveys the probability that the variance between groups outweighs the within-group
variance. ANOVA merely provides an overall probability of this being the case [152], but in
order to identify which group are significantly different from each other, further tests have
to be conducted (e.g. pair-wise t-tests or Tukey test [153]). Like the unpaired t-test, ANOVA
relies on the assumption of normal distribution of the prediction error and of the homogeneity
of variance in all groups.

Wilcoxon signed-rank test: the Wilcoxon signed-rank test is an alternative to the paired
t-test which does not rely on the assumption that the examined data points be sampled from a
normal distribution [154]. The test works in analogous fashion to the paired Student t-test, but
the null hypothesis is formulated in terms of median, instead of mean. Here as well, the null
hypothesis postulate that the two medians be equal (two-sided null hypothesis), or that one be
greater equal than the other (one-sided null hypothesis), as is the case in Chapter A.4.

Cohen’s d: neither the t-test nor the Wilcoxon signed-rank test provide any estimate for the
value of the difference, but only a probability of any difference being due to random chance.
Cohen’s d € IR is a widely used metric to assess the size of the effect [155]. In general, Cohen’s
d between two data sets comprised of n; € IN and n, € IN samples, respectively, with average
fi1 € Rand ji € R and standard deviation s; € R and s, € R is given as

d= @ (4.54)

where s € R is the so-called pooled variance, which is calculated as
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Table 4.1: Conventional thresholds for the effect size based on Cohen’s d.

|d| lower bound | |d| upper bound Effect size
0 0.2 None to very small
0.2 0.5 Small to moderate
0.5 0.8 Moderate to middle
0.8 o) Strong

o \/(m —1)s? + (np — 1)s§' (455)

ni+mn,—2

The conventional thresholds for effect sizes based on the absolute value of Cohen’s d are

reported in Tab. 4.1 [155]. Importantly, these thresholds are arbitrary, and should not be
interpreted rigidly [150, 156].
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5 Results and discussion

In the following, the main results from core publications are sorted by the aspect they relate
to. In addition to the core publications, some unpublished results and additions to the
discussion sections are also reported hereafter. Every section opens with the core and secondary
publications the published results were originally reported in.

5.1 Posture and kinematic tracking

( )
Primary publications:

[1] M. Sierotowicz, M. Connan, and C. Castellini. “Human-in-the-loop assessment
of an ultralight, low-cost body posture tracking device.” In: Sensors 20.3 (2020),
p- 890. 1ssN: 1424-8220. por: 10.3390/s20030890 A.1

[5] M. Sierotowicz, N. Lotti, R. Rupp, et al. “A Comprehensive Framework for the
Modelling of Cartesian Force Output in Human Limbs.” In: 2022 International
Conference on Rehabilitation Robotics (ICORR). 2022, pp. 1-6. 1sBN: 1-66548-829-8.
DOIL: 10.1109/ICORR55369.2022.9896547 A.5

Related publications:

[8] M. Connan, M. Sierotowicz, B. Henze, et al. “Learning teleoperation of an assistive
humanoid platform by intact and upper-limb disabled users.” In: International
Conference on NeuroRehabilitation. Springer. 2020, pp. 165-169. por: 10.1007/978-
3-030-70316-5_27 B.2

[9] M. Connan, M. Sierotowicz, B. Henze, et al. “Learning to teleoperate an upper-limb
assistive humanoid robot for bimanual daily-living tasks.” In: Biomedical Physics &
Engineering Express 8.1 (2021), p. 015022. por1: 10.1088/2057-1976/ac3881 B.3

[13] M. Sierotowicz. “Fusion of IMU and Muscular Information in Order to Solve the
Limb Position Effect.” Technical University of Munich, 2019 B.7

L J

These results directly relate to RQ1, in that they pertain to the attainable precision when
using a wearable IMU-based body tracker.

When describing the attainable performance of posture tracking, it is important to distinguish
between precision and accuracy (see Fig. 3.1). Precision is used here as a synonym of
repeatability, in that it describes how consistent is the estimation of the hand’s position by
the posture tracker as worn by a user. Accuracy, on the other hand, refers to how closely the
estimation of the position follows a true value, usually consisting of a ground truth.

57


https://doi.org/10.3390/s20030890
https://doi.org/10.1109/ICORR55369.2022.9896547
https://doi.org/10.1007/978-3-030-70316-5_27
https://doi.org/10.1007/978-3-030-70316-5_27
https://doi.org/10.1088/2057-1976/ac3881

5.1.1 Attainable precision

As reported in [1], the participants could attain an average error in following a moving target
around 6.33 cm and 0.66cm in a static precision task. This performance is in line with the
results published in [115]. In particular, multiplying the average error for the BNO055 reported
therein by the lever arm of the avatar used in the BodyRig experiment [1], the average error is
close to that observed in the static precision task.

Furthermore, analysis of the component in the error vector parallel to the target trajectory
and the perpendicular component shows that the parallel component of the error shows a
high correlation with the target’s speed, but rather low with the target’s acceleration, while
the perpendicular component shows a higher correlation with the target’s acceleration than
with the target’s velocity. This would seem to indicate a dynamic where if the target is
moving fast the majority of the error is locally parallel to the target’s trajectory, likely due
to the user lagging behind, whereas the error component perpendicular to the trajectory is
not consistently affected. On the other hand, if the target’s trajectory changes abruptly, thus
leading to an increased acceleration, the perpendicular component of the error vector is more
directly affected than the parallel component.

5.1.2 Accuracy

The assessment of the BodyRig’s absolute accuracy was not in the scope of the study presented
in Chapter A.1, but was part of [13]. Therein, the BodyRig’s estimate of the user’s posture
is compared to an optical device. The test was conducted over the course of 1 hour and 45
minutes. The ground truth is provided through the VIVE system. One marker on the hand
was used to track the absolute position of the hand. Further VIVE trackers were used to
monitor the orientation of the body segments of the user, as was done by the BodyRig. The
ground truth in the test consists therefore of two separate measurements: one is the absolute
position as measured through the VIVE marker on the user’s hand, and the other is the
estimation of the hand’s position through forward kinematics based on the VIVE trackers
orientation, which is more similar to the method used by the BodyRig. Fig. 5.1 and 5.2 show
the absolute error over time, as well as a representative comparison of the estimations. The
Kabsch algorithm [157] was used to find the transform that ensures the best fit between the
different positional estimates, which had different coordinate systems. The median euclidean
norm of the error vector was around 2.5 cm over the whole course of the experiment, which
speaks to the accuracy of the BodyRig estimate. The error is comparable in the beginning and
at the end of the experiment, which confirms furthermore the precision, or repeatability, of the
BodyRig estimate.

The experiments presented in [8] and [9] (see Chapters B.2 and B.3) seem to show a consistent
familiarization effect across different users leading to overall performance improvement over
time teleoperating a humanoid robotic platform, even though the avatar is not adapted to
each user’s frame. Furthermore, participants who were missing one or both hands performed
comparably to the normative data gathered from able-bodied participants. This would seem
to indicate that users can learn to compensate for various error sources when teleoperating
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Figure 5.1: Absolute error of the BodyRig as compared to an optical forward kinematics
posture tracker over time [13].

an avatar, among which apparently any discrepancy between their own body and that of the
avatar. This lends credibility to the notion that, for teleoperation, and perhaps in general for
applications where a user is interacting with the environment exclusively through an external
support, precision and repeatability have more importance than accuracy in an absolute sense.

5.1.3 Muscle geometry estimation

These results are directly related to the second part of RQ1, namely the question of attainable
precision when estimating muscular geometry. A ground truth of the muscular geometry can
be arduous to obtain, especially during movement and in vivo. Therefore a proper assessment
of estimation accuracy w.r.t. actual muscle routing is not practical. For this reason, the term of
comparison in [5] is a third-party simulated biomechanical model of the upper limb, developed
by Chadwick and colleagues in [110].

The main goal of the experiment is to show that the musculoskeletal model used in [4]
and [5] (see Chapters A.4 and A.5) should be able to provide relevant properties of the
muscular geometry (first and foremost moment arms). The MyoCeption’s control model
provides predictions of the expected torque vector for every muscle group that are qualitatively
similar to those provided by an OpenSim model, while skipping many computational steps
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that would be required therein, such as the adjustment of the musculoskeletal model to the
IMU measurements via inverse kinematics. While the results are qualitative in nature, this
comparison shows that the MyoCeption’s control model can predict the direction of the torque
caused by a given muscle group on a given joint. The version of the MyoCeption’s model used
in this experiment requires the explicit assignment of an origin and insertion body segment
for each muscle group, as well as a type of muscle routing. In OpenSim, each muscle group
is routed from an explicitly defined origin point to similarly defined insertion point, with
further possible routing points and wrap-around geometries regulating the shape of the line
of action for each muscle group. Within the MyoCeption’s musculoskeletal model, it would
generally be desirable for less explicit definitions to be necessary. It is worth reiterating that
the musculoskeletal model in [4] and [5] proposes to provide lines of force that are given by
a weighed average of the action of all stimulated muscle groups, and therefore the term of
comparison should not necessarily be muscles in the anatomical sense. Based on this, we
would expect the geometrical properties of a line of action in the MyoCeption model to be a
linear combination of those in the OpenSim model, and for this relation to be preserved across
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Figure 5.2: Top: Comparison between position tracking of the hand as computed by the
BodyRig and forward kinematics with optical markers. Bottom: Comparison
between the BodyRig direct kinematics calculation and optical trackers direct
positional measurements [13].
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functional movements. This seems to be the case for most muscle groups modeled examined
in the MyoCeption or the benchmark model, as shown in Chapter A.5.

The musculoskeletal model used in [4] proposes to provide an estimate of muscle routing
based on average force output of all stimulated muscle groups, not based on any anatomical
marker. In [4] and [5], a calibration procedure is proposed which adjusts the geometry of
the musculoskeletal system based on the twitch caused by a sharp stimulation current. This
calibration procedure is explained in more detail in Section 4.6.2, and the results of an experi-
ment assessing this calibration procedure are presented in Chapter A.4. As stated therein, the
data gathered during the experiment indicate significant beneficial effects of the calibration
procedure, but could not prove whether the benefits derive from the geometrical adjustments
to the musculoskeletal model or from the adjustments to the gains by which the stimulation
currents are weighed.
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5.2 Force output measurement and estimation

r )
Primary publications:

[2] M. Sierotowicz, N. Lotti, L. Nell, et al. “EMG-driven machine learning control
of a soft glove for grasping assistance and rehabilitation.” In: IEEE Robotics and
Automation Letters 7.2 (2022), pp. 1566-1573. 1ssN: 2377-3766. por: 10.1109/LRA.
2021.3140055 A.2

[3] M. Sierotowicz, D. Brusamento, B. Schirrmeister, et al. “Unobtrusive, natural
support control of an adaptive industrial exoskeleton using force myography.” In:
Frontiers in Robotics and Al 9 (2022). Publisher: Frontiers, p. 919370. 1ssN: 2296-9144.
DOI: 10.3389/frobt.2022.919370 A.3

[4] M. Sierotowicz and C. Castellini. “Omnidirectional endpoint force control through
functional electrical stimulation.” In: Biomedical Physics & Engineering Express 9.6
(2023), p. 065008. por: 10.1088/2057-1976/acf04b A.4

[6] M. Sierotowicz and C. Castellini. “Robot-Inspired Human Impedance Control
Through Functional Electrical Stimulation.” In: 2023 International Conference on
Rehabilitation Robotics (ICORR). 2023, pp. 1-6. por: 10.1109/ICORR58425.2023.
10304750 A.6

Related publications:

[10] M. Panzirsch, M. Sierotowicz, R. Prakash, et al. “Deflection-Domain Passivity
Control of Variable Stiffnesses Based on Potential Energy Reference.” In: IEEE
Robotics and Automation Letters 7.2 (2022), pp. 4440-4447. 1ssN: 2377-3766. DOL:
10.1109/LRA.2022.3147566 B.4

[11] M. Sierotowicz and C. Castellini. “A surface neuromuscular electrical stimula-
tion device for universal cartesian force control in humans.” In: JOURNAL OF
ARTIFICIAL ORGANS 46.11 (2022), e323-e327. 1ssN: 1525-1594 B.5

[12] M. Sierotowicz, M.-A. Scheidl, and C. Castellini. “Adaptive Filter for Biosignal-
Driven Force Controls Preserves Predictive Powers of sEMG.” in: 2023 Interna-
tional Conference on Rehabilitation Robotics (ICORR). 2023, pp. 1-6. por: 10.1109/

ICORR58425.2023.10304772 B.6
L J

These results directly relate to RQ2, as they report the attainable precision and accuracy of
EMG and FMG-based force output estimation as opposed to direct measurement by using a
rigid-frame exoskeleton.

In terms of force output prediction based on wearable muscle activity sensors, a comparison
is present in [12]. While the focus of this publication is the development of an adaptive filter that
can preserve the anticipatory edge of EMG over measurable joint torque output, it is interesting
that the sensor modality showing the highest correlation with the ground truth is FMG. This
does make some intuitive sense, as FMG is an inherently force-measuring sensor modality,

62


https://doi.org/10.1109/LRA.2021.3140055
https://doi.org/10.1109/LRA.2021.3140055
https://doi.org/10.3389/frobt.2022.919370
https://doi.org/10.1088/2057-1976/acf04b
https://doi.org/10.1109/ICORR58425.2023.10304750
https://doi.org/10.1109/ICORR58425.2023.10304750
https://doi.org/10.1109/LRA.2022.3147566
https://doi.org/10.1109/ICORR58425.2023.10304772
https://doi.org/10.1109/ICORR58425.2023.10304772

whereas EMG measures electrophysiological muscular activity, which is bound to muscle
force through several layers of non-linear dynamics, due to both the molecular machinery that
comprises the muscular contractile units [158] and the inherent mechanical compliance of the
muscular tissue. However, EMG is a better tool when it comes to differentiating the activity
of agonistic and antagonistic muscles, and has therefore been used more often as a tool for
the estimation of joint stiffness, whose estimation requires to distinguish between agonist-
antagonist co-contractions, which lead to an increase in stiffness, and unilateral contraction,
which rather lead to a net torque output. In the following, results from the core and related
publications regarding both EMG and FMG-based force output estimation are presented.

5.2.1 EMG

The results presented in [2], included in Chapter A.2, show that surface EMG can be effectively
used to assist grasping movements. Furthermore, the presented assistive glove makes use
of the sEMG readings to predict the intended grasping force, which is then converted in a
positional coordinate through an admittance. This is in line with the concept presented in Fig.
4.5, in this case in a mono-dimensional task space, which is spanned by the only coordinate of
this force reaching task, namely the displacement between the segments of the handle to be
grasped. The conversion from force to positional coordinate in this case is simple, as the handle
device is controlled in impedance to generate a reaction force dependent on displacement.
Because the device has a known impedance, it also has a known admittance. Therefore, the
measurements of the flex sensors on the glove’s fingers can be considered a proxy for force
output, while not limiting the hand’s range of motion. Interestingly, no statistically significant
difference in prediction performance could be detected between a direct RR algorithm and
one employing a RFF kernel, which can compensate for non-linearities. This could be taken
as an indication that, at least in the force reaching task proposed in [2], non-linearities play
a negligible role. While no statistically significant effect was found, the overall performance
metric for the RFF predictor are worse. A likely explanation for this is that RFF, although
able to compensate for non-linearities, exhibits unpredictable behavior for inputs that are
not exactly those encountered in training. In the case of the experiment from Chapter A.2,
the calibration procedure was executed with no assistance provided for the 3 force levels.
During the experiment, with assistance provided by the glove, it is a demonstrated effect that
the muscular activity necessary to achieve a certain level of contraction will be reduced, and
therefore not coincide with the muscular activity in the training set. This could lead to a sharp
decrease in assistance regulated by the RFF predictor.

In [10], EMG was used to estimate intended wrist stiffness. While in this particular ex-
periment a precise and wide-ranging estimate was the higher priority, as opposed to a
physiologically accurate stiffness estimate, the experiment showed the passivity of a 1-DoF
teleimpedance system employing EMG for joint stiffness estimation. In this instance, an
adaptive filter described more extensively in [12] was used to provide a stable and smooth yet
high-bandwidth joint stiffness estimation.

63



Table 5.1: Pearson’s R? of linear regression from FMG and sSEMG ARV features to wrist torque

output.
Wrist wrench output axis | Pearson’s R? for FMG | Pearson’s R? for sSEMG
fx 0.465 0.370
fy 0.551 0.447
fz 0.360 0.2570
Ty 0.817 0.452
Ty 0.660 0.541
T 0.541 0.397
5.2.2 FMG

In [3], an FMG-mediated estimation of the shoulder torque output is used to control a semi-
active exoskeleton to provide adaptive support based on the lifted weight. In this case, a
predictor receiving inputs from a series of FMG sensors estimates the lifted mass. The pre-
diction is rendered discrete and multiplied by a gain, and then used to move the attachment
point of a spring to the arm orthosis, thus influencing the spring’s lever arm and, by extension,
the assistive torque. This controller, as shown in [3], can successfully adapt the provided
assistance to the lifted mass based on FMG measurements. This is mainly shown by the
fact that the muscular activity to lifted mass curve is significantly flatter if the exoskeleton
provides adaptive assistance, as opposed to constant assistance. Another interesting result is
that, apparently, this effect is greater in size taking into consideration the second repetition in
chronological order, where fatigue is presumably affecting the user in a greater measure. This
indicates that, when using adaptive assistance, fatigue leads to a lower increase in muscular
activity, as compared to constant assistance. The performance of the predictor itself is also
evaluated.

In this same regard, in [12], a comparison between FMG and EMG for wrist wrench
estimation was conducted. In this experiment, a user was fitted with both FMG and EMG
sensors, while holding a handle connected to 6-DoF force-torque strain-gauge sensor. The setup
is shown in Fig. 5.3, while Tab. 5.2 shows the modality, sampling rate and number of channels
for all the used sensors. While limited to a single able-bodied participant, the comparison
showed that FMG lacks the leading edge of unfiltered EMG Average Rectified Value (ARV)
features over measurable force output, but seems to show inherently higher correlation to
the torque output reference. All correlation coefficients of a regression to wrist wrench from
the FMG and from the concatenated ARV features derived from the Myo and Avanti sSEMG
sensors are shown in Tab. 5.1. For this comparison, ARV features from both sensors, once
synchronized, were filtered through a 1st order low-pass FIR moving average filter with a
cutoff frequency of 2 Hz. The results of [138] show that FMG provide clearly separable data
points across different gestures. While in the experiment no direct force measurement was
performed, one the gestures correspond to an isometric contraction of the forearm muscles. In
[139], while the Pearson’s correlation coefficient is not reported, the nRMSe suggests that FMG
is a viable modality for the estimation of fingertip force output.
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Figure 5.3: The setup used in [12] for the measurement of muscular activity underlying wrist
wrench output.

Table 5.2: Sensor types, channel number and sampling rates for the setup used in [12].

Name Sensor Sampling Rate ~ Channels
Load-cell Force/torque 200Hz 6
FMG Force from muscle bulging 200Hz 13
Myo (Thalmic Labs) sEMG 200Hz 8
Avanti (Delsys Inc) sEMG 2148 Hz 1 (per probe)
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5.3 Adaptive assistance through external aids
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These results are relevant to RQ2, as they relate to assistance through external aids and how
this can be used to reduce physical and cognitive load.

5.3.1 Fatigue reduction

The results in [2] show strong evidence that an assistive glove such as the one presented therein
can successfully lower the muscular activity necessary to achieve a given grasp force, although
the effect was only significant for higher grasping forces of 10N to 15N. This is partially
due to the control gains selected for that specific user study, but in general it is expected for
the effect to be more pronounced for higher grasping forces. This is in line also with the
results from [3] (see Chapter A.3), where the adaptive assistance by an exoskeleton is shown
to decrease the slope of the muscular activity curve as a function of load torque or lifted mass.
There too, no significant effect can be detected close to the exoskeleton’s default operating
point, which is the mid-range assistance level at which it was held during the non-adaptive
assistance experimental condition. Analogously, the assistance provided by the glove in [2] is
lower for reduced intended grasping forces, and therefore closer to the unassisted operating
point.

These results underline how the influence of adaptive assistance based on the user’s in-
ferred intention can also be thought of as an optimization of the user’s interaction with the
environment, as is the approach in pHRI control [78]. The results from both [2] and [3] show
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that assistance from an external device modulated based on muscular activity diminishes
the influence of the load imposed on the user on the muscular activity itself. This renders
the interaction with the environment less straining. Force feedback-based cuing can also
be used to guide the user’s actions towards, for example, a safer interaction with the en-
vironment, without necessarily relieving them of any significant fatigue. The results from
[7], for instance, show that force feedback can improve safety margins in rover telenaviga-
tion, with no significant effect on the user’s sense of agency. In [7], the force feedback is
determined purely by the rover’s sensory system, whereas for the wearable robots from [2]
and [3], the interaction forces were tuned using the user’s musculature as an indirect instru-
ment for measurement. Adopting this perspective underlines how many wearable robotics
applications, as well as force feedback devices, are not really concerned with identifying
the user’s intent per se, but only with optimizing the robot-mediated interaction with the
environment. The user is not relied upon to pilot the interaction forces, and arguably their
cognition plays no role in this sense, as the interaction dynamics seem to have a tendency
to emerge spontaneously. This is in contrast with, e.g., upper-limb prosthetic applications,
where the robotic mechanism is working in series to the user, figuratively, and therefore the
robot’s movements have to be completely inferred based on the cues provided by the user
voluntarily. Another exception to this are cases where the user is called upon to actively
tune environmental interaction, as is the case, for instance, in teleimpedance [10]. As will be
discussed in later sections, FES applications fall somewhere in between these two perspectives
of intent execution and environment interaction optimization, as FES setups can be used as
a form of neuroprosthesis [29], but task-level controls based on interactions with the envi-
ronment could be used to integrate any lack of performance on the intent detection’s side [159].

5.3.2 Influence on muscular recruitment

The analysis of muscular activity and motion of the shoulder joint that were gathered as part
of the data in [3] highlighted a further effect. The correlation between motion and muscular
activity after lag-compensation were compared across two different loading conditions, namely
with the participants holding no weight and 2kg in their hand, in both cases performing
a circular movement at a fixed rate of 1 Hz. In this case, the anterior deltoid is the muscle
responsible for compensating against gravity at the shoulder joint, while the posterior deltoid
is acting antagonistically.

Interestingly, the correlation of the muscular activity of the agonistic anterior deltoid does
not show significant changes across different loading conditions. The antagonistic muscle, i.e.
the posterior deltoid, on the other hand, shows activity with significantly higher correlation
to the shoulder angle under higher loading conditions (a signed rank test shows p < 0.01).
A representative case is shown in Fig. 5.5. Drawing a distinction between the adaptive and
non-adaptive assistance, the effect is more pronounced when only considering the non adaptive
case (p = 0.007 vs. p = 0.051, Cohen’s d 0.412 vs. 0.267, respectively). This indicates that
most participants actively utilize the antagonistic musculature when holding a heavier object
and performing a repetitive movement. The likely reason for this is that the increased weight
would lead to a much higher moment of inertia of the combined arm-weight system w.r.t. the
shoulder joint, and because the rate of movement was mandated at 1 Hz, the users naturally
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Figure 5.4: Box plots of the squared Pearson’s coefficients for the three monitored muscular
groups. Asterisks above individual plots indicate the effect size as determined by a
signed rank test. * p < 0.05, ** p < 0.01, ** p < 0.001.

adopted a muscular recruitment strategy where the antagonistic muscle was used to actively
accelerate the weight downwards. As for the reason why the effect is less pronounced when
using adaptive assistance, that is likely due to the decreased activity of the agonistic muscle
when more assistance is provided. The muscle recruitment strategy is therefore more similar
to that used when moving lighter weights when using adaptive assistance, leading to the
conclusion that the proposed adaptive assistance concept diminishes the influence of the lifted
weight also in terms of muscular recruitment during dynamic tasks. The overall effects on the
squared Pearson’s R coefficients are reported in Fig. 5.4.

Furthermore, these results are indicative of the recruitment strategy adopted in this particu-
lar case, which is of interest for an assistive system integrating wearable robotics and FES. A
biomimetic FES controller, when interacting with an exoskeleton, should first compute the total
torque requirements by summing all control sub-goals (e.g. compensation of gravity-caused
shoulder torques g, € R and trajectory tracking), and then convert it into electrical stimulation
ssh € R? by means of a torque-to-stim converter, driving the musculature based on the net
torque resulting from this summation. Fig. 5.6 shows such a control scheme on the bottom for
two cases where the commanded motion, leading to the motion-dependent torque Tcomm- € R,
is faster or slower. If the commanded motion is, e.g., slower, leading to a lower amplitude of
Tcomm,z, the total torque on the shoulder joint 7y, . € R remains in the positives at all times,
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thus only requiring a modulated stimulation of the anterior deltoid. If the motion, on the
other hand, is faster, or if the inertial momenta are higher, this leads to a higher amplitude
of Tecomm,z- The total torque on the shoulder 7y, , could then go into the negatives, and then
the antagonistic muscle would have to be stimulated in order to facilitate the movement. Fig.
5.6 at the bottom shows such the block diagram of a control system using such a recruitment
strategy. The data seems to align better with this model, as opposed to one where the muscle
recruitment is delivered for different control sub-goals and then superimposed, as exemplified
in Fig. 5.6 at the top. In that case, the two torque components g, and Tcomm,. are converted
into two stimulation current vectors s¢, s, € R?, and the net shoulder stimulation sy € R? is
the result of summing these two. As a result, both the agonist and the antagonist muscles are

always under dynamic stimulation. This approach would be viable, but it would not reflect a
natural recruitment strategy.

These considerations on the correlation of agonistic and antagonistic activity with movement
only refer to the dynamic behavior of muscles, and not to the baseline level of contraction they
might maintain during a task. Mass loading can however be demonstrated within the context
of [3] to also have a significant effect on the observed mean co-contraction, defined as the
product of the muscular activity of agonistic and antagonistic muscles. If the inertial load is
increased, co-contraction can be shown to increase as well. Fig. 5.7 shows the main statistical
effects. This is in line with the findings of [160] and [161]. As the joint stiffness increases with
co-contraction, it could be argued that, in order to more precisely track a trajectory, both the
agonistic and the antagonistic musculature could be contracting at the same time, leading to
an increase in joint stiffness, as shown in Eq. 4.44, while modulating the net torque output to
follow a given control task. As suggested in Eq. 4.31, this behavior could be seen as a strategy
to lessen the influence of the system’s dynamics. It would therefore be possible to consider
joint stiffness a separate control goal, which does not lead to a net torque, but regulates the
precision with which a trajectory is followed. Figure 5.8 shows a control concept with joint
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Figure 5.5: Representative examples of the EMG logs as compared to the protractor-measured
shoulder angle. Left: Cyclical movement with the user holding a mass of 2kg.
Right: Cyclical movement with no additional load. All shown signals are normal-
ized and dimensionless.
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The torques necessary to achieve all control goals are first summed, and only then
converted into stimulation.

stiffness as a separate control goal, which is converted to a muscle stimulation vector s, € R?
independently of the required net torque. The actual process of providing the controller
with a proper trajectory requires awareness of the task at hand, which is a separate issue
[159]. Furthermore, the attribution of agonistic or antagonistic role to any particular muscle
group w.r.t. a certain movement can be a non-trivial matter, and mostly requires, in natural
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movement, the use of afferent proprioception sense organs and, generally, of feedback loops
[162, 163].

In practice, the level of co-contraction could be viewed as an additional control goal only
for a system with redundancies, such as can be the case for a FES system where the number
of stimulation channels M € N is higher than that of DoF Q € IN to control at the joint
level. In such a case, a movement or force output goal could be achieved by providing an
infinite number of stimulation vectors. For instance, going back to the example of equations
4.44 and 4.41-4.43, if the force output goal is to have zero output at the hand, technically
any state of co-contraction sy € Null(JI .T) (using the notation from Fig. 4.5) with a net
torque of zero at the joint level leads to that result. Therefore, a null-space projection as
formulated in Eq. 4.46 could be used to impose the desired stiffness at the joint level as
an additional control goal on top of the desired net torque output, by driving the solution
towards a co-contracting stimulation vector s, with non-zero vector length p € R. In or-
der to achieve this, we could set H(s) = ||s, —s|| in Eq. 4.46, which makes the gradient
VsH(s) = (sp —s). Finding a co-contracting stimulation current vector s, associated with
a desired joint stiffness matrix Kjoints € RP*Q is potentially not trivial. While muscular
co-contraction can be associated with an increased joint stiffness, as shown in Eq. 4.44, an
accurate model describing this association would likely necessitate a dedicated and poten-
tially complex calibration. Conversely, if accuracy can be neglected in favor of precision, a
model could be quickly calibrated by means of artificial labels, as is the case for instance in [10].
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5.4 Functional electrical stimulation
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The MyoCeption’s musculoskeletal force control has been thus far characterized against a
third-party model in [5] and in terms of directional force output control in [11] and [4]. The
results concerning the musculoskeletal model used for force control in [4] and [11] relate to the
latest part of RQ1, assessing the accuracy and precision attainable with the model presented in
[5], in conjunction with the Nearest-Neighbor recruitment strategy described in Chapter A.4.
The results quantifying the attainable precision and accuracy of the various presented force
controls directly pertain to RQ3, and have major influences on the considerations driving the
various design iterations of FES-based force control solutions presented in the core and in the
related publications.

5.4.1 Nearest-Neighbor recruitment strategy

The results presented in [4] and [11] characterize the precision of the FES force control enforced
through the Nearest-Neighbor recruitment strategy, and compares different stages of cali-
bration of the underlying musculoskeletal model. The MyoCeption’s musculoskeletal model
provides stimulation currents that control the user’s force output direction. However, the
results also underline the fact that performance is highly specific to individual users. Further-
more, results indicate that the MyoCeption’s twitch-based calibration leads to more consistent
performance across all users. The results seem to indicate some benefit coming from the
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proposed twitch-based calibration process, although these benefits are highly subject-specific
and hard to predict. Furthermore, the experiment did not compensate for time-dependent
effects such as fatigue and familiarization, although participants were arguably given time to
adjust to the sensation of FES during the initial comfort threshold setting phase.

The results presented in [4] also comprise the offline performance analysis of a predictor
which is given the task of estimating the force output given the stimulation currents. The
purpose of this analysis is to evaluate the potential accuracy such a prediction could achieve if
calibrated with real-world force output measurements prior to normal operation where these
signals are not available. A 10-fold cross validation analysis shows that a RFF algorithm can
predict the force output with an average nRMSe of 0.124, and an average R? score of 0.857
across the prediction of Cartesian force output and joint space torque output. A result that was
not published in [4] is that a non-kernelized Ridge Regression predictor can achieve nRMSe of
0.153 and R? of 0.836. Comparing the two predictors shows a statistically significant difference
in performance in favor of the RFF estimation (with a paired t-test showing p < 0.001), but the
effect size seems to be negligible (Cohen’s d [155] is 0.202 for the nRMSe and 0.147 for the R?
score, corresponding to a median difference of 0.014 and 0.024, respectively).

This is important, since it would indicate that non-linearities account for a comparatively
small amount of the total error in force control, and that therefore, in isometric conditions
at least, the assumption can be made that the stimulation currents injected through tran-
scutaneous electrodes combine linearly into the force output space. This leads to important
inferences for the design of FES-based force controls. The new approach that these inferences
informed, whose performance was partially characterized in [6], represents a significant shift.
The methodology used here is reminiscent of that employed by Schearer and colleagues in
[44], where the authors compare the prediction of a linear model to a non-linear Gaussian
Mixture Model (GMM) in a similar setup as that used in our experiments with the intent
of quantifying the weight of non-linearities on the overall error in force control. The results
obtained by Schearer and colleagues show an even lesser influence of non-linearities in the way
stimulated muscle forces combine in the force output space. This is likely due to the face that
in Schearer’s case the participant is equipped with implanted FES electrodes, which as already
stated grant much higher selectivity. Similar results for recipients of implanted electrodes have
been reported by Friedrich and colleagues in [95], while skepticism about the assumption of
linearity for transcutaneous electrodes was expressed by Westerfeld and colleagues in [90].

Table 5.3: Comparison of RR and RFF performance when predicting force output given the
stimulation currents.

Force RFF Ridge Regression Statistical

comp. | R*> [ nRMSe | R? nRMSe effects

|TeL|l | 0.846 | 0.133 | 0.833 0.137 Signed rank test shows highly
|Tcull | 0.837 | 0.130 | 0.829 0.135 significant effects p < 0.001. Cohen’s
lltsc|l | 0.858 | 0.122 | 0.849 0.128 d ~ 0.08 for both nRMSe and R?.

| feusell | 0.872 | 0.114 | 0.853 0.123 p < 0.001 on all wrench components.
[ Teust][ | 0.823 | 0.132 | 0.809 | 0.140 | Cohen’s d ~ 0.12 for R? and nRMSe.

74



Ensuring that the FES system is able to induce the desired joint torques is fundamental to
the implementation of any form of higher-level controller. The results of the offline analysis
provide a cursory estimate of the accuracy and precision attainable through FES. With a reliable
model of joint torques deriving from a given stimulation current, it is possible to implement
controllers able to achieve functionally useful goals, such as compensation for gravitational
and inertial effects.

5.4.2 Ridge regression-based force control

The offline analysis conducted in [4] shows that force output both in Cartesian terms and in
joint space can reliably and accurately be predicted based on the electrical stimulation. The
experiment in [4] did not focus on quantifying time-dependent effects such as familiarization
and fatigue. Nevertheless, the apparent accuracy of the stimulation-based force output predic-
tion indicates that non-musculoskeletal model, which does not require the explicit definition
of origin and insertion points for the individual muscle groups, nor their explicit association
to individual joints, would be viable. Such a model would only require the approximate
measurements of the user’s skeleton, in order for the projection of the measured cuff force onto
the joint space, if no direct measurement of the position of the joints is possible, i.e. through
vision-based techniques.

As mentioned in the previous section, offline analysis shows that force output can be pre-
dicted almost as well through a RR linear predictor as can be done through a non-linearity
compensating algorithm. Furthermore, the prediction of joint torque output is slightly better,
with an average R? score of 0.86 as opposed to 0.855. While the difference is not consistently
present, the likely sources of error for the Cartesian force prediction are small changes in
arm posture which the Cartesian force output predictor cannot account for (see Fig. 4.5 for
reference), unless it is also given information about the current user posture. In consideration
of this, the setup presented in [6] is formulated in joint torque space, and operates by projecting
all desired wrenches from task space onto it by employing the arm Jacobian J,,, as shown in
Fig. 4.5.

The results from [6] seem to show that this approach does lead to an effective generalization
over different arm poses, seen as none of the outcome metrics of the TAC seem to be signifi-
cantly influenced by the arm’s position, with the possible exception of the Task Completion
Time (TCT), which was reported to be on the edge of significance and did later turn out to
indeed be significantly affected by target position once the pool of participants was enlarged.
It is of interest, however, how all other evaluated metrics (mainly Success Rate (SR), accuracy
ecc.) were not affected at all. This would seem to indicate that formulating the force controller
in joint space allows for better inherent generalization over different arm poses, as the posture
is naturally included in the calculation seen as the desired wrench is projected onto joint space
by computing the arm’s Jacobian, as explained in [4]. This is in direct contrast to the position
of Razavian and colleagues, who in [108] propose a controller formulated in Cartesian space.
The performance reported therein is impressive, with a mean trajectory tracking accuracy in
the order of magnitude of 3cm. However, the subject pool is comparatively small and the
control system requires a calibration in a large number of arm poses, rendering the calibration
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procedure arguably less practical than that proposed in [6]. The counterargument is that a
change in posture would also lead to a change in muscular geometry, which would then lead
to a change in the projection from muscle or stimulation space to joint space (by affecting
the muscular Jacobian ], as shown in Fig. 4.5). Solving this would arguably still require a
calibration in various arm poses, as was done also by Schearer and colleagues in [107]. The
direct inclusion of limb posture in the control loop by projecting the wrench from Cartesian
space to joint space would however grant continuous correction of at least part of the error
that would derive from a change in position without increasing the predictor’s complexity,
and seems therefore the better solution.

Furthermore, it is worth mentioning that it would be possible to use the projected force
output at the cuff to calculate the joint torque output, and use it in place of the twitch angular
velocity vector wmax in equations 4.33-4.40. This would have the advantage of being a more
explicit model, but would negate the advantage that the RR algorithm used in [4] does not
require any anatomical expertise to be set up, as opposed to musculoskeletal models such as
the one presented by Chadwick and colleagues in [110] and, to a lesser extent, by Sierotowicz
and colleagues in [5]. It could even be thinkable to make assessment about the user’s muscu-
loskeletal system based on such a model, as it would allow to infer some characteristics about
muscle geometry.

Finally, the results presented in [6] demonstrate the influence of time-dependent effects on
SR. Interestingly, it would seem that familiarization plays a significantly greater role in the
progression of SR over time for naive participants during their initial run, as their performance
seems to initially increase to a greater degree before leveling off and then decreasing, probably
due to muscle fatigue. The influence of this, incidentally, is also well evident looking at the
progression of SR over time. No overall effect of user experience could be detected on any of
the TAC outcome metrics.

In addition to the results published and reported in Chapters A.4 and A.6, some unpublished
results were obtained during testing of hdFES setups like the ones shown in Fig. 4.7. The
pre-tests these results were obtained from show the separability of the force output patterns
in terms of measurable FMG and of fingertip force output as measured with the Fingertip
Force Linear Sensor (FFLS) [164]. Representative PCA-reduced clusters for FMG and FFLS
are shown in Fig. 5.9. The clusters come from two separate tests. The one for which the FMG
clusters are reported called for 4 different patterns, while the test for which the FFLS patterns
are depicted called for 12 stimulation patterns. The FFLS patterns 1, 2 and 3 show clearly
distinct but internally sparse clusters. Patterns 4, 5, 6 and 12 are clearly separable from the
others and non-sparse, so much so that it is possible to notice two sub-clusters (especially for
pattern 6) formed due to the repetitions that were part of the experiment. Patterns 7, 8, 10 and
11 on the other hand, are not as clearly separable. Pattern 9 shows partial overlapping with
pattern 10, but is otherwise distinct from the others. These results informed later iterations
of the hdFES setup’s design, and underline how it is possible to elicit finer force output with
higher spatial resolution for the current injection, but that not all injection patterns lead to
clearly discernible and distinct force outputs. All inverse dynamics solvers should keep this
into account. A gradient descent-based solver analogous to the one presented in Chapter A.6
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Figure 5.9: Top: Representative clusters of the PCA-reduced FMG sensor measurements color-
coded by stimulation pattern. Bottom: Representative clusters of the PCA-reduced
fingertip force output measurements.

was later introduced to control the hdFES setup, but results are still tentative.

5.5 Results overview

Many different technologies and devices contribute to a successful assistive solution. The
results presented in this section all bear relevance to the overarching theme of assisting move-
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ment, each one informing the design of other system elements.

The BodyRig, assessed in [1] and [13], proved to provide a precise and, in the right condi-
tions, also accurate estimation of the user’s posture and of the position of their individual body
segments and joint configuration. Information about body posture also allows to infer the
likely muscle geometry, thus enabling a system to predict the expected torque direction and
magnitude if the tension force of the muscles are known. The MyoCeption’s Nearest-Neighbor
recruitment control relies on a musculoskeletal model that was qualitatively verified against a
third-party model in [5].

After these results confirmed that the proposed musculoskeletal model provides an esti-
mation of muscle geometry that is qualitatively comparable to that of other standard muscu-
loskeletal models, the Nearest-Neighbor recruitment strategy was tested in a static force control
setup in [4] and [11]. The results provided an assessment of the force control performance,
and demonstrated that the proposed twitch-based calibration procedure does seems to lead to
a more consistent and overall better performance of the force control. The experiment could
however not determine whether the benefits were due to the geometrical adjustments of the
lines of action, or rather due to the adjustments to the proportionality gains.

Concurrently, the experiments illustrated in [2] and [3] characterized a way to estimate
force output using FMG and EMG, respectively, and to use them in order to provide adaptive
assistance to the user. Force output estimation was also demonstrated in [12]. In both cases,
the experiments successfully showed that such assistive devices lead to a significant decrease
in slope in the muscular activity curve as a function of force output. This indicates that
exosuits and semi-active exoskeletons could effectively be used to bridge the gap between
what the user’s muscles can achieve and any required force output in task space. Furthermore,
direct and indirect ways to measure the force output were demonstrated in these experiments
and integrated in the control loop, unlike what was done in [4], where the wrench output
measurement was not used for real-time force control.

Additional analyses on the data gathered in [3] allowed to make some inferences on the
adopted muscle recruitment strategies under different inertial loading and external assistance.
These considerations can inform the design of FES force controls, which, based on these
results, should consider net torques and joint stiffness as two independent control goals. Given
sufficient redundancy in the muscle stimulation space, net torque output can be enforced by
any solution vector existing on a certain manifold in the stimulation current space, and a given
level of co-contraction can then be enforced through null-space projection.

Finally, a FES impedance control has been tested and characterized in [6]. The experiment
also quantifies the influence of fatigue and familiarization on the Success Rate over time of
a positional TAC test. The proposed calibration procedure is comparatively short, requiring
calibration in only one arm position. However, most of the setup time is dedicated to finding
the proper placement for the electrodes and determining the comfort threshold.

In the following chapter, future venues of research are examined. These are mainly con-
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cerned with integrating FES and wearable assistive devices, as well as using wearable sensor
for force output estimation and the estimate’s inclusion in the control loop.
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6 Conclusions and prospects

The results presented in the previous chapter depict the current state of the MyoCeption FES
assistive device and the various ways that are available to control it. These results also inform
various possible future venues of research, both in terms of control design and of means to
provide further assistance to movement through external devices, and to measure force via
direct and indirect means. The current iteration of the MyoCeption can adapt the provided
stimulation to different user postures, and allows for easy manual readjustment of the electrode
positioning. Currently, the control loop for the system is only closed in body posture. Force
measurements could improve the system’s performance, as it would hypothetically allow to
adjust the electrical stimulation to the desired force output directly. However, as previously
discussed, direct measurement of the force exerted by human muscles is not trivial, especially
without limiting the user’s range of motion.

Pursuing this aspect further could be worth the effort. Direct force output measurements
could be used to differentiate the user’s volitional efforts from the force exerted as a result of
stimulation, thus enabling to infer the user’s motion intention and to aid it by means of fitting
electrical stimulation.

The following sections describe the conclusions drawn from the results presented in this
dissertation and outline prospective future research directions.

6.1 External assistance

While the core publications in this thesis focus on adaptive assistance of movement and force
output through external means and FES separately, future work should focus on integrating the
two. The distribution of assistance between FES and external devices, in particular, warrants
various considerations [165]. On the one hand, external support should step in to bridge the
gap between the required torque to achieve a given goal and the torque that can be delivered
through FES alone. On the other, for the purpose of rehabilitation, FES is arguably preferable
to external aids, as it uses the wearer’s own musculature. For these purposes, fatigue detection
in real time could play an important role [38]. A progressive tuning of the assistance provided
by external aids and FES, as well as of the volitional efforts asked of the user could lay the
foundation to innovative forms of rehabilitative therapies.

As a way to provide external support, exosuits present their own set of challenges, as
they rely on non-rigid structures. Their role as a potential way of measuring joint torques is
discussed in the next section. As far as the torque output that a tendon-driven exosuit could
exert, however, the problems are in many ways similar to those that a musculoskeletal model
has to solve. As suggested in [5], the MyoCeption’s musculoskeletal model could be used for

80



this purpose, with the additional possibility of including longitudinal force sensors integrated
in the tendons in the control loop.

6.2 Force output monitoring

While static setups can be used to monitor force output with the user being bound to a single
posture, a robotic platform could be used to infer force output without limiting movement, as
was done for instance in [94]. While the robot would necessarily introduce a force disturbance,
the user would be able to perform motions. Many commercially available robotic manipulators
could be used for this purpose.

A wearable robotic device such as an exoskeleton could also be employed to this end. Rigid
exoskeletons would present similar challenges as conventional robotic manipulators. Exosuits,
on the other hand, do present various advantages in terms of comfort and safety, but also
come with very different challenges from a control standpoint [23]. For the purpose of force
output monitoring, in the case of tendon-driven exosuits, the force output can be measured,
for example, via tension load cells mounted on the tendons themselves [58]. The orientation
of the tendons could likely be inferred through body tracking in a similar fashion as the
MyoCeption’s musculoskeletal model used in [4].

While the experiment presented in [2] proposes a control loop where surface EMG sensors
are used to infer the desired force output, the predicted intended grasp force is converted into a
desired velocity for the actuators of the assistive glove through an admittance. This is possible
in the described setup, as the force measuring handle is an active impedance controlled device.
In principle, a similar concept could be implemented in other setups as well through the
application of a mechanical element of known compliance. Working under the assumption
that this element would impose a certain admittance on the whole system, the force output
could be inferred by monitoring the limb’s position, instead of its force output, which is in
many ways more practical, and would avoid completely constraining the user. As shown in
Eq. 4.31, a trade-off must be still evaluated in this sense, as imposing a higher mechanical
impedance on the user’s joint would warrant more precision, but again hinder movements.

The results from [3] show that force myography can be effectively used to estimate the
load on the human upper limb, thus enabling an exoskeleton to provide adaptive support.
FMG would then be a good option to infer the force output coming from the user’s muscles
as well, without limiting the user’s range of motion. Muscular activity sensing is in general
an attractive approach for the estimation of force output, as it generally does not hinder
movement. However, as discussed in the following, integration of EMG and FES is not trivial,
and FMG is prone to error if the sensors come into unplanned contact with the environment,
as any unplanned collision would lead to force readings that are not directly caused by muscle
bulging.
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6.3 Intent detection

Intent detection for a user of FES presents several challenges. The main problem is to differen-
tiate the user’s volitional force output and the force exerted as a result of FES. Additionally,
FES can interfere with some sensor modalities, such as EMG, which is why, typically, other
techniques are used for the purposes of intent prediction. One of the most common techniques
is Electroencephalography (EEG) [29, 166].

The results presented in [2] show an example of intent prediction through a regression
algorithm used in order to drive an actuated glove. EMG is however difficult to integrate
with functional electrical stimulation, as the electrical fields generated by surface stimulation
electrodes are orders of magnitude higher than those generated by muscular activity. Some
concepts have been proposed where the same surface electrodes are alternately connected to
an EMG sensor and to a FES stimulator. For instance, in [112] SEMG is used to determine
the optimal injection sites for stimulation currents to achieve a certain gesture. However, if
the stimulated muscles can not be directly observed, the problem remains to estimate the
volitional user intent and to differentiate it from the muscle contractions caused by electrical
stimulation.

A possible way to differentiate volitional efforts and FES-caused force outputs is to imple-
ment the intention-based control in phases. In this case, the injection of stimulation currents is
paused during a set time window, during which the user’s intention is computed by means
of various sensor modalities. The intended movement is then aided through FES during a
subsequent time window. This cycle would repeat in a time-discrete fashion [166]. The width
of the time windows would have a minimum bound determined by the reaction time of the
muscles to the onset and interruption of stimulation currents, which is usually in the tenths of
a second to a second order of magnitude. This would lead to a low overall control bandwidth,
but such state-based controls have been widely used in the past. Furthermore, task-level
control in humans does not operate on a high bandwidth either [159, 167], and therefore
this solution could be justified. Using such an approach would also solve the problem of
interference between FES and EMG. Task-level controls can be used to implement various
forms of reinforcement learning, as was done for example in [168], and to monitor the onset
of fatigue, as was done in [169]. Within the context of state-based controls, usage of muscle
synergies has also been proposed in [170] and [171] as a possible way to implement intent
prediction with FES systems for SCI patients. In these cases, the user’s muscular activity
is monitored by measuring the activity on muscular groups that the user is able to control
through volitional efforts. The concept of muscle synergies would allow to identify correlations
in the activation of the monitored muscle groups and others, at least in the case of able-bodied
individuals. If the user, on the other hand, due to e.g. an SCI, is not able to voluntarily
activate the muscle groups the activity of which should correlate with that of the monitored
muscle groups, FES can be used to enforce contraction on the paralyzed musculature. An SCI
patient would therefore reacquire the ability to control over paralyzed muscles through the
synergistically coupled muscle groups that they are able to voluntarily control. This relies on
the assumption that the SCI did not completely eradicate the whole of the synergy.

Time-continuous controls, on the other hand, propose to seamlessly and continuously gather
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the user’s movement intention and thereby regulate the injection of stimulation currents. A
notable example in this sense is the Orthojacket system [172], which makes use of a filter pro-
posed originally in [173]. This filter is able to differentiate EMG signal frequency components
deriving from volitional efforts by the user and those deriving from FES, also by applying
an automatic trigger signal which pauses measurement during the application of single FES
pulses [174, 173, 172].

The experiment presented in [3] arguably does not count as intent prediction per se, as
the FMG sensors were used to estimate the lifted mass through measured muscular bulging.
While FMG has a few limitations compared to FMG, it seems like a good candidate to directly
monitor stimulated muscles, even as the stimulation is occurring. Furthermore, let us suppose
that a model can be trained to predict the muscle bulging from a given stimulation current
vector, and let us assume that muscle bulging can be practically measured during normal
operation. Then, under the assumption of linearity, one could subtract the expected muscle
bulging, given the current stimulation, from the measured muscle bulging, and attribute to the
result of this subtraction a volitional effort from the user, or alternatively muscular fatigue.
This could then be used as intent prediction in the control loop. The same could be done with
force output measurements in task space, if these can be obtained without limiting the user’s
range of motion. A possible control loop where such models are used is depicted in Fig. 6.1.

In the control loops depicted in Fig. 6.1, there is an underlying assumption of linearity in
the FMG or joint torque sensor measurements. This is to say, that the FMG or joint torque
measurements as the function of two given inputs x; and x;, which we denote as S(x1 + x7)
should have the following property

S(x1 +x2) = S(x1) + S(x2) (6.1)

which is necessary in order to differentiate between volitional and stimulation-induced muscu-
lar activity or force output. The models predicting the muscular activity or the torque output
should also generalize over different body postures. This could be achieved by performing the
training step in different postures, and possibly by including posture data in the model input
beside the stimulation.

Looking at the block diagram, one can see that the estimation of the volitional joint torque
output only needs to be multiplied by the inverted transposed Jacobian of the arm, which can
be more directly observed through posture tracking. The estimation of volitional force output
starting from muscular activity, on the other hand, requires also an estimation of the muscular
Jacobian, which is not easily observable, even though it can be inferred, as demonstrated for
example in [4] and [5].

6.4 High density FES

While the jacket used in the MyoCeption’s current iteration is designed to allow easy adjust-
ment of the electrode positioning, it would be desirable for the system to be able to adjust the
spacial distribution of the stimulation without the need for manual interventions. While some
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Figure 6.1: Block diagram of a possible control scheme involving muscular activity sensors
and/or force output monitoring to infer the intended force output. Top: Supervised
training of the models with stimulation as input and force output or muscular
activity as target. Bottom: Online use of the calibrated control loop.

calibration techniques which are able to pinpoint the muscle groups responsible for exerting
torques in a given direction are described in [4, 5, 6], the selection of optimal electrode pairing
is not contemplated in these works. An example of a twitch-based calibration technique which
does pair up electrodes is present, e.g., in [175]. A suitable way to do this would be through
high-density FES, whereby some large-patch surface electrodes would be substituted with an
electrode matrix, such as the one shown in Fig. 4.10. Each electrode on such a matrix would
have a reduced surface, and would be connected to the main stimulation source through a
suitable switch system, which would then make it possible to create a virtual electrode of the
desired shape and position simply by connecting the desired electrodes on that matrix to the
main stimulation source. Figures 4.7 and 4.8 show such possible arrangements.
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Ideally, the wearable stimulation setup would feature dozens of stimulation electrode ele-
ments, which could then be combined to form virtual anodes and cathodes to fit individual
users, postures, and force output requirements. Furthermore, this would likely make it possible
to more precisely stimulate specific muscle groups, which is inherently difficult when using
transcutaneous electrodes.

A few early results are reported in this dissertation. Fig. 5.9 shows the measurements of
muscular activity and fingertip force output reduced in dimensionality by means of PCA
labeled by stimulation pattern. The stimulation patterns refer to different stimulation currents
injection sites regulated by a high density FES setup. The muscular activity measurements form
clearly separate clusters. The fingertip force output measurements, on the other hand, show
less differentiable clusters, although at least two pattern subsets are clearly distinguishable
based on the first component of the PCA-reduced measurements.

A prototype featuring electrode matrices, as opposed to individual larger electrodes, is
in development at the AIROB lab. Currently, the circuit design is similar to that shown in
Fig. 4.7, but the prototype combines both high density anodes and cathodes. This makes
it possible to combine any two matrix elements from the anode and the cathode, greatly
increasing the number of possible combinations. Notice that the general electronic circuit
is very similar to that currently used in the MyoCeption and shown in Fig. 4.6, with the
noticeable difference of the demultiplexer and of a different type of current driver, which in
this case is simplified to a Bipolar Junction Transistor (BJT) collector driver. The demultiplexer
allows to drive potentially many electrode elements with only a few select pins from the
central micro-controller. Generally speaking, multiple such demultiplexed electrodes could be
controlled by a single micro-controller, and a cascaded design could also be envisioned where
decentralized micro-controllers drive matrices receiving orders from centralized units running
higher controls in a nested loop design.

The previously mentioned architecture still entails a distinction of every surface electrode
element as belonging to either an anode or a cathode. A more versatile option is shown in
Fig. 4.8, where each electrode element can be connected to both an anode and a cathode. Of
course, no one element should be connected to the stimulation source anode and cathode at
the same time, as this would short the stimulation source’s terminals. Such a circuit, however,
could be driven with anodes and cathodes as close as needed, which is not possible with the
circuit shown in Fig. 4.7.

The reported preliminary results show that it is in fact possible to induce clearly distinct
muscle activity patterns by stimulating different electrodes. In the future, such a setup could
be used to induce finer hand gestures in individuals affected by hand paralysis [176], and
adaptively adjust the current injection sites based on user posture. Preliminary experiments
have already taken place and demonstrated some success, in certain subjects, in eliciting
single-finger movement. The adopted control architecture is similar to the one presented in [6],
with the main difference that instead of a 6-DoF force torque sensor, the Finger-Force Linear
Sensor (FFLS) from [164] is used to measure the force output of individual fingers.
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6.5 Further applications

The aforementioned models could also be used for other applications, such as teleimpedance.
As shown in [10], muscular activity can be used to estimate joint stiffness in teleimpedance
applications. The MyoCeption model can be used to project this single joint prediction onto a
more complex musculoskeletal model.

Furthermore, analysis of delay occurring between muscle contraction and force output could
be used to calibrate the stiffness prediction, as this delay should decrease with increasing joint
stiffness. As reported in [71], most observations show that muscle stiffness tends to increase
under contraction. A FES system could be used, for example, to stimulate the musculature
with pulses, and the time between stimulation and force output peaks could serve as proxies to
infer muscle stiffness. Inferences could even be made by analyzing the delay between muscle
activity measurements taken in proximity of the stimulation electrodes and the force output.
User studies could be designed to verify whether such features do correlate with physical joint
or task space stiffness of the human limb. The monitoring of the peak-to-peak propagation
delay can be seen as a single measurement point version of muscle elastography, which has
been demonstrated to be a viable technique for the purpose of real-time sensing of muscular
tissue mechanical properties [63, 72, 73, 177]. The evaluation of peak-to-peak propagation
delay would employ some form of cross-correlation, which should be easy to implement and
require readily available hardware.

While the publications presented in this dissertation mainly deal with the control theory
aspects of FES, a comprehensive human factors analysis of force feedback through FES could
reveal possible applications of this technique in haptics. Examples of such analyses can be
found in [92] and [178], with a particular emphasis on VR applications.

The fact that FES can add machine-mandated impulses to the ones sent by the user’s nervous
system would no doubt have interesting implications on the user’s own sense of agency. In
[93], a Neuro-Muscular Electrical Stimulation (NMES) setup is used to communicate to the
user the affordances of objects present in a scene. Potential applications of FES in neurological
disorders involving the perception of one’s movements could be discovered. Furthermore,
FES-based force feedback systems could have interesting implications in shared autonomy
teleoperation control schemes [179, 180].

Furthermore, it would be interesting to evaluate whether and how FES could be used in
training specific complex movements in paralyzed patients and able-bodied individuals alike
by correcting muscular activation at specific times to correct potential errors. These problems
have partially been investigated in the context of rehabilitation [36, 181]. In a more general
sense, it would be worth investigating how FES interacts with natural movement controls,
both voluntary and involuntary. As a more concrete example, it would be interesting to
evaluate whether a repeated FES-induced movement can build a central pattern generator in
the peripheral nervous system, and whether this could lead to appreciable differences in the
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same movement performed voluntarily by the user.

As FES can use the user’s own motor neurons to facilitate movements, and serve as a
neuroprosthesis by potentially bridging a gap between the central nervous system and the
musculoskeletal system, it could also be adopted in neurorobotics to provide an artificial model
of motion control in humans or other organisms. Similarity of the measurable properties of
FES-mediated movements and motions initiated by the user could be an invaluable metric to
assess how voluntary movement is regulated in practice. It could be possible to investigate
the role of voluntary movement initiation in proprioception, as well as the role played by the
internalized model of the body’s dynamics in controlling movements.

6.6 Final words

It is increasingly clear that robotic appliances can be developed that are able to surpass hu-
man performance by a large margin, and that the most challenging aspect of systems which
hybridize human users and robotics is rather to facilitate optimal communication between
actuating and sensing modalities on both ends. Commercial prosthetic hands with a larger
number of degrees of freedom and internal sensors are often in practice barely more versatile
than their body powered counterparts [182, 183]. This can be at least in part attributed to
the reduced diffusion of somatosensory feedback modalities, at least in commercially avail-
able prosthetic solutions. Without a proper way to provide feedback and close the loop, the
user-prosthesis system cannot improve by much, even if the user is better trained or if the
prosthesis is more performing.

Exoskeletons, wearable robotics and electrical stimulation all fit in a paradigm which presents
significant differences with respect to that of prostheses. If the latter can be considered as
acting in series to the human body, the former can be considered as acting in parallel to it. In
the case of prostheses, environmental interaction can only occur through the robotic device,
while in the case of exoskeletons that is not necessarily the case. In parallel arrangements, user
intention can be inferred by direct measurement of the force output, and force can be exerted
on the user in order to both provide feedback and to assist in movements requiring more
force than the user can provide. However, in the case of individuals where the connection
between their distal body segments and the central nervous system has been compromised,
such devices effectively should act as a bypass, which returning to the analogy above has more
in common with the case where the machine acts in series to the human body.

FES, together with wearable robotics, could act in parallel to the neuromuscular loop, and
could restore the capacity for movement in paralyzed individuals by bridging the points where
this loop has been partially or completely severed. In order for this technique to be useful,
however, the machine should be able to have access to real-time postural and force output
data. This could be done by including more sensing modalities in the FES systems, such as
force and torque sensing, or by monitoring the activity of afferent nerves. The inclusion of
further actuators able to exert forces onto the user would further facilitate the user-machine
integration, with the ideal result of the machine stepping in whenever the user is unable to
perform an action on their own.
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The transition from external feedback and control modalities towards direct interfacing
with the nerve system could lead to HMIs with an improved space and time resolutions,
whereby the connection between man and machine will increase in bandwidth and become
more intimate and profound. The interfaces of the future could enable us to drive any sort of
machinery as if it were a direct extension of our bodies, and they will make us able to perceive
all kinds of sensation through remote sensing organs as if they were our own.
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Abstract: In rehabilitation, assistive and space robotics, the capability to track the body posture of
a user in real time is highly desirable. In more specific cases, such as teleoperated extra-vehicular
activity, prosthetics and home service robotics, the ideal posture-tracking device must also be wearable,
light and low-power, while still enforcing the best possible accuracy. Additionally, the device must be
targeted at effective human-machine interaction. In this paper, we present and test such a device
based upon commercial inertial measurement units: it weighs 575 g in total, lasts up to 10.5 h of
continual operation, can be donned and doffed in under a minute and costs less than 290 EUR. We
assess the attainable performance in terms of error in an online trajectory-tracking task in Virtual
Reality using the device through an experiment involving 10 subjects, showing that an average user
can attain a precision of 0.66 cm during a static precision task and 6.33 cm while tracking a moving
trajectory, when tested in the full peri-personal space of a user.

Keywords: wearable sensors; inertial measurement units; low-cost sensors; assistive robotics;
rehabilitation robotics; teleoperation; space robotics

1. Introduction

Multi-modal intent detection is the problem of detecting a person’s intention to move or to
activate one’s muscles using sensors pertaining to different modalities, for example, going beyond the
traditional usage of surface electromyography (sEMG) [1,2]. Especially in (upper-limb) prosthetics,
sEMG is in use since the 50s to convert muscle activation signals, detected through the tiny electrical
fields generated by motor units while contracting [3,4], into control commands for a prosthetic device.
Although no clear substitute for sSEMG is in sight, this technique suffers from a number of drawbacks
(see, e.g., Reference [5]) and alternative means are being studied [2,6] to detect muscle activation in a
different way, for example, force myography through muscle bulging [7,8] and ultrasound scanning
through musculoskeletal internal movement detection.

An interesting alternative to these techniques consists of using some form of motion tracking
and/or body posture detection to provide information about the body kinematics of the user, rather than
directly detecting their intention to activate their muscular system. Knowing, for example, that the user
is drawing their arms close to each other might be useful to enforce a coordinated two-handed prosthetic
grasping of a heavy basket—this idea already appears in Reference [1]. As well, such information
could be extremely valuable in solving the limb-position effect [9,10], which refers to the change in
muscular recruitment and activity (and, by extension, measurable muscular signals) for the same hand
movement due to a change in body pose.

Body tracking could also provide useful data for day-to-day health monitoring, besides medically
relevant data for patients using prosthetic devices. With the recent interest in Internet of Things (IoT)
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solutions in this direction, many devices have been presented as a tool to gather this sort of information.
In many cases, authors propose solutions based on optical body tracking system [11].

However, optical, magnetic or laser-based motion tracking are enforced by detecting the position
of body markers with respect to an external source of radiation (near-infrared cameras, magnetic field
generators, etc.), implying that such systems cannot be wearable — one can definitely wear the markers
but not the sources of energy. Furthermore, an optical system, even if used in a wearable configuration
in association with markers, will always be prone to the issue of line of sight occlusions, which is
especially problematic in real time applications and when analyzing activities entailing complex body
postures. As opposed to such techniques and if the user’s absolute position is not required, a potentially
better alternative is represented by Inertial Measurement Units (IMUs). An IMU is in general able to
detect its own acceleration and orientation with respect to the gravitational field; using a constellation
of several such devices in specific spots on the human body, one can therefore reconstruct its kinematic
configuration. This solution is already used, for example, in the XSens Suit (https://www.xsens.com) or
in the rehabilitation device called Riablo (https://www.corehab.it/en). One well-known drawback of
IMUs is that their measurements tend to drift over time, needing frequent recalibration; but with the
advent of virtually drift-free IMUs-on-a-chip (e.g., Bosch’s BNOO055 [12]) this problem can be overcome
even using off-the-shelf components and the optimized data-fusion algorithms that come with them.
The BNOO55 also has the advantage of being cheap, lightweight and low-power, therefore perfect to be
coupled to a wireless/Bluetooth (BT) transmission system and a small battery.

Putting all these pieces together, in this paper we introduce the BodyRig a complete, ultralight,
low-cost upper body posture detector based upon such commercial IMUs. The BodyRig, consisting of
a constellation of up to 7 IMU/BT/battery modules, weighs in total 575 g, it lasts 10.5 h of continual
operation, it is donned and doffed in less than a minute and costs less than 290 EUR. For comparison,
the XSens Awinda setup, while consisting of a more complex constellation of 17 trackers and allowing
for a faster update rate (1 kHz internal, 240 Hz output rate), has a battery life of around 6 h and requires
a setup procedure of 10 min [13].

The BodyRig can be easily used to enforce real-time body posture tracking, teleoperation and
multi-modal prosthetic control, both in Virtual Reality (VR) and in real life. We here assess the device
through an experiment involving 10 users in an online trajectory-tracking task in VR, showing that it
affords an average precision of 0.66 cm during a precision task and 6.33 cm while tracking a target
moving along a prerecorded trajectory, when tested in the full peri-personal space of a user. These
values are much larger than the absolute precision of the VR system employed in the experiment,
which appears reasonable, given the pointing precision attainable by a human being [14].

Potential applications of this device, not limited to rehabilitation robotics [15] and discussed in
detail at the end of this paper, are endless.

2. Materials and Methods

The BodyRig system was used, in this experiment, in a reduced configuration, which allows
monitoring of user movements up to and including the forearms. In this reduced configuration,
the total material cost is around 220 euros and the total weight around 540 g and can operate more
than 13 h uninterruptedly. In this case, the system consists of 5 independent modules, each one
fundamentally consisting of an IMU (in our case, Bosch’s BNOO055 sensors [12]), a BT module and
a battery. The IMUs are connected via I2C to a bluefruit feather nRF52832 breakout board module
from Adafruit (see References [16,17] for more details), which is capable of communicating using the
Bluetooth Low Energy stack via a proprietary serial port emulation profile from Nordic Semiconductors
called BLEUart (see Reference [18]). Each module acts as a peripheral within the BLEUart standard,
except the one monitoring the movements of the user’s core, which acts as a central unit. The data
transmitted from the peripherals to the central is relayed to a host computer via conventional Bluetooth
SPP using a RN41 module from Microchip Technology (see Reference [19]).
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All components are off-the-shelf, except for the 3-D printed casings and the custom PCB for the
RN41 module. At the current stage, the BodyRig can be considered a minimum viable product (MVDP)
but expansions are planned in the near future.

The HTC Vive VR visor (see Reference [20]) was used to provide the subjects with visual feedback
in virtual reality. The visor uses two light sources to determine its own orientation and position,
although in this experiment only the orientation of the visor was needed. The precision of the Vive
system, measured using a “tracker,” is sub-millimetric in a static configuration [21,22]. The position of
the avatar’s head was determined using forward kinematics based on the data coming in from the
BodyRig system together with the orientation of the head as measured by the visor itself. The BodyRig
monitored the orientation of trunk, both humeri and both forearms. Therefore, considering the
measurement of the user’s head’s orientation with the visor, a total of 6 body segments were monitored.
Figure 1 shows a diagram with the fundamental elements of the setup.
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Figure 1. Block diagram and illustration of the setup.

The data from each BodyRig module is asynchronously sent to the host PC with an average
frequency of about 75 Hz. Considering that the kinematic model is updated every time data from one
peripheral is transmitted to the host PC, in order to handle this transmission frequency from 5 trackers,
the main software acquires the incoming data at 400 Hz. The data relative to the user’s posture is
sent from the application managing the serial driver to the VR simulation together with the target’s
position. Each target movement profile is the result of a recording obtained using the BodyRig in an
analogous configuration as the one used during the experiment.

Within the simulation, the position and orientation of the body segment of the avatar are
represented based on the measurements of the BodyRig, according to a forward kinematic model
(please refer to Reference [23] for more details). The lengths of the avatar’s body segments were the
same for all subjects. These lengths are important, as the position of the avatar’s right hand in space is
a function of these parameters. The body segment lengths are indicated in Table 1.

Table 1. Avatar body segment lengths in centimeters.

Body Segment Length [cm]
Thorax (Pelvis to neck base) 25
Shoulder (neck base to proximal humerus, right and left) 25
Humerus (right and left) 25
Forearm (right and left) 30

Ten male, right handed subjects of age 29.1 + 7.2 years, weight 73.7 + 8.1 kg and height 1.82 + 0.07 m
took part in the experiment. The experimental procedure was thoroughly explained to the subjects in
both oral and written form prior to the experiment and all the participants signed an informed consent
form. The experiment was performed according to the World Medical Association’s Declaration of
Helsinki, regarding the ethical principles for medical research involving human subjects, last version,
as approved at the 64th WMA General Assembly, Fortaleza, Brazil, October 2013. Data collection
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from subjects was formally approved by the host institution’s internal board for protection of data
privacy and by the work council of the German Aerospace Center. A physician is part of the council
that approved the experiments.

In VR, the subjects were provided with a 3D representation of their avatar, the current position
of the target and a train of spheres marking the upcoming positions of the target along its trajectory.
Additionally, the subjects were provided with a textual indicator of the current distance of the target
from the avatar’s right hand. Furthermore, a cylinder was made visible in VR to the users, which from
the center of the target pointed at the right hand of the avatar, providing a useful indication of the
direction along which it was necessary to correct for the current error at each given time. Figure 2
depicts a more detailed description of each relevant element present in the VR simulation.

The target’s current

Trajectory preview positionat any given
in the form of a train timeis given by the
of spheres green cube.
corresponding to the
w conlfm osgiﬁons Distance indicator.
OF the tar geI: The text hue shifts

& linearly fromred to
Indicator of the error green w.1th .
vector direction. The decreasing distance
length of this if the distanceis
element decreases inferiorto 0.3m.
linearly with
Fl_ecrea§mg dist'ance Representation of
if the distanceis the avatar’sright
lower than 0.3m. hand.

Figure 2. A representative screenshot of the Virtual Reality (VR) simulation with description of
each element.

During the experiment, the data recorded included the position and orientation of each body
segment monitored by the BodyRig, the position of the target and of each individual sphere from the
train of spheres used in the simulation to inform the subject about the upcoming trajectory of the target.
Each subject was asked to follow the target along 3 distinct trajectories, prerecorded using the BodyRig,
at 2 different speeds, with 3 repetitions per speed and trajectory, for a total of 18 trials. The trajectories
are hereafter respectively indicated as Infinity-shaped trajectory (IS), Constant speed Tai Chi (CT) and
Variable speed Tai Chi (VT). No randomization in the order of execution of the target profiles was
employed, as verifying whether better performance is achievable with a particular profile rather than
another is not the goal of this experiment.

In order to familiarize themselves with the VR environment and with the equipment, the subjects
were first asked to follow a separate trajectory, especially recorded to serve as a familiarization tool, at 2
different speeds with 1 repetition per speed. The familiarization target trajectory is hereafter indicated
as Familiarization Profile (FP).

Between each of the 4 sets of trials with a common target trajectory (including the familiarization
phase) the subjects were asked to rest at least 60 s. During this resting time, the subjects were asked to
record a subjective assessment of the perceived difficulty of the previous task, as well as the perceived
influence of both their current level of fatigue and the BodyRig system on their accuracy and reactivity.
The assessment was to be given through a score ranging from 1 to 20. Furthermore, at the end of the
experiment, the subjects were asked to fill a System Usability Scale questionnaire (see Reference [24])
in order to assess the perceived practicality of the BodyRig system in the context of the tasks at hand.

Before and after each of the 4 sets of trials with a common target trajectory, the subjects were asked,
for 30 s, to keep the avatar’s right hand as close as possible to a static point located in the frontal region
of the peri-personal space, reachable by keeping the right arm in an almost extended pose. Figure 3
shows a flow chart of the main phases of the experiment’s execution. Additional details regarding the
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BodyRig system and the experiment execution can be found in the supplementary material attached to
this article (see video S1 in Supplementary Materials).

Pre-experiment
questionnaire
} [ ] ]
Static test (30 seconds) Static test (30 seconds) Static test (30 seconds) Static test (30 seconds)

| | | |

FP —80% speed, 1 rep IS — 60% speed, 3 reps CT - 60% speed, 3 reps VT - 40% speed, 3 reps

| | \ |

FP —100% speed, 1 rep [ IS —100% speed, 3 reps [ CT — 100% speed, 3 reps [ VT - 80% speed, 3 reps

| | | |

| ) )
| ) ) )
| ) ) )
[mmmmmm] Static test (30 seconds) mmmme] mmwm@m]
[ J /| ) )

| S S N—

Rest time + questionnaire, Rest time + questionnaire, Rest time + questionnaire,
minimum 60 secs minimum 60 secs minimum 60 secs

I e S D

Final questionnaire + SUS
questionnaire

Figure 3. Flowchart illustrating the experiment’s execution. The green and red color represent the
static tests executed after the resting phases and after completion of a task series, respectively.

3. Results

Data analysis was based on properties measured both from the trajectories followed by the test
subjects, as well as from the target trajectories themselves.

3.1. Static Tracking

During the static tests, the subjects were asked to keep the sphere representing the avatar’s right
hand as close as possible to a static target for 30 s. As a general measure of the subject’s precision,
the mean and the variance of the norm of the vector difference between the end of the avatar’s right
forearm and the target’s position was drawn over the course of the 30 s of each trial, in an analogous
way as shown in Equation (7). One of the subjects provided strongly and consistently outlying data:
the mean of the error during static tests from this subject shows as the only outlier among the data from
all subjects for 7 static tests out of 8, according to the generalized extreme Studentized deviate test for
outliers. After qualitative analysis, it seems that this is either due to a failure, on the part of the subject,
to understand the provided indications and to utilize the feedback from the VR simulation properly in
order to correct the position of the right hand or possibly due to technical problems. However, no
such anomaly has been observed with any other subject. For this reason, the data gathered during
static tests for this subject were not considered in the analyses. Considering all remaining subjects
and repetitions, the two metrics have values of 0.66 + 0.27 cm for the mean and 0.0835 + 0.0744 cm?
for the variance, respectively. These metrics present a correlation coefficient of 0.63 with a p < 0.0001.
Figure 4 shows a boxplot of the error measured during static tests over all reliable subjects sorted by
test number. Figure 5 shows boxplots of the mean static error as observed specifically after a resting
phase and after completion of a full task series, with the intent of showing the behavior of the error in
these two specific conditions. In both cases, the data is color-coded consistently with Figure 3.
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Mean of the error norm during static testing across all subjects
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Figure 4. Boxplot over all subjects of the mean error norm measured over each static testing session.
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Figure 5. Boxplots of the error during static tests specifically after resting phases and after completion
of one task series. (a) Boxplot of the mean error in static tests executed after a resting phase; (b) Boxplot
of the mean error in static tests executed after completion of a task series, before a resting phase.

3.2. Trajectory Tracking

For the purposes of this analysis, the recorded positions of the avatar’s right hand were
synchronized with the respective target’s position recordings and both trajectories were synchronized
across subjects and repetitions using a uniform sampling time as basis for the synchronization.

Furthermore, for each trajectory point, the average difference vector between the hand’s position
and the target’s position was divided in its parallel and orthogonal components with respect to the
local tangential vector of the target’s trajectory, so that the following relation applies:

Tk) = (k) e (k) (1)

where e (k) is the average norm of the error vectors © from all subjects and repetitions, whereas
e(k) and e, (k) are the average norms of the components of € that are respectively parallel and
perpendicular to the tangent direction of the target’s trajectory at the k-th sample from the start of the
trial, for which the average error is computed. Furthermore, between the k-th sample of the tangent

N
direction t yrg¢(k) of the target’s trajectory, the k-th sample of the target’s speed vector v trgt(k) and its
norm Vit (k), the following relations exist:

. k) = (Etrgt(k+1)_gtrgt(k))
Vtrgt( ) = t(k+1)—t(k> ,
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Virgt (K) =l V ge(K) |l ®)

t trgt(k) = Vtrgt(k)/vtrgt(k)/ (4)

where E tl,gt(k) is the k-th sample of the target’s position and t(k) is the timestamp corresponding to

the k-th sample. Furthermore, the k-th sample of the target’s acceleration vector a trgt(k) and its norm
augt(k) are computed according to

N (;’)trgt(k + 1) - \—;trgt(k))
a trgt(k) = t(k+ 1) — t(k) ’ ®)

aurgt (K) =1 @ trge(K) Il - ©6)

Additionally, both the velocity and the acceleration vectors were filtered through a moving average
filter in order to increase the numerical stability for the purpose of statistical analysis. The width of the
moving window is 0.2 s.

In all cases, the complete series of samples of a property p corresponding to a given task
T is hereinafter indicated with p! or simply p when indicating the concatenation of all samples
corresponding to all tasks.

Considering the average performance over all subjects, we can observe the trend of the scalar error
over each repetition. The results are shown in Figure 6. The performance, in this case, is measured by
the mean scalar error over all Ngeq samples acquired during a single sequence

— 1
Trep = e Dnchanie, P (9 7

and the properties shown in the boxplots are computed over the performance of the 10 subjects and
sorted by repetition number.

Infinity shaped trajectory - 60% speed Constant speed Tai Chi - 60% speed Variable speed Tai Chi - 40% speed
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Figure 6. Boxplots of the scalar error over the repetitions for each target profile and speed.



Sensors 2020, 20, 890 8 of 16

Observing the average performance over all subjects and over all repetitions, we were able to
measure general relations between the error metrics and the movements of the subjects.

The Pearson’s correlation coefficients among the main properties of the target trajectory and the
error metrics are reported in Table 2.

Table 2. Pearson correlation coefficients among average properties of movement over all tasks. Below
the diagonal are the Pearson’s cross correlation coefficients. In all cases, the coefficients are statistically
significant with p far smaller than 0.0001.

P ¢ el | Vigt | atgt

€l
< 0.516
Vgt | 0.752 | 0.538

apgt | 0498 | 0.679 | 0.626
e 0.948 | 0.751 | 0.750 | 0.619

The average trajectory followed by the test participants is computed across all repetitions and
subjects and the correlation coefficients are computed for the entirety of the samples. The k-th sample
of the average error is computed according to

— 1
e = NNy Do eniy Dstrep i, Sbrep (K] (®)

where egup rep (k) is the k-th sample of the scalar error measured for subject sub and repetition rep.

The means and variances of the error metrics are reported in Table A1.

Additionally, visual inspection of the error was operated. To this end, a plot with the single
components of the target trajectory and the standard deviation of the error by all subjects in all
repetitions was produced (see Figure A1). Furthermore, visual inspection was operated by plotting,
in the form of ellipsoids, the covariance matrix corresponding to a subset of points lying on the target
trajectory of each dynamic tracking task. The results are shown in Figure A2. The covariance matrix is

computed according to
1

k) = ——
( ) NrepNsubj -1

E(k)"E(k), 9)
where E(k) is the 30 X 3 error observation matrix, with each row representing the k-th three dimensional
error vector e (k) measured from a specific subject and repetition. The plots used for visual inspection
are shown in Figures Al and A2.

3.3. Subjective Assessment

As mentioned above, the subjects were asked to provide a subjective assessment of several relevant
factors by assigning a score ranging from 1 to 20. In this context, accuracy is to be understood as the
capability of maintaining the position of the right hand within the smallest possible margin of a given
static target position in virtual reality and reactivity as the capability to quickly react to sudden changes
in direction and speed of the target. All the subjects were provided with the aforementioned definitions.

Assuming that all subjects operated on a relative but self-consistent scale, the average of each
score has been drawn across all subjects, whereas the variance of these scores was ignored. The average
scores are reported in Table 3.
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Table 3. Average scores across all subjects sorted by assessed factor and target trajectory profile.

Assessment FP IS CT VT

Perceived difficulty 7.3 9.5 9.8 11.6

Perceived influence of fatigue on accuracy 4.4 9.1 8.5 8.8
Perceived influence of fatigue on reactivity 5.5 8.3 9.0 8.6
Perceived influence of BodyRig on accuracy 6.1 6.7 7.4 8.4
Perceived influence of BodyRig on reactivity 6.6 6.9 7.3 7.7

Looking at the results from the System Usability Scale questionnaire [24], the subjects assigned an
average score of 85 points to the system, corresponding to an A for the general usability of the device.

The subjective assessments provided by the subjects after the completion of each set of repetitions
associated with a specific target trajectory profile seems to consistently bear no significant correlation
to the objective error metrics. This could indicate that, independently from the subject’s perception of
the hardness of a task, all subjects were able to achieve it with uniformly low error.

4. Discussion

4.1. General Discussion

From the average scores assigned by the subjects, it is clear that, on average, the difficulty of the
task was perceived as being consistently increasing. However, while the tasks involving the profiles IS
and CT were considered at almost the same level of difficulty, the tasks involving IS were considered
as more physically demanding in terms of the influence of fatigue on accuracy (see row 2 on Table 3).

The data from the static trials give a general measure of the average achievable precision in terms of
average distance from the desired point. These metrics appear to be highly correlated, which seems to
indicate that inaccuracy in maintaining a given position manifests itself consistently in both the inability
of exactly reaching the desired position and in the instability of the hand’s position. Possible sources of
error in this type of trial could be fatigue, as well as non-clarity in the display of the magnitude and
direction of the difference vector between the target’s center and the avatar’s hand. Observing the
metrics over all the subjects as a function of the repetition number (see boxplots in Figure 4), no obvious
influence from fatigue is evident and there is only a slight improvement visible between the very first
and the following repetitions, due most likely to learning effect. The absolute precision of the Vive
tracking system has been assessed as sub-millimetric in a static configuration [21,22] and, reasonably,
the positioning accuracy of the target in VR was in the same range. Given this fact, the average tracking
precision of 66mm obtained by the subjects seems appropriate. The human precision in pointing has
actually already been determined to be about half a centimeter in Reference [14]—for further details,
see also the references therein.

However, some noteworthy behavior is observable looking at the error in static tests specifically
after the resting phases and after the completion of a task series (see Figure 5). Namely, one can notice,
in the case of static tests executed immediately after completion of a series, that the error remains
largely consistent after repetition number 2. Conversely, the error maxima seem to increase consistently
in the case of static tests executed after a resting phase. This could be dictated, for the first case, by the
musculature being more tonic and responsive immediately after prolonged but moderate stress and
the subjects being on average more focused on the accuracy of their movements. On the other hand,
right after the resting phases, during which a questionnaire was to be filled, the focus of the subjects
may have been deviated from movement coordination. Fatigue is, of course, the most likely cause for
the inconsistency in the mean static error observed after resting phases.

During the tracking of a dynamically moving target, the component of the error tangential to
the target’s trajectory presents a higher correlation with the total average error magnitude than the
orthogonal component (see Table 2). However, the average magnitude of the parallel error component
is not far greater than the average magnitude of the orthogonal error component (see Table A1).
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Furthermore, it is worth mentioning the presence of a high correlation between the target’s velocity
and the error’s magnitude and specifically between the target’s velocity and the error’s component
parallel to the trajectory. This would seem to indicate that the most consistent source of error is the
subjects not being able to follow the target’s exact position onto its trajectory, rather than being able to
maintain a short distance from the trajectory’s path itself. The average orthogonal component seems to
be less consistently present in the final average error norm and does not show as high a correlation
with the target’s speed.

There is, however, a moderate correlation between the orthogonal component of the scalar error
and the target’s acceleration. This is likely because, typically, most subjects find it difficult to follow the
target accurately when this makes a sudden change in direction and the error in this case has a strong
component perpendicular to the target’s trajectory.

Lastly, Figures A1 and A2 provide a further qualitative analysis of the trajectories, showing in
three dimensions the deviation from the target trajectory along the different target profiles. Figure A2,
in particular, shows the error ellipsoids along the target trajectory, obtained by computing the covariance
matrix from all the measured error vectors across all subjects and repetitions (see Equation (9)). The color
of the depicted ellipsoids transitions from red to green over time during the target’s movement.
From Figure A1l one can notice an increased standard deviation when the target moves faster and
when it suddenly changes direction. From Figure A2 it is apparent that the error vector components
dramatically increase both as the target gets faster and as the subjects approach the points of maximum
curvature of the trajectories.

Interestingly, it seems that the correlation between the perpendicular component of the error
and the norm of the acceleration vector consistently increases with the successive target trajectory
profiles (see Table Al). This could indicate the effect of fatigue coupled with an increasing rate of
perceived difficulty (see Table 3), which renders the subjects progressively less effective at following
sudden changes in direction of the target, which themselves become more pronounced during later
target profiles.

The correlation coefficient between average orthogonal error component and acceleration norm
corresponding to the IS tasks at 60% speed is noticeably much lower than all the following ones. A lower
correlation in this case is to be expected because of the repetitiveness of this particular task. Due to this
factor, it is possible that, especially after a few cycles, the subjects would start to execute the same action
cyclically, rather than actively follow the target and this would lead to low correlation between the
target’s motion and the error’s components. It is possible that central pattern generators [25] played a
role in this particular task. However, this should also happen for the IS tasks at 100% speed. The most
likely explanation for this is that, with the target moving faster, the subjects would naturally follow it
more actively.

4.2. Limitations

It should be noted that the goal of this study is not to validate the absolute accuracy and precision
of the BodyRig system, for whose task an absolute reference would be needed, for instance a VICON
marker; but rather to assess the achievable performance in a range of tasks as wide as possible. In this
study, the role of the ground truth is played by the target, rather than by an optical system used as
reference. Any validation of the accuracy of the BodyRig in absolute terms should of course make use
of a parallel body tracking setup for reference.

The BodyRig uses a kinematic model to determine the positions of the body segments and
therefore it does not measure these positions directly. If the application requires exact absolute position
determination, the BodyRig is prone to errors due to mismatch between the link length of the kinematic
model and of the user’s body.

Relevant applications which would require validation of the BodyRig in absolute terms are, for
example, the measurement of anthropometric data in Cartesian space, such as the measurement of
the extension of a subject’s useful dexterity space. In such applications, the subject’s proportions



Sensors 2020, 20, 890 11 of 16

would have to be fed into the kinematic model and validation against an absolute reference would be
needed to assess accuracy of the measurements. However, the BodyRig does provide useful kinematic
data, such as kinematic angles, without the need for any reference or measurement of the user’s body
proportions. These angular measurements should have resolution and accuracy compliant with the
specifications in Reference [12,26]. Such data can be used in multi-modal intent detection and makes
the BodyRig a useful input device in VR and telemanipulation applications.

This experiment does show that good performance is achievable even without fitting the kinematic
model to the user’s actual body proportions, as the subjects of the study proved able to naturally and
intuitively follow the target in VR.

5. Conclusions

In this paper, we presented the results of a user study with the main objective of evaluating the
attainable precision using the BodyRig upper body tracking system in the achievement of various
tasks, as well as providing a system usability score [24]. The device allows to adjust the workspace
dimensions, allowing a user to be more precise at the cost of the reduction of the workspace size or
vice versa. Therefore, the measurements we operated are contingent to the specific sizes chosen for the
body segments of the avatar. That said, we demonstrated that an average user can achieve a precision
inferior to the centimeter in static conditions and of about 6 cm when following a target, even when
this is moving at fairly rapid speeds.

Additionally, we analyzed the effects of adaptation to a particular target movement profile in
terms of mean error and standard deviation.

Furthermore, we were able to draw distinctions between the main error sources in following the
target’s movements. We were able to link statistically the error component parallel to the target’s
trajectory with the target’s speed and the error component orthogonal to the target trajectory with the
target’s acceleration.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/3/890/s1.
Video S1: description of the proposed device and of the experiment.
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Table Al. Relevant properties of target motion and average trajectory followed by the users (+ standard deviation where applicable). All correlation coefficients have

p coefficients far smaller than 0.0001.

Measurement [unit] 1S-60% 1S-100% CT-60% CT-100% VT-40% VT-80% ALL
Dynamic tests
p(HE”) [cm] 5.365 + 1.405 7.935 +2.277 5.311 + 1.865 8.148 + 3.315 5.061 +2.954 8.904 + 5.824 6.325 + 3.248
p.(eH) [em] 4.051 + 1.698 6.766 + 2.490 3.547 +1.932 6.038 +3.773 3.399 +2.891 6.398 + 5.630 4.684 +3.263
p(eyr) [em] 3.472 +0.738 4.369 + 0.954 3.842 + 1.167 5.287 + 1.849 3.458 +1.371 5.620 + 2.852 4.066 + 4.684
u(\lvll) [em] 23.108 + 6.290 38.664 + 9.101 18.666 + 9.449 31.741 + 14.592 15.091 +1 1.169 30.743 £ 20.530 24.679 +13.957
p(IIZH) [emy/s?] 33.236 + 15.830 76.585 + 30.815 32.333 + 18.495 78.750 + 40.265 28.313 + 28.616 87.285 + 80.367 48.731 + 42.854
Corr([Vl, enll 0.522 0.626 0.763 0.773 0.773 0.685 0.752
Corr(/||all el 0.050 0.332 0.503 0.534 0.629 0.764 0.679
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Figure A2. Trajectory with error ellipsoids. The color shifts from red to green over time during

target’s movement.
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EMG-driven Machine Learning Control of a Soft Glove for Grasping
Assistance and Rehabilitation.

Marek Sierotowicz!™, Nicola Lotti?, Laura Nell?, Francesco MissiroliZ, Ryan Alicea?, Xiaohui Zhang?,
Michele Xiloyannis®, Riidiger Rupp?®, Emese Papp®, Jens Krzywinski®, Claudio Castellini'! and Lorenzo
Masia?

Abstract—In the field of rehabilitation robotics, transparent,
precise and intuitive control of hand exoskeletons still represents
a substantial challenge. In particular, the use of compliant
systems often leads to a trade-off between lightness and material
flexibility, and control precision. In this paper, we present
a compliant, actuated glove with a control scheme to detect
the user’s motion intent, which is estimated by a machine
learning algorithm based on muscle activity. Six healthy study
participants used the glove in three assistance conditions during
a force reaching task. The results suggest that active assistance
from the glove can aid the user, reducing the muscular activity
needed to attain a medium-high grasp force, and that closed-
loop control of a compliant assistive glove can successfully be
implemented by means of a machine learning algorithm.

I. INTRODUCTION

One of the most visionary philosophers of the current
century stated that without our hands "...we are, are we not,
nothing but naked apes...” [1]: indeed, this complex of multi-
joint articulations is crucial to perform most tasks of daily
living [2]. Moreover, the hands play a very important role in
non-verbal communication.

Unfortunately, neuromuscular diseases and traumatic
events that impair manipulation skills have significant in-
cidence rates, and can dramatically worsen the quality of
life for affected people [3]. When the technology reached
a sufficient level of maturity, wearable robotics entered the
stage to help people with motor impairments in restoring
or compensating for lost motor functions [4]: in particular,
the introduction of soft materials in these actuated devices
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enhanced the human-machine interaction with promising
results in the rehabilitation realm [5], [6], [7].

Most of the soft actuated gloves present in literature are
controlled based on intent detection algorithms, but many
aspects are still challenging [8]: the most common approach
is based on motor synergy analysis, which can simplify the
otherwise prohibitively complex mapping of muscle activity
to primary postural tasks [9]. This is done by identifying
specific patterns in brain activity [10], [11] or neuromuscular
signals [12], [13], [14], [15]. The latter approach has been
further developed by Polygerinos and colleagues, who intro-
duced a control based on surface electromyography (SEMG)
of a pneumatic system [16]: the open-loop SEMG logic
classified gross muscle contractions responsible for flexion
and extension and fed the information to a low-level fluid
pressure controller which regulated the pressure simulta-
neously in all actuators of a pre-selected group. Another
example can be found in Bos et al. [17], who developed
the SEMG-based control algorithm for the SymbiHand: the
muscle activity was mapped into a grasping force and served
as input for the actuation stage.

In prosthetic control, and generally when controlling hand-
emulating robotics by means of sEMG, machine learning
(ML) has been used with a good rate of success [18],
[19], [20]. The main advantage of such predictive algorithms
is the fact that they do not require explicit mapping of
muscle activity to hand movement or posture, and that they
can fit each individual user. The main disadvantage is the
computational cost that these algorithms can require, espe-
cially during training, and the fact that they sometimes have
unpredictable responses, especially when the user deviates
from the conditions present during training. An example is
the so-called limb position effect, which describes changes
in muscular activity associated to a single hand posture when
the upper limbs assume different postures and consequently
muscle recruitment varies [21]. These downsides represent
the main obstacles for the use of these control systems
outside of clinical settings. Nevertheless, solutions have been
proposed, which, while using very simple machine learning
algorithms, still allow for robust control of prosthetic devices
[22].

In our previous study [23] we demonstrated how an open-
loop kinematic synergy-based control in combination with a
soft assisting glove can provide assistance in the presence of
grasp weakness. Starting from our previous work regarding
both the topic of exosuits and ML-based prosthetic control,
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Fig. 1. MyoGlove design and control. a: the presented prototype actively

assists hand grasping by means of tendon-driven actuators (1) lodged in
the driver’s stage. Hand opening is passively aided by three 3D printed
elastic straps integrated in the glove (2). Hand movements are sensed
by means of two flex sensors connected to a Bluetooth data collection
module measuring overall thumb and index flexion/extension (3-4). The
motion intent is estimated by means of SEMG (5). A magnetic clutch
has been developed in order to allow for quick (de)coupling of the glove
from the driver stage allowing for quick adjustments to the user’s hand
size (visible in the lower right corner of a). b: block diagram depicting
the control architecture of the MyoGlove. The high-level controller aims
to estimate the intended grasping force through a ridge regression or a
random Fourier features algorithm. This estimate is then converted to an
intended displacement through the admittance of the handle device. The first
time derivative of the displacement is used as set-point and compared with
the angular velocity measurement of the flex sensors in the low-level PID
controller which translates the tracking error into a motor angular velocity,
which is finally converted into an actuation command.

here we combine, for the first time, a soft wearable glove
with a user’s motion intent detection based on machine
learning approaches enrolled in a closed-loop architecture.
The device is characterized by means of a rehabilitative
apparatus that includes a haptic handle device for grasping
training. We investigate, by comparing two different machine
learning algorithms, the kinematic and physiological effects
of the glove in a cohort of six healthy users, in a repeated-
measures study design. The machine learning algorithms
used in this study had already found ample use in our
previous work on the control of rigid prosthetic devices
[22]. The results provide initial indicators for the usability
of this apparatus in rehabilitation for task-oriented restorative
training.

Emergency button

= 3
(a
(b)

Fig. 2. Setup and task description. a: experimental setup with a participant.
b: screenshots representing the task as shown to the user over the GUI. The
red line highlights the target force to be reached. When the participant exerts
a level of force within the threshold from the target, the line is highlighted
in green, and subsequently reset to the starting level.

II. MYOGLOVE DESIGN

The control algorithm has been tested on a two degrees
of actuation glove able to assist flexion of index and middle
finger, and flexion of the thumb, respectively, by means of
a tendon-driven system (Fig. la). The tendons are routed
at the palm of the hand using a sewn-on guiding system,
consisting of Teflon tubes held in place by 3D-printed
parts. These lead the tendons around the fingertips of the
assisted fingers in order to get a better distributed pulling
force, to end up in a Bowden cable system (Shimano, SLR,
#4mm, Sakai, Osaka, Japan), starting at the proximal
end of the palm and terminating on a pulley lodged in a
case which can be magnetically secured to a clutchable
customized 3D-printed system (Fig. 1a). This design allows
to easily connect gloves of different sizes to the actuation
stage (visible in Fig 1b). Besides the active assistance of
flexion movements, extension is passively aided through
3D-printed elastic straps mounted as shown in Fig. la.
Whenever extension intent is sensed and the motors release
the tendons, the straps assist the fingers in extending, acting
as antagonistic muscles. Two flex sensors (Bend Labs, Salt
Lake City, UT, USA) are attached to the straps at the index
and thumb to detect their overall bending angle during
flexion and providing position feedback to the low-level
control loop. Two movements, namely flexion of the thumb
and flexion of the fingers, are independently assisted by
motors which pull and release the respective tendon cable.
The actuation stage is placed in a custom-designed box
(Fig. 1b and in Fig. 2 a), which contains the two brush-less
electric motors (T-Motor 6007,Nanchang, Jiangxi, China),
the motor driver unit (ODrive v3.6, ODrive robotics, San
Jose, CA, USA), and the electronics needed for data
processing and transmission. The communication with the
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motors is handled by an Arduino Mega 2560 (Arduino,
Ivrea, Italy), which also receives the data from the flex
sensors using Bluetooth low-energy protocol through
dedicated boards (nRF52832 Bluefruit Feather, Adafruit,
New York, NY, USA) and furthermore hosts the low-level
control loop. The high-level control model, implemented
using Matlab/Simulink environment (MathWorks, Natick,
Massachusetts MA, USA), runs on a Nvidia Jetson Nano
board which receives and processes the EMG data and
sends back the calculated motor commands to the Arduino,
which forwards them to the motor drive unit using serial
protocol. Muscular activity is measured by means of two
SEMG sensors (Delsys Trigno, Natick MA, USA) placed on
the flexor digitorum (FD) and the abductor pollicis brevis
(APB) muscles, by following the SENIAM guidelines [24].

III. REAL-TIME CONTROL ARCHITECTURE

In the present work, besides characterizing the system,
we also aimed at comparing the performance of the two
main intent estimators, which are both based on machine
learning. For the sake of clarity, the two approaches worked
in a mutually exclusive manner, being tested separately and
across distinct trials, but being used by all participants.

As depicted in Fig. 1b, the architecture comprised a high-
level controller, based on one of the two approaches (selected
prior to test initiation), which estimated the motion intent
and thus computed the set-point for the low-level admittance
controller. This last layer was used in both conditions and
was implemented to track the reference signal and convert
it into a motor actuation command closing the loop on the
flex sensors measurements (100Hz, LP filter at 10Hz).

A. High-level control layer: machine learning-based estima-
tion

The two intent estimators consisted of a non-kernelized
ridge regression algorithm applied directly to the filtered
SEMG envelopes (sampled at 2kHz, BP filtered between
35Hz and 350Hz, rectified, LP filtered at 4Hz), and in a
random Fourier features kernelized algorithm, respectively.
Both the approaches aimed to estimate a grasping force
(F.s¢ in Fig. 1b). This was then converted into a finger
displacement 6.4 through an admittance consisting of a task-
specific compliance determined by the the handle device.
This displacement 6.5, was fed as input to the low-level
controller after first order time differentiation, as described
in Sec. III-B and shown in Fig. 1b.

1) Ridge regression algorithm: ridge regression (RR) is
among the most fundamental algorithms used in machine
learning [25]. It has computational complexity of O(DC')
(D and C being the number of observed features and the
number of output channels, respectively) for the prediction
step and, being a linear model, it is typically not prone
to overfitting. The necessity to work with a matrix with
a dimension equal to the number of observations at train-
ing time represents the main computational cost for this
algorithm, which is O(D3 + D?N) at training time (N

being the number of observations, and typically N > D).
However, this operation can be carried out incrementally
by means of the Sherman-Morrison formula [22] [26] thus
reducing the overall complexity at training to O(D?) for
every new observed sample. This can be especially useful
for higher dimensionality D, which can be necessary when
applying a higher-dimensional kernel mapping. (see section
III-A.2). The Sherman-Morrison formula enables an efficient
implementation of incremental learning, where the predictor
can efficiently integrate new data into the design matrix, thus
enabling the user to adjust to changing conditions which
might influence the prediction, such as varying levels of
perspiration or fatigue.

2) Random Fourier Features algorithm: Random Fourier
features (RFF) make it possible to add an approximated
radial basis function kernel without losing the incremental
character of non-kernelized RR [27], [28]. A kernel allows
the model to better adapt to non-linearities and has been
shown to offer better performance in prosthesis control when
training a model to identify forces on multiple degrees
of freedom [22]. On the other hand, it is more prone to
overfitting if its hyperparameters are not suitably tuned.
Furthermore, it entails an increase in feature dimensionality,
meaning that D increases.

B. Low-level controller: position-velocity loop

As the low compliance from the cables made it difficult
to open one’s hand once a grasp was achieved, the control
was closed around the error in the first time derivative of the
finger flexion angle 6.

The actuation to the glove is thus controlled in a closed
loop around the error between the desired set-point éest pro-
vided by the machine learning algorithm through the known
admittance of the handle device and the measurements from
the flex sensors ésmsed normalized through a calibration
procedure. The resulting instantaneous velocity tracking error
eq = ésensed — 9est is transformed into a desired angular
velocity, wq, through a PID block of the form:

-1
y(s)= 4= Bet Rio 0
eq 1+K4-s
where the K, K; and K, gains were experimentally tuned,
using the Ziegler-Nichols heuristic method [29], prior to the
study and then left unchanged for all participants.

As mentioned above, in order to calculate the error ey,
the grasp force estimation from the machine learning al-
gorithm and the bending sensor feed were projected onto
a common space through an admittance (or compliance)
gain and a normalizing factor, respectively, as illustrated
in Fig. 1 b. The normalizing factor was obtained during
a calibration procedure prior to session start during which
the experimenters gathered the values output by the flex
sensors while the user had their hand open and closed. The
admittance, on the other hand, is fixed as the inverse of
the handle’s impedance, as explained in Section IV-A. Both
signals were then differentiated over time before being fed
to the aforementioned PID motor controller.
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IV. EXPERIMENTAL SETUP AND PROTOCOL

Six healthy participants were enrolled in the experiment
(4 males/2 females, age 26.17 £ 1.33 years, body weight
80.33£13.29 kg and height 1.80£0.11 m, mean * sd). In-
clusion criteria were based on no evidence or known history
of musculoskeletal or neurological diseases, and exhibiting
normal joint range of motion and muscle strength. All
experimental procedures were carried out in accordance with
the Declaration of Helsinki on research involving human
subjects and were approved by the IRB board of Heidelberg
University (Nr. S-311/2020). All subjects provided written
informed consent to participate in the study.

A. Apparatus

In order to test the MyoGlove controllers’ performance, we
developed a customized setup that could be used in future
studies for rehabilitation treatments: we combined the device
with an actuated hand module [30] aimed to provide haptic
feedback (Fig. 2a, handle device). An impedance controller
was implemented in order to generate a constant-compliance
force field during grasping. The handle’s force F" is related
to the finger and manipulandum displacement according to
the following equation,

F' = KAr=C 'Ar )

where K = 1kN/m is the stiffness gain and Ar is
the handle displacement, obtained from the outer and inner
rotors, as reported in [30], C is the compliance gain, which
corresponds to the inverse of the stiffness gain. All of the
gains were assumed to be constant in this experiment.

A DAQ board (Quanser QPIDe, Markham, Ontario,
Canada) mounted on a dedicated desktop workstation was
used to control the handle device and acquire all its signals,
with a sampling frequency of 1kHz (Fig. 2a). The worksta-
tion provided visual feedback to the user.

B. High-level controller calibration

Before starting the experiment, both high-level control al-
gorithms (i.e. ridge regression and random Fourier features)
were trained on a common dataset acquired during a separate
round which also served for familiarization. This dataset is
specific to each user and electrode placement, and therefore
the acquisition round took place immediately prior to the
session proper. During the acquisition, participants had to
follow a visually fed back preset force profile by grasping
the handle device (Fig. 2b). The force profile was then used
to associate target labels F" € {O0N,5N, 10N, 15N} to the
acquired SEMG envelope signals in order to train the two
machine learning algorithms.

The algorithms were each trained on a set of measurements
from the two EMG probes (therefore each observation had 2
features) acquired at a rate of 1kHz over a time of 10s per
label, with 5 repetitions, for a total of ca. 50000 samples
per target force. The prediction was verified in terms of
correlation of the estimated applied force against the target
force level, and if needed, data acquisition was repeated,

until the output results showed good correlation with the
force profile and no apparent noise due to overfitting. The
main source of errors in the prediction at this stage was
bad placement of the EMG probes, which, if found, was
corrected.

Both RR and RFF have a deterministic closed form solution.
Furthermore, the main purpose of the implementations of
RR and RFF we use is to facilitate incremental learning,
which is to say that the user should be able to easily
and efficiently add new samples on the fly in order to
obtain better generalization. To this end, the algorithm’s
hyperparameters are to remain constant throughout usage
[22]. These were set experimentally prior to the main ex-
periments. Therefore, two of the experimenters tested the
algorithms with different values for the hyperparameters and
selected the ones which gave the better results in terms of
generalization. As all hyperparameters were preset and the
algorithm’s optimization is deterministic, no validation round
was conducted prior to the individual experimental sessions.

C. Comparison task

The main test consisted in a repeated-measure force
reaching task in which participants, wearing the glove, were
prompted by a GUI to reach four different isometric grasp
force steps (F* € {ON,5N,10N,15N}), grasping the
handle device (Fig. 2a).

The participants’ grasping force was visualized in the
monitor as a white bar, which changed according to the force
level. The target force step, instead, was represented via a
horizontal line that changed color based on the condition
(Fig. 2b): when the user was in the rest condition (i.e.
F" = ON ), a new target force, displayed as a red line
(Fig. 2b, left), appeared on a predefined level of the screen
based on desired force intensity. Participants had to increase
their grasp force on the handle device until the desired level
was reached: once it was reached, the line changed its color
from red to green (Fig. 2b, centre) and the grasp force had
to be maintained for 2s. After this, the red line returned
to the rest condition (i.e. F* = ON ) and participants
were instructed to relax for 2s, until a new force target
appeared (Fig. 2b, right). The whole sequence of force step
was repeated a total of 5 times for each non-zero target force
value.

The task was repeated in three different conditions: (i)
without providing glove assistance (i.e. NA condition), (ii)
with the ridge regression algorithm (i.e. RR) and (iii) with the
random Fourier feature algorithm (i.e. RFF). The sequence
of force steps and conditions were randomized for each
participant and condition in order to account for order effects
(fatigue, learning), when averaging across participants.

V. DATA ANALYSIS

Offline analysis was performed to evaluate participants
performance under active assistance (RR and RFF) compared
to the NA condition. Outcome measures included prediction
accuracy, motor actuation response, and changes of muscular
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activities. Furthermore, the performances of the RR and RFF
algorithms were directly compared in terms of R? score
and Root Mean Square Error (RMSE). We used an external
trigger to synchronize the DAQ board and the glove control
unit during data processing and analysis.

A. Prediction accuracy

In order to quantify the controllers’ reliability in estimating
the force at the end-effector, we compared the grasping force
performed during NA condition with the RR and RFF offline
predictions using the EMG data acquired during the trial as
input. We evaluated the correlation coefficient 2 and RMSE
between the measured and the predicted force levels from
the early onset of the grasp movement until the end of the
holding phase.

B. Motor actuation response

In order to evaluate the system’s response time, we em-
ployed cross-correlation between the recorded sEMG enve-
lope and the motor response recorded through the motor’s
positional encoder when the participant started applying the
force necessary to reach the target grasp force.

C. Changes in muscular activity

Electromyographic signals of APB and FD were post-
processed offline through a band-pass filtering (35 Hz-
350 Hz) with a second-order Butterworth filter, full wave
rectification, a low-pass filtering (4 Hz, second-order But-
terworth filter) and normalized to the highest value of each
participant during the whole experiment (i.e. MaxEMG).

We then used the root mean square (RMS) of the SEMG
envelope as index of activation level across force steps (i.e.
5N, 10N and 15N) and assistance conditions (i.e. NA, RR,
RFF).

D. Statistical analysis

Data normality distribution was assessed using Shapiro-
Wilk test, and sphericity condition for repeated measures
analysis of variance (rmANOVA) was assessed using the
Mauchly test. The rmANOVA test was used to examine
the effects on the dependent variables of the assistance
type, using it as within-subject factor (it can assume one
out of 3 levels: NA, RR, RFF). A post-hoc analysis was
performed using paired t-tests to evaluate the significant
pairwise differences between each type of assistance for the
different force steps (3 levels of F' h: 5N, 10N, 15 N). For all
the tests, the level of statistical significance was set at 0.05,
except for post-hoc analysis, where the significance level was
chosen according to the Bonferroni correction for multiple
comparisons.

VI. RESULTS
A. Both controllers have a good prediction accuracy

The first outcome metrics have the purpose of evaluating
the performance of the two controllers in terms of motion
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Fig. 3. a: R? values for RR and RFF. b: RMS Error w.r.t. the measured

force. ¢: representative grasp force prediction vs. measured grasp force.

intent prediction: Fig. 3a shows the mean R? coefficients
over model and target force. The R? scores average overall
was 0.8009 £ 0.1665 for the RR condition and 0.7303 £
0.2295 for the RFF condition, respectively.

It is however worth mentioning that the R? score com-
puted between the EMG envelopes and the actually produced
force shows comparable values (0.7848 £ 0.1684).

The Root Mean Square Error (RMSE) was calculated over
the same motion phases. Fig. 3b shows its values over model
and target force. Overall, RMSE was 3.3293£1.9771N
for the RR condition and 3.7010+1.7328 N for the RFF
condition.

Fig. 3c shows a representative plot of grasp prediciton
vs. the actually measured force at the handle. A noteworthy
effect is that, in certain portions of the plot where the
measured force does not appear to change, both predictions
show noticeable instability (for example between 8s and
10s). The most obvious explanation for this effect is the
presence of static frictions in the handle device, which would
cause the mechanism to remain static even if the force
applied by the user’s muscles changes somewhat. This is,
of course, a potential source of RMS error.
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Fig. 4. Motor actuation delay across all subjects.

B. The system shows an overall small delay

The time between the neuromuscular signal and the motor
actuation is an important metric related to the system’s
reactivity. Because the control loop does not explicitly map
the APB sEMG with the thumb motor or the FD sEMG
with the finger motor, cross correlation was computed for all
four possible sensor-motor correlation, and only the smallest
delay was considered, operating on the assumption that the
motor moving was caused by the nearest increase in muscle
activity. Apparently non-causal behavior was excluded from
the calculation. Fig. 4 depicts the results of the cross-
correlation between the muscle activities and the correspond-
ing motor’s encoder. No significant difference was found
between the two controllers: during the RR assistance the
delay between the FD and its motor we found a delay of
190+87 ms.

During the RFF assistance, the delay was 285+£92 ms for
the FD activity.

C. Both controllers reduce human muscular effort during
middle-high force levels of grasping

Fig. 5a shows the reaching task time-series of a represen-
tative subject, averaged across the repetitions of each force
step: by looking at the APB muscle, it is possible to notice
that the muscular effort is reduced, especially during the
first 25% of the movement, when the participant initiates the
reaching. The RFF algorithm assists more than the RR, which
seems to follow the NA trend, in particular during the 10 N
and the 15N force steps. The reduction results have been
further confirmed by the statistical analysis (F3 6 = 3.33,
p = 0.011) at the population level (Fig. 5b), in which we
found a significant reduction between the normalized SEMG
activity of the APB muscle during the NA condition (10 N=
20.3 £ 4.1 of % MaxEMG, mean+ SE; 15 N= 19.8 +4.0%)
and the two assistance conditions (RR: 10 N= 18.4 + 3.4%,
p = 0.001; 15N= 18.6 + 3.4%, p < 0.001. RFF: 10N=
17.7£3.8%, p < 0.001; 15N=17.4+3.7%, p < 0.001.) No
significant difference in measured muscle activity could be
found while participants performed the 5N force step trial,
in which the APB activity was 19.44+4.0%, 18.8+3.5% and
17.5£3.7%, respectively for NA, RR and RFF. Furthermore,
no statistical differences are presented between the two
controllers in assisting the APB muscle. Similar trends can
be observed by looking at the FD muscle (Fig. 5) in which
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Fig. 5. EMG analysis. a: muscular activities of a typical participant during
reaching task at different force steps, averaged across the five repetitions
(mean = sd): 5N (left), 10 N (centre), and 15 N (right). Grey line represents
NA condition, red and blue lines are respectively the trials performed during
the assistance driven by the ridge regression (RR) and random Fourier
feature (RFF) algorithms. b SEMG activity bar plot at the population level.

we found significant difference between the no assistance
condition and the two controllers (F3 6 = 33.6, p < 0.005)
for the 10N force step (NA=30.5 £ 6.2%; RR=23.3 +4.5%,
p < 0.001; RFF=24.7 + 4.6%, p = 0.001) and the 15N
force step (NA=31.0 & 6.2%; RR=23.3 + 4.3%, p < 0.001;
RFF=24.9 £+ 4.8%, p < 0.001). As in the case of the APB
muscle, the two controllers provided the same assistance on
the FD, and they did not show significant difference with the
no assistance condition for the lowest force step (5N), in
which the FD activity was 30.2+5.8% during NA condition,
24.8+4.8% during the RR assistance and 26.3+5.1% during
the RFF.

VII. DISCUSSION

Wearable technologies have always been challenged by
a variety of problems which are not only related to hard-
ware design and ergonomics but also to the difficulty in
delivering assistance to replicate lost or impaired motor
functions. Providing assist-as-needed during task oriented
grasping training is a particularly great challenge due to
both the complexity of the anatomical structures as well as
the high dexterity that characterizes it and provides humans
with unmatched manual abilities. Although many solutions
have been proposed in terms of hardware design, state-of-
the-art controllers still leave several questions unanswered. In
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our contribution, we specifically aimed at providing a viable
option to control actuated devices for hand assistance: we
propose a rehabilitation platform that combines an actuated
soft glove driven by an intent detection system based upon
machine learning applied to muscle activity and test it via a
haptic handle device.

The work presents aspects of originality because it uses
machine learning algorithms which are not merely clas-
sifying hand posture, but rather providing a continuous
estimation of the intended grasping force, thus enabling the
participant to precisely modulate the grasping interaction
forces. While the mapping of EMG measurements to grasp-
ing forces through regression algorithms has been previously
investigated [18][20], their use in compliant orthotic devices
has never been explored in the past literature to the best
of our knowledge. Our aim was to test the performance,
considering two different machine learning approaches, as a
first step towards assisted restorative grasping training. Both
prediction algorithms show adequately accurate estimation
of the exerted force, with no significant difference in their
performance. This similarity is probably due to the fact that
the EMG envelope shows a loose but inherent proportional
relation to the grasping force. A more significant difference
would likely be found if the systems were trained on more
SEMG signals to operate a regression onto more assistance
degrees of actuation. In such a case, the RFF algorithm could
likely perform better, as it was shown in [22].

The two controllers did not show any significant difference
in time response, with a delay between the sEMG onset
and the motor actuation of about 0.2s: the importance of
promptness in dynamic response is paramount in wearable
devices in order to foster the wearer’s sense of agency, which
can be compromised in the presence of a delay between
the user’s motion intent (i.e. SEMG signals) and the device
assistance. As demonstrated by Wen and colleagues [31], an
action delay above 300 ms induces a lower sense of agency: a
strong connection between the user and the robot, referred to
as “embodiment”, is a crucial aspect in clinical application,
since it allows for more intuitive control [32] and most
probably to better neuromotor recovery [33].

Both controllers reduced the activity of the two investi-
gated muscles, APB and FD, during the middle (i.e. 10 N)
and high force steps (i.e. 15N): in particular, we saw higher
reduction level (=~ 50%) during the initial part of the task.
This result further demonstrates the ability of the glove to
react to the user’s motion intent and to stabilize the hand in
the desired force step. Should the glove’s architecture remain
unvaried, the ridge regression algorithm with no kernel would
be preferable to RFF due to its reduced complexity and
vulnerability to overfitting, and should be used in the future
as the high-level controller.

Our study presents some limitations: the first one concerns
the nature of the tested cohort of healthy participants, hence
the performance of the two control schemes in people with
upper extremity motor impairments is still an open question.
Since in this preliminary work we focused on the feasibility
of the platform, the next step will focus on testing such
performances on patients (e.g. stroke or incomplete spinal

cord injury) to clearly demonstrate that such approaches can
be considered a viable option and concretely impact wearable
assistive technology.

The second limitation concerns the soft glove: because
the control loop takes as a setpoint the first time derivative
of the machine learning-estimated desired hand closure, an
overshoot of the target has often the effect of causing a
release from the glove. This effect usually occurs when the
muscle activity is not monotonically increasing during the
reaching task, and it can thus be hard to prevent or predict.
Integration of other low-level control architectures could be
worth investigating. Finally, the lower reduction in muscular
activity on the APB is likely due to the fact that the glove
assists thumb flexion but not thumb abduction, which is
normally performed when grasping a cylindrical object.

VIII. CONCLUSIONS

The human hand is a complex multi-joint system which
enables the performance of a variety of tasks throughout
our life: unfortunately, several diseases can affect its func-
tionality. In the present work, we developed, for the first
time, a demonstrator for a future rehabilitation platform that
combines an EMG-driven machine learning soft glove with
a haptic handle device aimed to restore grasping function
through specific exercises. In this study we demonstrated
a mostly compliant, closed-loop controlled actuated glove
which can effectively use machine learning to provide as-
sistance to a user during a force reaching task. While the
effectiveness of the system was demonstrated in a sce-
nario with a well-defined task-specific compliance matrix,
its computation for an arbitrary task is a potentially non-
trivial problem depending on the situation. Machine learning
could provide the user with the possibility to easily switch
between different levels of desired compliance by retraining
the system, but an adequate integration of force or torque
sensors in the glove design could bypass this problem while
still allowing for closed-loop control. The training of the
estimator may prove a non-trivial problem for users who are
unable to achieve higher grasp forces. However, because the
mapping is between muscular activity and intended forces,
perhaps a recording procedure for impaired individuals could
be envisioned, where the target is set to a higher level of
compliance than during the testing tasks, with the assistive
device bridging the gap. The main focus of the proposed
intent estimators is incremental learning, rather than transfer
learning. Ideally, training data should be gathered previous
to all sessions from each user individually, and using another
subject’s data won’t generally lead to good results.
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Repetitive or tiring tasks and movements during manual work can lead to
serious musculoskeletal disorders and, consequently, to monetary damage for
both the worker and the employer. Among the most common of these tasks is
overhead working while operating a heavy tool, such as drilling, painting, and
decorating. In such scenarios, it is desirable to provide adaptive support in order
to take some of the load off the shoulder joint as needed. However, even to this
day, hardly any viable approaches have been tested, which could enable the
user to control such assistive devices naturally and in real time. Here, we present
and assess the adaptive Paexo Shoulder exoskeleton, an unobtrusive device
explicitly designed for this kind of industrial scenario, which can provide a
variable amount of support to the shoulders and arms of a user engaged in
overhead work. The adaptive Paexo Shoulder exoskeleton is controlled through
machine learning applied to force myography. The controller is able to
determine the lifted mass and provide the required support in real time.
Twelve subjects joined a user study comparing the Paexo driven through
this adaptive control to the Paexo locked in a fixed level of support. The
results showed that the machine learning algorithm can successfully adapt
the level of assistance to the lifted mass. Specifically, adaptive assistance can
sensibly reduce the muscle activity’'s sensitivity to the lifted mass, with an
observed relative reduction of up to 31% of the muscular activity observed
when lifting 2 kg normalized by the baseline when lifting no mass.
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Introduction

An exoskeleton, as commonly defined in robotics, is a
mechanism typically consisting of a series of rigid links
coupled with the individual segments of the user’s limbs,
normally with the aim of increasing strength or facilitating
movements (Yang et al., 2008; Anam and Al-Jumaily, 2012).
In the industrial setting, exoskeletons can aid workers dealing
with tasks which could otherwise lead to serious work-related
musculoskeletal disorders (WRMSDs). (Yamamoto et al., 2002;
Huysamen et al., 2018). Tasks involving manipulating or holding
heavy objects overhead are linked with a variety of WRMSD:s in
the shoulder (Bjelle et al., 1979), especially when associated with
the requirement of keeping the arm at a higher angle from the
torso (Svendsen et al., 2004). Exoskeletons could be used to
provide support against gravity when this sort of posture cannot
be avoided. Examples of such exoskeletons which are currently
available on the market include the ShoulderX by SuitX (SuitX,
2021), Comau’s Mate (Comau, 2021), and the PAEXO Shoulder
Support by Ottobock (Ottobock, 2021), all of which are designed
to provide support at the shoulder joint through a passive spring
mechanism. They have been shown to reduce short-term
physical strain when performing tasks involving, for instance,
holding a heavy tool above the head level or maintaining an
awkward pose (Alabdulkarim et al., 2019; Maurice et al., 2019;
Schmalz et al., 2019; Nelson et al., 2020; Fritzsche et al., 2021).
Although long-term data are not yet available, these devices show
promise for reducing health risks for the workers, decreasing
their likelihood of incurring into shoulder WRMSDs.

However, in the aforementioned examples, the level of
assistance provided by the exoskeleton can only be set
manually by changing the spring stiffness parameter or the
lever arms. In the literature, certain solutions are presented
where the spring offset is set by a motor, but this still needs a
manual input by the experimenter or the user (Grazi et al., 2020);
this factor usually induces the designers to provide the support
mechanism with a lower limit for the maximum force that can be
exerted on the user, as the device could otherwise cause
difficulties for the wearer when trying to lower their arms
from a raised position. An intention-based control system,
able to actively set the level of support online without the
need for the user to manually input the desired level of
assistance, on the other hand, could allow the designers to
provide their exoskeletons with higher output torques. In
Missiroli et al. (2022), a concept is presented where the level
of assistance in a tendon-based system is determined based on
the angle of the arm with respect to the body. Although the
system presented there did not automatically change the level of
assistance provided to the shoulder joint, but rather only the
assistive torque exerted on the elbow, keeping the user’s posture
into account would definitely enable the controller to adapt the
provided assistance in a natural fashion. Here, we present a
solution that adapts the level of assistance based on the weight of
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the lifted object. This estimate is achieved by measuring muscular
activity, thus providing an appropriate level of support without
the need for conscious participation by the user, thus decreasing
the overall mental workload as opposed to a setup where the user
has to manually set the level of assistance.

The most traditional means to measure muscle activation,
namely, surface electromyography (SEMG, Merletti et al. (2009))
has often been investigated in the literature as a possible mean of
controlling exoskeletons (Singh et al, 2012). For example,
Gopura et al. (2009) proved the effectiveness of an impedance
control-based model using sEMG activity and upper-limb
posture for controlling a 7DOF exoskeleton. However, this
method is hardly viable in industry, as it would be unpractical
to fit a worker with a set of sensors which need to be in direct and
constant contact with the skin. In general, there is a lack of robust
and accepted ways to let a user control an upper-limb
exoskeleton, which would also be practical in an industrial
setting. While pursuing this goal, in this work we turn our
attention to a cheaper and easier-to-use alternative to SEMG,
namely, force myography (FMG, Curcie et al. (2001), Wininger
et al. (2008), Ravindra and Castellini, (2014), Radmand et al.
(2016), Connan et al. (2016)). This sensor technology relies on
measuring muscle bulging upon contraction, usually by means of
a force sensor pressed onto the body. FMG sensors do not need to
be in direct contact with the skin, and can be easily integrated in a
harness worn above the clothing. A further advantage is that
implementation of this kind of sensors can be extremely cheap, as
force can be measured by means of a simple strain gauge, while
still providing measurements so accurate that they can be used in
order to control prosthetics (Cho et al., 2016).

Of course, FMG suffers from issues as well. Examples include
saturation and bias of the measured signal, as well as problems of
cross-talk between muscle groups depending on the harness
design, for instance, bulging of one muscle could lead to an
increase in pressure on sensors diametrically opposed, if the
sensors are arranged in a bracelet. Still, there are already
examples in the literature of FMG usage to control
exoskeletons. In Islam and Bai, (2019) the authors determine
three payload levels through support vector machines with FMG
sensors as an input. However, in this case, the exoskeleton was
not providing any support and was used passively. Ebrahimi et al.
(2017) developed and tested on one participant a method for
adjusting the control parameters of their exoskeleton in real time
by using several measurements: joint angle, speed, force sensors
on the lower and upper arms, and force-sensing gloves. In this
case, the control parameters were modified based on a single
calibration round, and were not changed in real time. Adopting a
slightly different approach, Huang et al. (2015) and Miller and
Rosen, (2010) both used force sensors to compute a trajectory
that the exoskeleton would help to execute. In these cases, the
experimenters used non-movable rehabilitative exoskeletons
with active, non-compliant motors assisting each joint of
the user.
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FIGURE 1

Adaptive Paexo Shoulder as worn by a participant. 1) Textile
support structure, 2) assistive structure, and 3) control electronics
including power source.

The aforementioned studies have evaluated the use of FMG
for exoskeleton control, but in no case, to the best of our
knowledge, the approach has been fully evaluated online. The
exoskeleton used is a fully portable solution employing a
compliant and lightweight actuation mechanism able to
provide an adaptive support via a motor changing the lever
arm distance between the arm and the support bars, allowing to
change the support torque at the joint.

In order to test the feasibility and the performance of the
concept proposed here in an online setting, 12 users were
of
pickup-hold-carry-release tasks, while a regression-based

recruited to perform a set repetitive
machine learning algorithm used FMG measurements to
estimate the weight lifted by the user, and appropriately adjust
the level of assistance provided by an industrial exoskeleton in
real time. The exoskeleton of choice was an adaptive prototype
built by Ottobock, based on a modified version of the Paexo
Shoulder Support (Ottobock, 2021). The modified version of the
Paexo will henceforth be denoted as Adaptive Paexo Shoulder.
Because the setup presented here is based on an assistive device
which has already been tested and characterized (Maurice et al.,
2019; Ottobock, 2021), the focus of this study was not to confirm
the effects of exoskeleton’s fixed support as compared to the
unassisted condition, but rather as compared to an intent-based
adaptive assistance condition. We hypothesized to observe a
more constant muscular effort over different lifted masses
when using adaptive assistance, as opposed to a fixed passive
assistance. In other words, we expected a diminished increase in
muscular activity in the shoulder muscles as a consequence of

increasing the lifted mass. The results of this evaluation are
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FIGURE 2

Actuated joint of the adaptive Paexo Shoulder: 1) axe
compensation, 2) brushless dc servo motor, 3) nut with encoder,
and 4) trapezoid leadscrew.

extremely promising in this sense, showing furthermore that
adaptive assistance increases kinematic stability of the shoulder
joints enabling more precise movements. The strength of this
study resides in demonstrating the feasibility of real-time control
on a semi-active exoskeleton using force myography (FMG) as
input. FMG sensors are potentially far more practical in real-
world applications than their EMG counterparts. Furthermore,
to the best of our knowledge, this is the first study showcasing the
online control of a supportive exoskeleton based on the
estimation of the lifted mass.

Materials and methods
The adaptive Paexo Shoulder

The adaptive Paexo Shoulder (Figure 1) expands upon the
basic Paexo design from Ottobock (2021), as it features the
possibility to automatically set the overall support provided by
the passive spring-based actuator. For this purpose, a DC
brushless Faulhaber 2057B motor is integrated directly at the
shoulder joint (Figure 2). The motor can be used to change the
length of the lever arm with which the spring element pulls the
humeral orthosis. Therefore, the adaptive Paexo Shoulder still
behaves like a passive device, but allows to automatically
change the operating point of the of the spring mechanism,
effectively increasing or decreasing the overall support
provided to the user. This mechanism introduces a certain
latency in the control loop, as a transition from the minimum
to the maximum lever arm can last up to 2 s. However, internal
testing shows that, because the system is always providing
some level of support, this latency has no issue and the user
still perceives the support as transparent. In the setup
presented here, the level of support depends on various
anthropometric measurements of the user, according to Eqs
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Side connector

Sensor housing

FIGURE 3
CAD view of the bracelets and bracelet elements. (A) Render of an assembled FMG bracelet with 10 sensing elements. (B) Render of one rigid

clip which can be used to clamp the lateral connectors to fit the bracelet to limbs of lower circumference. (C) Full FMG setup as worn by a participant
during the experiment. Notice also the EMG sensor probes worn on the shoulder.

3-6. The adaptive Paexo Shoulder has the same frame and
structure characteristics as the Paexo: the actuator is mounted
on the arm bar, which is connected to the support bar via an
expander rope. This acts as a spring that generates a torque in
the joint as a function of the arm anteversion. A textile
stabilization harness supports donning and doffing, and
keeps the structure close to the torso. The only semi-rigid
structures coming into contact with the body are the belt and
the two underarm cuffs. A rotational encoder is used to
measure the joint angle. The entire setup weighs 3 kg and
can be used with a 14.8V/1550mAh LiPo battery for 6-8 h,
depending on the amount of usage.

Force myography bracelets

In the presented setup, the required support level of the
adaptive Paexo Shoulder was calculated based on measurements
from a set of FMG sensors. As FMG entails measuring the force
from muscle bulging, the design of the harness pressing the
sensors onto the body segments to be monitored is paramount.
The FMG sensors were lodged in individual housings, which
were in turn arranged in two modular bracelets worn by the user
on the forearm and upper-arm, respectively. The FMG sensors
(FSR 400 short by Interlink Electronics, (Electronics, 2022)) are
integrated in an analog amplification circuit designed internally
(see (Connan et al., 2016)). The amplification circuit board and
the FSR were housed in flexible 3D-printed housings, as shown in
Figure 3. The armbands (as shown in Figure 3) consisted of four
elements:

« Sensor housing main body, which holds the sensor and
binds the shell assembly to the lateral connectors.
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« Sensor face-plate, which conveys and directs the pressure
from muscle bulging directly on the sensor strain gauge.
The two sub-elements are connected by means of snap-on
appendages on the face-plate.

o Side connectors, designed to be easily extendable, thus
providing flexibility over a range of arm sizes, with the
possibility of being fitted with a rigid clip, which is used to

that the fit with

circumference.

ensure bracelet limbs smaller
« Binding clips, whose purpose is constraining the length of
connectors as described earlier to fit limbs of smaller

circumference.

Because of the modular design, the number of sensors for
each bracelet can be changed, and fine adjustments can be made
as required in order to improve the fit on any individual user,
either by using the binding clips, or by adding additional
connectors and shells. The bracelet was manufactured via
fused deposition modeling out of TPU material, with shore
hardness 90A, which gives the outer surfaces a gritty texture
making the friction between connectors and shell bodies such
that no additional fasteners are required to keep the elements in
place. The used force-sensing resistors are shown in Castellini
and Ravindra (2014) and Connan et al. (2016) to have an
extended linear region in the sensitivity curve. The bracelets
were designed and tested to keep the sensor in this linear region.

The measurements from the FMG sensors were acquired and
transmitted to a remote host via a data acquisition (DAQ) system
shown in Figure 4. The DAQ board used here is an updated
version of the one presented in Connan et al. (2016).

The DAQ board is designed around a low-power
(MSP430F5529,
running at 25 MHz. During normal operation, the system

microcontroller by Texas Instruments)
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FIGURE 4
DAQ system for FMG: overview of the major components.
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FIGURE 5

Block diagram of the control loop regulating the level of assistance and detail of EMG sensor placement.

draws approximately 80 mA, which translates to more than a day
of continuous operation when powered by a 7.2V 2400 mAh
LiPo battery. The DAQ can acquire data on up to 32 hard-wired
channels. The analog signal from these channels is converted to
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digital with 12 Bits resolution. In the setup presented here, only
20 FMG sensors are used. In order to facilitate the integration of
remote hosts in the control loop, the adaptive Paexo Shoulder can
be controlled through a wireless interface over a Bluetooth
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module (RN42 from Roving Networks). In the setup presented
here, a remote host PC ran the prediction algorithm which
estimated the mass lifted by the user (see Estimation of the
required support) and translated it to a desired support level.
The communication between the host computer and the adaptive
Paexo Shoulder controller was based on a serial protocol and the
out- and inbound messages were checked at a rate of 200 Hz. The
control loop and the sensors used to monitor the muscular effort
during the study are shown in Figure 5.

Estimation of the required support

To estimate the support desired by the participant in real
time starting from the 20 FMG signals, we used standard ridge
regression (Hoerl and Kennard, 1970). Let x € R denote the
signal vector; then the output of the ridge regression estimator is
y = w'x, where we R? is obtained through regularized
minimization of the mean-squared error, leading to the
following closed form solution for w

w=(X"X+AM)"' X"y, 1)

where X € R?™N s the design matrix gathering N observed
sensor measurements of the form x, and y € RY is a vector
gathering the weight lifted in association with each observation x
present in X. Although the weights in this vector were not in
kilograms, the values were proportional and subsequently
discretized and scaled as shown in Eq 2. X and y must be
collected at the beginning of each experiment in order to
create an appropriate training set for the calibration of the
ridge regression model and provide a sensible estimation of
the optimal w. A represents a regularization term, which keeps
the parameters in w low in magnitude.

The FMG signals were sampled by the DAQ board at
192.5Hz, and then wirelessly transmitted to a host computer
where they were filtered with a first order Butterworth filter, with
cut-off frequency of 1 Hz to extract slower dynamics. For the
calibration procedure, the filtered signals were then fed to the
ridge regression algorithm with A = 1, which was trained once at
the beginning of each experimental round (ie. only once per
subject), only allowing for initial re-calibrations if the prediction
was visibly unstable. The reasons for instability of the prediction
are most likely wrong sensor placement or an erroneous
performance of the actions required for the calibration.
During the calibration procedure, the FMG signals would be
sampled for 10s while the participant performed one of the
following actions per sampling:

o Both arms relaxed and kept along the sides, hands
unclenched.

o Right arm raised at 45° over the horizontal plane, no
weight held.
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« Right arm raised at 45° over the horizontal plane, holding a
1 kg weight.

o Right arm raised at 45° over the horizontal plane, holding a
2 kg weight.

These correspond, in turn, to the following labels: y;; € [0, 0.1,
0.5, 1.2]. These values for the response variable were chosen based on
previous tests. The dataset consisted, therefore, of approximately
1925 samples for each of the four labels. The training of the
1s with this
observations. The time efficiency in the training phase is the

regression model takes under number of
main reason why a ridge regression model was chosen for this
application. Although no circumstances were observed during the
course of the experiment where a model recalibration was necessary,
the short duration of the procedure would make it possible to easily
recalibrate the model, should the sensors need to be repositioned or
re-instrumented ina real-world scenario. After training, the
regression algorithm provided a 1-dimensional estimation yp,.; of
the user’s effort based on signals filtered analogously to those used
for calibration. The obtained prediction was then additionally low-
pass filtered, clipped between 0 and 1, and subsequently discretized
in three levels, according to the following criteria:

0 if0<yp<0.35
Vetass =4 1 if0.35< 0 <0.75,
2 if Ypea =075

(@)

The prediction step of the regression model is instantaneous when
compared to the latency due to the adaptive Paexo Shoulder’s
mechanism. The value of y,, was communicated to the
adaptive Paexo Shoulder (Figure 5) in order to issue support
levels for, respectively, 0kg, 1kg, or 2kg weights. The exact
amount of force provided to the user was computed on the
adaptive Paexo Shoulder’s internal controller, depending on each
user’s biometrics (specifically body weight and height, using the
relations shown in Eqs 3-6). Although the FMG sensors used in the
experiment have non-negligible hysteresis at high forces, as well as a
non-linear transfer function, it was shown in Ravindra and Castellini
(2014) that for moderately high forces (0-15N), like those that could
be produced by muscle bulging, the behavior is fairly consistent and
their transfer function is nearly linear. For this reason, it was not
deemed necessary to make use of more advanced ML algorithms to
account for non-linearity.

The conversion from the algorithm’s estimate to lever arm
length takes into account the estimated lifted weight y as well as
the user’s body mass m and arm’s length [ according to the
following laws:

Migeea = M( fua + fra+ f1) + ¥s (3)
_ mf,mhm + mfufhfa + (mfh + y)hh
hcom = > (4)
Mifted
T= 0'7gthOM) (5)
L =0.055237 + 3.007, 6)
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where f,4, fir and fj, represent the percentage of the bodyweight
constituted by the upper-arm, forearm, and hand, respectively, 4,
hyg,, and hy, represent the position of the centers of mass for the
upper-arm, forearm, and hand, respectively, and g is the
gravitational acceleration. All of the remaining constants were
empirically determined during pre-tests in order to provide a
good level of support without exerting too much pressure on the
user. The bodyweight coefficients and the positions of the centers of
mass are all based on anthropometric tables found in Drillis et al.
(1964). The positions of the individual centers of mass are based on
the length of the user’s arm with the arm in a standard working
position, which in this case was assumed to be constant across all
tasks. Therefore, after the initial calibration and during the session,
the level of assistance only changes as a function of the estimated
lifted mass. The actual support force provided during the experiment
depends on the characteristics of the user and on the shoulder
anteversion angle, but for reference, the Paexo can provide a
maximum support force of around 50 N.

Participants

Twelve participants (nine males, three females, 27.6 + 2.9 years
old, 71.9 + 6.5 kg, 1.76 £ 0.07 m) were involved in a repetitive series
of tasks, designed in order to require different levels of assistance at
different times. The study design was within-subject: the participants
were divided in two subgroups. Group A performed the tasks with
the adaptive assistance on first, and then performed them again with
the adaptive assistance off and the Paexo set to a mid-scale support
force. Group B completed the tasks with the conditions inverted.
This subdivision had the goal of counterbalancing the effects of
fatigue over time on the outcome metrics. All users were thoroughly
informed about the experiment before taking part in it, both orally
and in writing, and then signed an informed consent form. The
experiment was carried out in conformity with the WHO Helsinki
Declaration and was authorized by the DLR internal committee for
safety and data protection. Although the end-user group would
presumably also consist of able-bodied individuals, no particular
effort was put in assuring that the study population would match the
end-user group in terms of age, gender, or BMI distribution.

Experimental setup

For the purposes of the experiment, in addition to the FMG
sensor setup and the on-board sensors of the adaptive Paexo
Shoulder described earlier, the participants were fitted with three
Trigno EMG sensors by DelSys. These were placed on the
anterior, superior, and posterior deltoid of the right arm,
respectively, as shown in Figure 5. Although dorsal muscles
are also involved in the overhead work, the EMG probes were
placed exclusively on the deltoid muscles because the results
presented in Maurice et al. (2019) suggested that the support
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force provided by the Paexo has the most significant effect on the
activity of this muscle group, and does not significantly affect the
activity of dorsal muscles. By extension, no significant differences
could realistically be expected on dorsal muscle activity when
The EMG
measurements were bandpass filtered between 20 and 450 Hz.

comparing passive and adaptive assistance.
The feed from the sensors was sent to the host PC at a rate of
2000 Hz. For the purposes of the offline analysis, the absolute
value of the EMG was extracted. The average and standard
deviation of the EMG were extracted over the whole time
during which the task was computed. The maximal value of
the EMG measured for each participant was used as a
normalizing factor.

The EMG measurements were used, among other things, to
compute the muscular effort ratio r, defined as the ratio of the
mean absolute value of the EMG on the deltoids (the index d
indicates the deltoid group) when lifting 2 kg and when lifting
0 kg, in accordance with the following relation

_ |EMGm:2 kgl

= —_— @)
|EMGm:O kgl

ra ,d € {ant., sup.}.

This is indicative of the rate at which muscle activity
increases as a consequence of increasing lifted mass. What we
set out to demonstrate is that the adaptive assistance significantly
decreases this rate when compared to the non-adaptive
assistance.

The participants were asked to maintain their shoulders
parallel to a screen placed in front of them, which showed
them a GUI guiding them through the sequences by showing
prompts and the remaining duration of each task. On the
participant’s right, a stack of shelves served to store the
weights used throughout the session. Markings were drawn on
the shelf in order to help the participants find the reference points
for the two main angles at which they were required to hold their
right arm. The experimental setup and GUI are shown in
Figure 6. The stability of the shoulder angle as measured by
the exoskeleton’s internal encoder was also used as an evaluation
metric. Specifically, the standard deviation on the shoulder angle
is measured by the Paexo’s on board shoulder encoder. This is
indicative of the precision with which the user is able to maintain
a position or a trajectory.

Experimental protocol

After providing their informed consent and general data, the
participants were fitted with the exoskeleton and the sensor
setup. The sensor density was sufficient to ensure that muscle
activity caused by lifting a mass would be measurable
independent of the bracelet’s orientation around the body
segment’s longitudinal axis. The two bracelets were positioned in
order to cover the region of largest diameter on both the right
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Experimental setup. (A) Participant performing the experiment. (B) GUI.
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Flow-chart of the experimental protocol.

forearm and the right humerus, and the positioning of the sensors
was never changed throughout the experimental session. After being
fitted with the devices and after performing a familiarization round,
the participants performed the calibration procedure described in
the estimation of the required support. During the session proper, the
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participants were asked to perform a series of tasks involving holding
either 0 kg, 1kg, or 2 kg with the arm horizontal or at about 45
above the horizontal plane for 30 s. The weight was to be held either
in an isometric contraction or moved in circles counter-clockwise at
about one round per second. All of these tasks were to be repeated
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Single weight sequence (seq. 1-6)
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FIGURE 8
Detailed breakdown of each sequence.

twice. The combination of these factors gives sequences from 1 to
6 as shown in Figure 7. The relevant tasks for this sequence are
shown on the left side of Figure 8. After completing these, the
participants were asked to compile a mid-experiment questionnaire
specific to these sequences. The participants were then asked to
perform two further sequences. These required the participants to
pick 0 kg, 1 kg, or 2 kg from a lower shelf, move them in circles close
to a higher shelf, and then leave them there, and then repeat these
tasks starting with the higher shelf. This sequence of tasks was to be
repeated twice, and these two repetitions are shown as sequences
seven and eight in Figure 7. The relevant tasks for these sequences
are shown on the right side of Figure 8. The order in which the tasks
were performed was not randomized, as the goal of the study was
not to ascertain an effect of the task on the muscular activity, but
only the effects of the adaptive assistance as opposed to the non-
adaptive assistance. After this, the participants were asked to fill a
mid-experiment questionnaire about sequences seven and eight, as
well as a condition-specific mid-experiment questionnaire.

All participants completed all tasks and sequences with both
adaptive and non-adaptive assistance. As the expected effect of
the adaptive assistance was not to decrease the measured
muscular activity overall, but rather to decrease the overall
sensitivity of the muscular activity to the lifted mass, the level
of support force set for the Paexo under the non-adaptive
assistance condition is irrelevant. During the experiment, the
Paexo was set to a mid-scale support force in order to drive the
system at its average operating point. At the end of the session,
the participants were asked to compile a post-experiment
questionnaire. Here, as well as in the mid-experiment
questionnaires, the participants were asked to assign a score
from 0 to 20 to a set of task load metrics, in accordance with the
NASA Task Load Index assessment Hart and Staveland, (1988).
Furthermore, in the post-experiment questionnaire, the subjects
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Mixed weight sequence (seq. 7-8)

/

Circle free hand N [ Circle free hand )

at top level r at mid level for 5s
L (Taslk 3) JARN (Taslf 12) )

(Circle 1kg weight\
at mid level for 5s

{Circle 1kg weight\
at top level for 5s

(Task6) ) || (Task15) )
T~ . . . : R
Circle 2kg weight Circle 2kg weight

at top level for 5s at mid level for 5s

Q (Task9) | | (Task18) y

were asked to assess the modified version of the adaptive Paexo
Shoulder they used with a reduced version of the System
Usability Score test (SUS, Brooke. (1996)). The SUS consists
of a series of questions to be answered on a 5-level Likert scale.
The questions are formulated in such a way that, when evaluating
a maximally usable system, the answers should ideally alternate
between the maximum and the minimum value on the Likert
scale. This is to avoid response repetition bias. The particulars of
the two experimental conditions were not explained to the
participants. In spite of this, it was not possible to carry out
the experiment with the participants completely blind to the
current condition, as the adaptive assistance causes the Paexo’s
Shoulder motor to move and emit audible sounds, and moreover,
one can easily detect changes in the level of assistance. This factor
could influence the subjective evaluations, but it should not affect
the other metrics. The alternating of groups starting with the
non-adaptive and adaptive assistance should aid in counteracting
possible biases in the subjective assessments.

Results

In order to analyze the effects of the different assistance types on
the adopted metrics, a repeated measure analysis of variance
(rmANOVA) on a multivariate model fitted to the data was
performed. The model had the mode of assistance as the main
independent variable, with value either adaptive or non-adaptive.
Within the model, the variables sequence, task, and mode of assistance
were all considered within-subject predictors, as all subjects
completed all the tasks and sequences with both conditions. The
rmANOVA analysis was performed using the Statistics and Machine
Learning Toolbox within the Matlab environment (Matlab 2021a;
MathWorks, Natick, Massachusetts MA, United States United States)
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TABLE 1 Overview of the results for all experimental conditions and significant ANOVA effects were applicable. The metric values are indicated in

format mean (standard deviation).

Metric (condition) [Unit]

Non-adaptive assistance

Adaptive assistance Significant ANOVA or
t-test effects of

assistance mode

Tane (Single-weight tasks) [ ] 2.23 (0.69)
Tant (Task 4) [ ] 2.34 (0.82)
Tant (Task 6) [ ] 2.17 (0.56)
Tant (Task 8) [ ] 2.25 (0.77)
Tant (Task 10) [ ] 2.15 (0.61)
Tsup (Mixed-weights tasks)[ ] 2.26 (0.80)
SD on shoulder angle (single-weight seq.) [rad] 0.36 (0.12)
Subjective assessment of strain (single-weight sequences) [ ] 13.50 (3.40)

Weight estimation error (single-weight sequences) [%] Does not apply

Weight estimation error (mixed-weight sequences) [%] Does not apply

System usability scale assessment score [%] Does not apply
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EMG ratio [*]

1.70 (0.41) F (1, 11) = 13.02; p < 0.005
1.86 (0.44) F (1, 11) = 4.88; p < 0.05
1.67 (0.28) F (1, 11) = 16.19; p < 0.005
1.78 (0.48) F (1, 11) = 7.17; p < 0.05
1.49 (0.36) F (1, 11) = 18.3% p < 0.005
1.85 (0.71) F(1,11) = 7.12; p< .05

0.33 (0.13) F (1, 11) = 50.88; p <.001
11.75 (3.36) Paired T-test: p < 0.1

21.33 (24.72)
29.91 (32.02)
74.23 (14.05)

Does not apply
Does not apply
Does not apply

EMG Ratios during Static Tasks overall
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SEMG for single-weight sequences sorted by the assistance mode for the anterior deltoid. (A) Bar graph of SEMG measurements by lifted weight.
(B) Violin plots of the SEMG ratios (SEMG when lifting 2 kg over SEMG when lifting no weight) by the assistance mode.

(MathWorks, 2021). The most significant results in terms of p-value
are listed and explained in the discussion. All main results are
reported in Table 1. The assessed metrics are indicated in the
leftmost column. The average EMG on the most affected muscle
groups and a comparison of the ratios r,; are shown in Figures 9, 10.

Table 1 also contains the result of a post hoc multiple
comparison of estimated marginal means, which shows some
of the relevant effects sorted by task. As the independent variable,
which was the mode of assistance, only has two possible values,
no adjustment was needed for the post hoc analysis. The
subjective assessments (except the SUS) were evaluated on a
discrete scale with 20 bins, where the participants had to express
the perceived answer to a given question item, based on the
NASA Task Load Index (TLX) test (Hart and Staveland, 1988).
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Figure 11 shows the measured standard deviation of the shoulder
angle as measured by the Paexo’s internal encoder. Finally,
Table 1 reports the relative error in the estimation of the
lifted weight, normalized by the maximum possible error value.

Discussion

The results presented earlier enable us to characterize many
aspects of the presented setup, as well as to draw a few tentative
conclusions on the overall effectiveness of the presented
setup. Although many solutions involving passive or semi-passive
exoskeletons have been presented in the literature in the past (Grazi
et al, 2020; SuitX, 2021; Missiroli et al, 2022), intention-based
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Angular encoder at the shoulder level (A) Violin plot of shoulder angle standard deviation by the assistance mode. (B) Violin plot of shoulder

angle standard deviation by task.

control concepts for such systems are rarely investigated. The main
hypothesis of this study is that an intention-based support level
selector, used in real time, can effectively reduce the correlation of
muscular effort to lifted mass by adjusting the torque and therefore
the forces acting onto the user. This would have many potential
advantages, and it minimizes the undesired interaction forces
between the exoskeleton and the user, which is in general
desirable (Ajayi et al, 2020). As the basis of the presented setup
is a passive assistive exoskeleton whose main characteristics have
been presented in the past (Maurice et al,, 2019; Ottobock, 2021),
this study does not focus on confirming the effects of the passive
support as compared to the case unassisted condition, but rather
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focuses on identifying the effects of adaptive assistance as compared
to a non-adaptive, mid-scale level of support provided by the Paexo.

Shoulder stability

The standard deviation on the shoulder angle as measured
through the Paexo’s encoder is significantly affected by the
assistance modality, both in the tasks requiring the participant
to hold the weight, as well as in those requiring circular
movements. This effect was only detected in the sequences
with single weight, most likely because the mixed-weight
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sequences involved faster movements over shorter times. This
would reduce the effect of assistance mode on the shoulder angle
stability. Conversely, in the case of single-weight sequences, the
higher standard deviation detected under non-adaptive
assistance seems to be due to the fact that the participants
would slowly lower their arms because of fatigue over the
required 30s of contraction. Figure 11 shows violin plots of

this metric overall as well as a breakdown of the tasks.

Subjective assessment

No effect of the assistance modality on the subjectively
assessed metrics can be detected, with the remarkable
exception of the perceived strain for the sequences
involving one weight, which is positively affected by the
adaptive modality (p < 0.1, Table 1). In the SUS test, the
participants evaluated the system with an average score of
74.23 + 14.05% (Table 1), which corresponds to a B according

to the SUS score-grade curve.

Muscle activity

No significant effect of the mode of assistance on the mean
EMG could be determined, when considering all tasks and all
sequences. This is likely due to the fact that the adaptive Paexo
Shoulder, when in the non-adaptive mode, was providing a
mid-scale level of support, which is overall similar to the
average level of support provided in the adaptive mode.
However, the effect of adaptive assistance, as used within
this user study, is statistically significant when one considers
the difference in mean EMG activation when lifting no weight
and when lifting 2 kg. In particular, the assistance mode shows
a significant effect on the ratio between the mean EMG activity
when lifting 2 kg and when lifting no weight (the ratios are
shown in Figures 9, 10). The effects are most significant for the
sEMG on the anterior deltoid during single-weight sequences
and for the superior deltoid during mixed-weight sequences
(Table 1). A possible reason for this is that the mixed-weight
sequences entailed leaving and picking up weights from the
shelves on the participant’s right hand side. This would
require the user to perform frequent horizontal arm
abductions, in addition to the arm flexions and extensions
needed in order to lift the weights and to return to the neutral
position, which can be largely performed by the anterior
deltoid. This could lead to an overall more noticeable
recruitment of the superior deltoid, which is mainly used in
horizontal arm abduction.

As stated earlier, this indicates that under adaptive assistance,
the average muscle activity at the shoulder level does not increase as
much when the mass to be lifted increases. If this trend were
confirmed over a wider range of support forces, this would
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indicate that this type of adaptive control can effectively scale the
level of support as the weight to be lifted increases. As the available
support levels of the adaptive Paexo Shoulder increase with the
future versions, the adaptive control could likely be used to reduce
the amount of muscle fatigue even for higher weights, thereby easing
the workload on the user, without increasing the amount of force
necessary to lower the user’s upper limbs. Actually, if the exoskeleton
were able to provide higher support forces, conceivably even to such
a degree that it would be difficult for the user to lower their arms
without intention-based control, the adaptive assistance system
would likely be able to further flatten the relation between mean
SEMG and lifted mass, as shown in Figures 9, 10. There is an
assumption underlying this claim, namely, that the adaptive
assistance algorithm would then be able to decrease the provided
support when needed. This has partially been shown by this study.
An interesting fact is that the effect of assistance mode on the EMG
ratio is more pronounced, with a p value of 1.105¢ — 3, when taking
into consideration the second repetition performed by the
participants, as opposed to the first one, where the effect has a p
value of 0.022. This could indicate that the adaptive assistance leads
to a slower onset of fatigue compared with the non-adaptive
assistance.

Prediction accuracy

The muscle activity sensing system shown here and the
associated prediction algorithm were accurate enough for
practical uses. Remarkably, the user-exoskeleton system
constitutes a closed-loop system, as the desired support is
issued by the adaptive Paexo Shoulder, the muscle activity of
the user naturally reduces, thereby reducing the amount of
support provided. Evidently, each time the weight to be lifted
changes, the user and the exoskeleton reach a new point of
dynamical equilibrium in the provided support, balancing
each other. In this work we have not explored this
relationship, but it is a fascinating research issue and will
be investigated in the future. We are especially interested in
how modeling this relationship might render the device more

ergonomic.

Study limitations

As is obviously the case, this study has limitations. First, the
participants were instructed to only use one particular type of
grasp, namely power grasping. Although many studies in
prosthetics have shown that machine learning and FMG can
easily be used to detect the intent of the users more precisely, the
performance is naturally bound to change when allowing for
different grasps. Second, we could not use any motion tracking
system to determine the potential differences in the motor
strategies of the participants, introduced by the adaptive
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support control. Third, the current range of support that the
adaptive Paexo Shoulder is able to provide is rather limited and
constitutes a simple case study, which needs to be broadened.
These are some aspects which should be addressed by future
research. The main goal of future work on this sort of device
should focus on generalizing the estimation of the lifted mass to
various kinds of grasp, and on the inclusion of posture data in the
estimation of the needed assistance, as shown in Missiroli et al.
(2022).

Conclusion

The Paexo has been conceived since its early design stage
with non-obtrusiveness and simplicity in mind: it can be donned
and doffed easily and quickly and guarantees the full range of
motion of the user’s shoulders while worn. The adaptive Paexo
Shoulder follows the same design philosophy, and additionally
provides adaptive support via a lightweight servo motor. Still, the
question remains: how to let the user control it transparently,
effectively, and in real time? Taking inspiration from the previous
work in the field of upper-limb prosthetics, in this work, we have
assessed the effectiveness of FMG to determine in real time the
amount of support required by the user depending on the lifted
mass, and consequently, to control the motor of the adaptive
Paexo Shoulder, thereby determining the effects of an adaptive
support offered by the device.

A substantial advantage provided by FMG is that it can be
worn on the worker’s clothing, as opposed to sSEMG sensors,
which is an unavoidable constraint in most industrial and
commercial settings. Future work will also investigate the
integration of further sensor modalities enabling the support
force estimator to take into account also the user’s posture, in
addition to the estimation of the lifted mass.
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Abstract

Objective. In recent years, Functional Electrical Stimulation has found many applications both within
and outside the medical field. However, most available wearable FES devices are not easily adaptable to
different users, and most setups rely on task-specific control schemes. Approach. In this article, we
present a peripheral stimulation prototype featuring a compressive jacket which allows to easily
modify the electrode arrangement to better fit any body frame. Coupled with a suitable control system,
this device can induce the output of arbitrary forces at the end-effector, which is the basis to facilitate
universal, task-independent impedance control of the human limbs. Here, the device is validated by
having it provide stimulation currents that should induce a desired force output. The forces exerted by
the user as a result of stimulation are measured through a 6-axis force-torque sensor, and compared to
the desired forces. Furthermore, here we present the offline analysis of a regression algorithm, trained
on the data acquired during the aforementioned validation, which is able to reliably predict the force
output based on the stimulation currents. Main results. Open-loop control of the output force is
possible with correlation coefficients between commanded and measured force output direction up to
0.88. A twitch-based calibration procedure shows significant reduction of the RMS error in the online
control. The regression algorithm trained offline is able to predict the force output given the injected
stimulation with correlations up to 0.94, and average normalized errors of 0.12 RMS. Significance. A
reliable force output control through FES is the first basis towards higher-level FES force controls.
This could eventually provide full, general-purpose control of the human neuromuscular system,
which would allow to induce any desired movement in the peri-personal space in individuals affected
by e.g. spinal cord injury.

1. Introduction

Functional electrical stimulation (FES) for artificial
generation and support of movements through appli-
cation of electrical currents represents a promising
tool in the rehabilitation of certain neurological
patients. Rehabilitation, at its root, has the purpose of
forming new neural connections in lieu of damaged
ones, typically between the central and the peripheral
nervous system, by re-training the patient to perform
movements or tasks. FES offers many advantages with

respect to rehabilitation facilitated through externally
exerted forces, mainly because the patient’s muscles
are stimulated and thus actively employed for task
completion, thus avoiding secondary complications
such as muscle atrophy. In the early phase of
rehabilitation, FES can be used as an effective tool in a
task-specific, restorative therapy program to foster
neurological recovery [1]. In the chronic phase after a
neurological disease or trauma, FES may still be used
as a neuroprosthesis for compensation of completely
lost or very weak motor functions. Particularly in

© 2023 The Author(s). Published by IOP Publishing Ltd
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individuals with spinal cord injury (SCI) and the
associated functional impairments, FES has been
successfully employed for assistance in activities of
daily living (ADL), both using trans-cutaneous [2] and
intramuscular electrodes [3]. Non-invasive FES
applied through surface electrodes is also used in
applications outside of the medical field, for example
VRand AR [4].

Most control schemes focus on restoring func-
tional, task relevant movements, such as reaching and
grasping [2, 3], and focus on the identification of the
dynamics relevant to these [5, 6]. Such parameters,
however, are not guaranteed to generalize well over
different postures. On the one hand, black box
approaches typically have to sample the effects of mus-
cle contractions in various postures [7, 8]. Muscu-
loskeletal models, on the other hand, can inherently
account for at least some effects of posture changes
[9, 10]. In robotics, impedance-based controls can be
used to impose a certain dynamic behaviour between a
robot and its environment [11]. Impedance controls
are robust in terms of kinematic singularities, and can
be well integrated in wider motion-planning algo-
rithms, but the main purpose of impedance control is
to facilitate the interaction of a robot with an unpre-
dictable environment with non-linear dynamics [11].
However, the characteristics of impedance control
make it robust also with respect to actuators exhibiting
these characteristics, as can be human muscles. A sui-
table impedance could facilitate conversion from a
positional error into a desired force output, which is
more directly correlated to muscular activity. FES-
based force controls have been proposed, among oth-
ers, in [7, 12, 13]. These works all present black box
models of the endpoint force output as a consequence
of FES. In the context of FES, a suitable impedance
control could be used to assist movements towards
any desired point in the user’s peri-personal space,
leading to a more general-purpose paradigm, which
could be beneficial in rehabilitation, but especially in
the case of FES used as a neuroprosthesis. Razavian
et al present a demonstration of such a concept [7].
The compliant nature of the human body could allow
for the safe inclusion of the positional error’s integral
over time in the impedance, which would lead to
increased robustness with respect to modelling errors.
Integrative terms are often excluded from impedance
controls in conventional robotics, as they would cause
an increase of force output over time, should the robot
encounter an obstacle preventing it from reaching the
desired pose. In such a scenario, the robot could cause
damage to itself or its surroundings if its force output
is not limited.

This paper should serve as a system description of
the FES device, which consists of a wearable surface
stimulation device designed to provide proportional
force control through FES on the upper limb of a user
on up to 10 channels with a resolution of 16 bits, and
assess its capability to induce a desired force output in
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real time. Because of its practicality and versatility, sur-
face FES is widely used in commercially available pro-
ducts, such as the Teslasuit” platform (VR Electronics
Ltd., London, UK). This device has been successfully
employed in user studies with able-bodied partici-
pants [14], and represents a good commercial bench-
mark, as it integrates various sensor modalities and
gel-less surface stimulation electrodes. However, this
system cannot adjust well to different body frames,
and the electrode arrangement cannot be modified.
The device proposed here, on the other hand, features
a Velcro-lined compressive jacket which allows for
easy modifications in electrode arrangement to fit any
user frame. The jacket also increases repeatability of
electrode placement once the ideal arrangement for an
individual user has been established.

While this device proposes to be a general-purpose
platform designed to test various control algorithms,
here the system is driven by a musculoskeletal model
presented and validated in [9]. Therein, the muscu-
loskeletal model was tested against a third-party model
introduced in [10], which was taken as baseline. The
model associates a line of action to each stimulated
muscle group, as exemplified in [15]. A core principle
and fundamental goal in the design philosophy of this
system is the adaptability to different users. In order to
achieve this, the musculoskeletal model can be easily
modified to better fit each individual without the need
for much anatomical expertise. To this end, a calibra-
tion procedure able to adjust the model geometry is
also introduced here. Canonically, a model based on
line of action relies on a line running through the aver-
age centroid of the physiological cross section along
the whole length of the stimulated muscle groups, as
introduced in [16] and, more recently, in [17]. Many
studies have demonstrated how inhomogeneities in
muscle activation can lead to great effects on joint
momenta. In the case of the musculoskeletal model
used here, the reconstruction of the line of action is
based on the observation of functional effects of mus-
cle contraction on the musculoskeletal system in a
given position, as introduced among others in [18].
Here, the model uses a fast and computationally effi-
cient Nearest Neighbour recruitment strategy to calcu-
late the stimulation currents necessary to cause a given
endpoint force output.

The system is validated in an online experiment
where the FES-induced force output of 3 able-bodied
volunteers is compared to a desired force output. Part
of these results were published in [19]. In addition, we
evaluate the performance of an offline-trained pre-
dictor which is able to precisely predict the force out-
put both in task space and in joint space based on the
stimulation currents. Such a predictor could be
trained based on data from a force-torque sensor prior
to the normal operation of the device in a setup similar
to the one used during the online system validation.
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labeled.

Figure 1. (a): Conceptual depiction of the process by which a muscle can be modeled as a continuous curve an then lumped into a
single prismatic actuator able to exert a force by contracting along the direction of the vector f,and having an effective lever arm F,
thus enabling the actuator to apply a torque 7 about the joint j. Every joint is modelled as having 3 revolute axes. (b): The
musculoskeletal model. Each electrode pair is associated with a red line. The labels represent the channel numbers. The joints are also
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2.Method

2.1. Musculoskeletal model

The line of action associated to every stimulated
muscle group is routed through a series of points lying
on a curve between an origin a, € R? and an insertion
point a; € R?. In general, we can consider the line of
action as a continuous curve in 3D space, with all
intermediate positions a(l) € R* between a, and a;
defined by a scalar parameter [ € [ly, I;] C R, so that
ay = a(lp) and a; = a(l}), asshown in figure 1(a).

The muscle groups stimulated by one electrode
pair are considered as a string routed along the line of
action’s curve, with the muscle force being exerted
homogeneously in a tangential direction, which is to
say that the force along the line of action has constant
module f &€ R. Given this, knowing the line of
action’s routing in 3-D space, we can compute the
average force vector f € R?through

_ I
f:w—mrj;fmﬂ (1a)
PN da(l) H
= — 1o fl f dl (1b)
B da(l)
= £ @nﬁ|wmn' (10)

Following the same rationale, we can calculate an
average torque vector 7 € R’ exerted by the muscle
group about the joint’s position j € R

da(l)
lda()|

Reducing the points on the curve to a finite set of
N + lpoints a; € {ags... a;,...ay} C R? equation (2)

Iy
%zﬂh—@*ﬁ(ﬂb—ﬁx ©)

becomes a sum of the form

N

T =N (ai —j) x [(ai — a;i_)|ai — a;i 1| "].
i=1

3)

The average force f and average torque 7 derived
from the line of action characterize a lumped model of
the muscle, which behaves like a prismatic joint able to
exert a force f determined by the stimulation in the
direction ff~! by contraction, with an average effec-
tive moment arm 7, which results in a torque 7 about
the joint at position j with revolute axes €;, as depicted
in figure 1(a). Depending on which skeletal segments
the muscle group originates from and inserts into, this
prismatic actuator approximation of the stimulated
muscle group can exert a torque around more than
one of the skeleton’s rotational axes. In particular, if
the i-th degree of freedom is a revolute joint at posi-
tion j with its axis pointing in a known direction
g; € R, if a muscle group is able to exert a torque
about it, we can reduce the expected torque computed
as shown in equations (2) and (3) to a scalar torque
magnitude 7; € R by computing

T=7'e ©

If the muscle group is not able to exert a torque about
the i-th degree of freedom, on the other hand, the
scalar projection of the expected torque onto joint
space is 0. As depicted in figure 1(a), every joint in the
musculoskeletal model is modelled as having 3 revo-
lute axes. This is done due to the difficulty of reliably
measuring the direction of the anatomically correct
revolute axes. This makes every joint in the model as
depicted in figure 1(b) defined by a single position j
and 3 revolute axes.
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2.2. Model calibration

The line of action’s routing can be initially set based on
cursory anatomical expertise and the known electrode
placement, but can be further adjusted based on the
measured response to stimulation pulses. Here, a
simplified calibration procedure is implemented. This
is based on the assumption that the average force
vector f should lie in the plane in which the limb
moves when a stimulation pulse is applied. The
calibration finds the points a; for each line of action
which minimize the difference between the expected
and the measured torque output in joint space
resulting from the stimulation pulse. Although this
condition could be satisfied even if the line of action
were not to lie entirely on this same plane, this is
assumed for simplicity’s sake. A stimulation pulse
causes an average torque 7 over the pulse time, which
in turn causes the body segments distal to the affected
joint at position j to accelerate at an angular accelera-
tion rate T =~ &udyiy,, where Iy, € R3*3 is the
cumulative moment of inertia of the distal body
segments, which is assumed to be constant throughout
the stimulation, and & € R® is the angular accelera-
tion vector due to the twitch. In this study, the
moment of inertia was calculated based on the user’s
mass and the anthropometric tables from [20]. Over
the course of this study, the participants were directed
to hold their arm in the starting position voluntarily,
and therefore the influence of gravity was assumed to
be compensated by volitional muscle contraction.
Assuming, furthermore, a constant acceleration rate
during the stimulation pulse, and an initial rest state of
the joint, the distal body segments reach a maximum
angular velocity wpayx & &(teq — to) € R®, where t,
and t,,, are the times at which the stimulation starts
and ends, respectively. Therefore, we have an approx-
imate proportionality between the maximal observed
angular velocity and the expected torque of the
stimulated muscle group, namely

T & Whnax (tend - tO)_lIdisml- (5)

The plane of movement for the limb is defined as passing
through the joint’s position j and being normal to the
angular velocity vector wp,, of the twitch itself. As
shown in figure 2, based on the observed twitch wy,y,
the position of the origin point a, and the insertion
point a; are set over the f, € R and §; € R coordinates,
respectively, in order to minimize the distance of the two
points from the twitch plane passing through j and
normal to wy,,,. Here, 8, and 6; are the azimuth of the
origin and insertion point, respectively, expressed in a
cylindrical coordinate frame the height axis of which
corresponds to the longitudinal axis of the proximal body
segment in the case of the origin point and the distal body
segment for the insertion point, as shown in figure 2. The
origin and insertion point positions are additionally
defined by aradius rp € R and r; € R, respectively, and
a height xo € R and x € R. This optimization is
usually done based on a series of K observed twitch
vectors wy € R3, k € {1,.., M} C N. A cost function
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Figure 2. Depiction of the twitch calibration. A sharp muscle
stimulation causes a twitch characterized by an angular
velocity vector Wiax-

is minimized in order to find the cylindrical coordinate
0¥ which minimizes the distance between the insertion
point a; and the plane in which the body segment moves
during the twitch motion. The cost function is repre-
sented by the sum of all the observed distances of the line
of action routing points from this plane, and it is
minimized as follows

K
0F = argmin (Z((al(ﬁl) — Hlwy - ||wk1)2).

191 k=1

(6)

The cost function can be minimized through a
gradient descent. All routing points with freely settable
coordinates, such as the origin point a, are adjusted
analogously. In addition to routing point placement,
the magnitude of the observed twitch angular velocity
vector wy,y leads to an estimation of the proportion-
ality constant g; between the stimulation current s;
and the force f.In addition to that, the stimulation is
offset by a constant g; so that minimum current is at
the edge at which force is exerted as a result of
stimulation. This offset is set manually during an
initial phase of comfort level setting occurring at the
beginning of the experimental session, shown as
Comfort level setting in figure 6. By setting these two
coefficients, the stimulation currents delivered to the
user can be assumed to be within a nearly linear region
of the force to stimulation curve. The coefficients were
determined by identifying a minimum and maximum
threshold for each channel current. The minimum
threshold is slightly below the lowest amount of
current that the user is able to discern for a given
stimulation channel. The maximum is around the
highest non-painful stimulation current for which the
force output stops rising. These thresholds were
maintained throughout the experiment. The expected
torque’s magnitude 7; is computed as in equation (3)
by plugging f = (s; + q,)g;. While the present study
was performed with the arm locked in a single posture,
the calibration procedure had to be performed with
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Figure 3. General overview of the coordinate spaces relevant for the
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modeled as compliant, prismatic joints. In all spaces, a corresponding set of generalized forces can be defined. These forces are exerted
on the musculoskeletal system by both its own actuators and the environment. The momentary positional state of the system and its

in either space can be projected onto another space by using forward or inverse kinematics, or employing differential calculus, by the
appropriate Jacobians J. These can’t always be inverted, and when this is the case, a fitting matrix pseudo-inverse should be putin

T
muscle

control of the human musculoskeletal system. Muscles can be

edance Z, whose inverse is the admittance Y. Positions and forces

the arm free to move, as the twitch resulting from a
sharp stimulation signal had to be observed. Since the
calibration operates based on several stored twitch
vectors, it could place the insertion and origin point in
a position that should minimize the distance of the line
of action from the twitch plane for all the postures in
which the calibration is executed.

2.3 Projection matrices

For the purposes of movement control, it is necessary to
calculate the projection matrices from the relevant
coordinate systems shown in figure 3, which are the
muscular Jacobian J,,,s = % € RM*J which can be
computed by differentiating the elongation 1,,,; of M
muscle groups over the revolute angular motion €, of

J joints, and the arm Jacobian J,,, = % € R6*J,
computed by differentiating the pose X,,,,, of the arm’s
end point, which comprises both 3 positional and 3
orientation coordinates, by the same rotational move-
ments B, In both cases, due to energy conservation,
the Jacobians can project velocities or differentially small
shifts in position from the joint space to the Cartesian or
muscular space, as well as generalized Cartesian

wrenches Wyq,g € R and muscle forces f, - onto the
joint space.

The averaged torque from equation (4) can be used
to approximate the muscular Jacobian J,,,,s defined
from the muscle space to the joint space, as shown in

figure 3, as per

T
Tjoints = fmus = Jmus Jrnus> ™

where f, € RM is the vector of the forces acting on
the M actuators, formed by the single scalar force
components f;, and 7;; is the scalar projection of
expected torque caused by the i-th muscle around the
j-th revolute joint, as shown in equation (4).

The arm’s Jacobian J,, is similarly calculated and
can also be used to project the Cartesian wrench w4
onto the joint space, as per

Toints = (8a)
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[_]T [xhand - j]]xy E]T]
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[al, € R**3is the so-called skew symmetric matrix of
the vector a, which satisfies [alyb = a x b,xbeing
the vector cross product, & € R’ represents the
direction of the j-th joint’s axis in the Cartesian
coordinate frame, f, ., € R’ and 7,4 € R® are the
desired force and the torque to be applied to the
endpoint, which are concatenated in a wrench w4
as shown above. These relations are summarized in
figure 3. The control system uses a musculoskeletal
model shown in figure 1(b), which works based on the
principles discussed above. This model is used to
compute the stimulation necessary to achieve a certain
force output at the endpoint, and this is done by
projecting the desired wrench wy,,s onto the joint
space using the transposed arm Jacobian J,,,,. In order
to calculate the necessary muscle forces f,, ., and
consequently the stimulation currents s,,,; € RM, the
desired joint torques are approximately projected onto
muscle force space using a Nearest Neighbour muscle
recruitment strategy, by which only the single muscle
group that would cause the torque closest in direction
to the desired torque on a given joint are stimulated.
Solving for the necessary muscle forces is often non-
trivial, as muscle forces are not a conventional vector
space, because of the fact that muscles can only actively
contract, not expand. The pseudo-code in algorithm 1
explains how this strategy works.

Algorithm 1. The muscle force and stimulation solver
iterates over all joints shown in figure 1(b). For each
joint, only the muscle group which would elicit the
torque closest in direction to the desired one is
stimulated.

Require: Wy,,g € RS, which is the desired wrench at the endpoint
s = [q ,...,C]] € RMX], C € RM

Require: J,,,s =

f?ejoims
Require: J,,, = —xam ¢ R6xJ
agjoims
Require: g;, g;, i € {1,...,M} C N, g and g; as described in
section 2.2
1t Tranger = [Taarget, 1500 Trarger,s] € R <= J 1 Whana» as per

equation (8a)—(8d)
2t fos = [fi e fyrIF 0 € RM, 0 beinga vector with all zero
elements
D Spus 1= [S1 e sy 1L — 0 € RM
k<1
:whilek < J — 2do
Taes — [Tiarget,k> Target,k+1> Trargerk+2]' € R
Toussub = [y e g1, di € R — [chy i1y Cria]” € ROM
Imus,suh,novmed — [dl : I‘d1|‘71)~~~)dM : HdM|‘71]T S RSXM
p:= [pl >"'>pM]T — ]zus,sub,normedees €RM

10: ¢ < argmax(p,), ¢ is the index of the muscle torque closest in
.. I<isM
direction to 7y,

o PN YR
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(Continued.)

11: f « Tz;,gad[ < (||7]| - ||dc]|)~", with 7 as shown in
figure 1(a)
. -1

12: s f. g — 4.

13:  k < k + 3, the increment being 3 because all joints have 3
revolute axes

14: end while
15:yield f, ., Syus

The algorithm iterates over all joints shown in
figure 1(b), which are all modelled as having 3 revolute
axes, as shown in figure 1(a). Because of this, both the
required and the exerted torques for each joint are
three-dimensional. This simplification was put in
place because of the difficulty of reliably estimating the
direction of certain anatomical musculoskeletal axes.
The Nearest Neighbour recruitment strategy can be
applied without this simplification, but it does require
that every modeled muscle group only exerts a torque
about one joint, and that each joint can be defined as
having a central position j and up to three revolute
axes. The Nearest Neighbour recruitment strategy is
efficient in terms of computation and time, in com-
parison to iterative optimisation algorithms used, for
example, in [12]. It also reduces the amount of current
delivered to the user, thus improving comfort and
minimizing metabolic costs.

2.4. Hardware and experimental setup

The FES device’s wearable stimulation setup can inject
stimulation currents through surface electrodes. The
system can provide amplitude-modulated, rectangular
current stimulation pulses with 16-bits resolution on
up to 10 channels, with a pulse-width of 200 us,
frequency ranging from 0.5Hz to 100Hz, and a
maximum current amplitude of 70 mA. In addition to
the wearable stimulation device, the setup includes a
posture tracking sensor system, which in the case of
the experiment presented here was the BodyRig [21],
an IMU-based posture tracker, visible in figure 4.

In order to generate the stimulation currents, the
setup includes 3 FES devices (2 TNS SM2 AKS and 1
TNS SM 2MF, Pierenkemper GmbH, Am Geiersberg
6, 35 630 Ehringshausen, Germany). An intermediate
wirelessly controlled modulation box built around the
wireless Bluetooth module ESP32 Wroom 32, Espressif
systems modulates the generated currents in ampl-
itude from 0 A to the maximum amplitude set on the
FES device. The channels are electrically insulated
from each other, and are controlled by using analog
optocouplers driven by operational amplifier-based
driver circuits. The levels of stimulation for each chan-
nel are calculated by a remote host running the control
model. Exact schematics of the control box are avail-
able on request.

The system was validated through an experiment.
The setup consisted of the wearable stimulation
device, the BodyRig posture tracker [21], as well as a
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Figure 4. (a):. Main elements of the wearable stimulator. From left to right: adhesive electrodes applied to the user’s skin, fitted with
Velcro hooks on the outside (A). Inner compression jacket (B) featuring holes (C) to run the electrode cables through, fitted with
Velcro loops on the inside (D). Outer jacket (E) grouping the cables in a single umbilical (F) connected to the control electronics (G),
and providing further compression. b: the full setup worn by a user.

Measured
cuff wrench £ v

— Weusf o o 5 FES
HUG Q currents
host Smus

Desired contractile force f s

Figure 5. Experimental setup. The two hosts were working independently of each other during the experiment, and the measurements
were manually synchronized during offline analysis. The stimulation device is highlighted in red, as is the actuation loop. The posture
and force torque measurement devices and respective signals are highlighted in blue. The coordinate frame used in the experiment is

also visible.

robotic arm [22], which was used here as a measure-
ment device. The robotic arm streamed the measure-
ments of its 6-DoF force-torque sensor, which is
visible in figure 5 and served as coupling between the
robot’s end effector and the cuff holding the user’s
forearm, to its own host at a rate of 1kHz. The stimula-
tion device’s control loop was operating at a rate of
200 Hz on a separate host, as shown in figure 5. The
signals to the single stimulation channels, however,
were sub-sampled at 20 Hz. This rate for the controller
was deemed sufficient for this scenario based on pre-
tests, which showed that more than 99% of the force
output signal power lies between 0 Hz and 2 Hz on the
frequency spectrum. This is in line with observations
published in [23]. The outcome metrics of this study
are the measured force outputs compared with the
commanded forces in terms of Pearson correlation
coefficients. Furthermore, a regression model was
trained and cross validated on the acquired data in

order to test the feasibility of a machine learning-based
controller of the force output via FES.

The surface electrodes were applied in order to sti-
mulate the biceps brachii, the triceps brachii, the deltoid
superior, anterior, posterior, the clavicular and the ster-
nocostal head of the pectoralis major, the trapezoid scap-
ular, and the latissimus dorsi.

2.5. Experimental protocol

The system is validated here through an experiment
employing 3 able-bodied male volunteers (34.3 £ 12.7
years old, 1.76 £ 0.09 m, 77.3 & 6.67 kg). The experi-
ment was approved by the ethical commission of the
university/institution to which the authors are
affiliated. This research was conducted in accordance
with the principles of the Declaration of Helsinki and
in accordance with local statutory requirements. All
participants were thoroughly informed about the
experimental protocol, and all gave written informed
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Figure 6. Breakdown of the experimental session.

C4: partially calibrated FES

consent to participate in the study. This research
involves no identifiable human subjects, and does not
rely on clinical trials. Participants sat in a predeter-
mined position as shown in figure 5 with their right
arm coupled to a force-torque sensor attached to a
robotic manipulator [22]. Using a robot-mounted
force-torque sensor allowed for easy realignment if the
robot had to be re-positioned to better fit the size of
the user, as the robot’s arm made it possible to
instantly know the absolute orientation of the force-
torque sensor in space, and therefore to reconstruct
the absolute direction of the measured forces and
torques in the environment. The session breakdown is
shown in figure 6. The participants were first asked to
voluntarily exert forces along 6 directions, namely
backward, forward, upward, downward, left and right,
for 10 repetitions by following visual feedback (C1).

Thereafter, visual feedback was taken away. The
device, without any calibration, was then fed desired
force output vectors selected randomly among the 6
directions from condition C1 at 2 different magni-
tudes (namely 50% and 100% of the achievable force
output, as determined by the threshold detection dur-
ing the comfort level setting), over 5 repetitions, for a
total of 60 commanded force outputs. All conditions
employing FES used such a sequence of commanded
forces. The FES device provided stimulation to induce
aforce output corresponding to the commanded force
outputs (C2).

Following this, the calibration procedure descri-
bed above was performed for all stimulation channels,
and the experiment with no visual feedback was then
repeated with the calibrated device (C3). Finally, one
further condition was tested, where the parameters set
through the device’s calibration are maintained,
except the proportionality constant g; between the sti-
mulation s; and the muscle group’s contraction force
;- This proportionality constant is reset to its initial

value. This condition has the goal of verifying that, if
the calibration procedure improves the performance
by correcting the musculoskeletal model or by virtue
of increasing, even saturating the current flow through
the stimulation channels (C4).

2.6. Signal conditioning and data analysis

During the experiment, each sequence consisted of a
total of 12 target output forces (6 directionsx2
magnitudes), corresponding to a set of stimulation
currents delivered by the FES device in all exper-
imental conditions except for the first one, where the
participants were directed to exert a given force output
through visual feedback. In either case, the contraction
lasted 2 seconds, and was always followed by 2 seconds
of inactivity before the next contraction. The force
output measurement was given by the difference of the
wrench measured by the 6-DoF force-torque sensor,
minus the wrench measured immediately before the
onset of the stimulation currents. The difference was
averaged over the whole time of contraction. This was
done in order to subtract out of the wrench measure-
ment the effect of the arm’s own weight and of the
user’s volitional actions immediately prior to the onset
of stimulation. Because the robotic arm used for
measurements and the FES device were using two
different coordinate systems, the sets of measured and
commanded forces were aligned using the Kabsch
algorithm [24] through a rotation around the vertical
axis. The reason why the rotation was limited to the
vertical axis is that the two coordinate systems can be
presumed to be aligned along the vertical direction, as
the FES device’s coordinate system is based on IMUs,
which are able to measure the direction of the
gravitational acceleration vector. The measured forces
thus calculated were compared to the commanded
forces in terms of the Pearson’s correlation coefficients

8



I0P Publishing

Biomed. Phys. Eng. Express9 (2023) 065008

M Sierotowicz and C Castellini

Table 1. Table with squared Pearson’s correlation coefficient and normalized root mean square error
of the offline predictors trained on the Cartesian output wrench (left columns) and on the joint
torques (right columns). All values are given in the format R?/RMS. The RMSE is normalized by the

maximum range of the regression target.

Regression to Regression to

Cartesian wrench joint torques
Subject/Condition Force Torque SC-joint GH-joint EL-joint
S1/C2 0.92/0.10 0.86/0.10 0.92/0.13 0.86/0.14 0.93/0.14
S1/C3 0.91/0.11 0.93/0.08 0.73/0.17 0.87/0.17 0.84/0.13
S1/C4 0.91/0.11 0.94/0.09 0.70/0.17 0.88/0.12 0.92/0.10
S2/C2 0.94,/0.09 0.83,/0.12 0.94/0.06 0.92,/0.07 0.91,/0.07
S2/C3 0.92/0.09 0.89/0.10 0.93/0.06 0.92/0.07 0.95/0.08
S2/C4 0.86,/0.09 0.84,/0.09 0.92,/0.08 0.92,/0.08 0.95,/0.09
S3/C2 0.82/0.15 0.74/0.21 0.77/0.18 0.83/0.15 0.76/0.16
S3/C3 0.74/0.17 0.67/0.26 0.85/0.16 0.77/0.17 0.72/0.18
S3/C4 0.87/0.14 0.80/0.14 0.88,/0.13 0.84/0.14 0.83,/0.14

of the commanded force direction with the measured
force direction.

Besides the analysis of the online system perfor-
mance, a regression algorithm was trained with the
goal of predicting the output wrench wy,,; € R®
based on the stimulation currents. This algorithm was
based on ridge regression applied to a so-called Ran-
dom Fourier Features kernel (RFF) [25]. The predictor
was cross-validated over a 10-fold partition of the
available data, which consisted of 60 data points for
each subject and each of the 3 experimental conditions
where the FES device was delivering stimulation cur-
rents. The regression’s predicted wrench is evaluated
in terms of squared Pearson correlation coefficient (R
squared) of the prediction w.r.t. the ground truth
represented by the measured forces and torques, as
well as in terms of root mean square (RMS) error. An
analogous predictor was trained to predict the esti-
mated joint torques Tjginss € R as a function of the sti-
mulation currents s € RM. The joint torques were not
directly measured, and had to be estimated by project-
ing all wrenches acting on the user’s body onto the
joint space, as shown in equation (8a)—(8c). The esti-
mated joint torques are used as target labels to train the
regression algorithm to predict the joint torques based
on stimulation currents.

3. Results

The results are subdivided between the offline analysis
of the force output predictor and the evaluation of the
force output control in real time, hereafter referred to
as online control.

For the offline analysis of the force output pre-
dictor, table 1 shows the root mean square error
(RMSE) normalized by the maximum range of force or
torque output for each subject and experimental con-
dition, and the squared Pearson correlation coeffi-
cients (R®) of the regression algorithm trained to
predict the force output in Cartesian space and the

joint torques based on the stimulation currents,
respectively. The joints are as shown in figure 1(b).
The predictor’performance achieved a grand average
of 0.860 R* and 0.124 RMSE for the prediction of the
joint torques, and 0.855 R* and 0.124 RMSE for the
prediction of Cartesian output wrench.

Concerning the results of the online control,
figure 7 shows the correlation matrices of the com-
manded force direction f. =[f._, fc,y, fC,Z]T ceR?
wr.t.  the measured force direction f, =
> oy Fonyz ' € R after the two have been aligned
using the Kabsch algorithm. Each matrix element
represents the Pearson’s correlation coefficient
between one of the components of f, and one of the
components of f.. Each row of matrices represents
one experimental condition (C1 to C4, as shown in
figure 6), and each column of matrices represents one
experimental subject (S1 to S3). Within the correlation
matrices, the asterisks represent the significance of the
correlation coefficient in terms of its p-value, as ascer-
tained through the right-tailed test. The diagonal ele-
ments in the correlation matrices were compared
across condition 2 and 3 through a paired Wilcoxon
signed-rank test, showing a statistically significant
improvement in the correlation coefficient with
p < 0.05. In condition 2, the diagonal elements of the
matrices are 0.615 == 0.204, and for condition 3 the
diagonal coefficients are 0.709 +0.128 (mean +
1SD)). Cohen’s d is 0.552. Figure 8 shows the RMSE
detected during the online experiment. The error is
displayed in its components separately, as well as in its
euclidean norm. Next to the RMSE is the achievable
range also represented in its three components and its
euclidean norm. Seen as the RMSE samples are not
normally distributed, and that the individual measure-
ments of the RMSE are assumed to be independent of
each other, a non-parametric Mann-Whitney U-test
was performed to detect potential effects of the exper-
imental conditions on the euclidean norm of the
RMSE across all test participants. Significant effects
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Figure 7. Correlation matrices between the commanded and measured output force direction at the user’s end effector. Each row of
matrices represents one experimental condition, and each column a participant. “** p < 0.001, " p < 0.01, " p < 0.05.
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were detected between conditions C2 and C3
(p < 0.01). Among the directions of force, it seems that
the most significant overall effect is on the x-axis
(p < 0.001) which, as shown in figure 5, corresponds
to the backward/forward direction. However, asigni-
ficant effect (p < 0.05) is also detectable on the y-axis
between conditions C2 and C3, with a noticeable
increase in this component of the RMSE. No sig-
nificant effect is detectable on the vertical z-axis. Sig-
nificant effects are also present between conditions C2
and C4 (p <0.05). On a per-participant basis, the
effects vary strongly. Participant S3 shows the stron-
gest effect between conditions C2 and C3 (p < 0.001).
In general, the calibration procedure in both C3 and
C4 leads to a consistent decrease in variance between
the RMSE components compared to C2. The RMSE
for condition C1 can serve as qualitative comparison.

4. Discussion

The correlation between the commanded and mea-
sured force for online control, shown in figure 7,
shows a high variation depending on the user. The
fourth experimental condition, C4, is associated with

significantly worse correlations compared to either C2
or C3. While the purpose of condition 4 is to verify
whether any benefit deriving from the FES device’s
calibration are due to the geometrical adjustments of
the musculoskeletal model or due to the adjustment to
stimulation intensity, the expected outcome in the
latter case would have been a better performance than
using the non-calibrated FES device, but worse than
the fully calibrated condition. The fact that the
correlation is worse than both C2 and C3 would seem
to indicate that the most likely cause of this decrease in
performance is fatigue and other progressive effects,
which are well documented in FES applications
[26, 27]. In this regard, the study design could have
benefited from randomizing the order of conditions
C2-C4, or at the very least from allowing more resting
time between trials.

The calibration procedure leads to a more con-
sistent performance across different users (for this,
compare for example the C2 and C3 row of matrices in
figure 7) and to a significantly higher correlation of the
commanded and measured force output, as well as to a
lower overall RMSE. S1 does not show significant
improvement between experimental condition 2 and
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and RMSE component. *** p < 0.001, " p < 0.01, " p < 0.05.

Figure 8. Root mean square error of force output next to the achievable range for each condition (C1—C4) and participant (§1—S3).
The lowest row of graphs marked Overall shows the more statistically significant effects over all participants as determined by a non-
parametric Mann-Whitney U-test. In this row, the maxima are derived by averaging over the per-subject maxima for each condition

3. This is likely due to the fact that the non-calibrated
state of the system is based on S1’s frame. The perfor-
mance assumed as baseline is the one attained when
working in the visual feedback condition C1, where
the participants were voluntarily exerting force in the
indicated direction. As expected, this condition shows
the clearest correlation between commanded and
measured force direction.

While the RMSE is relatively high in most cases in
relation to the maximum achievable range, this is also
true for the control condition C1. Participant 2 shows
the highest RMSE relative to the maximum force out-
put across the experimental conditions. This is likely
due to the difficulties in stimulating the anterior del-
toid group of this specific participant. Calibration
seems to sensibly reduce the RMSE along the x direc-
tion. However, since the muscle groups available for
stimulation cannot adequately cover the needed tor-
que output space, the cumulative RMSE remains high,
even though the variance between error components
is strongly reduced. Overall, calibration seems to lead
to an overall reduction in RMSE in both condition 3
and 4 compared to condition 2. The results of this vali-
dation show that an open-loop force control enacted

through transcutaneous FES can enable qualitatively
good directional control of the endpoint force output.
This is significant, as the ability to induce a desired
force output is paramount for the implementation of
any control, even in position.

The performance of the regression algorithm that
was trained and validated to predict the output force,
on the other hand, shows better precision and accur-
acy when compared to the real-time correlation coeffi-
cients, as shown in table 1, at least when the arm is
static, to the point that the correlation coefficients
seem to rival those attained in Cl1. The prediction of
the joint torque output should generalize better over
different arm postures, which is an aspect worth inves-
tigating in future work. Looking at possible imple-
mentations using such a regression machine in order
to control a FES setup, the results reported in the
works by Schearer et al [12] and Friedrich et al [28] can
be helpful, mainly because of their finding that muscle
stimulation can be modelled as combining linearly in
the force output space. As demonstrated in [27], this
fact can be employed to design ridge regression-based
FES controllers which can facilitate movement with a
time-effective calibration procedure, once the
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electrodes are in place. The work by Schearer et al., in
particular, presents an experiment which employs a
setup in many ways identical to that adopted in the
present study. Crucially, however, both Schearer and
Friedrich focus on subjects with implanted electrodes,
which are in many ways less challenging from a con-
trol point of view, as they allow for a far higher selec-
tivity in muscle stimulation, causing only the firing of
the nerve cells in the nerve bundle they are implanted
onto, as noted alsoin [13].

Based on the findings of the offline analysis, it
should be possible to use a setup such as the one used
in this experiment in order to calibrate the system
before normal operation. Such a procedure could
entail either the training of a regression algorithm
similar to the one used in the offline analysis, or simply
using the measured joint torques instead of the max-
imal angular twitch velocity wp,y, in the calibration
used in this study. Either way, the results of the offline
analysis clearly indicate that it would be preferable to
include torque measurements in the calibration of the
system, as this would bypass any error deriving from
erroneous modelling of the body’s dynamic para-
meters, which did play a major role in the online cali-
bration used in this experiment.

This study presents some limitations. First and
foremost, while many works rely on data from a lim-
ited amount of participants [7, 8, 12, 29], future work
should focus on including a wider base of participants,
including spinal cord injury patients. Furthermore,
the presented musculoskeletal model, while being
computationally efficient, relies on several simplifying
assumptions, and currently does not model biarticular
muscle groups. The Nearest Neighbour recruitment
strategy can also lead to sudden switches in stimulated
muscles with changes in posture or desired wrench.
Additionally, as the calibration procedure used in this
study does not call for direct measurement of the force
output at the endpoint, the calibrated musculoskeletal
model only allows for qualitative control of the force
output.

Overall, the evidence seems to point to some bene-
fits offered by the proposed calibration procedure.
However, this study could not determine definitively
whether these improvements in performance stem
from the calibration’s adjustments in the geometry of
the musculoskeletal model or from the adjustments in
stimulation intensity, as fatigue is likely to have ren-
dered some effects between condition C4 and others
harder to detect. Enlarging the pool of subjects and
adjusting for time-dependent effects will hopefully
clarify this aspect.

5. Conclusion

In this study, we described a portable, wearable FES
device which, coupled with an appropriate posture
tracking system and control architecture, can facilitate

M Sierotowicz and C Castellini

qualitatively precise endpoint force output control in
three dimensions. We also demonstrated a computa-
tionally efficient calibration procedure which can
adapt the geometry of the musculoskeletal model and
the magnitude of the stimulation currents delivered to
the user through simple observation of the twitch, with
no need for additional sensors beside the posture
tracker.

Future work should focus on investigating the
inclusion of force measurement systems for the pur-
pose of calibration as done in [12], and potentially also
in order to close the control loop in terms of force dur-
ing normal operation as done in [7]. In particular, the
perspective of using an Exosuit in order to both pro-
vide further assistance to the user, as introduced in
[30], and to measure the joint torques directly would
be worth investigating. The addition of an impedance
on top of the force control presented here would allow
for general purpose movement control, and should be
the focus of future research. In such a case, even if we
were to adopt a regression model for the computation
of the muscular Jacobian, a model such as the one pre-
sented here would still be required to project the
desired endpoint force output and the interaction for-
ces measured by the exosuit onto joint torque space.

The precise performance observed during the off-
line analysis clearly indicates that inclusion of force
and torque data in the calibration of the system would
improve motion control through FES. The described
RFF-based ridge regression algorithm could be able to
generalize over non-linearities in the force-stimula-
tion curve. However, including posture in the input
vector to the regression could be a challenge, and whe-
ther RFF regression will be able to generalize over dif-
ferent body postures remains an open question. As the
experiment was conducted in a single posture, the sys-
tem’s adaptability to different limb poses is still theor-
etical, and not definitively proven by this study.

Future work should also entail user studies invol-
ving a larger population of both able-bodied partici-
pants and patients suffering from neurological
ailments that could benefit from FES-facilitated
rehabilitation.
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Abstract— Neuromuscular functional electrical stimulation
represents a valid technique for functional rehabilitation or, in
the form of a neuroprosthesis, for the assistance of neurological
patients. However, the selected stimulation of single muscles
through surface electrodes remains challenging particularly for
the upper extremity. In this paper, we present the MyoCeption,
a comprehensive setup, which enables intuitive modeling of
the user’s musculoskeletal system, as well as proportional
stimulation of the muscles with 16-bit resolution through up
to 10 channels. The system can be used to provide open-loop
force control, which, if coupled with an adequate body tracking
system, can be used to implement an impedance control where
the control loop is closed around the body posture. The system
is completely self-contained and can be used in a wide array
of scenarios, from rehabilitation to VR to teleoperation. Here,
the MyoCeption’s control environment has been experimentally
validated through comparison with a third-party simulation
suite. The results indicate that the musculoskeletal model
used for the MyoCeption provides muscle geometries that are
qualitatively similar to those computed in the baseline model.

I. INTRODUCTION

Functional electrical stimulation (FES) for artificial gener-
ation and support of movements through application of elec-
trical currents represents an integral part in the rehabilitation
of neurological patients. In the early phase of rehabilitation,
FES is an effective tool in a task-specific, restorative therapy
program to foster neurological recovery [1]. In the chronic
phase after a neurological disease or trauma, FES may be
used as a neuroprosthesis for compensation of completely
lost or very weak motor functions. Particularly in individuals
with cervical spinal cord injury (SCI) and the associated
impairments of the reaching and grasping function, FES
has been successfully employed for assistance in activities
of daily living (ADL), both using trans-cutaneous [2] and
intramuscular electrodes [3].

Non-invasive ES applied through surface electrodes is also
used in applications outside the medical field, for example
VR and AR [4] [5].

The context of rehabilitation can offer some advantages, as
the repetitive, task-specific nature of the movements typically
performed during a therapy session allows to implement
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iterative learning, which allows, among other things, to
calibrate inertial parameters and to differentiate the user’s
own volitional efforts from electrical stimulation [6] [7].
However, many of this sort of setup rely heavily on the
assumption of repeated movements, and are ill-fitted to aid
movements that do not fulfill this assumption. Furthermore,
currently available FES systems, both in the medical field
and beyond, use static stimulation schemes, which are open-
loop in terms of force, in order to generate predefined multi-
joint movements. While most setups available can success-
fully induce specific movements requiring the stimulation
of muscle groups directly associated to them in a bijective
fashion (see for example [8]), a general-purpose framework
able to associate arbitrary movements or force outputs to
more than a few stimulated muscle groups, in particular
without relying on the assumption of repeated actions, seems
to be still missing.

In this paper, we present a musculoskeletal model which
enables to intuitively simulate most kinds of muscle groups,
and a prototype designed to use this model in order to provide
proportional force control through FES on the upper limb of
a user on up to 10 channels with a resolution of 16 bits.

A core principle and fundamental goal in the design
philosophy of this system is the adaptability to different
users. In order to achieve this, the musculoskeletal model
should be easily modifiable to better fit each individual,
ideally without the need for much anatomical expertise, and
if possible even automatically. In this paper, we describe
the entirety of the MyoCeption system, with a particular
emphasis on the musculoskeletal model which lies at the
basis of its control architecture. This model is experimentally
validated by comparing it to a third-party OpenSim model
of the right upper limb.

II. SYSTEM DESCRIPTION

The MyoCeption’s main purpose is to compute the stim-
ulation currents to be injected through each electrode pair
so as to induce a generalized force defined in Cartesian
terms at a point which is considered to be the user’s end-
effector. The hardware, as shown in Fig. 1, consists of a
wearable stimulation device and compressive jacket, which
presses the surface electrodes onto the user’s skin. The
stimulation currents (pulse width 200 ps, frequency settable
from 0.5 Hz to 100 Hz, maximum amplitude up to 70 mA)
are generated by three FES devices (2 TNS SM2 AKS and
1 TNS SM 2MF, Pierenkemper GmbH, Am Geiersberg 6,
35630 Ehringshausen, Germany). An intermediate wirelessly
controlled block (the wireless bluetooth module is an ESP32



Wroom 32, Espressif systems) modulates the generated cur-
rents in amplitude from OA to the maximum amplitude
set on the FES device. The levels of stimulation for each
channel are calculated by a remote host computer running an
interface software and the MyoCeption Control Environment
(MCE). Additionally, the BodyRig [9], a wireless IMU-based
body tracking system, is employed. The BodyRig allows
to track the body pose with high precision, aligning the
musculoskeletal model to the user’s posture. Thus, the MCE
is provided with the approximated geometry of the user’s
muscle groups.

Within the MCE, each stimulated muscle group is repre-
sented by a line of action going through 4 points (p} to py)
plus the origin (py), as shown in Fig. 2.

It is important to notice that, as FES applied through
adhesive electrodes typically can not selectively target sin-
gle muscle groups, there is no bijective mapping from a
given line of action in the MCE to a muscle group in the
anatomical sense. Rather, each line of action in the MCE
is supposed to represent the combined action of all muscle
groups stimulated by an electrode pair, and can therefore
be seen as a weighted average of the lines of action of the
anatomical stimulated muscle groups. The main aim of the
analysis presented here, besides comparing different routing
methods for the lines of action around different joints, is
to confirm this claim. This simplification makes the muscle
geometry less computationally expensive, and should ideally
make the model easier to fit to an individual user. To this end,
future work will focus on perfecting a calibration procedure
which should adjust the routing points of each line of action
based on recorded twitch movements or torques originating
from stimulation of each individual muscle group.

The cumulative moment arm 7 over the entire line of ac-
tion about the joint j is computed according to the following
relation

4
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This model works under the assumption that the pulling
force of the muscle f,, is homogeneous along the whole line
of action, which is the case in static conditions. Under this
assumption, the force can be considered a scalar, and the
torque generated by the muscle is simply the moment arm
vector as defined in equation 1 multiplied by f,,. Therefore,
overall magnitude of the torque 7, generated at the joint
level by the muscle group m itself can be computed as a
function of the moment arm length and of the magnitude of
the force f,, pulling along the line of action according to

Tl = 17 fmll = |71 fins )

where 7 indicates the moment arm vector of a muscle group
acting on the joint j as described in equation 1. The moment
arm is therefore of high importance for the smooth control
of the force output at the user’s end-effector over different
postures.

The muscle geometry is used to calculate the muscle force
needed in order to output an arbitrary generalized force in

Zi_—]il> . (1)
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Fig. 1. a: MyoCeption system elements. In the picture, from left to right,
one can see the surface electrodes applied to the user’s skin, which are
fitted with Velcro hooks on the outside (a). The inner compression jacket
(b) features holes (c) to run the electrode cables through, and is fitted with
Velcro loops on the inside, so as to ease electrode application (d). The outer
jacket (e) groups the cables in a single umbilical (f) connected to the control
electronics, and provides further compression. b: Picture of the full setup
as worn by a user.

Cartesian terms. In particular, from a desired wrench at the
end-effector .., the system calculates the corresponding
torques at each joint 7; through the arm’s Jacobian to that

joint JJ . according to the following equation
- jT =
T; = J)mWee.- 3)

The single stimulation currents are then computed in order
to generate the linear combination of muscular joint outputs
T, acting on the joint j that best approximates the desired
joint torque 7;. The kind of linear combination depends
on the selected muscle recruitment strategy. For instance,
in the case of a nearest neighbour recruitment strategy,
only the muscle group with the torque output 7, closest
in direction to the desired joint torque 7 is stimulated.
Other strategies could employ a suitable pseudo-inverse of
the muscular Jacobian, or its transpose in the case of an
admittance controller. The intensity of the stimulation also
depends on the expected effect of the stimulation current on
the muscular force f,,.

Different routings of the lines of action are possible. In
particular, here we examine a simple line-of-sight routing,
a routing similar to the one presented in [10], and a third
one. From this point on, these routings will be referred to as
line of sight, sphere projection and shifted sphere projection,
respectively.

The line of sight routing, shown in Fig. 2 left, simply
connects the origin point gy (the most proximal point of the
line of action) to the insertion point pj (the most distal point
of the line of action) with a straight line. The line of action of
many muscle groups can be well approximated through such
a routing, and because of its simplicity, it is used within the
MCE any time a line of sight exists between the origin and
the insertion point. However, this routing can not accurately
model any line of action going around a joint, as is the case,
e.g., for the triceps in most postures.

The sphere projection routing, shown at the center in Fig.
2, routes the line of action through via points co-planar to
the joint and the line of action’s origin and insertion (shown
in the figure as pi and p3). The routing connects the two



&7
fog 7
L
> /
B e
P2 L J e
B e
Ps L
o Diar ¥ o Distal _
@ é

Fig. 2.

via points closest to the joint with a straight line if said line
does not enter a sphere of radius R with the joint lying at its
center. If, on the other hand, the line of sight does intersect
the sphere, then the line of action is routed through a point
Pa, which is the point on the line of sight that is closest to
the joint projected onto the sphere in the radial direction.

In the MCE, this method can lead to problems if the pj
and py points lie far away from the joint relative to the
sphere’s radius R. An example of this problem is shown in
Fig. 3. The figure shows the difference in orientation of the
expected torque output from the line of action corresponding
to the elbow extenders when the line is routed through the
shifted sphere projection and when it is routed through sphere
projection. Ideally, the torque output should be aligned with
the elbow axis €, but as shown in the figure, this can
sometimes not be the case when using sphere projection
routing. In [10], this problem presumably doesn’t present
itself because the via points are based on MRI imaging, and
can therefore be precisely placed with high spatial accuracy
even in close proximity of the joint. In [11], where a routing
similar to sphere projection is used to predict the kinematics
of a tendon-actuated tremor-suppressing glove, this is not an
issue, as the tendons pass through guides which are very
close to the user’s joints. If the joint is modeled as having
a single rotational degree of freedom, a possible solution
would be to then project the torque onto the joint’s axis, or
even use a cylinder of radius R with its axis aligned with
that of the joint instead of a sphere. However, if the direction
of the axis is itself not known with certainty, this solution is
not viable.

The shifted sphere projection routing, shown in Fig. 2 on
the right, consists of the following steps.

« Compute the points 7} and p%. These are points obtained
by shifting py and pj along the respective link towards
the joint J until they are closest to it, and by then
projecting them in the radial direction onto the sphere
of radius R with the joint lying at its center.

e The point jg is the closest point on the sphere from

—y

e (P +73)
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« Finally, the points p; and p3 are the point on the sphere
closest to the projections of p and p, on the planes
defined by <ﬁo,f, ]:3’2> and <ﬁ4,3, 15‘2>, respectively.

As shown in Fig. 3, shifted sphere projection can give a more
consistent torque direction than the sphere projection routing

for lines of action whose origin and insertion points lie far
from the joint relative to the sphere’s radius R. However,
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Illustration of the line of sight routing (left), the sphere projection routing (center), and the shifted sphere projection routing (right).

shifted sphere projection cannot transition to line of sight
without discontinuities, which is possible using the sphere
projection routing. Such discontinuities are shown in Fig. 5.

III. EXPERIMENTAL PROTOCOL

In order to validate the MCE, a comparison was drawn
between the MyoCeption’s musculoskeletal model and an
OpenSim Dynamic Arm Simulator model (DAS) [12] shown
on the right in Fig. 4, which simulates the musculature
responsible for the movements of the right upper limb in
detail. OpenSim is widely used as a modelling tool in
bio-mechanics, and can boast a vast community creating
simulations and models for a diverse range of applications.

(© (d)

Fig. 3. Issue with the sphere projection routing. In this example, a line of
action within the MCE close in position to the triceps brachii, highlighted
in blue, is shown with the direction of the torque it can exert on the elbow
joint (shown as a green line and labeled as 7). a and b: the action line
is routed using shifted sphere projection. The expected torque is aligned
with the elbow’s axis (red arrow marked €). ¢ and d: the sphere projection
routing is used instead. Notice how the action line passes on the side, and
this causes the expected torque direction 7 to deviate from the elbow’s axis
€.
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Fig. 4. The two musculoskeletal models to be compared. On the left
is the MyoCeption Control Environment, on the right the Dynamic Arm
Simulator implemented in OpenSim. The action lines of the MCE are
designated by channel number, while the DAS muscle groups are designated
by name and differentiated by color. The grey lines represent the assumed
correspondences between the DAS muscle groups and the MCE stimulation
channels based on positional proximity and on the joint about which each
line of action operates.

The data set for the comparison was recorded with the
body tracking system from [9]. One able-bodied user (age 27,
1.87m, 85kg) performed elbow flexion/extension, shoulder
flexion/extension, and shoulder adduction/abduction over 4
repetitions in real time. The postures during these movements
were used to align both the MCE and the DAS kinematics.
The moment arm of the involved muscle groups were com-
pared across the recorded movements between the two. The
moment arm length ||7]| of the lines of action is the effective
moment arm of the muscle group.

In order to test the claim that each line of action in the
MCE could be seen as a weighed average of all muscle
groups stimulated by an electrode pair, here we executed
a multivariate regression from the moment arms in the DAS
to the moment arms of the MCE assumed to correspond to
them. Here we focus on demonstrating a qualitative similarity
between the two models. Therefore, we would expect high
correlation between the moment arm length corresponding to
the lines of action in the MCE and the muscle groups that are
closest in position in the DAS. The assumed correspondences
between the DAS muscle groups and the MCE lines of action
are shown in Fig. 4. This analysis is also used to evaluate
which routing method would provide the better qualitative
correlation of the muscle’s lever arm between the MCE and
the OpenSim DAS model.

IV. RESULTS

The evaluated metrics from the multivariate regression
performed from the moment arm lengths of the DAS muscle
groups onto the moment arm lengths of the MCE lines of

TABLE I
MULTIVARIATE REGRESSION RESULTS.

MCE DAS Movement RZ [ RMS
5 Elbow flexors Elbow flex/ext | 0.917 | 0.152
1 Elbow extenders | Elbow flex/ext | 0.96 | 0.100
2 delt clav Sh. add/abd 0.940 | 0.152
2 delt scap Sh. add/abd 0.960 | 0.124
3 delt clav Sh. add/abd 0.879 | 0.190
3 delt scap Sh. add/abd 0.910 | 0.164
4 delt scap Sh. add/abd 0.917 | 0.103
2 delt clav Sh. flex/ext 0.904 | 0.140
3 delt clav Sh. flex/ext 0.906 | 0.140
4 delt clav Sh. flex/ext 0.967 | 0.100
2 delt scap Sh. flex/ext 0.906 | 0.139
3 delt scap Sh. flex/ext 0.969 | 0.081
4 delt scap Sh. flex/ext 0.971 | 0.094
6 pect maj ¢ Sh. flex/ext 0.736 | 0.147
7 pect maj ¢ Sh. flex/ext 0.783 | 0.219
6 pect maj t Sh. flex/ext 0.886 | 0.097
7 pect maj t Sh. flex/ext 0.836 | 0.190
8 trap clav Sh. flex/ext 0.879 | 0.131
9 trap clav Sh. flex/ext 0.534 | 0.228
8 trap scap Sh. flex/ext 0.868 | 0.077
9 trap scap Sh. flex/ext 0.971 | 0.121

action are the squared Pearson’s correlation coefficient R?
and the root mean square error (RMS) normalized by the
maximum difference of the moment arm from its mean. This
normalization has the purpose of representing the RMS as a
fraction of the maximum range of the regression target. Table
I gathers the result of the multivariate regression analysis
from each DAS muscle group involved in the movements
performed during the experiment to the MCE stimulation
channels assumed to correspond to them, according to Fig.
4. The results are sorted by the movements performed during
the experiment. In Fig. 5, the moment arm on the MCE
stimulation channel 2, routed using shifted sphere projection,
is shown and compared to the moment arm of the DAS
deltoid clavicular. Fig. 6 shows the moment arm length
of the MCE line of action closest to the biceps brachii
in the DAS over the elbow flexion angle, as well as the
moment arm length of the DAS biceps brachii itself. For
ease of comparison, the curve shown in Fig. 6 is not obtained
aligning the DAS to the IMU data, but rather shows a sweep
of the moment arm length over the full range of the elbow
flexion angle, which in the OpenSim model can be freely
set.

V. DISCUSSION

While the shifted sphere projection routing seems to more
robustly model line of action torque output where the origin
and the insertion points are far away from the joint relative
to the joint’s sphere diameter R, it is unable to transition to
a line-of-sight routing without discontinuities when the line
of action does not go around a joint. This effect is shown
in Fig. 5. The discontinuities in the moment arm length
from the MCE are clearly visible. These happen due to the
transition of the routing from shifted sphere to line of sight.
This leads to generally poor correlations between the two



models for all muscle groups where such a transition occurs
during movement. This, in particular, is the case for the lines
of action corresponding to the deltoids, for which it happens
that the line of sight from the origin and the insertion point
can run outside of the joint sphere during shoulder abduction
or shoulder flexion.

Using the sphere projection routing on the lines of action
corresponding to the deltoids in the MCE leads to high cor-
relation coefficients on the moment arm lengths both during
shoulder adduction/abduction and shoulder flexion/extension,
as shown in Table .

Finally, Fig. 6 shows the moment arm length of the biceps
brachii of the DAS, as well as the moment arm length of
the closest action line in the MCE, which is routed using
line-of-sight. The moment arm length of the two muscle
groups are normalized by the respective maximum to ease
the comparison. As shown in Table I, the moment arm of
the MCE lines of action going over the elbow joint are
well represented by a weighed sum of the moment arms
of the DAS elbow flexors and extensors. Looking at this
comparison between two specific lines of action, it seems
that the curves look qualitatively very similar, showing only
a discrepancy in the angle for which the curve’s maximum
occurs. By adjusting only a few parameters through a suitable
calibration procedure, the similarity could be improved. In
general, the multivariate regression shows a good fit of the
moment arms as computed by the MCE with the regression
model based on the DAS muscle groups, with the main
exception of action line 9, which shows a poor fit with
the linear model with the trapezoid clavicular group from
the DAS. This could perhaps be explained by the relative
distance in position between the two muscle groups in the
models, as shown in Fig. 4.

The good fit of the multivariate regression indicates that
the moment arm length of the lines of action in the MCE can
be well explained by the moment arm lengths in the DAS.
This confirms that the MCE is able to compute qualitatively
similar moment arms over the motions examined in this
experiment as those computed in the DAS. As the moment
arms are fundamental in the estimation of the torque output
associated to each line of action, this is a indispensable
validation for the MCE. Furthermore, the results shown here
suggest that shifting the origin and insertion points of the
lines of action in the MCE could account for stimulation
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clavicular group 1 from the DAS using the shifted sphere projection routing.
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Fig. 6. Comparison of the moment arm of the bicep group 1 from the
DAS and the MCE line of action 5, which is modeled using line of sight
routing, over the elbow flexion angle.

currents hitting different muscle groups than the anticipated
ones. This can be inferred by looking, e.g., to the better fit
between the trapezoid clavicular group from the DAS and
the MCE line of action 8, as opposed to the MCE line of
action 9, as shown in Table I. In a hypothetical scenario
where the stimulation current associated with the MCE line
of action 9 exclusively hits the trapezoid clavicular, shifting
the line of action 9 to be closer to the line of action 8
would ensure a more accurate calculation of the torque output
deriving from this stimulation. Future work will focus on
calibration procedures able to accomplish such an adjustment
automatically based on data acquired on human users.

VI. CONCLUSIONS

The present article serves as a presentation of the MyoCep-
tion system, and as a validation of the system’s control envi-
ronment. A comparison with a third-party, detailed model of
the human upper limb shows that the musculoskeletal model
governing the MyoCeption’s control system, while being
simpler and not requiring almost any anatomical expertise
to be set up, is able to compute the salient characteristics of
the muscle geometry to a comparable degree.

Furthermore, the comparison between MCE and DAS
allowed to evaluate the advantages and disadvantages of the
three proposed line of action routings. In particular, the line-
of-sight routing is very simple, and could be easily adjusted
to fit the effective moment arm length of an arbitrary user’s
muscle measured over the range of motion of a given joint.
However, the line of action of most muscles can not be
approximated as a straight line, especially if the line of action
passes around a joint. The sphere projection routing does
allow for transition without discontinuities in the moment
arm’s length between a state where the line of action goes
around a joint and a state where a line of sight exists between
origin and insertion point. However, the sphere projection
routing seems to not be particularly robust to inaccuracies in
the placement of the via points p; and pi3. The shifted sphere
projection does not allow for continuous transition to a line
of sight state, which leads to discontinuities that could be
extremely problematic when this routing is used to compute
the amount of stimulation current to be injected into a user.
However, this routing seems more robust with respect to the
placement of the origin and insertion point of the line of
action. It would therefore be advisable to use this routing



for lines of action which are not expected to have a line-of
sight between their origin and their insertion, independent of
the user’s posture.

This test suffers from a few limitations. In particular,
here we showed only a qualitative correlation between the
moment arm lengths of the two musculoskeletal models.
No effort was put into verifying whether the MyoCeption’s
control environment provides values close in value to those
that would be measured in reality for a given user. The
results presented by Hainisch et Al. in [10] show that, even
when fitting the muscular lines of action to MRI data in
an OpenSim model, the torque output computed by the
calibrated model can show noticeable discrepancies with
data acquired directly on humans over joint movements.
Therefore, a model such as the DAS is not necessarily the
best possible ground truth, and future work should focus
on the comparison of the MCE model with data gathered
in vivo, and on improving the fitness of the model in a
quantitative sense as well. Furthermore, here the MCE has
been verified just for single-joint movements and not for
movements involving more than one joint. In such cases, the
geometry of biarticular muscles in particular could change
noticeably, and lead to discrepancies between the ground
truth and the MCE model.

Besides the offline comparison of the MCE with other
models or data gathered in vivo, future work will also focus
on closing the real-time control loop in force. In order to
do so, a few possibilities exist. In particular, the integration
of further sensor modalities in the system, such as force
and torque, would allow to monitor the applied forces on
each joint during movements, and optimize the model’s
parameters accordingly. Such measurement modalities could
be added to the system by fitting it with a passive or even
an active sensor-fitted exoskeleton or exosuit. Therefore,
the interaction of the MyoCeption’s FES setup and such
rehabilitative robotic systems shall be investigated.

In [13], Anaya et al. present many examples of hybrid
FES-robotic gait rehabilitation technologies, mostly based
on rigid exoskeletons used in conjunction with electrical
stimulation. The MCE could be employed in such setups
also on upper limbs: the pulling vector estimation could be
used to generate force fields in rehabilitation robotics that
mimic the effect of a single musculutendon unit or a muscle
group [14].

In the context of soft wearable exosuit control, on the
other hand, the MCE could be used to extend the so
called Myoprocessor presented in [15] to multiple degrees of
freedom in order to assist both the elbow and the shoulder.
In conjunction with FES, an exosuit controlled through the
MCE could be more effective in restoring motor function
in the presence of chronic neuromuscular diseases. Future
steps will test the presented approach in exosuit control both
in clinical and industrial settings [16].

Regarding the MCE’s use in VR and AR, future stud-
ies will involve a bimanual rigid exoskeleton [17] with
MyoCeption-driven haptic rendering in order to improve
immersiveness of a simulation.
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Abstract: Functional Electrical Stimulation is an effective tool to foster rehabilitation of neu-
rological patients suffering from impaired motor functions. It can also serve as an assistive
device to compensate for compromised motor functions in the chronic phase occurring after a
disease or trauma. In all cases, the dominant paradigm in FES applications is that of aiding
specialized, task-specific movements, such as reaching or grasping. Usually this is achieved by
targeting specific muscle groups which are associated to the targeted motion by experts. A
general purpose, FES-based control theory capable of enabling neurological patients to achieve
a wide range of positional goals in their peri-personal space is still missing. In this paper,
we present an early analysis of the performance achievable through a muscular impedance
control loop employing FES to actuate force and movement. The control is evaluated in a test
where the user’s upper limb is moved by means of an exonerve to a series of target positions
on a plane without providing visual feedback nor requiring volitional effort. The results
allow to characterize the performance of such a setup over time and to assess how well can it
generalize over different target positions in the user’s peri-personal space. The current study
population also allows to evaluate the effects of user’s experience with FES systems on the
overall performance during the test. The results indicate that the proposed control loop can
generalize well over different arm poses.
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Robot-inspired human impedance control through functional electrical
stimulation
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Abstract— Functional Electrical Stimulation is an effective
tool to foster rehabilitation of neurological patients suffering
from impaired motor functions. It can also serve as an assistive
device to compensate for compromised motor functions in the
chronic phase occurring after a disease or trauma. In all cases,
the dominant paradigm in FES applications is that of aiding
specialized, task-specific movements, such as reaching or grasp-
ing. Usually this is achieved by targeting specific muscle groups
which are associated to the targeted motion by experts. A
general purpose, FES-based control theory capable of enabling
neurological patients to achieve a wide range of positional goals
in their peri-personal space is still missing. In this paper, we
present an early analysis of the performance achievable through
a muscular impedance control loop employing FES to actuate
force and movement. The control is evaluated in a test where
the user’s upper limb is moved by means of an exonerve to a
series of target positions on a plane without providing visual
feedback nor requiring volitional effort. The results allow to
characterize the performance of such a setup over time and to
assess how well can it generalize over different target positions
in the user’s peri-personal space. The current study population
also allows to evaluate the effects of user’s experience with FES
systems on the overall performance during the test. The results
indicate that the proposed control loop can generalize well over
different arm poses.

I. INTRODUCTION

Functional electrical stimulation (FES) for artificial gener-
ation and support of movements represents an integral part in
the rehabilitation of certain neurological patients. In the early
phase of rehabilitation, FES can be an effective tool in a task-
specific, restorative therapy program to foster neurological
recovery [1]. In the chronic phase after a neurological disease
or trauma, FES may be used as a neuroprosthesis for com-
pensation of lost or weakened motor functions. Particularly
in individuals with cervical spinal cord injury (SCI) and
the associated impairments of the reaching and grasping
function, FES has been successfully employed for assistance
in activities of daily living (ADL), both using trans-cutaneous
[2] and intramuscular electrodes [3]. Outside of the medical
field, FES-based interfaces have also been used to provide
force feedback in virtual and augmented reality applications

[4]1[5].
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The context of rehabilitation in particular can offer some
advantages, as the repetitive nature of the movements typi-
cally performed during a therapy session allows to implement
iterative learning, which allows, among other things, to
calibrate inertial parameters and to differentiate the user’s
own volitional efforts from movements caused by FES [6]
[7]1. However, such setups are usually meant to address
specialized, functionally relevant movements, such as reach-
ing and grasping in a specific arm pose, and are therefore
optimized towards facilitating these motions. In such setups,
FES is often used to target specific muscle groups which are
associated to the targeted motion by experts (e.g. the triceps
is often stimulated to facilitate reaching). While this sort of
approach has been proven effective in various studies, it is
also very specific to the targeted motions, and would not
generalize well to other movements. A multi-joint control in
force, mediated by a proper mechanical impedance, on the
other hand, could theoretically facilitate movements to any
desired pose in the peri-personal space. A few possibilities
exist to implement such a control in force. Musculoskeletal
models, such as that presented in [8] for instance, offer the
advantages that they can inherently account, at least to some
extent, for changes in muscle geometry due to kinematics, if
the stimulated muscle groups are modeled with sufficient ac-
curacy. In previous studies [9], we determined the attainable
precision of a musculoskeletal model adjusted to the anatomy
of the user [10] in achieving an arbitrary endpoint force out-
put direction by means of FES. However such models applied
to FES require some anatomical expertise to be set up, as
the routing of the stimulated muscle groups has to be pre-set
within certain boundaries. In [9], a calibration procedure was
proposed, which allowed partial automatic adjustments of the
musculoskeletal geometry to any particular user. However,
this calibration can only operate relatively small adjustments.

On the other hand, robot-inspired machine learning (ML)-
based controls have been shown in [11], among others,
to have high precision and accuracy in producing force
output at the endpoint through FES. ML models have the
advantage to not require expert knowledge of the muscle
routing, nor the explicit connection of a muscle group to
individual joints. However, they can not inherently generalize
over different arm poses, and usually are trained with the
limb in various positions, as was done in [12] and [13].
In this paper, we describe the early results of a pilot study
were a machine learning model is employed to create an
impedance control of the human upper limb, which is then
used in a Target Achievement Control (TAC) test [14] where
the user’s hand is drawn to a set of randomized locations on



a plane spanning the whole of the user’s workspace using
FES without visual feedback and no volitional effort on
the user’s side. Differently from [13] and [12], we posit
that the model employed in this study can generalize over
different arm poses because of its being formulated in the
joint space (see Fig. 1). This formulation enables the model
to account for the user’s skeletal geometry, but without the
need to establish muscle routing, which is effectively learned
through model calibration. Because of this characteristic,
the model calibration procedure is only executed with the
arm in one posture. Such FES controls are closely related
to the control of wearable robotics. Because of this, the
MyoCeption, which is the device employed for this exper-
iment, could be considered as being to the efferent nerves
what an exoskeleton is to the musculoskeletal system. The
MyoCeption could therefore be construed to be an exonerve.

While the study is eventually going to be expanded to
include also paretic patients, the initial able-bodied popula-
tion should provide normative data to characterise the perfor-
mance of the human impedance control. It is expected that
the able-bodied population should show less inter-individual
variance than the idiosyncratic manifestation of individual
ailments would cause in a patient population.

II. METHODS

A. Setup

In this experiment, the MyoCeption FES device [10] is
used together with the BodyRig body pose tracker [15] to
perform a positional Target Achievement Control (TAC) test
on a planar surface. In this test, the MyoCeption is tasked
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Fig. 1. Depiction of the relevant projections between Cartesian, joint and
muscular spaces of generalized positions and forces. In each coordinate
space, the positions and their time derivatives can be converted into the
corresponding forces through an impedance Z, and the reverse conversion
can be operated through an admittance Y. The projection of velocities and
forces from one coordinate space and the other can be performed through
the proper Jacobians and their transposed and inverse forms.
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Fig. 2. Dynamic TAC test layout. Above: Visualisation of the arm posture
with the wrist outside of the target point P3 (left) and within the target point
P3 (right). Below: Overlay of the visualised task space and arm render over
the actual test setup for the positional TAC test.

with providing stimulation currents such that the user’s wrist
is brought within 10 cm of a target, which is randomly drawn
out of a set of 5 points in the peri-personal space. For the
target to be considered reached, the wrist has to stay within
range for 1s, and the target has to be reached within 20s.
The test setup and the render of the avatar and targets to be
reached are shown in Fig. 2.

The MyoCeption is controlled by means of a ridge regres-
sion model which is trained to predict the joint torque output
Tjoints = |Tau,TEL] € RS, which is the concatenation of
the elbow and glenohumeral joint torques Tgw, TEL € R3,
based on the provided stimulation currents s,.; € R8. The
regression is trained sampling the stimulation s,. during
calibration and projecting it onto the endpoint wrench output
Weyff = [.fcuffchuff] € R® measured by a 6-axes force
torque sensor coupled to the user’s forearm and projected
onto the joint space using the arm Jacobian Jg,.,, € R6x6
as per

T joints = J(z;‘mwcufﬁ (1)

The linear predictor trained in this manner is effectively
learning the muscular Jacobian J,,ysce € R®*® multiplied
by the diagonal stimulation transmission matrix 3 € R8%8,
so that

_ T
Tjoints = Jmusclefmuscle

= JT Zsact = W'Sa(,'t7 (2)

muscle

where W € R6*® is the matrix enclosing the linear model’s
weights. While the mapping of stimulation to force is non-
linear, in this experiment the control is assumed to operate
in a quasi-linear region of the curve.

The calibration setup is shown in Fig. 4, together with the
vectors relevant for the projection from the cuff’s coordinate
frame to the joint coordinate frame. In particular, the joints
and cuff positions, which are inferred from the orientations
of the Inertial Measurement Units (IMUs) 1 and 2, are used
to calculate the arm Jacobian Jg,p, from eq. 1.

The impedance control is realized by inverting the predic-
tion of the linear regression algorithm, thus finding the values
of stimulation that best approximate a desired joint torque
output. This inversion has to keep some further factors into
consideration, namely the fact that the provided stimulation
can only be positive and within a maximum. Furthermore,
in this problem the null-space of the stimulation vector
corresponding to a given joint torque has dimensionality 2, as
there are 8 input channels and 6 output channels. This means
that the stimulation vectors which would cause a given force



TABLE 1
IMPEDANCE COEFFICIENT VALUES

Coefficient [Unit] Value
Ky [Nm~—1] 80
K, [Nm~2] 80
D [Nm~1] 15

Imag[Nm~1s71] 0.07

Iy [m™ 1] 0.05

output exist anywhere on a two-dimensional manifold. This
can be intuitively understood if one thinks that a state of co-
contraction in the musculature would lead to a net zero force
and torque output. This means that for any solution vector
of muscle contraction forces corresponding to a desired joint
torque output, any muscle force vector equal to this solution
plus a force vector that would lead to an arbitrary isometric
co-contraction state would give the same result in terms of
torque output. Because of this redundancy, we can impose
further constraints on the solution by projecting the proper
gradient onto the null space multiplying it by the matrix
(Igxs — W#W), where the symbol # indicates the pseudo-
inverse and Igyg € R8*8 is an 8 x 8 unit matrix. In this
experiment, the null-space projection was used to minimize
the magnitude of the stimulation vector.

The complete control loop, once the predictive algorithm is
trained, is shown in Fig. 3. This shows the conversion of the
positional error in Cartesian space € = Py4,.ger — Phand 11O
a desired Cartesian force f,, € R? through a mechanical
impedance Z : R® — R3, so that

fdes = Z(e) =
= Kqe + K,e®> — Dé + (Laz — exp(lge)) / edt. (3)

The impedance coefficients were set as shown in Table I. The
inclusion of quadratic terms and the fact that the integrative
gain changes with the distance from the target position make
it so that the impedance is more sensible to the momentary
value of the error if the target is far away, and more to the
integration of the error over time if the target is closer. This
leads to a temporal increase in the desired force in time if,
for example, the user’s hand happens to stop in proximity of
the target.

The MyoCeption was controlled at a rate of 300 Hz, and
provided pulsed stimulation currents with a pulse rate of
30 Hz, pulse width 1ps, amplitude modulated between 0 A
and a maximum based on the comfort threshold, but at
any rate never above 70 mA. The BodyRig tracker provided
posture at a rate of 600 Hz. During calibration, the load
cell was sampled at 200 Hz. The relative position of the
user’s hands and targets were sampled at 100 Hz. Where
necessary, signals with different rates were re-sampled in
the control loop. The model inversion block, in particular,
was run at 600 Hz, in order to provide a faster convergence
of the solution.
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Fig. 3. Block diagram for the controller employing the linear regression
algorithm calibrated through the force-torque sensor with weights W. The
block diagram is divided in a few main sub-blocks, namely the conversion
from positional error to a desired force through an impedance Z and the
projection of said force onto joint space, the inversion of the previously
trained regression model, the addition of the null-space projected stimulation
vector in order to minimize the solution’s magnitude, and finally the closing
of the loop through the FES-actuated human limb.

B. Participants

In this analysis, we present results gathered from 6 able-
bodied participants (5 males 1 female, Age 31 + 9 years,
weight 74+12kg, height 181+9cm). 3 of these had previous
experience with FES ranging from a few to tens of hours of
use, while 3 reported no prior experience, and were therefore
considered naive. All participants signed an informed consent
form. The experiment was approved by the ethical committee
of the Friedrich-Alexander Universitidt Erlangen-Niirnberg
(ID 22-304-S).

C. Experimental protocol

The participants sat at a table wearing the MyoCeption
stimulation jacket and the BodyRig posture tracker. The
stimulation electrodes were placed above biceps, triceps,
pectoralis clavicularis, pectoralis sternocostalis, deltoid an-
terior, superior and posterior, and trapezius. The participants
were harnessed to a seat, in order to eliminate any influence
of chest movements. During calibration, the participants had
their hand immobilized in a 6-Axis force torque sensor, as
shown in Fig. 4.

Fig. 4. Calibration setup with a harnessed user with a forearm locked
in a splint coupled to a 6-DoF force-torque sensor. The IMUs are used to
determine the joints positions, which in turn are used to project the wrench
measured at the splint’s center to the joint space.



After the identification of the comfort threshold of the
participants for each channel’s current, the calibration was
performed by observing the wrench at the cuff through the
force torque sensor. The trained regression model was then
loaded in the control loop.

The TAC test, which is described above, consisted in
driving the user’s hand on a trajectory formed by 5 points,
shown in Fig. 2. 4 of the 5 points were chosen by prompting
the user to position their arm in each of the 4 postures
resulting from combining full flexion/extension of the elbow
and full horizontal adduction/abduction of the shoulder on
the table. The 5th point was then computed as the mean of the
two postures with extended elbow. The 5 points, therefore,
spanned the whole of the user’s functional workspace on the
plane. The TAC test over these 5 points in random order
was performed over 10 repetitions, forming an uninterrupted
trajectory of 48 segments (5 x 10 points connected by 49
segments minus 1, as the start point was indicated to the par-
ticipants, and therefore excluded from the TAC). This same
experiment was then performed again with expert-performed
adjustments of the impedance control coefficients shown in
Table I, based on the observation of the performance in
the first run, to assess the effect of expert intervention on
the performance and correct any functional issues, such as
certain channels not providing enough current to facilitate
movement.

The evaluated metrics were overall and fatigue-corrected
success rate, which is to say the highest success rate over a
15-points window, which in the case of naive subjects seems
to comprise the average success rate after familiarization but
before the onset of fatigue. Additionally, the metrics included
time to completion and accuracy in expressed as the lowest
distance error from the target over a time window of 1s, in
accordance with the parameters of the TAC test. To ascertain
the effects of experience on the main TAC metrics, a repeated
measure ANOVA was performed with the experience of
the participants with FES as a between-subject independent
variable, and run number (first or second run), targeted point
(out of the possible 5) and segment number (out of the
possible 48) as within-subject independent variables.

III. RESULTS

Table II shows the main metrics and effects for the
TAC test. The only statistically significant effect that could
be found is a significantly lower time to completion for
experienced participants in the second run (with p < 0.01
according to a post-hoc Tukey analysis).

Fig. 6 shows the average success rate over a moving
window 15 points wide, corresponding to the longest ap-
parent stretch for which familiarization and fatigue appear
to balance out for naive participants, filtered additionally
over a moving window of width 5, corresponding to the total
number of points. The figures show also a best-fit line (in red)
from a polynomial model of various order. The order of the
polynomial model was chosen based on the condition that
the regression coefficients of the model all have to satisfy
p < 0.05. Based on how the data is subdivided, more or
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Fig. 5. Normalized histogram of the lowest distance from each target over
a time window of 1s.

less complex dynamics can be shown through this method.
For experienced participants, only a monotonic decrease in
success rate over time can be shown. For naive participants,
on the other hand, a more complex dynamic over time
can be shown to occur (it is possible to fit a 6-th degree
polynomial regression model to the success rate over time
with p < 0.05 for all polynomial coefficients). Similarly, a
3rd-degree polynomial fits well to the success rate over time
for the naive subjects during the first (expert-set) run of the
experiment.

Figure 5 shows a normalized histogram of the accuracy
normalized as a probability density function. 72% of the
samples fall below the 10 cm threshold.

IV. DISCUSSION

The user’s experience does seem to affect some outcome
metrics, and this is likely due to the fact that the naive users
have to familiarize themselves with the sensation of FES,
and not work against it. It is also possible that experienced
participants are able identify the target and actively move
towards more consistently. If this were the case, however,
we would expect to see a significant effect of experience on
the overall or fatigue-corrected success rate, which we do not
see. The outcome metrics vary greatly between individuals,
but the fatigue-corrected success rates in particular indicate
that the proposed system shows much promise.

Regression analysis of the success rate over trajectory
segment for all participants shows a significant decrease

TABLE II
TAC PERFORMANCE METRICS. ALL VALUES IN FORMAT
MEAN(STANDARD DEVIATION).

Metric[Unit] Experienced Naive Effects
Success rate [%] 67.4(25.5) 46.5(8.5) None
Best success rate
over 15 81.2(20.2) 69.4(12.7) None
segments [%]
Accuracy [cm] 9.77(9.73) 9.38(9.24) None
Significantly lower
Time to ttc on run 2 for
completion 9.97(5.20) 12.38(3.35) | experienced subjects
(tte) [s] F(1,12) =125
p < 0.05
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of performance over time. This is likely due to the onset
of muscular fatigue, which diminishes the force output of
the musculature under stimulation [16]. Sorting the data by
the experience of the participants, and by first and second
run, some of the constituent dynamics can be identified,
as shown in Fig. 6. If we assume that the main cause
for deterioration of success rate over time is fatigue, and
that, conversely, familiarization can lead to an increase in
performance over time, we can expect familiarization to
play a qualitatively bigger role for inexperienced subjects,
especially during the first run. Looking at the best-fit lines,
an initial increase in performance during the first run seems
indeed more evident for naive subjects (although it is not
completely absent for experienced subjects). The fact that
the success rate for experienced subjects during the second
run is nearly constant, by comparison, could be determined
by the fact that experienced subjects spend shorter times
under stimulation on average (even though the effect is not
statistically significant for the first run). This would lead to
a lessened impact of fatigue during the second run leading
to a more pronounced difference.

The compounding effect of fatigue in performance over

time is confirmed by the fact that a statistically significant
effect of user experience on time to completion could be
determined for the second run, but not for the first, with
the experienced subjects requiring significantly less time to
reach the target.

Overall, the main causes for bad performance seem to
be time-dependent muscle response, which was very pro-
nounced in some cases, as well as the convergence of the
model inverter to local minima if the force vector f,.,
passed through the joints, which sometimes happened if, for
example, the target to be reached was under the forearm
and the arm was in an outstretched position. One inherent
flaw of the proposed controller which became evident in
some cases was a certain instability due to lags, both due
to the equipment, the model inversion taking some time to
converge, as well as the inherent compliance of the muscular
system. This lag could cause situations where the user’s arm
oscillated around the target position, and without a proper
inertial compensation, the system would not become stable.

The rmANOVA could not detect any overall effect of the

target position on the success rate nor on the accuracy. This
is to be expected, as potential functional difficulties of the



subjects in reaching a given point seemed to be idiosyncratic,
and would therefore not figure as a statistically significant
effect when looking at the global data. Only when looking at
individual subjects significant effects of the target’s location
on TAC success rate can be identified for 3 out of the
12 runs. Based on the recorded observations, however, the
reason for this is rather an incapability of the MyoCeption
to provide enough currents to facilitate a movement towards
specific targets, rather than an inherent flaw of the impedance
control. This finding marks the potential problems that could
arise should this system be applied to chronic patients with
reduced muscle tone. The effect of target position on the time
to completion is on the edge of significance, and an effect
could be found once the test population is enlarged, since
ttc seems to be a sensitive indicator. The fact that no effect
of target position on TAC performance can consistently be
identified across all participants and runs speaks to the fact
that the impedance controller proposed in this paper can in-
deed induce movements towards arbitrary points in the user’s
peri-personal space with consistent precision and accuracy
even though the calibration is executed with the limb in a
single posture, as opposed to [13] and [12], where the ML
system is trained in various arm postures. Impedance-based,
FES-actuated control of the upper limb could therefore prove
a versatile tool in non movement-specific FES-facilitated
rehabilitation techniques. The proposed system could also be
employed in a hybrid solution involving also external aids to
facilitate movements and measure the exerted force in real
time, such as an exosuit, as was demonstrated, among others,
by Burchielli et Al. in [17]. This would allow, among other
things, to close the loop in force during normal operation,
thus eliminating the need for the estimation of joint torques
in the loop shown in Fig. 3, in favour of a direct measurement
of the force output.

Coupled with a suitable intent prediction setup, this system
could also be employed to assist chronic patients in activities
of daily living, provided that muscle atrophy has not set in.

V. CONCLUSIONS

In this paper we presented an early analysis of a trial
involving a FES-mediated impedance control concept for
the human upper limb. The results make it possible to
characterise the performance attainable by such a controller
in facilitating movements towards arbitrary points in the peri-
personal space. Furthermore, the effect of the user’s expe-
rience can also be evaluated from a qualitative standpoint
based on these early findings. Future work should focus on
increasing the test population, even to include SCI patients.
The long-term assessment of a single user’s performance
could also be the focus of upcoming research. The proposed
force control could be improved by compensating for inertial
and gravitational effects, which were not addressed in this
experiment. Furthermore, the known lag between the onset
of stimulation and the actual muscle contraction could also
be accounted for.
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B.1 Force feedback for rover navigation

Title: Investigating the Influence of Haptic Feedback in Rover Navigation with Communication
Delay

Authors: Marek Sierotowicz, Bernhard Weber, Rico Belder, Kristin Bussmann, Harsimran
Singh and Michael Panzirsch

Conference: Haptics: Science, Technology, Applications
Publisher: Springer

Review: Peer-reviewed

Citation: M. Sierotowicz, B. Weber, R. Belder, et al. “Investigating the influence of haptic
feedback in rover navigation with communication delay.” In: International Conference on
Human Haptic Sensing and Touch Enabled Computer Applications. Springer. 2020, pp. 527-
535. 1sBN: 3-030-58146-2. por: 10.1007/978-3-030-58147-3_58

Abstract: Safe navigation on rough terrain in the presence of unforeseen obstacles is an indis-
pensable element of many robotic applications. In such conditions, autonomous navigation
is often not a viable option within certain safety margins. Yet, a human-in-the-loop can also
be arduous to include in the system, especially in scenarios where a communication delay is
present. Haptic force feedback has been shown to provide benefits in rover navigation, also
when confronted with higher communication delays. Therefore, in this paper we present the
results of a user study comparing various performance metrics when controlling a rover with
a car-like interface with and without fictitious force feedback, both with no communication
delay and with a delay of 800 ms. The results indicate that with force feedback the navigation
is slower, but task performance in the proximity of obstacles is improved.

Author contributions: Software Design; Study execution; Formal analysis; Writing-original
draft; Writing-review and editing.
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B.2 IMU-based teleoperation of a humanoid robot: an early analysis

Title: Learning teleoperation of an assistive humanoid platform by intact and upper-limb
disabled users

Authors: Mathilde Connan, Marek Sierotowicz, Bernd Henze, Oliver Porges, Alin Albu-
Schiffer, Maximo A. Roa and Claudio Castellini

Conference: Proceedings of the 5th International Conference on Neurorehabilitation (ICNR2020)
Publisher: Springer

Review: Peer-reviewed

Citation: M. Connan, M. Sierotowicz, B. Henze, et al. “Learning teleoperation of an
assistive humanoid platform by intact and upper-limb disabled users.” In: International
Conference on NeuroRehabilitation. Springer. 2020, pp. 165-169. por: 10.1007/978-3-030-
70316-5_27

Abstract: With the advent of highly dexterous robotic arms, assistive platforms for home
healthcare are gaining increasing attention from the research community. Control of the
many degrees of freedom of such platforms, however, must be ensured uniformly, both for
non-disabled and disabled users, in order to give them as much autonomy as possible. Nine
users, including two upper-limb disabled, were asked to complete highly complex bimanual
tasks by teleoperating a humanoid robot with biosignals. The users were equipped with a
light and wearable interface consisting of a body tracking device for guiding the torso and
arms and two electromyography armbands for controlling the hands by means of interactive
machine learning. All users were able to complete the required tasks, and learning curves are
visible in completion time metric.

Author contributions: Conceptualization; Software Design; Hardware Design; Formal analysis.
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B.3 IMU-based teleoperation of a humanoid robot

Title: Learning to teleoperate an upper-limb assistive humanoid robot for bimanual daily-
living tasks

Authors: Mathilde Connan, Marek Sierotowicz, Bernd Henze, Oliver Porges, Alin Albu-
Schiffer, Maximo A Roa and Claudio Castellini

Journal: Biomedical Physics & Engineering Express
Publisher: IOP Publishing

Review: Peer-reviewed

Citation: M. Connan, M. Sierotowicz, B. Henze, et al. “Learning teleoperation of an
assistive humanoid platform by intact and upper-limb disabled users.” In: International
Conference on NeuroRehabilitation. Springer. 2020, pp. 165-169. por: 10.1007/978-3-030-
70316-5_27

Abstract: Objective. Bimanual humanoid platforms for home assistance are nowadays avail-
able, both as academic prototypes and commercially. Although they are usually thought
of as daily helpers for non-disabled users, their ability to move around, together with their
dexterity, makes them ideal assistive devices for upper-limb disabled persons, too. Indeed,
teleoperating a bimanual robotic platform via muscle activation could revolutionize the way
stroke survivors, amputees and patients with spinal injuries solve their daily home chores.
Moreover, with respect to direct prosthetic control, teleoperation has the advantage of freeing
the user from the burden of the prosthesis itself, overpassing several limitations regarding size,
weight, or integration, and thus enables a much higher level of functionality. Approach. In this
study, nine participants, two of whom suffer from severe upper-limb disabilities, teleoperated a
humanoid assistive platform, performing complex bimanual tasks requiring high precision and
bilateral arm/hand coordination, simulating home/office chores. A wearable body posture
tracker was used for position control of the robotic torso and arms, while interactive machine
learning applied to electromyography of the forearms helped the robot to build an increasingly
accurate model of the participant’s intent over time. Main results. All participants, irrespective
of their disability, were uniformly able to perform the demanded tasks. Completion times,
subjective evaluation scores, as well as energy- and time- efficiency show improvement over
time on short and long term. Significance. This is the first time a hybrid setup, involving
myoelectric and inertial measurements, is used by disabled people to teleoperate a bimanual
humanoid robot. The proposed setup, taking advantage of interactive machine learning, is
simple, non-invasive, and offers a new assistive solution for disabled people in their home
environment. Additionally, it has the potential of being used in several other applications in
which fine humanoid robot control is required.

Author contributions: Software Design; Hardware Design; Formal analysis.
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B.4 Teleimpedance through random Fourier features

Title: Deflection-Domain Passivity Control of Variable Stiffnesses Based on Potential Energy
Reference

Authors: Michael Panzirsch, Marek Sierotowicz, Revanth Prakash, Harsimran Singh and
Christian Ott

Journal: Robotics and Automation Letters
Publisher: IEEE

Review: Peer-reviewed

Citation: M. Panzirsch, M. Sierotowicz, R. Prakash, et al. “Deflection-Domain Passivity
Control of Variable Stiffnesses Based on Potential Energy Reference.” In: IEEE Robotics
and Automation Letters 7.2 (2022), pp. 4440—4447. 1ssN: 2377-3766. por: 10.1109/LRA.
2022.3147566

Abstract: With emerging capabilities, robots will advance gradually into human environments
in the near future. Thereby, safety and robustness is currently tackled through intrinsically
soft robotics or variable impedances, mainly stiffnesses. In tele-operation, for instance, the
control stiffness can be adapted to a measured arm impedance of the operator to stiffen the
robot only when required for a manipulation task. Thus, humans or moving objects in the
robot’s environment are protected from hard collisions. Independent from its realization
through hardware or software, the stability of the variation needs to be ensured through
control strategies since energy is potentially introduced into the robotic system. This work
presents a novel gradient-based passivity control concept for variable stiffnesses. In contrast
to state-of-the-art methods, the approach is based on a potential energy storage reference
and prevents phases of zero stiffness through deflection-domain control. ILe., according to
the energy storage, the stiffness variation over the spring deflection is controlled to ensure
passivity. Experiments confirm the functionality of the approach and its robustness against
delayed communication and active environments.

Author contributions: Software Design; Writing-review and editing.
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B.5 Early analysis on static force control using the Nearest-Neighbor
recruitment strategy

Title: A surface neuromuscular electrical stimulation device for universal Cartesian force
control in humans

Authors: Marek Sierotowicz and Claudio Castellini

Conference: Abstracts From the IFESS 2022 Conferences, published in Journal of Artificial
Organs

Publisher: John Wiley & Sons, Ltd

Review: Peer-reviewed

Citation: M. Sierotowicz and C. Castellini. “A surface neuromuscular electrical stim-
ulation device for universal cartesian force control in humans.” In: JOURNAL OF
ARTIFICIAL ORGANS 46.11 (2022), €323-€327. 1sSN: 1525-1594

Abstract: In recent years, neuromuscular electrical stimulation (NMES) has found many
applications both within the medical field and outside. While this technology has been widely
recognized as a valid tool for rehabilitative and assistive applications, most solutions presented
in the literature seem to focus on highly specific cases and facilitate very selective movements.
In this article, we present a novel surface stimulation-based prototype which, coupled with
an internally designed musculoskeletal model, allows to induce the output of generalized
forces at the human end-effector in Cartesian coordinates. The control has been validated here
through a 6-axis force-torque sensor coupled with a robotic manipulator. Thus, the measured
forces at the user’s end-effector were compared to the commanded forces. The results confirm
that open-loop control of the output force is possible with an average correlation coefficient
between commanded and measured force output direction >0.7. This could eventually provide
full, general-purpose impedance control of the human neuromuscular system, which would
allow to induce arbitrary movements in the peri-personal space.

Author contributions: Conceptualization; Software Design; Formal analysis; Writing-original
draft; Writing-review and editing.
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B.6 Adaptive filter for sSEMG-based force output estimation

Title: Adaptive filter for biosignal-driven force controls preserves predictive powers of SEMG
Authors: Marek Sierotowicz, Marc-Anton Scheidl and Claudio Castellini

Conference: Proceedings of 2023 International Conference on Rehabilitation Robotics (ICORR)
Publisher: IEEE

Review: Peer-reviewed

Citation: M. Sierotowicz, M.-A. Scheidl, and C. Castellini. “Adaptive Filter for Biosignal-
Driven Force Controls Preserves Predictive Powers of sEMG.” in: 2023 International
Conference on Rehabilitation Robotics (ICORR). 2023, pp. 1-6. por: 10.1109/ICORR58425.
2023.10304772

Abstract: Electromyographic controls based on machine learning rely on the stability and
repeatability of signals related to muscular activity. However, such algorithms are prone to
several issues, making them non-viable in certain applications with low tolerances for delays
and signal instability, such as exoskeleton control or teleimpedance. These issues can become
dramatic whenever, e.g., muscular activity is present not only when the user is trying to move
but also for mere gravity compensation, which generally becomes more prominent the more
proximal a muscle is. A substantial part of this instability is attributed to electromyography’s
inherent heteroscedasticity. In this study, we introduce and characterize an adaptive filter for
sEMG features in such applications, which automatically adjusts its own cutoff frequency
to suit the current movement intention. The adaptive filter is tested offline and online on a
regression-based joint torque predictor. Both the offline and the online test show that the
adaptive filter leads to more accurate prediction in terms of root mean square error when
compared to the unfiltered prediction and higher responsiveness of the signal in terms of lag
when compared to the output of a conventional low-pass filter.

Author contributions: Conceptualization; Software Design; Formal analysis; Writing-original
draft; Writing-review and editing.
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B.7 Fusion of posture and muscular activity data to improve robot
control

Title: Fusion of IMU and Muscular Information in Order to Solve the Limb Position Effect
Authors: Marek Sierotowicz
Institution: Technical University of Munich

Review: Approved by a Master’s thesis commission

Citation: M. Sierotowicz. “Fusion of IMU and Muscular Information in Order to Solve
the Limb Position Effect.” Technical University of Munich, 2019

Abstract: The main goal of the work hereafter presented is to integrate data about a subject’s
body pose with data regarding the muscular activity in the forearm in order to improve
the prediction of hand movement intention, particularly with respect to the limb position
effect. The efforts to this end were articulated in three fundamental phases. Firstly, a portable
and lightweight upper body tracking system was designed, implemented and characterized,
particularly with respect to drift. Secondly, offline and online analyses about possible ap-
proaches to integrate the data from the body tracking system with different kinds of data
measuring muscular activity in the forearm were conducted. Finally, a user study involving
telemanipulation using a humanoid platform was conducted with the main goal of evaluating
the learning curve of a subject using the upper body tracking system and in order to test some
of the offline test results in terms of performance in the execution of daily tasks. Furthermore,
this user study allowed to test an alternative control scheme especially suited for transradial
amputees, with the main goal to estimate wrist rotation intention without the need to rely on
muscular activity information.
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