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This primer on Bayesian Model Selection (BMS) introduces its benefits to model-based battery char-
acterization. With the uniquely limited experimental accessibility of the critical electrode-electrolyte
interphase processes, we require first-principles models to study them via proxy measurements. Due to
the typically low signal-to-noise ratio, evidence to support one possible mechanism explanation over an-
other may be slight and easily missable or disputable. So we propose BMS as a quantifiable, reproducible,
and self-assessing method to evaluate how well a dataset supports a model. The algorithms SOBER [1]
and BASQ [2] have been developed to make BMS applicable to use cases like battery simulators, and
already shown at earlier iterations of OBMS. Here, we showcase how to apply them in practice, in par-
ticular on electrolyte parameter identifiability from pulse tests as shown in Figure 1 and Electrochemical
Impedance Spectroscopy (EIS) interpretation via continuum model simulators [3].
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Figure 1: Optimally chosen training data for rapid electrolyte parameterization. The four grouped
parameter sets represent the portions of parameter space to verify other parameterization methods on.
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