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What can GNSS-R tell us about the

Reflected signals from Global Navigation Satellite Combined tropospheric GNSS-R Estimated Relative lonospheric Delay ionosphere’s vertical structure?
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The GNSS Reflectometry ESA “PRETTY” mission, which has been

PRETTY code delay observations!
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Objective of this study: Investigate the feasibility of using single- ISt —— fitted code delay 10 0 ™ ol alec, content [TECU)
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ionospheric delay at grazing angles and to assess their potential ; 50- o, 222 E‘Eg;:‘fk 2:22 " h ,N, H
for retrieving vertical ionospheric structure through Chapman layer - | lonc. delay est, | 'ono- delay est; ,
. . 0- \_/‘" A0 6 8 10 12 12 A2 &t & 10 12 12 Retrieved Chapman layer parameters
model inversion.
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Point-to-point Algorithm 100 > e * PRETTY observations down to 1° reveal a peak with
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(Zus et al., 2012) 06 16 25 27 28 29 time [s of rack a negative relative ionospheric delay (~20 m) near Jul 28
July 2024 3°, where the direct signal contributes ~60% of the
IONOSPHERE MODELS: total delay. This proportion shifts to ~40% at 10°, Jul 27
EEE}M'QgQQO([ElHOque ef|0|-21020082)2) o RELATIVE IONOSPHERIC DELAY highlighting elevation-dependent ray contributions. _$Rle7SO'R :E::}Se?
eQuic ava et al,, I
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IRI Model (Bilitza et al., 2022) ) * Chapman-based inversion of GNSS-R code delay observations yields F-layer
2 P : : : : : :
2 g eak heights ranging from 307 to 367 km, consistent with high-latitude values
Model Rel. ionospheric Delay: 3 8 Afgﬁo = Obsfit — (Ageom. + Atropo. T Inst.) P : 9 9 g : ' J :
2 Ila‘ under high solar activity (F10.7 = 150-250). The mean RMSE is ~1.2m (~4
16 : : : : :
Amodel 40.3 * 10 ASTEC 0 A geom.: Geometric delay (surface) TECU), showing strong agreement with modeled profiles. Comparison with
fe Atropo.: Tropospheric delay EISCAT and ionosonde stations shows differences within £15 km, with the closest
ASTEC = STEC;, + STEC,, — STEC,; Inst.: Instrumental errors match observed for EISCAT TROMS@ (TR170).
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