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Abstract

The large-scale monitoring of air pollution is of central importance for public health and
the effective implementation of measures to improve air quality. It is therefore essential
to be able to distinguish which changes in air quality are caused by human activity and
which can be attributed to weather phenomena. This work investigates the influence of
meteorological factors on ground-level air pollution, as well as the spatial and temporal
variability of its distribution.

To this end, the concentrations of PM2.5, NO2 and O3 near the ground in an area
containing Germany and parts of neighboring countries are derived using the Random
Forest algorithm. It processes satellite observations, meteorological parameters and other
auxiliary variables together with in-situ measurements of the pollutants.

The trained Models provide reliable values for ground-level PM2.5 (R2 = 0.76) and NO2
(R2 = 0.79) and very good results for O3 (R2 = 0.91). Accuracy deviates when the test
and training data are spatially or temporally separated. Methods of explainable artificial
intelligence (XAI) are used to evaluate the significance of the individual model parameters.
These show that the accuracy of the predictions for PM2.5 depends mainly on temporal
information while NO2 relies on spatial and O3 on meteorological information. Heavy
precipitation and strong winds are among the most important PM2.5- and NO2-reducing
environmental factors, with air temperature and intense solar radiation greatly increasing
O3-concentration. An investigation of the weekend effect on ozone production and the
O3-NO2 model dependence suggest a shift from NOx-sensitive conditions in winter to
NOx-saturated conditions in summer.

Local Indicators of Spatial Association (LISA) are used to identify hot- and coldspots in
the derived pollution data within the study area. Urban regions are hotspots for PM2.5 and
NO2 while being coldspots for O3. Additionally, the surrounding geography and vegetation
may play a role in the spatial distribution depending on the pollutant.
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Kurzzusammenfassung

Die großflächige Überwachung der Luftverschmutzung ist von zentraler Bedeutung für die
öffentliche Gesundheit und das effektive Umsetzten von Maßnahmen zur Verbesserung der
Luftqualität. Dabei ist es essenziell unterscheiden zu können, welche Veränderungen in
der Luftqualität Ursache menschlichen Zutuns sind und welche sich auf Wetterphänomene
zurückführen lassen. In dieser Arbeit wird daher der Einfluss meteorologischer Faktoren
auf die Schadstoffsituation am Boden, sowie die räumliche und zeitliche Variabilität der
Schadstoffverteilung näher untersucht.

Dazu wird mithilfe des Random Forest Algorithmus jeweils die bodennahe PM2.5-, NO2-,
und O3-Konzentration in Deutschland und Teilen der angrenzenden Länder abgeleitet. Es
werden tägliche Satellitendaten zusammen mit meteorologischen Parametern und weiteren
Hilfsvariablen sowie in-situ Messungen der Schadstoffe verarbeitet.

Die Modelle liefern zuverlässige Werte für die Bodenkonzentrationen von PM2.5 (R2 =

0.76) und NO2 (R2 = 0.79) und sehr gute Ergebnisse für O3 (R2 = 0.91) mit abweichenden
Genauigkeiten bei räumlicher oder zeitlicher Trennung von Test- und Trainingsdaten.
Zur Bewertung der Signifikanz der einzelnen Modellparameter werden Methoden der
erklärbaren Künstlichen Intelligenz (XAI) eingesetzt. Diese zeigen auf, dass die Genauigkeit
der Vorhersagen für PM2.5 hauptsächlich von zeitlichen, für NO2 von räumlichen und für
O3 von meteorologischen Informationen abhängt. Starke Regenfälle und Winde gehören
zu den bedeutendsten PM2.5- und NO2-reduzierenden Umweltfaktoren, wobei die O3-
Konzentration vor allem durch hohe Lufttemperaturen und intensive Sonneneinstrahlung
steigt. Die Untersuchung des Wochenendeffektes auf die Ozonproduktion und der O3-NO2-
Modellabhängigkeit weist auf einen Wechsel von NOx-gesättigten Bedingungen im Winter
zu NOx-sensiblen Bedingungen im Sommer hin.

Lokale Indikatoren räumlicher Autokorrelation (LISA) wurden eingesetzt um Hot- und
Coldspots in den flächenhaften Vorhersagen der Schadstoffverteilung zu identifizieren.
Hotspots in den Bodenkonzentrationen von PM2.5 und NO2 sowie Coldspots von O3
sind dabei in den Stadtregionen zu beobachten, wobei je nach Schadstoff die umgebende
Geographie und Vegetation eine Rolle in der räumlichen Verteilung spielen.
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1 Einleitung

Luftverschmutzung zählt zu den drängendsten gesellschaftlichen Herausforderungen des
21. Jahrhunderts und kann sowohl schwerwiegende Folgen für die Gesundheit der betrof-
fenen Bevölkerung, als auch für empfindliche Ökosysteme und das Klima haben. Zu den
bedeutendsten Luftschadstoffen gehören Feinstaub (PM2.5), Stickstoffdioxid (NO2) und
bodennahes Ozon (O3), welche mit einer Vielzahl von Gesundheitsschäden in Verbindung
gebracht werden. PM2.5 beschreibt besonders feine Partikel, die mit ihrer Größe von weni-
ger als 2.5 µm leicht in den menschlichen Organismus eindringen können [1] und so bei
anhaltender Exposition für Atemwegs- und Herz-Kreislauf-Erkrankungen verantwortlich
sein können und das Risiko für andere ernste Erkrankungen wie z.B. Lungenkrebs erhöhen
[2]. NO2, das vor allem aus Verbrennungsprozessen stammt, kann die Atemwege schädigen
und Erkrankungen wie z.B. Asthma verschärfen [3]. Zudem trägt es wesentlich zur Bildung
von Ozon bei [4], welches eine ähnlich reizende Wirkung auf die Atemwege hat [5] und
Schäden an Pflanzen verursachen kann [6]. Schadstoffe wie NO2 oder auch Schwefeldioxid
(SO2) sind zudem zu großen Teilen für die Bildung von saurem Regen verantwortlich,
welcher empfindliche Ökosysteme schädigen kann [7][3].

Die Weltgesundheitsorganisation (WHO) schätzt, dass im Jahr 2019 etwa 4.9 Mil-
lionen vorzeitige Todesfälle auf die Verschmutzung der Außenluft in urbanen Regionen
zurückzuführen waren [8] und fast alle Menschen gesundheitsgefährdenden Mengen an
Luftschadstoffen ausgesetzt waren [4].

Als Reaktion auf die zunehmende Bedrohung durch Luftverschmutzung wurden in den
letzten Jahrzehnten die globalen und regionalen Anstrengungen zur Verringerung der
Schadstoffemissionen deutlich verstärkt. Die Europäische Union verordnete in den Jahren
1996 und 2008 neue gesetzlich verbindliche Obergrenzen für Luftschadstoffe wie PM10,
PM2.5, NO2, SO2 und O3 [9][10]. Seit 2008 wurden in vielen großen deutschen Städten
Umweltzonen mit schärferen Abgasvorschriften für Fahrzeuge eingeführt, die vor allem
auf eine Verringerung der Feinstaub- und Stickoxidbelastung abzielen [11]. Im Jahr 2018
wurden erneut verschärfte Fahrverbote für Dieselfahrzeuge angeordnet [12]. Obwohl PM2.5-
und NO2-Konzentrationen in Europa über die letzten Jahre zurückgingen, werden vor
allem in dicht besiedelten Gebieten wie Städten noch immer regelmäßig Schadstoffwerte ge-
messen, die über die von der WHO und der EU festgelegten Grenzwerte hinausgehen [13][14].

Um zukünftig die mit Luftverschmutzung verbundenen Gesundheitsrisiken besser ein-
schätzen zu können und effektivere Maßnahmen zur Verbesserung der Luftqualität zu
erarbeiten und umzusetzen, ist ein besseres Verständnis der Prozesse, welche zu hohen
Bodenkonzentrationen von PM2.5, NO2 und O3 führen, notwendig. Hierfür werden räumlich
und zeitlich hochaufgelöste Daten benötigt, welche die Schadstoffsituation am Boden
möglichst genau beschreiben. Europa kann dazu auf ein umfassendes Netz von in-situ
Messstationen zurückgreifen [15], welche stündliche Informationen zur Luftzusammen-
setzung liefern und es ermöglichen, die zeitliche Entwicklung der Luftqualität an den
Stationsstandorten zu überwachen. Allerdings sind diese Messstationen zahlenmäßig be-
grenzt räumlich, inhomogen verteilt und überwiegend in Städten konzentriert. Dadurch
ergeben sich großflächige Lücken in den Schadstoffinformationen, deren Schließung eine
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1 Einleitung

zentrale Herausforderung der umwelt- und gesundheitsorientierten Forschung darstellt.
Satellitenmessungen sind hier von zentraler Bedeutung, denn sie können wichtige flächen-

deckende Informationen zur horizontalen Schadstoffverteilung liefern. Aufgrund der festen
Orbits polar-umlaufender Satelliten sind diese jedoch in ihrer zeitlichen Auflösung meist auf
eine Messung pro Tag beschränkt. Die Messung stützt sich auf die Reflexion von Sonnenlicht
durch den Erdboden, weshalb durch Wolken zusätzliche Lücken in den Daten entstehen
können. Zum einen verhindern diese die Beobachtung des darunterliegenden Atmosphären-
bereichs, zum anderen besitzen sie eine im Vergleich zur Erdoberfläche deutlich stärkere
Albedo [16]. Satellitenbeobachtungen liefern in der Regel Informationen über Schadstoff-
konzentration in einer Luftsäule. Ohne Kenntnis des Höhenprofils der Schadstoffverteilung
innerhalb der Atomsphäre ist es daher nur schwer möglich auf die Bodenkonzentration eines
Schadstoffes zu schließen. Die vertikale Verteilung der Luftschadstoffe wird mitunter stark
von meteorologischen Parametern wie Luftfeuchtigkeit, Grenzschichthöhe und Sonnenein-
strahlung, sowie von der Stärke der lokalen Emissionen bestimmt. Diese Zusammenhänge
sind aufgrund der Vielzahl der in der Atmosphäre wirkenden Prozesse sehr komplex und
nur schwer zu quantifizieren. In den letzten Jahren hat sich maschinelles Lernen (ML) als
leistungsfähiges Instrument erwiesen, um bodennahe Schadstoffkonzentrationen aus Satelli-
tendaten herzuleiten, da es die Möglichkeit bietet, die Beziehung zwischen Umwelteinflüssen,
Satellitenmessungen und Bodenkonzentrationen schnell und effektiv zu erlernen. Hierbei
können bodenbasierte in-situ Messungen als Trainingsdaten fungieren und das Modell ggf.
um diverse Hilfsvariablen erweitert werden, welche die verschiedenen Umwelteinflüsse sowie
das menschliche Wirken beschreiben. Derartige Verfahren sind zudem, im Gegensatz zu
Alternativen wie Chemische Transportmodelle (CTMs), nicht an die Verfügbarkeit von
geeigneten Randbedingungen geknüpft [17] und werden in ihrer horizontalen Auflösung
nur durch die Auflösung der Satellitenbeobachtungen und der Hilfsparameter beschränkt.

Unter den bereits erfolgreich zur Vorhersage von PM2.5, NO2 und O3 eingesetzten ML-
Modellen findet sich eine Vielzahl unterschiedlicher Algorithmen, wie Gradient Boosting
(GB) [18, 19, 20, 21, 22, 23, 24, 25, 26], Random Forest (RF) [20, 22, 23, 25, 27, 28, 29,
30, 31, 32, 33] und Künstliche Neurale Netze (ANN) [22, 23, 33, 34, 35], sowie komplexere
bzw. hybride Modelle [26, 36, 37, 38, 39]. Durch die Verarbeitung meteorologischer Daten
in den Modellen, welche einen entscheidenden Beitrag zur akkuraten Vorhersage liefern
[40], bringen die Modelle die Luftverschmutzung am Boden mit den jeweiligen Wetter-
und Umweltbedingungen in Verbindung. Diese können die Luftqualität zum Teil stark
beeinflussen, was das effektive Umsetzen von Maßnahmen zur Verbesserung der Luftqualität
erschweren kann. Der Einfluss meteorologischer Faktoren auf die Bodenkonzentration von
Luftschadstoffen ist daher Bestandteil aktueller Forschung und wird regelmäßig von Studien
thematisiert [41, 42, 43, 44, 45].

Ziel dieser Arbeit ist es, zum besseren Verständnis der treibenden Faktoren von Luftver-
schmutzung, den Einfluss atmosphärischer Bedingungen auf die Luftqualität am Boden zu
untersuchen und gegebenenfalls von anthropogenen Einflüssen abzugrenzen.

Dazu sollen mithilfe von ML-Methoden satellitenbasierte Datensätze für die Bodenkon-
zentration der Luftschadstoffe PM2.5, NO2 und O3 generiert werden, wofür ein RF-Ansatz
nach dem Vorbild von Handschuh et al. [27] zum Einsatz kommt. Unter Zuhilfenahme
meteorologischer Parameter und ergänzenden Hilfsdatensätzen zum örtlichen menschlichen
Einfluss und zur geographischen Beschaffenheit wird je ein RF-Modell pro Schadstoff
trainiert, durch das im Anschluss flächenhafte Vorhersagen für die Bodenkonzentration
getroffen werden.
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Unter Verwendung der abgeleiteten Daten soll die Analyse der Einflussfaktoren der
bodennahen Schadstoffbelastung durchgeführt werden.

Diese besteht zum einen daraus, den Einfluss einzelner meteorologischer, räumlicher und
zeitlicher Eingangsvariablen auf die Modellgenauigkeit zu quantifizieren und zu erklären.
Methoden der erklärbaren künstlichen Intelligenz (Explainable AI - XAI) stellen dabei
ein wichtiges Hilfsmittel dar, zusammen mit der räumlichen und zeitlichen Trennung von
Trainings- und Testdaten der Modelle.

Zum anderen soll die räumliche und zeitliche Variabilität der Schadstoffbelastung in
Deutschland und den daran angrenzenden Gebieten analysiert werden. Besonderes Au-
genmerk wird dabei auf Bedingungen für das Auftreten und die Ausprägung lokaler
Schadstoff-Hotspots bzw. Coldspots, sowie Trends in der Schadstoffentwicklung gelegt.

Des Weiteren sollen die beobachteten Korrelationen zu Wetterbedingungen vor einem
physikalischen Hintergrund analysiert werden. Dazu werden die durch die Modelle erlernten
Zusammenhänge zwischen den meteorologischen Parametern bzw. den eingesetzten Hilfs-
datensätzen und dem Schadstoffaufkommen am Boden untersucht und mit physikalischen
und chemischen Prozessen in der Atmosphäre verglichen.

Im folgenden Kapitel (Kapitel 2) werden zunächst die theoretischen Grundlagen zu den
betrachteten Schadstoffen, sowie Kerninformationen zu Satellitenmessungen vermittelt.
Im Anschluss folgt eine Erläuterung der verwendeten Datenquellen und eine Beschreibung
der zur Datenaufbereitung vorgenommenen Schritte (Kapitel 3). Der Modellaufbau sowie
die wichtigsten Analysemethoden werden in Kapitel 4 zusammengefasst, gefolgt von der
Präsentation der Ergebnisse in Kapitel 5. Zuletzt werden diese in Hinblick auf die oben
angeführten Kernfragen der Arbeit interpretiert und diskutiert (Kapitel 6).
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2 Grundlagen

Zur Analyse der Bodenkonzentrationen von Luftschadstoffen wie Feinstaub (PM2.5), Stick-
oxiden (NOx) und Ozon (O3) ist ein generelles Verständnis der Entstehungsprozesse von
Luftverschmutzung notwendig. Im folgenden Kapitel werden daher grundlegende Eigen-
schaften der Schadstoffe, sowie deren Hauptemissionsquellen und chemischen Entstehungs-
bzw. Umwandlungsprozesse in der Troposphäre beschreiben.

2.1 Kinetik chemischer Reaktionen

Grundlegend kann die Entwicklung einer chemischen Verbindung in der Atmosphäre über
die Masseerhaltung beschrieben werden. Für die Stoffmengendichte nA(r, t) einer Substanz
A in einem beliebigen Luftpaket muss stets

dnA
dt

= (Fin − Fout) + (P −L) (2.1)

gelten, wobei Fin und Fout die pro Zeiteinheit und pro Luftvolumen zuströmende und
abströmende Stoffmenge beschreibt. P ist die Summe der Raten aller Stoffquellen, während
L analog die Summe der Senken darstellt [46]. Ist das Windströmungsfeld U(r, t) =

(u, v, w), nach dem sich die Luftmassen am Ort r in der Atmosphäre bewegen, bekannt,
lässt sich Gleichung (2.1) wie folgt formulieren [47]:

dnA
dt

= −∇ · (nAU) + P −L . (2.2)

Ist die Strömung U divergenzfrei, so gilt für den Advektionsterm −∇ · (nAU) = −U∇nA.
Wenn die Stoffkonzentration Windaufwärts vom Ort R (Richtung −U(R)) ansteigt, dann
ist −U(R)∇nA(R) > 0 und es kommt zu einem Zustrom stoffreicherer Luft, wodurch
die Stoffdichte im Luftvolumen zunimmt. Bei Windstille oder wenn das Luftvolumen die
gesamte Atmosphäre einschließt findet kein Netto-Teilchentransport statt. Wird zusätzlich
davon ausgegangen, dass sich das System im Gleichgewichtszustand befindet (dnA

dt = 0),
müssen die Produktions- und Verlustraten der Quellen und Senken des Stoffs A gleich sein
(P = L). Die Verweilzeit eines solchen Stoffes ist dann durch

τA =
n

P
=

n

L
(2.3)

gegeben [46]. Bei chemischen Vorgängen, sind die Produktions- und Verlustraten eines
Stoffes durch die Reaktionsrate

vC = −d[A]

dt
= kA+B[A][B] (2.4)

für die Reaktion zweiter Ordnung

A + B −−→ C (R 2.1)
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2 Grundlagen

gegeben, wobei [A] und [B] die Konzentrationen der jeweiligen Stoffe darstellen [48]. Die
Stofflebenszeit τA aus Gleichung (2.3) ist dann durch die Reaktionsgeschwindigkeitskon-
stante k und die Konzentration der Reaktanten gegeben:

τA =
[A]

kA+B[A][B] =
1

kA+B[B]
. (2.5)

2.2 Feinstaub

Aerosole bezeichnen im Allgemeinen in der Luft schwebende flüssige oder feste Partikel
welche sich abhängig von ihrer Größe und Aerodynamik über längere Zeiträume in der
Atmosphäre aufhalten können ohne zu Boden zu fallen. Die chemische und physikalische
Zusammensetzung der Partikel kann dabei je nach Quelle sehr unterschiedlich ausfallen.
Typischen Komponenten sind z.B. Ruß, Rauch, Mineralstaub und kleinste Flüssigkeits-
tropfen. Bei besonders kleinen Partikelgrößen wird von Feinstaub gesprochen. Dieser wird
in Abhängigkeit vom Partikeldurchmesser häufig nach den folgenden Kategorien unterteilt:

• PM10: Partikel < 10 µm

• PM2.5: Partikel < 2.5 µm

• Ultrafeinstaub (PM0.1): Partikel < 0.1 µm

Für diese Einteilung gilt meist der aerodynamische Durchmesser als Bewertungskriterium.
Er beschreibt den Durchmesser eines kugelförmigen Partikels mit definierter Dichte und
mit derselben Sinkgeschwindigkeit wie das betrachtete Partikel. Aufgrund ihrer geringen
Partikelgröße können PM2.5 und PM0.1 besonders tief in den menschlichen Organismus
eindringen und sind daher besonders gesundheitsgefährdend.

Entstehung

Bei der Entstehung von Feinstaub wird zwischen primären und sekundären Schadstoffquellen
unterschieden. Primäre Quellen geben Feinstaubpartikel direkt and die Umgebung ab, wie
beispielsweise bei Verbrennungsprozessen. Der Großteil des auf diese Weise freigesetzten
PM2.5 ist auf anthropogene Aktivitäten zurückzuführen. In Deutschland waren im Jahr
2022 Haushalte und Kleinverbraucher, in deren Heizungsanlagen Feinstaub freigesetzt
wird, mit einem Anteil von 28% an den Gesamtemissionen die größte PM2.5-Quelle. Der
Straßenverkehr war mit 25% zweitgrößter Verursacher. Hier entstehen Feinstäube zum
Beispiel bei der Verbrennung von Dieselkraftstoff oder als Abrieb von Reifen und Bremsen.
Zudem können bereits abgesetzte Staubpartikel durch Fahrzeuge und Wind aufgewirbelt
werden und so erneut zur Feinstaubbelastung beitragen. Weitere Quellen beinhalten
Direktemissionen aus Industrieprozessen (25%) wobei hier auch Vorläufersubstanzen für
sekundäre Aerosole emittiert werden [1, 49].

Auf natürliche Weise entstehen primäre Aerosole z.B. in Form von Salzaerosolen in
Küstenregionen durch Gischt [50] oder als biologisches organisches Material (Pollen,
Sporen, etc.) durch Vegetation. Bodenerosion in trockenen Gebieten oder Katastrophen
wie Waldbrände und Vulkanausbrüche können zudem große Mengen Mineralstaub bzw.
Asche und Staub in die Atmosphäre ausstoßen, welche unter geeigneten Bedingungen über
große Distanzen transportiert werden können (wie z.B. Sahara-Staub nach Europa).

Je nach Gebiet und Art der Emissionen, kann ein Großteil des Feinstaubs aus sekundären
Aerosolen bestehen, die durch chemische Prozesse in der Atmosphäre aus reaktiven Vorläu-
fersubstanzen gebildet werden [51, 52, 53]. Diese Vorläuferstoffe schließen unter anderem
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2.2 Feinstaub

flüchtige organische Verbindungen (VOC), Stickdioxid (NO2), Schwefeldioxid (SO2) und
Ammoniak (NH3) ein, die durch chemische Prozesse in der Atmosphäre in Feststoffe umge-
wandelt werden können. Die Reaktionsprodukte lagern sich leicht an Kondensationskernen
in der Atmosphäre an und verursachen so die Bildung von weiterem PM2.5 [54].

Durch die verzögerte Reaktion können die Vorläufersubstanzen davor über große Ent-
fernungen transportiert werden und somit auch örtlich versetzt zur Luftverschmutzung
beitragen [55].

Als Beispiel für sekundäre Aerosolbildung kann die Reaktion von Ammoniak mit Stick-
oxiden beschrieben werden. Ammoniak wird dabei in Industriellen Prozessen, oder durch
Einsatz von Düngemitteln in der Landwirtschaft von Böden freigesetzt [55]. In einem ersten
Schritt reagiert Stickstoffdioxid mit Hydroxylradikalen (OH) wie in Reaktionsgleichung
(R 2.2) zu Salpetersäure

OH + NO2 + M −−→ HNO3 + M (R 2.2)

wobei M ein für die Reaktion benötigter Stoßpartner ist.
Abhängig von der relativen Luftfeuchtigkeit kann anschließend wie in (R 2.3a) bzw.

(R 2.3b) Ammoniumnitrat (NH4NO3) als sekundäres anorganisches Aerosol durch die
Weiterreaktion mit Ammoniak gebildet werden [46, 56]:

HNO3 (g) + NH3 (g) −−⇀↽−− NH4 NO3 (s) (R 2.3a)

für trockene Bedingungen in denen Ammoniumnitrat in fester Form auftritt, und

HNO3 (g) + NH3 (g) −−⇀↽−− NH4
+ + NO3

− (R 2.3b)

bei Überschreiten der zur Deliqueszenz1 nötigen relativen Feuchtigkeit mit Ammoniumnitrat
als Lösung. Das Gleichgewicht der Reaktionen ist für hohe Feuchtigkeitswerte stark zur
Aerosolphase verschoben [46, 57].

Ähnlich verläuft auch die Bildung von Ammoniumsulfat ((NH4)2SO4) aus SO2 und NH3,
welches gemeinsam mit Ammoniumnitrat einen großen Teil der Masse des Sekundärstaubs
(40%) ausmacht [55]. Zudem relevant sind sekundäre Aerosole, die aus flüchtigen organischen
Substanzen (VOC) entstehen. Quellen von VOCs werden in Kapitel 2.4 näher betrachtet.
Zusätzlich zu den anthropogenen Quellen sind Vorläufergase auch in der Natur, z.B. in
vulkanischen Gasen (SO2) oder Bränden (NOx) zu finden.

Abbaumechanismen und Umwelteinflüsse

Neben den genannten Quellen und Prozessen hängt die Feinstaubkonzentration auch von
verschiedenen Umwelteinflüssen ab. So kann Niederschlag das auswaschen der Grenzschicht
und somit die Deposition von PM aus der Atmosphäre erwirken. Nasse Oberflächen
unterbinden zudem, besonders in städtischen Regionen, das (Wieder-)Aufwirbeln von Staub
durch Verkehr, Wind und Materialumschlag. Daher folgt auf Niederschläge häufig eine
zeitbeschränkte Verbesserung der Luftqualität in Bezug auf Feinstaub [58]. Bei Aerosolen
mit hoher Konzentration von Ammoniumnitrat oder Ammoniumsulfat können sich diese
Bestandteile gut im Regenwasser auflösen und durch die Bildung von Nitrat- und Sulfationen
so zur Säuerung von Gewässern beitragen:

NH4 NO3 −−→ NH4
+ + NO3

− (R 2.4)
1Deliqueszenz beschreibt die Aufnahme von Feuchte aus der Luft durch eine feste Substanz, wodurch diese

eine Lösung bildet.
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2 Grundlagen

(NH4 )2 SO4 −−→ 2 NH4
+ + SO4

2− · (R 2.5)

Abbildung 2.1: Entwicklung der Menge des menschenproduzierten PM2.5 und der
Anteile der einzelnen Feinstaubquellen in Deutschland von 1995 bis 2022. Ein andauernder
Abfall der gesamten Feinstaubemissionen und speziell der Emissionen durch Verkehr und
Haushalte ist erkennbar. (Abbildung entnommen aus [1])

Entwicklung

In den vergangenen Jahrzehnten sind die anthropogenen Feinstaubemissionen in Deutsch-
land und der EU deutlich zurückgegangen (siehe Abb. 2.1). Dabei liegt in fast allen Emis-
sionskategorien eine Verringerung des PM2.5-Ausstoßes vor. Rückgänge im Verkehrssektor
sind zum einen auf technische Maßnahmen wie das Verbauen von Dieselrußpartikelfiltern
und generelle Verbesserung der Abgaseffizienz von Verbrennungsmotoren durch schärfere
Abgasgesetze zurückzuführen. Zum anderen bewirken Einschränkungen des Verkehrsauf-
kommens in Städten wie z.B. die Anpassung von Geschwindigkeitsbegrenzungen oder
Einführung von Umweltzonen eine Verringerung der PM2.5-Emissionen.

Dem entgegen stehen Prognosen zur möglichen globalen Zunahme von natürlichen PM-
Quellen im Zuge des Klimawandels. Dazu gehören erhöhte Staubemissionen durch die
Ausbreitung von Wüsten, sowie ein durch Trockenheit bedingtes vermehrtes Auftreten von
großflächigen Wald- und Buschbränden und Erosion. Häufigere Hitze- und Dürreereignisse
beeinflussen zudem die Menge und Zusammensetzung von durch Pflanzen emittierten
biogenen VOCs, welche zur Bildung sekundärer Aerosole beitragen können [49][59].

2.3 Stickoxide

Stickstoffdioxid (NO2) und Stickstoffmonoxid (NO) stellen die für die Luftverschmut-
zung relevantesten nitrose Gase dar und werden unter der Bezeichnung Stickoxide (NOx
=NO+NO2) zusammengefasst. Beide Stoffe werden häufig gemeinsam emittiert und durch
chemische Prozesse in der Atmosphäre schnell ineinander umgewandelt.
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Entstehung

Die primären Quellen von NOx sind hauptsächlich menschengemachte Verbrennungspro-
zesse, wobei unterschiedliche Bildungsmechanismen von Bedeutung sind. Zur thermischen
Bildung von NOx kommt es, wenn die Verbrennungsluft besonders hohe Temperaturen
(≥1200°C) erreicht. Dabei werden molekularer Stickstoff und Sauerstoff aus der Luft in
atomare Radikale gespalten und bilden so hauptsächlich NO, welches nach Abkühlung des
Gases weiter zu NO2 oxidiert. Dazu kommt die Umsetzung der im Brennstoff gebundenen
Stickstoffanteile zu NOx. Diese ist stark von der Menge des gebundenen Stickstoffs und
somit vom Brennstoff selbst abhängig [60].

Eine Quelle von Stickoxiden ist der Betrieb von Verbrennungsmotoren im Straßenver-
kehr. Mit 36% am Gesamtaufkommen leisteten die Verkehrsemissionen im Jahr 2022 den
größten Beitrag zur NOx-Luftverschmutzung, gefolgt von Abgasen aus Kraftwerken zur
Energieerzeugung (26%) und aus Haushalten und Kleinverbrauchern (13%). Zudem kann
in landwirtschaftlichen Böden NOx durch Denitrifizierung gebildet und emittiert werden,
wobei Nitrat durch Microorganismen in Stickstoff und NO umgewandelt wird [61].

In vergleichsweisen geringen Mengen wird Stickstoffdioxid außerdem natürlich gebildet,
z.B. durch die hohen Temperaturen bei Blitzeinschlägen oder bei Waldbränden.

Abbildung 2.2: Reaktionskette zum Abbau von NOx in der Troposphäre. Rot
markierte Übergänge finden nur tagsüber statt.

Abbaumechanismen und Umwelteinflüsse

Grundlegend für das Verständnis der Chemie innerhalb der Troposphäre ist die Bildung
von Hydroxyl-Radikalen (OH). OH stellt, für den Abbau schlecht wasserlöslicher Stoffe, das
wichtigste atmosphärische Oxidationsmittel dar [62]. Für seine Bildung wird ein energetisch
angeregtes O(1D) Sauerstoffradikal benötigt, wie es beispielsweise bei der Spaltung von
Ozon durch kurzwellige Strahlung entsteht (siehe (R 2.16b)) bevor es durch Stoß mit einem
weiteren Atom in den Grundzustand zurückfallen kann. Bei der Kollision von O(1D) mit
einem Wassermolekül entstehen zwei OH-Radikale [46]:

O(1 D) + H2 0 −−→ 2 OH · (R 2.6)

Da die Verfügbarkeit von OH, sowie das Ozon-NOx-Gleichgewicht von photochemischen
Prozessen abhängen, müssen die Reaktionsmechanismen bei Tag und Nacht getrennt
betrachtet werden. In beiden fällen stellt Salpetersäure (HNO3) das Endprodukt der
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2 Grundlagen

Reaktionskette dar. Diese kann dann entweder durch trockene oder nasse Deposition (z.B.
durch Lösung in Regenwasser) aus der Luft entfernt werden, oder wie in Kapitel 2.2
beschrieben, sekundäre Aerosole bilden.

Bei Tag befindet sich Stickstoffdioxid im Gleichgewicht mit O3 und NO. Der bedeutendste
Abbaumechanismus ist hier die Reaktion mit OH (siehe hierzu Abb. 2.2):

NO2 + OH + M −−→ HNO3 + M · (R 2.7)

Bei Nacht werden weitere Stickstoff-Sauerstoff-Verbindungen relevant. So reagiert NO2
schnell mit Ozon unter Bildung von Nitrat-Radikalen (NO3) und molekularem Sauerstoff
(O2):

NO2 + O3 −−→ NO3 + O2 · (R 2.8)

Unter Tageslicht besitzen diese Radikale nur eine sehr geringe Lebensdauer, da sie schnell
durch Photolyse in NO und NO2 zurückgeführt werden, oder mit NO reagieren [46]:

NO3 + hν(λ < 700 nm) −−→ NO + O2 (R 2.9)

NO3 + hν(λ < 580 nm) −−→ NO2 + O (R 2.10)

NO3 + NO −−→ 2 NO2 · (R 2.11)

Durch die geringe Verfügbarkeit von NO bei Nacht wird die Bildung von NO3 in relevanten
Mengen ermöglicht, sodass diese wiederum mit NO2 reagieren um Distickstoffpentoxid
(N2O5) zu bilden [46]:

NO2 + NO3 + M −−⇀↽−− N2 O5 + M · (R 2.12)

Durch die Feuchtigkeit in der Luft kann anschließend durch heterogene Hydrolyse von
N2O5 Salpetersäure entstehen [63]:

H2O + N2 O5
Aerosol−−−−→ 2 HNO3 · (R 2.13)

Der gesamte Reaktionswerg bei Nacht ist in Abb. 2.2 durch die schwarzen Pfeile gekenn-
zeichnet.

Entwicklung

Die absolute Menge an NO2-Emissionen zeigte in Deutschland über die letzten Jahrzehnte
einen rücklaufenden Trend, wie in Abb. 2.3 erkenntlich ist. Die Umsetzung effektiver
Maßnahmen zur Emissionsminderung haben hierbei vor allem zu einer Verringerung der
Verkehrsemissionen und dem NOx-Ausstoß durch Kraftwerke geführt. Primäre Maßnah-
men die den Feuerungsprozess in Kraftwerken betreffen, z.B. Abgasrückführung oder
Verringerung der Temperatur an geeigneten Stellen des Verbrennungsprozesses, können
die Entstehung von Stickoxiden mindern. Sekundärmaßnahmen richten sich auf die Nach-
behandlung des Abgases, unter anderem in Dieselfahrzeugen. Hier wird z.B. selektive
katalytische Reduktion eingesetzt, in der durch Zugabe von Ammoniak und mithilfe eines
Katalysators die Stickoxide in elementaren Stickstoff und Wasser umgesetzt werden [65].

2.4 Ozon

Ozon ist ein aus drei Sauerstoffatomen zusammengesetztes Molekül und wichtiger Bestand-
teil der Erdatmosphäre. Für seine Entstehung sind Sauerstoffradikale notwendig, welche
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2.4 Ozon

Abbildung 2.3: Entwicklung der NOx Emissionen und der Anteile der einzelnen Quell-
kategorien in Deutschland von 1995 bis 2022. (Abbildung entnommen aus [64])

hauptsächlich durch photochemische Reaktionen gebildet werden. In der Stratosphäre wird
Ozon unter Einstrahlung von UV-Licht ständig gemäß den Reaktionen (R 2.14) und (R
2.15) gebildet.

O2 + hν(λ < 242 nm) −−→ O + O (R 2.14)

O + O2 + M −−→ O3 + M (R 2.15)

Hierbei wird zunächst molekularer Sauerstoff (O2) durch hochenergetische UV-C Strahlung
in atomaren Sauerstoff (O) gespalten (siehe (R 2.14)). Die freien Sauerstoffradikale können
anschließend je mit einem Sauerstoffmolekül weiterreagieren und ein Ozonmolekül bilden,
wobei zusätzlich noch ein Stoßparameter (z.B. N2 oder O2) zum Energie- und Impulsüber-
trag benötigt wird (vgl. (R 2.15)). Ozonmoleküle zeigen besonders starke Absorptionen für
Strahlung zwischen 240 nm und 320 nm (UV-B), wobei gemäß (R 2.16b) ein potenziell
angeregtes O(1D) Sauerstoffradikal abgespalten wird [46].

O3 + hν(λ ≈ 400− 600 nm) −−→ O + O2 (R 2.16a)

O3 + hν(λ < 320 nm) −−→ O(1 D) + O2 · (R 2.16b)

Dies kann wiederum durch Stöße mit z.B. N2 oder O2 zurück in den Grundzustand
übergehen:

O(1 D) + M −−→ O + M · (R 2.17)

Der molekulare Sauerstoff kann anschließend über (R 2.15) zurück zu Ozon kombiniert
werden. Zuletzt ist es möglich, dass O und O3 unter Bildung von zwei O2 Molekülen
rekombinieren und so Ozon abgebaut wird:

O + O3 −−→ 2 O2 · (R 2.18)

Die Mechanismen für Produktion und Abbau von Ozon aus Gleichungen (R 2.14-2.18)
werden als Chapman-Zyklus bezeichnet.
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2 Grundlagen

Mittels dieser Reaktionen kommt es in der Stratosphäre zu einer Ansammlung von Ozon
und zur Bildung der Ozonschicht, welche die untere Atmosphäre vor hochenergetischer
Strahlung schützt. Aufgrund der verringerten Strahlung laufen die oben genannten photo-
chemischen Reaktionen in der Troposphäre in wesentlich kleineren Raten ab. Ozon besitzt
zudem keine für die Außenluftverschmutzung relevanten primären Emissionsquellen, kann
jedoch in Bodennähe durch den bereits in Kapitel 2.3 erwähnten NOx-Ozon-Bildungszyklus
durch Einwirkung weiterer Luftschadstoffe und Spurengase entstehen.

Dieser kann unter Vernachlässigung weiterer Substanzen, die in das Gleichgewicht
eingreifen, wie folgt beschreiben werden [66]:

NO2 + hν(λ < 424nm) −−→ NO + O (R 2.19)

O + O2 −−→ O3 + M (R 2.20)

NO + O3 −−→ NO2 + O2 (R 2.21)

=⇒ NO2
[O3], hν←−−−−→NO + O3 · (R 2.22)

NO2 wird bei Sonneneinstrahlung gemäß (R 2.19) durch Photolyse mit Wellenlängen
λ < 424 nm in Stickstoffmonoxid (NO) überführt, wobei atomarer Sauerstoff freigesetzt
wird. Durch diesen entsteht wiederum zusammen mit dem Luftsauerstoff Ozon (siehe (R
2.10) und (R.2.15)). Anschließend kann das gebildete O3 mit NO reagieren um erneut NO2
zu bilden, wodurch sich die Substanzen in einem Gleichgewicht befinden.

Die Reaktionsgeschwindigkeit von (R 2.21) ist durch kNO+O3 gegeben, während die
Rückreaktionen (R 2.19) und (R 2.20) mit dem photolytischen Ratenkoeffizient jNO2

ablaufen, der die Reaktionsrate bestimmt. Nach Gleichung (2.2) und (2.4) gilt, falls sich
das System aus den durch die Reaktionsgleichung (R 2.22) zusammengefassten Reaktionen
im Gleichgewicht befindet:

0 = kNO+O3 [NO][O3]− jNO2 [NO2] . (2.6)

Die Gleichgewichtskonzentrationen von Ozon, NO und NO2 sind dann

[O3] =
jNO2 [NO2]

kNO+O3 [NO]
(2.7a)

[NO] =
jNO2 [NO2]

kNO+O3 [O3]
(2.7b)

und
[NO2] =

kNO+O3 [NO][O3]

jNO2

. (2.7c)

Die Gleichgewichtskonstante K beschreibt das Verhältnis der Substanzen auf der linke und
rechen Seite der Reaktionspfeile in (R 2.22).

K =
[NO][O3]

[NO2]
=

jNO2

kNO+O3

(2.8)

wobei die Gleichungen (2.7a), (2.7b) und (2.7c) eingesetzt wurden. Die Reaktionsgeschwin-
digkeit kNO+O3 beträgt etwa 1.9× 10−14 cm3

molecules [67, 68, 69, 70]. Für den photolytischen
Ratenkoeffizient wird

jNO2 = 0.0135× exp
(
−0.360 1

cos(χ)

) 1
s ≈ 8.91× 10−3 1

s
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[71] angenommen, wobei ein Zenitwinkel von χ = 30° gewählt wurde. Mit diesen Werten
ergibt sich für die Gleichgewichtskonstante in Gl. (2.8)

K =
8.91× 10−3 1

s
1.9× 10−14 cm3

molecules
≈ 4.69 molecules

cm3 = 16.3 ppb (2.9)

bei einem Luftdruck von p = 1013.25 hPa und einer Temperatur T = 298K. Um die
Lebenszeit von Ozon τO3 im Gleichgewicht mit NO und NO2 in der Troposphäre abzuschät-
zen wird Gl. (2.5) herangezogen. Ein Beispielwert für die Stickstoffmonoxidkonzentration
liefern Aneja et al. [72] (Mittelwert von NO August 1991 in Raleigh, North Carolina) mit
[NO]ppb = 6.1 ppb [72]. Es ergibt sich eine Lebensdauer von

τO3 =
1

kNO+O3 [NO]

=
1

kNO+O3 [NO]ppb
p

kBT

=
298 K× (1.38× 10−23 J

K )

(6.1 molecules× 10−9)× (1.9× 10−14 cm3

molecules )× (1013.25 hPa)
≈ 5.8 min

(2.10)

Die Lebensdauer eines Stickstoffoxidmoleküls beträgt das Inverse des photolytischen Ra-
tenkoeffizienten:

τNO2 =
1

jNO2

≈ 1.87 min. (2.11)

In der Realität wird der beschriebene NOx-Ozon-Zyklus durch weitere Stoffe gestört,

Abbildung 2.4: : Reaktionskette des Ozon-NOx-Zyklus mit
Abbau von NO durch zusätzliche VOC-Radikale (Abbildung
entnommen aus [73])

wie in Abb. 2.4 dargestellt ist. Neben den in Kapitel 2.3 genannten Wegen zum NOx-
Abbau, wirkt sich die Reaktion von NOx mit Flüchtigen organischen Verbindungen (VOC)
besonders stark auf das Ozon-NOx-Gleichgewicht aus. VOCs sind Kohlenwasserstoffe (RH)
und gelangen sowohl durch menschliches Zutun, als auch auf natürlichen Wegen in die
Atmosphäre. In urbanen Gebieten sind vor allem der Einsatz von Lösungsmitteln (z.B.
in Farben und Lacken), sowie das Verdunsten oder die unvollständige Verbrennung von
Treibstoff als VOC-Quelle entscheidend. Der Großteil der VOCs in der Erdatmosphäre sind
jedoch von Tieren und Pflanzen emittierte, sogenannte biogene VOCs (BVOC). Pflanzen
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2 Grundlagen

emittieren die größte Menge BVOCs, wobei die relevanteste Substanz Isopren darstellt.
Die Menge der Emissionen wird von Temperatur und Sonneneinstrahlung beeinflusst, da
diese die Verflüchtigung begünstigen.

Der Reaktionsmechanismus von VOCs bis zur Bildung von Ozon ist im Folgenden
vereinfacht für RH beschrieben [74]:

RH + OH O2−−→RO2 + H2O (R 2.23)

RO2 + OH −−→ HO2 + R−CHO (R 2.24)

HO2 + NO −−→ OH + NO2 (R 2.25)

NO2 + hν −−→ NO + O3 (R 2.26)

Die gesamte Bildungsrate von Ozon ist durch die Verfügbarkeit von Hydroxyl-Radikalen
(OH) limitiert und somit proportional zur Reaktionsrate von (R 2.23). Weitere Quellen
und Senken für Radikale sind u.a. die Reaktionen (R 2.6) bzw. (R 2.7). Der VOC-
Reaktionsmechanismus konkurriert dabei mit der NO2-Abbaureaktion (R 2.7) um die zur
Verfügung stehenden Hydroxyl-Radikale.

Durch (R 2.24) wird NO2 aus NO gebildet, ohne den in (R 2.21) nötigen Abbau von
Ozon. Durch das Brechen des NOx-O3-Zyklus kann die Ozonkonzentration [O3] weiter
ansteigen (vgl. Abb. 2.4). Ist das Verhältnis der Konzentrationen [VOC]/[NOx ] (korrigiert
für relative Reaktivität der Substanzen mit OH) hoch, so erhöht sich auch die pro NOx
gebildete Ozonmenge, bei konstanter Verfügbarkeit von OH. Die absolute Produktionsrate
ist jedoch wegen (R 2.26) noch immer abhängig von der Stickoxidkonzentration [NOx ] (vgl.
Gl. (2.7a)), sodass das System in diesem Zustand sehr sensibel auf NOx reagiert [46]. Für
[VOC]/[NOx]≪ 1 reagiert OH verstärkt mit NO2 (R 2.7), weshalb durch den schnellen
Abbau von NOx und das intakte Gleichgewicht (R 2.22) nur geringe Mengen an Ozon
entstehen.

Es existieren weitere Mechanismen, die die Bedeutung der Konzentrationsverhältnisse
[VOC]/[NOx ] für die Ozonproduktion bestärken, hier jedoch nicht berücksichtigt wurden.
Die Abhängigkeit der Ozonproduktion von VOC- und NOx-Konzentrationen kann in einem
Ozon-Isoplethen-Diagramm wie in Abb. 2.5 dargestellt werden. Für eine feste Menge VOCs
existiert eine NOx-Konzentration, für welche das meiste Ozon produziert wird (blaue Linie
in Abb. 2.5). Unterhalb dieses optimalen [VOC]/[NOx ] Verhältnisses (links der blauen
Linie in Abb. 2.5) führt eine Erhöhung der NOx-Konzentration zu einer Ozonverringerung
und das System ist NOx-gesättigt. Für höhere Konzentrationen von VOCs (rechts der
blauen Linie) wird durch mehr NOx auch mehr O3 gebildet. Die Beziehung zwischen [O3]
und NO2-Emissionen ist somit direkt von der Konzentration der VOCs in der Troposphäre
abhängig [75].

Entwicklung

Mithilfe der oben genannten Reaktionsmechanismen lässt sich die räumliche und zeitliche
Verteilung von Ozon erklären. In den letzten Jahrzehnten konnte, wie in Abb. 2.6 zu sehen
ist, generell ein leichter Anstieg der Ozonkonzentration in Deutschland gemessen werden.
Zudem waren die mittleren Ozonwerte in ländlichen Regionen systematisch höher als in
den Städten.

Die räumlich ungleiche Verteilung ist dabei wahrscheinlich auf den Titrationseffekt
zurückzuführen welcher den Ozonabbau durch Stickstoffmonooxid gemäß (R 2.21) be-
schreibt. In der Nähe starker NO-Quellen, z.B. in verkehrsdichten Bereichen oder in der
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2.5 Satellitenmessungen

Abbildung 2.5: Isoplethen
der maximalen Ozonkonzen-
tration (ppb) als Funktion der
NOx und VOC Emissionsrate
(1012 molecules cm−2 s−1) aus
theoretischen 0-d Berechnungen.
Die blaue Linie trennt die VOC-
sensitiven von den NO2-sensitiven
Bereichen. (Abb. entnommen aus
[75])

unmittelbaren Nähe von starken Punktquellen (z.B. Kraftwerke) kann dies vor allem bei
geringer Sonneneinstrahlung (im Winter oder nachts) zu einer Netto-Umwandlung von
Ozon in NO2 führen. Dadurch kann die Ozonbildung vorerst unterdrückt werden. Weiter
windabwärts, kann die Bildung durch transportierte Vorläufersubstanzen verzögert stattfin-
den, wodurch die Ozonwerte zunehmen [75]. Dies ist auch an Gleichung (2.7a) zu erkennen,
die auf eine inverse Proportionalität zwischen O3- und NO-Konzentration hindeutet. Die
tendenzielle Abnahme von NOx-Emissionen (vgl. Abb. 2.3) sorgt daher für eine leichte
Schwächung des Titrationseffekts, was einen Beitrag zum Anstieg der O3-Jahresmittelwerte
in Abb. 2.6 leistet. Dieser ist jedoch auch für Sommermonate erkenntlich, weswegen noch
weitere mögliche Ursachen in Betracht gezogen werden müssen [76]. Der wahrscheinlichste
Verursacher ist die überregionale Zunahme des troposphärischen Ozons. Grund hierfür
könnte die globale Zunahme der Produktion von Ozon-Vorläufersubstanzen, insbesondere
in Asien, und der anschließende Transport nach Mitteleuropa sein [76, 4]. Die Menge der
nicht-Methan VOC-Emissionen (NMVOCs) in Deutschland ist dagegen seit 1990 um bis
zu 73% gesunken [77].

2.5 Satellitenmessungen

2.5.1 Aerosol Optische Dicke

Die Aerosol Optische Dicke (AOD) ist ein Maß dafür, wie stark das Sonnenlicht beim
Durchlaufen einer Luftsäule in der Atmosphäre durch Aerosole gestreut und absorbiert
wird. Mathematisch ist diese Abschwächung durch das Lambert-Beer‘sche Gesetz be-
schrieben, nach welchem die Strahlungsintensität beim Durchlaufen eines optisch dicken
Mediums exponentiell abnimmt. Eine anfängliche Intensität von I0(λ) wird während des
Strahlungstransports durch Wechselwirkung mit den Partikeln in der Atmosphäre auf

I(λ) = I0(λ)e−τ (λ) (2.12)

abgeschwächt, wobei τ (λ) die wellenlängenabhängige AOD der vertikalen Luftsäule be-
zeichnet [78].

15



2 Grundlagen

Abbildung 2.6: Gemessene Jahresmittelwerte des ländlichen und städtischen Hinter-
grunds von Ozon in Deutschland von 1995 bis 2023. (Abb. entnommen aus [4])

Die durch die Strahlungstransportgleichung beschriebene Übertragung von Licht be-
rücksichtigt im Allgemeinen Streuung, Absorption und Emission. Für eine vereinfachte
Betrachtung kann der Effekt der Emission vernachlässigt werden und die AOD in einer
Luftsäule als Integral vom Boden (z0) bis zum oberen Rand der Atmosphäre (z1) entlang
der Säule wie folgt beschrieben werden:

τ =
∫ z1

z0
βE(z)dz . (2.13)

Dabei ist βE(z) der aus Streuungs- und Absorptionskoeffizient zusammengesetzte Extinkti-
onskoeffizient und beschreibt, wie stark die Aerosole in einer bestimmten Höhe z das Licht
schwächen.

In dieser Arbeit kommen flächenbezogene, satellitenbasierte AOD-Daten zum Einsatz
welche aus Messungen der MODIS-Instrumente (Moderate Resoluten Imaging Spectrora-
diometer) auf den NASA-Satelliten Terra und Aqua hervorgehen. Die Spektroradiometer
der Satelliten messen die Intensität des von der Erdoberfläche und der Atmosphäre reflek-
tierten Sonnenlichts in verschiedenen Spektralbereichen. Zur Bestimmung der AOD muss
die Reflexion der Erdoberfläche bekannt sein. Hierzu kommen Algorithmen zum Einsatz,
welche das Reflexionsvermögen verschiedener Landoberflächen (z.B. Wüste oder Vegeta-
tion) berücksichtigen. Nun können die gemessenen Reflexionsdaten mit den erwarteten
Strahlungsintensitäten von der Oberfläche verglichen werden um die AOD zu erhalten.
Dazu wird die AOD im Strahlungstransportmodell solange angepasst, bis das simulierte
Absorptionsverhalten dem gemessenen entspricht. Da sich die Satellitenmessung auf das
vom Boden reflektierte Sonnenlicht stützt, ist sie anfällig für starke Schwankungen in der
Albedo vor allem auf hellen Oberflächen wie z.B. bei Bedeckung durch Schnee oder in
stark bebauten Regionen. Zudem wird das Retrieval durch Wolken gestört, weshalb diese
identifiziert und maskiert werden müssen [79].

Die Zusammenhänge zwischen Satelliten-AOD und der PM2.5-Konzentraiton am Boden
sind in der Regel sehr komplex und die Umrechnung zwischen den Größen ist mit verschie-
denen Schwierigkeiten verbunden. Zum einen bezieht sich die AOD auf die in der gesamten
Luftsäule befindliche Aerosolmenge, wobei deren vertikale Verteilung nicht bekannt ist. Dies
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macht es nur schwer mögliche Staub in hohen Luftschichten von bodennahem Feinstaub zu
trennen. Zum anderen umfasst PM2.5 Aerosoltypen mit unterschiedlichen Zusammenset-
zungen und Partikelgrößenverteilungen, deren optische Eigenschaften verschieden ausfallen
können. Das Streu- und Absorptionsvermögen, welches die gemessene AOD bestimmt
ist daher nicht mit der Masse der Aerosole gleichzusetzen. Meteorologische Bedingungen
nehmen dabei sowohl Einfluss auf die vertikale Staubverteilung, als auch auf die Beschaf-
fenheit der Aerosole, weshalb diese bei der Gewinnung von PM2.5-Bodenkonzentrationen
aus AOD-Satellitendaten berücksichtigt werden müssen.

Abbildung 2.7: Veranschaulichung der durch Absorption ge-
messenen schrägen Säulendichte und der errechneten vertikalen
Säulendichte während einer Satellitenmessung. (Abb. entnom-
men aus [80])

2.5.2 Troposphärisches NO2

Zur Messung von NO2-Konzentraionen in vertikalen Luftsäulen kommen vor allem Spek-
trometer zum Einsatz. Instrumente wie das TROPOspheric Monitoring Instrument (TRO-
POMI) an Bord des Satelliten Sentinel-5P der ESA, sind gut zur Überwachung atmosphäri-
scher Spurengaskonzentrationen wie NO2 geeignet. TROPOMI ist ein Nadir ausgerichtetes
Spektrometer, dass das von der Erdoberfläche und Atmosphäre gestreute Sonnenlicht
einfängt und darin Messungen im ultravioletten, sichtbaren, nahen Infrarot und kurz-
welligen Infrarotlicht durchführt [81]. Zur Messung von NO2 kommt dabei der sichtbare
400− 496 nm Kanal des Instruments zum Einsatz [82]. Für die Ableitung der vertikalen
NO2-Säulenkonzentraiton wird zunächst die gesuchte schräge Säulendichte (Slanted Column
Density, SCD) ermittelt, wozu Differenzielle Optische Absorptions Spektroskopie (DOAS)
verwendet wird. Diese liefert die Absolute Menge an NO2 entlang des effektiven Lichtwegs
von der Sonne durch die Atmosphäre bis zum Satelliten (siehe Abb. 2.7). Die durch das
Lambert-Beer‘sche Gesetz beschriebene Absorption ist dabei vereinfacht durch

I(λ) = I0(λ)e−
∑

i
σi(λ)Ns,i (2.14)

gegeben. I(λ) ist das gemessene und I0(λ) das absorptionsfreie Intensitätsspektrum. σi(λ)

ist der bekannte Absorbtions-Wirkungsquerschnitt und Ns,i die gesuchte SCD des Gases
i. Ein Anpassungsalgorithmus sucht nach der Lösungsmenge für die Gasmenge in der
schrägen Säulendichte Ns,i in Gleichung (2.14) für die sich die geringste quadratische Ab-
weichung zu den gemessenen Absorptionsspektren ergibt [83]. Im Anschluss wird die schräge
Säulendichte (Ns) in einen stratosphärischen (N strat

s ) und einen troposphärischen (N trop
s )

Anteil aufgeteilt. Dies geschieht auf Basis eines chemischen Transportmodells, welches die
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Satellitenbeobachtungen assimiliert und die beiden Komponenten der SDC trennt [82].
Zuletzt werden die SCD-Komponenten in vertikale stratosphärische und troposphärische
NO2-Säulen (Vertical Columns, VC) überführt [83, 82]. Die aus der DOAS-Messung gewon-
nene schräge Säule (Slanted Column, SC) hängt von der auf dem Lichtweg vorhandenen
Luftmenge ab. Letztere hängt von vielen Faktoren ab, einschließlich der Betrachtungs-
geometrie und der vertikalen Verteilung des Absorbers. Der Einfluss des Lichtwegs wird
dann durch den Luftmassenfaktor (Air Mass Factor, AMF) ausgedrückt der nach seiner
Definition das Verhältnis der beiden Säulenarten beschreibt [84]:

AMF =
SC
VC . (2.15)

Die Luftmassenfaktoren werden aus einer Kombination aus tabellierten AMF-Daten und
Modellinformationen zur vertikalen NO2-Verteilung hergeleitet. Die tabellierten AMFs sind
dabei abhängig von der Höhe, Satellitengeometrie, Wolkenabdeckung sowie der Erhebung
und Albedo der Erdoberfläche [83].
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Die Daten, die für das Training der Modelle und die Abschätzung der bodennahen Schad-
stoffkonzentrationen herangezogen wurden, umfassen Messdaten aus Umweltüberwachungs-
stationen, Satellitendaten, meteorologische Daten aus atmosphärischen Modellen, sowie
Daten zur Bevölkerungsdichte und zur Bebauung. Die betrachtete Zeitspanne umfasst die
Jahre 2018 bis 2022, wobei für die Jahre 2021 und 2022 keine Daten zum troposphäri-
schen NO2 vorliegen. Als Untersuchungsgebiet wurde der Bereich zwischen 2° und 16°
östlicher Länge und 46° und 56° nördlicher Breite gewählt. Damit ist die gesamte Fläche
Deutschlands und der Beneluxstaaten abgedeckt und Teilbereiche der umgebenden Staaten
(Frankreich, Dänemark, Polen, Tschechien, Österreich, Slowenien, Italien, Schweiz).

Die meteorologischen Daten, Satelliten-AOD, sowie einige weitere Satellitendaten (LST,
LC, NDVI) entsprechen den Daten von Handschuh et al. [27] und wurden zum Zweck dieser
Arbeit zur Verfügung gestellt. Diese Datensätze wurden auf einem einheitlichen Gitter mit
0.01°× 0.01° horizontaler Auflösung für das Untersuchungsgebiet zur Verfügung gestellt.
Tabelle 3.1 zeigt alle Variablen, die für die Modellentwicklung genutzt wurden.

3.1 Satellitendaten

Als Grundlage für die Feinstaubvorhersage dient die AOD. Es werden Daten des Moderate
Resoluten Imaging Spektroradiometer (MODIS) an Bord der NASA-Satelliten Terra und
Aqua genutzt, welche das untersuchte Gebiet näherungsweise um 10:30 Uhr und 13:30 Uhr
Ortszeit überfliegen. Das verwendete AOD-Produkt (MCD19A2) basiert auf dem MAIAC-
Retrieval-Algorithmus und kombiniert Terra- und Aqua-Messungen in einer räumlichen
Auflösung von 1 km. Es werden AOD-Daten bei 550 nm verwendet, weil die Extinktionen
durch PM2.5 in diesem Wellenlängenbereich gut sichtbar ist [85, 86].

Weitere eingesetzte MODIS-basierte Satellitendaten umfassen die Oberflächentemperatur
(LST), Land Cover (LC), sowie den Normalized Difference Vegetation Index (NDVI). Zur
Verbesserung der Datenabdeckung, wurden die täglichen LST-Daten mit einer ursprüngli-
chen Auslösung von 1 km zu Monatsmittelwerten auf dem 0.01°x0.01° Gitter kombiniert.
Es wurden monatliche NDVI Datensätze der Produkte MYD11A1 und MOD11A1 mit einer
räumlichen Auflösung von 1km verwendet [87]. Daten zu LC sind je als Jahresmittelwerte
verfügbar und stammen aus dem MODIS-Produkt MCD12Q1, mit einer Auflösung von
0.5 km. Es wurde das „LC_Typ1“ Band verwendet, welches die Landbedeckung in 18
Klassen unterteilt [88]. Als Indikator für Stickstoffdioxid am Boden dient das Datenprodukt
der troposphärischen NO2-Säule das im Rahmen des S-VELD Projekts am Deutschen
Zentrum für Luft und Raumfahrt (DLR) gewonnen wurden [89]. Die Daten basieren auf
Messungen des TROPOspheric Monitoring Instrument (TROPOMI) Spektrometer an
Bord des Copoernicus-Satelliten Sentinel-5 precursor (S5P), der das Untersuchungsgebiet
zwischen 13:00 und 14:00 Uhr lokaler Zeit [90] abtastet. Bei 46° nördlicher Breite deckt S5P
in einem Orbit ein etwa 33.6° (2600 km) breites Band ab, wobei diese mit 14 Orbits pro
Tag, 25° (Latitude) auseinanderliegen. Messungen aus aufeinanderfolgenden Überflügen
zwischen 10:30 Uhr und 13:30 Uhr wurden zusammengefasst. Die Daten besitzen eine
horizontale Auflösung von 3.5 km× 5.5 km. Die Verfügbarkeit der Daten beschränkt sich
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Tabelle 3.1: Zielvariablen und mögliche Eingangsvariablen für die maschinellen Lernmodelle.
Satellitendaten sind mit sat., Stationsmessungen mit in-situ und Daten aus Wettermodelle mit m

markiert.
Bezeichnung Name Einheit
PM2.5 in-situ PM2.5 Feinstaubkonzentration µg/m3
NO2 in-situ NO2 Bodenkonzentration µg/m3
O3 in-situ O3 Bodenkonzentration µg/m3
AOD sat. Aerosol Optische Dicke
TCNO2 sat. NO2 in tropospärischer Säule µmol/m2
LST sat. Oberflächentemperatur K
Year Jahr
Month Monat
DoY Jahrestag
DoW Wochentag
NDVI sat. Normierter-Differenz-Vegetationsindex
LC sat. Landbedeckung
alt Höhe über Meeresspiegle m
pop_dens Bevölkerungsdichte 1/km2
rd_type_(1-5) Straßendichte (Typ 1-5) m/km2
BLD m Grenzschicht-Energiedissipation J/m2
BLH m Grenzschichthöhe m
CAPE m Labilitätsenergie J/kg
DSR m Direkte Sonneneinstrahlung J/m2
RH m Relative Feuchte %
SP m Luftdruck am Boden hPa
SSR m Sonneneinstrahlung am Boden (abwärtsgerichtet) J/m2
STR m Wärmestrahlung am Boden (abwärtsgerichtet) J/m2
T2m m Temperatur in 2 m Höhe K
TCO3 m O3 in atmosphärischer Säule kg/m2
TCWV m Wasserdampf in atmosphärischer Säule kg/m2
TD2m m Taupunkt Temperatur in 2 m Höhe K
TP m Niederschlagshöhe m
Vis m Sichtweite m
Wind m Windgeschwindigkeit m/s

auf die Jahre 2018 bis 2020, wodurch der Betrachtungszeitraum für die Schadstoffe NO2
und O3 auf diese Zeitspanne beschränkt ist.

3.2 Stationsdaten für bodennahe Schadstoffwerte

Die meisten europäischen Länder besitzen Messtationen zur in-situ Überwachung der Luft-
qualität, deren Daten durch die European Environment Agency (EEA) öffentlich zugänglich
sind [91]. Von Interesse waren hier Messreihen für PM2.5, NO2 und O3 mit stündlicher
Auflösung von allen Messstationen im Untersuchungsgebiet, ungeachtet von Stationstyp
(Hintergrund, Industrie oder Verkehr) oder Umgebung (ländlich, urban, suburban). Insge-
samt befinden sich 648 Stationen aus Deutschland (311), Belgien (84), Frankreich (74),
Niederlande (47), Österreich (45), Tschechien (43), Polen (16), Italien (10), Schweiz (9),
Dänemark (5) und Luxemburg (4) im betrachteten Gebiet. Diese sind, wie in Abb. 3.1
dargestellt, über das Gebiet verteilt. Angepasst an die Überflugzeit der Satelliten (Ter-
ra, Aqua, Sentinel 5P), wurden die hier verwendeten Stationsdaten durch Mittelung der
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stündlichen in-situ Messwerte eines Tages zwischen 10:30 Uhr und 14:30 Uhr gewonnen.

Abbildung 3.1: Lage der Messstationen im Untersuchungsge-
biert. Einfärbung der einzelnen Punkte ist zufällig gewählt.

3.3 Meteorologische Felder

Meteorologische Variablen, welche die Verteilung von Luftschadstoffen am Boden, sowie
ihre Entstehung beeinflussen können, wurden ebenfalls in das Modell integriert (vgl. Tabelle
3.1). Es wurden Daten von numerischen Wettervorhersagen des Europäischen Zentrums
für mittelfristige Wettervorhersage (ECMWF) verwendet. Dem hochauflösenden 10 Tage
Vorhersagedatensatz Set I - HRES wurden die Daten um 12:00 Uhr entnommen, um die
Überflugzeit der verschiedenen Satelliten möglichst gut abzupassen. Die ursprünglich mit
0.1° aufgelösten Daten wurden auf das gemeinsame 0.01°-Gitter übertragen. [92]

3.4 Ortsbezogene Daten

Zusätzlich zu den oben genannten Daten, wurden zur besseren Schätzung der Bodene-
missionen von NO2, PM2.5 und entsprechenden Vorläufersubstanzen weitere Datensätze
herangezogen.

Zum einen wurde die Straßendichte als Maß für Verkehrsemissionen betrachtet. Dazu
wurde die Variable „road_density“ aus dem Datensatz des Global Roads Inventory Project
(GRIP4) mit einer Auflösung von 0.083° (5 arcmin) [93] verwendet, auf das 0.01°-Gitter
skaliert und dabei für den gesamten Untersuchungszeitraum von 2018 bis 2022 als konstant
angenommen. Die Straßendichte ist nach Größe der Straßen in fünf Kategorien aufgeteilt
((1) Autobahnen und Schnellstraßen, (2) primäre, (3) sekundäre, (4) tertiäre und (5) lokale
Straßen). Die Dichte jedes Straßentyps wurde als eigene Variable betrachtet.

Dicht besiedelte Gebiete weisen in der Regel erhöhte Verkehrsemissionen und stärkere
Heizaktivitäten auf. Die Stärke der Luftverschmutzung kann folglich vor allem in Bezug auf
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NO2 und PM2.5 mit der Bevölkerungsdichte korreliert sein [94] welche daher eine geeignete
Hilfsvariable darstellt. Aus diesem Grund wurde Schätzungen zur Bevölkerungsdichte aus
der Global Human Settlement Layer Datensatz (GHS-POP R2023A) herangezogen [95].
Die Daten wurden von der ursprünglichen Auflösung von 100 m dem gemeinsamen Gitter
(0.01°x0.01°) angepasst und analog zur Straßendichte zwischen 2018 und 2022 als konstant
angenommen.

Durch verschiedene Faktoren nimmt auch die Höhenlage an einem bestimmten Ort
Einfluss auf die Luftqualität. Durch das digitale Höhenmodell der TanDEM-X Mission mit
90 m Auflösung [96] wurde nach Anpassung an das oben genannte Gitter die geographische
Höhe ebenfalls als zeitlich konstante Variable hinzugenommen.
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4.1 Random Forest Modell

Maschinelles Lernen (Machine Learning, ML) beruht auf der Entwicklung spezieller Algo-
rithmen und statistischen Modellen zur Datenverarbeitung. Diese besitzen die Fähigkeit,
aus Daten zu lernen und auf deren Grundlage Entscheidungen oder Vorhersagen zu treffen,
ohne explizit dafür programmiert worden zu sein. Das Ergebnis des Lernprozesses ist
ein Modell, welches eine Funktion zwischen den Eingangsvariablen und der Zielvariablen
darstellt. Diese soll den statistischen Zusammenhang zwischen den beiden dabei möglichst
gut beschreiben. Das hier eingesetzte Modell zur Vorhersage von NO2-, PM2.5- und O3-
Bodenkonzentrationen ist der Random Forest (RF) Algorithmus, welcher erstmals 2001
von Breiman [97] vorgeschlagen wurde. Das Random Forest Modell ist ein Ensemble aus
einzelnen Entscheidungsbäumen zur Regression oder Klassifizierung (CART-Algorithmus),
die in Abb. 4.1 veranschaulicht sind. Es ermöglicht die Vorhersage einer Zielvariable auf
Basis mehrerer unabhängiger Eingangsvariablen (Merkmale). Im Folgenden soll dabei nur
auf die Anwendung des RF für Regressionsprobleme eingegangen werden.

Entscheidungsbäume bestehen aus Knoten und Blättern. Eine Dateninstanz (Vektor
aus allen Eingangsvariablen) wird an den Knoten jeweils mit einem Schwellenwert für
ein bestimmtes Merkmal verglichen und entsprechend eingeordnet. Nach mehrmaliger
Einordnung erreicht die Instanz einen Endpunkt (Blatt), dem ein fester Vorhersagewert
zugeteilt ist, wobei die bei den Entscheidungsknoten betrachteten Merkmale und Schwel-
lenwerte, sowie die Vorhersagwerte an den Blättern im Training bestimmt werden. Dazu
wird wie in Abb. 4.1 ein Trainingsdatensatz in einzelne Bereiche aufgeteilt, die je ein
Blatt repräsentieren und deren Vorhersagewert jeweils dem Mittelwert aller enthaltenden
Datenpunkte entspricht. Schwellenwert und Merkmal für die Aufteilung werden dabei so
gewählt, dass der mittlere quadratische Fehler der Datenpunkte zu ihrem Vorhersagwert
über alle Bereiche minimal wird. Der Datensatz kann solange aufgeteilt werden, bis der
Baum eine festgelegte maximale Tiefe (max_depth) erreicht hat oder bis die Datenpunkte
in einem Bereich eine minimale Anzahl erreichen.
Die einzelnen Bäume werden auf zufälligen Stichproben der Trainingsmenge trainiert

(bagging). Zusätzlich dazu steht beim Training eines Baumes für jeden Knoten nur eine
zufällig gewählte Teilmenge aller Eingangsvariablen zur Auswahl, welche max_features
Merkmale enthält. Dadurch wird sichergestellt, dass sich die einzelnen Bäume des Ensem-
bles hinreichend voneinander unterscheiden, was eine positive Wirkung auf die Fähigkeit
des Modells zur Generalisierung hat [98]. Zur Vorhersage wird den einzelnen Bäumen, wie
in Abb. 4.2 gezeigt, eine Dateninstanz übergeben und diese von jedem Baum individuell
ausgewertet. Anschließend werden die Vorhersagen aller Bäume gemittelt wodurch sich aus
den vielen schwachen Vorhersagen der Einzelbäume eine gute Vorhersage des Ensembles
ergibt.

Die zufällige Auswahl von Merkmalen und Datenmengen im Training der einzelnen
Bäume begrenzt die Gefahr der Überanpassung des Modells an die Trainingsdaten, vor
allem im Fall von hochdimensionalen Datensätzen [98]. Die Architektur des RF ermöglicht
es, die einzelnen Bäume unabhängig voneinander zu trainieren bzw. auszuwerten, wodurch
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Abbildung 4.1: Training eines Entscheidungsbaums mit zwei Eingangsvariablen (x1
und x2) und der Zielvariable y. Der Entstehende Baum hat eine Teife von 2.

sich Training und Auswertung einfach parallelisieren und die benötigte Rechenzeit ggf.
stark reduzieren lässt. Ein weiterer Vorteil des Random Forest liegt darin, dass keine
Notwendigkeit besteht, die Eingangs- und Zielvariablen zu skalieren oder zu normalisieren,
was seine Anwendung erleichtert.

Abbildung 4.2: Aufbau ei-
nes Random Forest Modells aus
N Entscheidungsbäumen. Die
Bäume sagen unabhängig von-
einander einen Wert für die Da-
teninstanz voraus. Das Gesam-
tergebnis ergibt sich aus dem
Mittelwert der Einzelvorhersa-
gen.

4.2 Modellaufbau

Es wurde je ein Random Forest Modell mit den Zielvariablen PM2.5, NO2 und O3 und
31 potenziellen Eingangsvariablen (siehe Tab. 3.1) entwickelt. Dabei wurden auch Hilfs-
variablen, wie das Jahr (Year), der Jahrestag (DoY) und der Monat (Month), sowie der
Wochentag (DoW) generiert, welche dem Modell die zeitlich Einordung der Daten ermög-
licht. Zu Beginn werden alle flächenbezogenen Daten an den Positionen der Messstationen
gefiltern und so räumlich und zeitlich den entsprechenden Stationsmessungen zugeordnet.
Dabei wird jeweils der Wert des Gitterpunktes gewählt, der der Station am nächsten liegt.
Der entstandene Trainingsdatensatz enthält ca. 1.2 Mio. Dateninstanzen für die Jahre 2018
bis 2022. TCNO2 ist, wie schon in Kap. 3.1 erwähnt, nur bis zum 31.12.2020 verfügbar;
die Dateninstanz für die NO2- und O3-Modelle Fallen dementsprechend kleiner aus.

Zum Training wird den Modellen der Trainingsdatensatz mit den Stationsmessungen als
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Zielvariable und meteorologischen Variablen, Satellitendaten sowie örtlichen und zeitlichen
Hilfsgfößen als Eingangsvariablen übergeben. Da Stickstoffdioxid eine wichtige Vorläufer-
substanz von Ozon darstellt, geht der Vorhersagewert des NO2-Modells, wie in Abb. 4.3
gezeigt, als Merkmal in das Ozonmodell ein. Die Möglichkeit, NO2 als Vorläufersubstanz
sekundärer Aerosole in das PM2.5-Modell einfließen zu lassen, wurde ebenfalls getestet.
Allerdings konnte keine signifikante Verbesserung der Vorhersagen festgestellt werden. Da
nur vollständige Dateninstanzen vom Modell verwertet werden können, wodurch mehr
Eingangsvariablen die Datenabdeckung potenziell verringern, wurde für dieses Modell auf
die Hinzuname der Variable verzichtet.

Abbildung 4.3: Genereller Modellaufbau der PM2.5-, NO2-, und O3-Modelle. Die Modelle für NO2
und PM2.5 beziehen jeweils Satellitenmessungen (TCNO2 bzw. AOD) als Teil ihrer Eingangsvaria-
blen. Die Vorhersagen des NO2-Modells werden weiterverwertet und dienen als Eingangsvariable
für das Modell zur Ozonvorhersage.

Die Auswahl der geeignetern Eingangsvariablen für jedes Modell ist ausschlaggebend für
die Vorhersageleistung des Modells. Viele Variablen liefern zwar zusätzliche Informationen
als Basis für die Vorhersagen, erhöhen jedoch den Rechenaufwand und verkleinern im Fall
von lückenhaften Satellitendaten auch die verfügbare Trainingsdatenmenge. Das bestimmen
der optimalen Eingangsvariablen wird mithilfe von Sequenzieller Feature Selektion (SFS)
umgesetzt. Dabei wird, ausgehend vom kompletten Datensatz mit allen potenziellen
Merkmalen, abwechselnd ein Merkmal entfernt und die resultierende Modellgenauigkeit mit
der vorherigen verglichen. Die Variablenmenge, für die sich die besten Resultate erzielen ließ
wird übernommen und der Auswahlprozess erneut durchgeführt, bis sich keine Verbesserung
in der Modellgenauigkeit mehr einstellt. Die auf diese Weise ermittelten Eingangsvariablen
für das jeweilige Modell sind in Tabelle 4.1 dargestellt.

Zur praktischen Implementierung des Random Forest Modells wurde die
RandomForestRegressor Objektklasse der python-Bibliothek scikit-learn (v.1.3.0) verwen-
det [99]. Die optimale Einstellung der Modellparameter wurde empirisch ermittelt und ist
in Tabelle 4.2 gezeigt.

4.3 Modelltestverfahren

Bei komplexen Modellen kommt es leicht zu einer Überanpassung an die Trainingsdaten,
wodurch sie unbekannte aber gleich verteilte Daten nur noch schlecht vorhersagen können.
Das Ziel ist es, einen möglichst generellen Zusammenhang zwischen Eingangsvariablen und
Zielvariable zu finden, wofür eine strikte Trennung von Test- und Trainingsdaten notwendig
ist.

Die Genauigkeit der RF-Modelle wurde durch 10-fache Kreuzvalidierung (CV10) be-
stimmt. Dabei wird der Datensatz zufällig in zehn möglichst gleich große Teilmengen
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Tabelle 4.1: Optimale Eingangsparameter ermittelt durch Sequential Feature Selection, zeilen-
weise angeordnet als Satellitendaten, meteorologische Parameter, ortsfeste Merkmale und zeitliche
Variablen.
Zielvar. Optimale Eingangsvar. Ungenutzte Var. Anzahl

PM2.5

AOD,

BLD, BLH, CAPE, LC,
RH, SP, SSR, STR, TD2m,
TP, Vis, T2m, TCO3,

alt, rd_type_1, rd_type_5,
pop_dens,

DoY, DoW, Month, Year,

DSR, LST, TCWV,
Wind

rd_type_2/3/4

22

NO2

TCNO2,

BLH, CAPE, LC, LST,
NDVI, SP, STR, T2m,
TP,

alt, rd_type_1, rd_type_2,
rd_type_3, rd_type_4,
rd_type_5, pop_dens,

DoY, DoW, Year,

BLD, DSR, RH, SST,
TCNO3, TCWV,
TD2m, Vis, Wind

Month

20

O3

NO2_pred,

BLD, BLH, LST, SP,
SSR, T2m, TCWV,
RH, Vis, TCO3,

alt, rd_type_4,

pop_dens, DoY, DoW,
Month, Year

CAPE, DST, LC, NDVI,
STR, TD2m, TP, Wind

rd_type_1/2/3/5

18

Tabelle 4.2: Auflistung der optimalen Modellparameter für die Random Forest Modelle.
Modellparameter Bedeutung Wert
n_estimators Anzahl der Bäume im Modell 400

max_features Anzahl der berücksichtigten Merkmale
für bei der Aufspaltung eines Baumes 5

bootstrap Ob Bootstrapping genutzt werden soll True
max_depth Die maximale Tiefe eines Baumes 20

criterion Funktion zur Messung der Qualität einer
Aufspaltung „squared_error“

n_jobs Anzahl der Threads zur Parallelisierung -1
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4.3 Modelltestverfahren

gespalten. Im Anschluss wird jede der Teilmengen genau einmal als Testdatensatz de-
signiert, während mit den übrigen neun Datenmengen das Modell trainiert wird. Für
jeden Testdatensatz werden Vorhersagen durch das trainierte Modell getroffen, sodass
nach Abschluss aller Trainingsdurchläufe genau eine Vorhersage für jeden Datenpunkt
im gesamten Datensatz vorliegt. Nun wird die Genauigkeit des Modells durch verglei-
chen der Testdatenvorhersagen mit ihren jeweiligen Zielwerten ermittelt. Dazu wird das
Bestimmtheitsmaß (Determinationskoeffizient, R2)

R2 = 1−
∑NT

i (yi − ŷi)
2∑NT

i (yi − ȳ)2 (4.1)

berechnet, wobei ŷi die Modellvorhersagewerte und yi die Zielwerte aus den Trainingsdaten
darstellen. ȳ ist der Mittelwert der Zielwerte und NT die Anzahl der Testdaten, außerdem
gilt −∞ < R2 < 1. Je höher das Bestimmtheitsmaß, desto akkurater sind die Vorhersagen
des Modells. R2 = 1 bedeutet eine komplette Übereinstimmung der Vorhersagen mit den
Zielwerten, während R2 = 0 bedeutet, dass das Modell genauso schlechte Werte liefert, wie
eine Vorhersage durch den Mittelwert.

Eine weitere hilfreiche Metrik stellt der mittlere quadratische Fehler (MSE) bzw. die
Quadratwurzel des mittleren quadratischen Fehlers (RMSE)

RMSE =

√√√√ 1
NT

NT∑
i

(yi − ŷi)
2 (4.2)

der Vorhersagen dar. Die tendenzielle Richtung des Fehlers ist, durch den mittleren Bias
der Vorhersagen gegeben:

Bias = 1
NT

NT∑
i

(ŷi − yi) . (4.3)

Dieser gibt an, wie stark das Modell die Zielwerte im Mittel überschätzt (Bias > 0) bzw.
unterschätzt (Bias < 0).

Zusätzlich zur oben genannten Kreuzvalidierung (CV10) werden die Modelle einer
räumlichen und zeitlichen Kreuzvalidierung unterzogen, bei der jeweils die Daten der
Stationen, bzw. der Messtage zufällig auf die einzelnen Untermengen aufgeteilt werden. Um
im Weiteren eine noch stärkere Trennung zwischen Test- und Trainingsdaten zu erzielen
wird der Datensatz im Anschluss nicht zufällig aufgeteilt, sondern so, dass sich zeitlich und
räumlich nahe Datenpaare möglichst in der selben Teilmenge befinden. Zur räumlichen
Kreuzvalidierung werden alle Stationen innerhalb Deutschlands nach Bundesländern und
außerhalb nach dem jeweiligen Staat gruppiert, wodurch sich insgesamt 26 Teilmengen
unterschiedlicher Größe ergeben (siehe Abb. 4.4a). Zur zeitlichen Kreuzvalidierung wird der
Untersuchungszeitraum, wie in Abbildung 4.4b gezeigt in zehn gleich große Zeitabschnitte
unterteilt. Da NO2 und O3 nur bis einschließlich 2020 vorhergesagt werden können, liegen
hier effektiv nur 6 Abschnitte vor.

Neben dieser geordneten räumlichen bzw. zeitlichen Kreuzvalidierung wird zudem eine
geringfügig stärker randomisierte Variante umgesetzt. Dabei werden alle Dateninstanzen
räumlich nach der zugehörigen Messstation bzw. zeitlich nach den Messtagen gruppiert.
Die einzelnen Gruppen werden anschließend zufällig auf die zehn Teilmengen der CV10
verteilt und analog zu dieser ausgewertet.
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(a) Aufteilung des Untersuchungsgebiets bei der
geordneten räumlichen Kreuzvalidierung nach
Bundesländern und Staaten. Alle Stationen eines
Untergebiets bilden jeweils eine Teilmenge der
Kreuzvalidierung.

(b) Aufteilung des Gesamtzeitraums der Trai-
ningsdaten in 10 zusammenhängende Zeitab-
schnitte zur (geordneten) zeitlichen Kreuzva-
lidierung. Dargestellt sind die geglätteten Ta-
gesmittelwerte für PM2.5, NO2 und O3 für den
gesamten Untersuchungszeitraum.

Abbildung 4.4: Darstellung der Datenaufteilung für die räumliche und zeitliche Kreuzvali-
dierung.

4.4 Modellanalysemethoden

Anders als bei einzelnen Entscheidungsbäumen, lässt sich der Entscheidungsmechanismus
eines Random Forest Modells, aufgrund der hohen Anzahl der enthaltenen Bäume, nur
noch schwer durch betrachten der einzelnen Knoten verstehen. Für die Analyse der modell-
generierten Daten ist es jedoch sinnvoll, dass die vom RF-Modell erlernten Zusammenhänge
zwischen Eingangs- und Zielvariablen dargestellt werden können. Dazu wird das Modell im
Folgenden mittels Methoden der Explainable AI untersucht.

4.4.1 Feature Importance Analyse

Um die Vorhersage des Modells zu begründen und um festzustellen, welche Merkmale
(Features) besonders zur Vorhersagefähigkeit des Modells beitragen, wird eine Feature
Importance (FI) Analyse durchgeführt. Die Methode misst die Relevanz eines Merkmals
durch Veränderungen in der Modellleistung, wenn dem entsprechenden Merkmal der
Informationsgehalt entzogen wird. Dazu werden die Werte einer einzelnen Eingangsvariable
xi des Testdatensatzes zufällig untereinander vermischt, neu den Instanzen zugeordnet und
anschließend die Modellperformance R2

perm auf dem resultierenden Datensatz evaluiert.
Dies führt zu einer Erhöhung des mittleren Vorhersagefehlers, bzw. einer Verringerung des
Bestimmtheitsmaßes (Mean Decrease in Accuracy, MDA)

MDA = R2 −R2
perm (4.4)

welche umso stärker ausfällt, je relevanter das Merkmal für die Modellvorhersage ist. Die
Berechnung der MDA ist abhängig von der zufälligen Neuverteilung der Datenpunkte.
Der dadurch verursachte statistische Fehler wird durch mehrmaliges durchführen der

28
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Berechnung (hier fünf Durchläufe) und anschließender Mittelwertbildung minimiert.
Das zur Bestimmung der Feature Importance verwendete Datenset ist dabei nicht zwin-

gend festgelegt und kann Interessensabhängig gewählt werden. Um festzulegen mit welchen
Features die besten Vorhersagen möglich sind ist eine Auswertung auf den Testdatensatz
sinnvoll. Die Verwendung des Trainingsdatensatzes ist jedoch dann zu bevorzugen, wenn
von Interesse ist, auf welche Eigenschaften das Modell seine Vorhersagen stützt, unabhän-
gig davon, ob diese zutreffend sind oder nicht. Im Folgenden wird die FI stets auf dem
Testdatensatz ermittelt.

4.4.2 Partielle Abhängigkeiten

Da die FI-Analyse nur auf die Bedeutungsstärke eines Merkmals für die Modellvorhersage,
nicht aber die Art der Abhängigkeit zwischen Eingangsvariablen und Zielvariable aufzeigt,
ist es im Zuge der Modellanalyse hilfreich, die vom Modell erlernten Zusammenhänge direkt
zu untersuchen. Hierfür werden die partiellen Abhängigkeiten des Modells in sog. Partial
Dependance Plots (PDP) veranschaulicht, welche die mittlere marginale Wirkung eines
oder mehrerer Merkmale auf das Ergebnis aufzeigen, während die Effekte aller anderen
Merkmale neutralisiert werden.

Sei M(x0, x1, x2, . . . ) = M(X⃗) die erlernte Modellfunktion, abhängig von allen Eingangs-
variablen xi und N die Anzahl der Instanzen im Trainingsdatensatz

{
X⃗n

}
. Dann ist der

im PDP gezeigte Zusammenhang für das Feature xi durch

M∗(xi) =
1
N

N∑
n=0

M (xn,0, . . . , xn,i−1, xi, xn,i+1, . . . , xN ) (4.5)

gegeben. Da für die Berechnung eines einzelnen Funktionswertes das Modell für alle N

Testinstanzen ausgewertet werden muss, kann die Darstellung eines PDP, je nach Auflösung,
bei großen Datenmengen sehr zeitaufwendig sein.

4.5 Analysemethoden für flächenhafte Daten

Im Anschluss an das Training und die Validierung der Modelle werden flächenhafte Schad-
stoffdaten generiert und zur Interpretation weiterverarbeitet.

4.5.1 Vorhersage und Weiterverarbeitung der Flächendaten

Zunächst werden die gegitterten Eingangsvariablen für jeden Tag zusammengetragen und
mithilfe eines auf der gesamten Trainingsmenge trainierten RF-Modells für PM2.5 und NO2
die Bodenkonzentration der entsprechenden Luftschadstoffe für jeden Gitterpunkt einzeln
vorhergesagt. Mit der vorhergesagten NO2-Konzentration werden daraufhin analog die
Vorhersagen der Ozonwerte generiert. Die entstandenen Datensätze umfassen für PM2.5 alle
Tage von 01.01.2018 bis zum 31.12.2022 bzw. bis zum 31.12.2020 für Stickstoffdioxid und
Ozon und besitzen die gleiche räumliche Ausdehnung wie die in Kapitel 3 beschriebenen
Flächendaten. An Gitterpunkten, an denen z.B. aufgrund von Wolkenbedeckung nicht
alle Eingangsvariablen vorhanden sind, können keine Modellvorhersagen getroffen werden,
wodurch diese leer bleiben.
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Abbildung 4.5: Klassifizierungsgebiete für die objektive Wet-
terlagenklassifikation des DWD. Zur Bestimmung der Wetterlage
für Deutschland wird nur der blaue Ausschnitt des Gitters benö-
tigt, welcher sich sehr gut mit dem Untersuchungsgebiet dieser
Arbeit deckt.

4.5.2 Datenaufteilung und Wetterlagenklassifikation

Die täglichen Schadstoffdaten, sollen zur Analyse auf Basis ihrer meteorologischen Gesamt-
situation in verschiedene Gruppen eingeteilt werden. Im Anschluss wird durch Mittelwert-
bildung innerhalb der Gruppen ein generelles Bild der Schadstoffverteilung gewonnen.

Eine erste Einteilung der Daten geschieht nach der Jahreszeit, die sowohl Einfluss auf
anthropogene Schadstoffemissionen, als auch auf meteorologische Verhältnisse nimmt. Für
den Beginn von Frühling, Sommer, Herbst und Winter wurde dabei jeweils der 21. Tag des
März, Juni, September und Dezember gewählt.

Für eine direktere Einteilung nach meteorologischen Verhältnissen wird der Datensatz
nach der vorherrschenden Großwetterlage (GWL) gruppiert, welche die über mehrere
Tage stabile Wetterlage über einem Großraum beschreibt. Es wird nach der objektiven
Wetterlagenklassifikation des DWD eingeteilt, welche im Gegensatz zu andern Klassi-
fikationsmethoden (z.B. Hess Brezowsky) eindeutig numerisch nachvollziehbar ist, und
keinen Interpretationsspielraum lässt [100]. Das Klassifikationsgebiet ist in Abb. 4.5 zu
sehen, wobei bei der Klassifikation für Deutschland nur der blaue Ausschnitt benötigt
wird, welcher sich gut mit dem hier betrachteten Untersuchungsgebiet deckt [101]. Das
Verfahren verarbeitet das Geopotential, die Temperatur, die relative Feuchte, sowie zonale
und meridionale Windkomponenten in unterschiedlichen Druckhöhen der Troposphäre.
Daraus erfolgt die Einteilung in die Wetterklassen nach den folgenden Kriterien [102]:

1. Windindex: Wenn die Windrichtung an mehr als 2/3 der gewichteten Datenpunkte
in einen festgelegten Sektor von 90° fällt liegt eine vorherrschende Windrichtung vor.
Diese wird dann der am nächsten gelegenen Hauptwindrichtung, also Südost (SO),
Südwest (SW), Nordost (NO) oder Nordwest (NW), zugeteilt, die den Windindex
bestimmt. Findet sich keine vorherrschende Windrichtung wird der Windindex „XX“
zugeteilt.
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2. Zyklonalitätsindex bei 950 hPa: Der Zyklonalitätsindex beschreibt das Vorzeichen
der mittleren Krümmung des Geopotentials im Klassifikationsgebiet bei 950 hPa
(untere Troposphäre). Negative Werte erhalten den Index „A“ (antizyklonal), positive
werden mit „Z“ (zyklonal) beschreiben. Die Zyklonalität gibt Auskunft über die Lage
von Hoch- und Tiefdruckgebieten in der aktuellen Wetterlage.

3. Zyklonalitätsindex bei 500 hPa: Wird wie in 2. berechnet, jedoch bei 500 hPa in
der mittleren Troposähre.

4. Feuchteindex: Der Atmosphäre wird entweder der Index feucht (F) oder trocken
(T) zugeordnet, auf Basis dessen, ob der mittlere Wassergehalt der Atmosphäre über
oder unter dem 30-Tage-Mittelwert um den entsprechenden Tag liegt.

Mit der Zusammensetzung der Kennung durch

Wind (5) × Zyklonalität 950 hPa (2) × Zyklonalität 500 hPa (2) × Feuchte (2)

lässt sich so zwischen 40 verschiedenen Wetterlagen unterscheiden. Der DWD stellt einen
Datensatz mit der Klassifizierung aller Tage von 1979 bis zum aktuellen Datum zur
Verfügung [103].

Zusätzlich zur Einteilung der Vorhersagedaten nach der objektiven Großwetterklassifika-
tionen, wird nach den vier Klassifikationsparametern, Windklasse, Zyklonialitätsklassen
und Feuchteklasse, aufgeteilt. Die relativen Häufigkeiten der einzelnen Wetterlagen unter-
scheiden zwischen den Jahreszeiten zum Teil stark [103], was die Trennung der Wettereffekte
von den jahreszeitlich bedingten Emissionsänderungen erschwert. Zur Minderung des Pro-
blems werden die Gruppen für die Großwetterlagen und Indizes weiter nach Jahreszeit
aufgespalten.

4.5.3 Globale räumliche Autokorrelation

Das Aufkommen hoher Schadstoffwerte in Bodennähe ist an räumliche Merkmale sowie
großflächige Wetterbedingungen geknüpft. Zudem kommt es durch Wind und Diffusion zum
Austausch von Schadstoffen, wodurch sich die Luftverunreinigungen benachbarter Gebiete
gegenseitig beeinflussen können. Im Folgenden wird daher auf ein Verfahren eingegangen,
durch das die räumliche Korrelationen in den flächenhaften Mittelwerten ermittelt werden
kann. Diese ist ausschlaggeben für die Bildung lokaler Hotspots und Coldspots, welche
im Folgeabschnitt (4.5.4) untersucht werden. Eine Quantifizierung der Clusterbildung in
einer räumlichen Datenverteilung ist durch die globale Moran’s I Statistik beschrieben.
Für N zusammenhängende Gitterpunkte i, wie sie in Abb. 4.6 dargestellt sind, lässt sich
die Stärke der räumlichen Autokorrelation über

I =
N

W

∑N
i=1

∑N
j=1 wij (xi − x̄) (xj − x̄)∑N

i=1 (xi − x̄)2 (4.6)

berechnen, wobei xi den Gruppenmittelwert am Gitterpunkt i und x̄ =
∑N

i=1 xi den
Mittelwert aller Schadstoffwerte im Gebiet und der Gruppe angibt [104]. Die Komponente
(Z)i = zi = di− x̄ ist dabei Teil eines Vektors der die Abweichungen der Gitterpunkte vom
Mittelwert enthält. Moran’s I ist ein Maß dafür, wie ähnlich sich im Mittel benachbarte
Gebiete sind, wobei die Nachbarschaft eines Gebietes über die N ×N Gewichtsmatrix Ŵ
festgelegt ist. Ihre Komponenten wij , mit wij ≥ 0 und wii = 0, beschreiben, wie stark die
Verknüpfung zweier Gitterpunkte gewichtet werden soll. Punkte mit positiver Gewichtung
müssen dabei nicht direkt aneinandergrenzen. In Gl. (4.6) wird durch die Summe aller
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Gewichte W =
∑N

i=1
∑N

j=1 wij geteilt; der Term N/W kann jedoch vernachlässigt werden,
wenn die Gewichtsmatrix Ŵ reihenweise oder zeilenweise normalisiert ist, d.h. wenn∑N

i=1 wij = 1 gilt.
Generell kann anhand des globalen Morans I-Index, welcher innerhalb des Wertebereichs
−1 < I < 1 liegt, zwischen drei groben Zuständen unterschieden werden. Für I > 1 liegt
positive räumliche Autokorrelation vor, was bedeutet, dass hohe Werte (im Verglich zum
Mittelwert) tendenziell von ebenfalls hohen Werten umgeben sind und niedrige Werte
sich im Gegenschluss in Bereichen mit weiteren niedrigen Werten finden. Für I ≈ 0
sind die Werte mehr oder weniger zufällig auf das Gebiet verteilt. Es kann dann davon
ausgegangen werden, dass sich die einzelnen Knotenpunkte kaum gegenseitig beeinflussen.
Negative Korrelationen I < 0 zeigen die Tendenz hoher und niedriger Werte sich benachbart
anzuordnen (vgl. Abb. 4.6).

Abbildung 4.6: Beispielhafte räumliche Verteilungen einer Größe mit verschieden starker globaler
Autokorrelation. Links: Abwechselnde Verteilung / Negative räumliche Autokorrelation (I < 0),
Mitte: Zufällige Verteilung / Keine räumliche Autokorrelation (I = 0), Rechts: Zusammenhängende
Verteilung / positive räumliche Autokorrelation (i > 0).

4.5.4 Local Indicators of Spatial Association (LISA)

Wenn Schadstoffquellen, Schadstoffsenken oder meteorologische Eigenschaften stark lokali-
siert sind, begünstigt dies die Bildung von örtlich begrenzten Bereichen mit deutlich besserer
oder schlechterer Schadstoffbilanz als in ihrer Umgebung. Da sich bei der Identifizierung
solcher Hotspots bzw. Coldspots nicht auf die subjektive Einschätzung durch visuelle
Bewertung der Flächendaten verlassen werden kann, wird diese durch die Berechnung
lokaler Indikatoren räumlicher Autokorrelation (LISA) verwirklicht. Ist die Gewichtsmatrix
Ŵ zeilenweise normalisiert, so kann Gl. (4.6) durch die Verwendung des lokalen Morans Ii

formuliert werden [104]:

I =
N∑

i=1

Ii

N
. (4.7)

Dabei sind

Ii =
zi

m2

N∑
j=1

wijzj (4.8)

die LISA, mit dem zweiten Moment

m2 =
N∑

i=1

z2
i

N
. (4.9)
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Die Nullhypothese der Moran-Statistik geht davon aus, dass die beobachteten Autokorrela-
tionen durch zufällige Verteilung der Werte auf die Gitterpunkte im Untersuchungsgebiet
entstehen. Durch die zufällige Permutation der Werte an den Datenpunkten (abgesehen
von Punkt i) werden Vergleichswerte Ii,sim simuliert, die auf der Zufallsannahme beruhen.
Liegt Ii nah an den simulierten Ii,sim-Werten, kann die Nullhypothese nicht abgelehnt
werden und es ist wahrscheinlich, dass die beobachtete Verteilung das Ergebnis zufälliger
räumlicher Prozesse darstellt. Liegt Ii jedoch weit außerhalb der Vergleichswerte, so kann
die Nullhypothese abgelehnt werden, da der Datensatz eine größere räumliche Gruppierung
aufweist als durch Zufallsprozesse erklärt werden kann. Die Wahrscheinlichkeit für das Zu-
treffen der Nullhypothese ist durch den aus den Simulationen berechneten p-Wert gegeben.
Vor Beginn der Clusteranalyse wird daher ein Schwellenwert pmax festgelegt, unterhalb
dessen der p-Wert als statistisch signifikant gelten soll.

Die lokale Autokorrelation Ii gibt an, wie stark der Wert am Gitterpunkt i mit der durch
die Gewichte wij definierten Nachbarschaft korreliert ist. Dabei lassen sich die statistisch
signifikanten räumlichen Ausreißer in vier Gruppen einteilen, die in Tabelle 4.3 gezeigt
werden.

Tabelle 4.3: Abhängig von seiner Nachbarschaft, kann ein Punkt einer der vier Gruppen (HL,
HH, LL, LH) zugeordnet werden. Wichtig ist dabei die Unterscheidung zwischen HH als Orte bei
denen hohe Werte von hohen Werten umgeben sind, und LL bei denen widerum niedrige Werte von
niedrigen Werten umgenen sind. Bei HL bzw. LH liegt der Punktwert ungewöhnlich stark über
bzw. unter denen der Nachbarn.

Mit p < pmax
∑N

j=1 wijzj < 1 ∑N
j=1 wijzj > 1

zi > 0 HL (Ii < 0) HH (Ii > 0)
zi < 0 LL (Ii > 0) LH (Ii < 0)

HH bzw. LL beschreiben Gebiete mit positiven LISA (Ii > 0), in denen sich ungewöhn-
lich hohe bzw. niedrige Schadstoffwerte sammeln und entsprechen damit den gesuchten
Hot- bzw. Coldspots. HL- Bereiche werden durch vereinzelte hohe Werte charakterisiert,
welche von niedrigen Werten umgeben sind. Analog bezeichnet LH vergleichsweise geringe
Schadstoffwerte in einer Nachbarschaft aus hohen Werten. Das beschriebene Verfahren
zum Finden möglicher Hotspots und Coldspots in den Schadstoffverteilungen wird nun
auf die erhaltenen flächenbezogenen Gruppenmittelwerte aus Abschnitt 4.5.2 angewendet.
Die verwendete Gewichtungsmatrix ist zeilenweise normalisiert und die Gewichtungsstärke
nimmt mit dem Abstand dij zweier Gitterpunkte ab:

wij =

1/dij für i ̸= j benachbart
0 für i = j

. (4.10)

Für die Berechnung der Ii wurde die esda.Moran_Local Funktion der Python-Bibliothek
PySAL-esda [105] genutzt und als Grenzwert für die Signifikanz wurde p ≤ 0.005 gewählt.
Im Anschluss wird noch die Größe aller gefundenen Hot- und Coldspots ermittelt, wozu
jeweils die Anzahl der zusammenhängenden, statistisch signifikanten räumlichen Ausreißer
unter Vernachlässigung diagonaler Verbindungen ermittelt wird. Damit lässt sich im
Zweifelsfall in der Auswertung die genaue Größe der betroffenen Flächen vergleichen. Zur
Verbesserung der visuellen Klarheit wird auf die Darstellung von Hotspots mit weniger als
250 Gitterpunkten (∼ 70km2) verzichtet.
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5 Ergebnisse

Im Folgenden wird auf die Resultate des Modelltrainings, sowie auf die Vorhersage der
flächenbezogenen Schadstoffe eingegangen. Zudem wird die Lage von Hot- und Coldspots in
der Schadstoffverteilung unter verschiedenen saisonalen und meteorlogischen Bedingungen
dargestellt.

5.1 Modellleistung

Tabelle 5.1 und Abbildung 5.1 fassen die Ergebnisse der 10-fachen Kreuzvalidierung für die
PM2.5, NO2 und O3 Modelle zusammen. Die entwickelten Schadstoffmodelle konnten die
gemessenen Bodenkonzentrationen von PM2.5 und NO2 mit R2-Werten von R2 = 0.76 bzw.
R2 = 0.79 im Test vorhersagen. Der mittlere quadratische Fehler beträgt für die beiden
Modelle 32% bzw. 43% des Durchschnitts und der mittlere Bias 0.1 µg/m3 (0.8%) bzw.
0.19 µg/m3 (1.1%). Die Validierung des Ozonmodells zeigt mit einem relativen Fehler von
ca. 13% und einem Bias von −0.04 µg/m3 die beste Übereinstimmung zwischen Vorhersagen
und Messungen. Mit einem Bestimmtheitsmaß von R2 = 0.91 ist die Genauigkeit deutlich
höher als die der anderen beiden Modelle.

Den Streudiagrammen aus Abb. 5.1 ist die generelle Verteilung der Mess- und Vor-
hersagedaten zu entnehmen. Die schwarze Ausgleichsgerade kreuzt für alle Modelle die
Winkelhalbierende und besitzt eine Steigung m < 1, was erkenntlich macht, dass alle drei
Modelle geringe Schadstoffwerte systematisch über- und hohe Schadstoffwerte systematisch
unterschätzen.

Tabelle 5.1: Bestimmtheitsmaße, Mittelwerte, quadratischer Fehler, Bias, Standardabweichung
und verwendete Datenmenge der PM2.5-, NO2-, und O3-Modelle nach abgeschlossenem Training.

R2
MEAN
[µg/m3]

RMSE
[µg/m3]

Bias
[µg/m3]

STD
[µg/m3] Datenmenge

PM2.5 0.76 12.15 3.85 0.10 6.22 125100
NO2 0.79 17.09 7.38 0.19 14.0 202770
O3 0.91 80.87 10.16 -0.04 31.15 128214

Im Anschluss wurde die in Kap. 4.3 beschriebene räumliche und zeitliche Kreuzvalidierung
durchgeführt um die Einsetzbarkeit des Modells in unbekannten Regionen bzw. Zeiträumen
zu ermitteln. Die entsprechenden Ergebnisse finden sich in Tabelle 5.2. Es zeigt sich,
dass durch die zeitliche Trennung der Testdaten von den Trainingsdaten vor allem das
PM2.5-Modell, mit einer Verringerung von R2 = 0.76 auf R2 = 0.51 (zufällig) bzw.
R2 = 0.35 (geordnet), einen Großteil seiner Vorhersagefähigkeit einbüst, wohingegen
räumliche Kreuzvalidierung die Ergebnisse nur geringfügig verschlechtert. Im Vergleich dazu
zeigte das NO2-Modell hier eine deutlich geringere Übereinstimmung mit den Messdaten an
Orten auf denen es nicht trainiert wurde (R2 = 0.31 und R2 = 0.36) und verliert dagegen
weniger Modellgenauigkeit bei zeitlicher Datentrennung (R2 = 0.72 bzw. R2 = 0.78).

Die räumliche und zeitliche Kreuzvalidierung des Ozonmodells kann dabei einerseits nur
auf die Eingangsvariablen des Ozonmodells angewandt werden, wobei die vorhergesagten
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5 Ergebnisse

Abbildung 5.1: Streudiagramm für die Vorhersagen der Modelle für PM2.5, NO2 und O3 im
Vergleich zu den Stationsmessungen. Die Winkelhalbierende des Quadranten ist in Rot und die
Ausgleichsgerade durch die gestreuten Daten in schwarz aufgetragen.

NO2-Werte mit der Genauigkeit von R2 = 0.79 in das Modell eingehen (siehe Tab. 5.2
O3(NO∗

2)).
Andererseits können diese auf das gesamte gestaffelte Modell angewandt werden, wodurch

sich durch die (durch räumliche CV) verschlechterte NO2-Vorhersage, welche in das O3-
Modell eingeht, ein zusätzlicher Fehler ergibt (Tab. 5.2 O3(NO2)). Die Ozonvorhersage
verschlechtert sich jedoch in beiden Fällen nur geringfügig.

Tabelle 5.2: Bestimmtheitsmaße der Modelle unter verschiedenen Testverfahren zur zeitlichen
und räumlichen Kreuzvalidierung. Die Gruppierung gibt an, dass jweils die Daten einzelner Tage,
Stationen, Regionen oder 6 Monaten stets gemeinsam in den Test- bzw. Traininsdaten vorkommen.
Das Modell O3(NO∗

2) wurde mit NO2-Stationsdaten trainiert, während O3(NO2) mit den durch
das NO2-Modell vorhergesagten Eingangsdaten trainiert und getestet wurde.

Bestimmtheitsmaß (R2)
Aufteilung: zufällig zeitlich räumlich
Gruppierung: keine Tage (CV10) 6 Monate Stationen (CV10) Regionen
PM2.5 0.76 0.51 0.35 0.73 0.61
NO2 0.79 0.78 0.72 0.31 0.36
O3(NO2) 0.91 0.86 0.82 0.90 0.87
O3(NO∗

2) 0.91 0.86 0.81 0.88 0.85

5.2 Modell- und Variablenabhängigkeiten

Die Genauigkeiten der Modelle für die einzelnen Schadstoffe reagieren unterschiedlich auf
die Verfügbarkeit bestimmter Merkmale. Die Ergebnisse der Feature Importance Analyse
für die verwendeten Variablen sind in Abb. 5.2 dargestellt.

PM2.5

Die Feature Importance Werte des PM2.5-Modells in Abb. 5.2 a) zeigen, dass die Rolle des
wichtigsten Merkmals auf eine nicht-physikalischen Hilfsvariable, den Jahrestag (DoY),
fällt, der eine mittlere Abnahme der Modellgenauigkeit (MDA) von über 50% aufweist.
An zweiter Stelle (∼ 30%) steht die Aerosol Optische Dicke (AOD) gefolgt von einer
zeitlichen Hilfsvariable (Month). Ebenfalls bedeutsam für die Vorhersage sind Parameter
zu meteorologischen Rahmenbedingungen wie Grenzschichthöhe (BLH), und -dissipation
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5.2 Modell- und Variablenabhängigkeiten

Abbildung 5.2: Feature Importance Werte aller verwendeten Merkmale für die PM2.5-, NO2-,
und O3-Modelle.

(BLD), sowie die Lufttemperatur in 2m (T2m) und Strahlungsparameter wie die einfallende
Sonnenstrahlung (SSR) und die einfallende Wärmestrahlung (STR). Zwischen 15% und
0% MDA finden sich die restlichen meteorologischen Parameter und räumlichen Merkmale
wie Straßendichte, Bevölkerungsdichte, Land Cover und geographische Höhe, die nur wenig
zur Vorhersage beitragen.

Die partiellen Variablenabhängigkeiten des Modells sind in Abb. 5.3 a)–d) für die
Variablen DoY, AOD und Merkmale zur Grenzschicht (BLH, BLD) gezeigt. Das PM2.5-
Modell sagt für die Jahrestage 150 bis 270, was ungefähr den Sommermonaten Juni,
Juli, August und September entspricht, eine geringere Feinstaubkonzentration vorher, als
im Rest des Jahres. Die höchsten Werte werden für Tage im Winter vorhergesagt. Abb.
5.3 b) zeigt zudem einen positiven Zusammenhang des Feinstaubs mit der gemessenen
Satelliten-AOD. Für den Zusammenhang mit der Grenzschicht werden Abhängigkeiten
von den Parametern BLH und BLD betrachtet (Abb. 5.3 c) und d)). Hier zeigen sich im
Mittel höhere PM2.5-Werte für geringe Grenzschichthöhen, sowie für niedrige turbulente
Energiedissipationen (BLD).

NO2

Die wichtigsten Variablen des NO2-Modells sind, wie Abb. 5.2 entnommen werden kann,
die Bevölkerungsdichte mit 55% MDA, gefolgt vom Stickstoffdioxidgehalt in der tropo-
sphärischen Luftsäule (TCNO2) mit 32%. Wie schon für das Feinstaubmodell, ist auch für
das NO2-Modell die Grenzschichthöhe von Bedeutung, wobei die übrigen meteorologischen
Parameter, wie Temperatur und Sonneneinstrahlung, als auch zeitliche Variablen (DoY,
Year, etc.) im Vergleich weniger wichtig erscheinen. Dafür sind nun vorrangig Merkmale
mit Ortsbezug, wie Straßendichten, NDVI oder die geographische Höhe (alt), im Mittelfeld
der nach Wichtigkeit eingestuften Variablen zu finden. Viele Merkmale der Meteorologie
wurden zudem im Vorfeld aus dem Modell ausgeschlossen (siehe. Tab. 4.1).
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5 Ergebnisse

Abbildung 5.3: Partielle Abhängigkeiten des Modells zur PM2.5-Vorhersage von den Variablen a)
Jahrestag, b) Aerosol Optische Dicke, c) Grenzschichthöhe und d) Grenzschicht-Energiedissipation.

Auf Basis der FI werden die PDPs des NO2-Modells für die sechs wichtigsten Variablen
pop_dens, TCNO2, BLH, rd_type_5, NDVI und alt ermittelt und in den Abbildungen 5.4
a)-f) dargestellt. Es zeigen sich generell höhere NO2-Konzentrationen bei höherer Bevölke-
rungsdichte, allerdings kann diese Beziehung für sehr dicht besiedelte Gebiete umgekehrt
werden, wie in Abb. 5.4 a) zu sehen ist. Auch TCNO2 und die Dichte kleiner, lokaler
Straßen (rd_type_5) sind positiv mit der Zielvariable korreliert; hohe Werte für NDVI und
BLH führen dagegen zu einem Absinken der vorhergesagten NO2-Konzentration. Für die
geographische Höhe (alt) zeigt sich im PDP (Abb. 5.4) kein eindeutiger Zusammenhang
zum Vorhersagewert.

O3

Abbildung 5.2 c) ist zu entnehmen, dass für die bodennahen Ozonkonzentration die
meteorologischen Variablen für die Temperatur in 2 m Höhe (T2m) mit über 30% MDA und
SSR mit 19% die wichtigsten Vorhersageparameter darstellen. Darauf Folgt der Jahrestag
(DoY) mit 13% MDA. Die Bodenkonzentration von Stickstoffdioxid, vorhergesagt durch
das NO2-Modell, ist eine wichtige Vorläufersubstanz von Ozon, in der Liste der wichtigsten
Merkmale aber lediglich an vierter Stelle mit etwa 11% MDA. Weitere Variablen mit
mittlerer Wichtigkeit sind hauptsächlich meteorologische Merkmale wie die RH, LST, BLD,
TCWV, etc. Raumbezogene Merkmale wie die Bevölkerungsdichte, die geographische Höhe
oder die Straßentypendichten besitzen entweder besonders geringe FI-Werte oder wurden
bereits bei der Auswahl der Merkmale (Kap. 4.2) ausgeschlossen. Interessant ist zudem,
dass der Ozongehalt der Atmosphärensäule (TCO3) ebenfalls unwichtig für die Vorhersage
ist.

Die partielle Abhängigkeit des Modells von der Temperatur (T2m), der Sonnenein-
strahlung (SSR), den Vorhergesagten NO2-Werten (NO2_pred), der DoY-Variable, der
Grenzschichthöhe (BLH) sowie der relativen Luftfeuchtigkeit (RH) wird berechnet und
in Abbildung 5.5 a)-f) dargestellt. T2m und SSR sind jeweils positiv mit den Modellvor-
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5.2 Modell- und Variablenabhängigkeiten

Abbildung 5.4: Partielle Abhängigkeiten des Modells zur NO2-Vorhersage von den Variablen a)
Bevölkerungsdichte, b) NO2-Gehalt der troposphärischen Luftsäule c) Höhe der Grenzschicht, d)
Dichte des Straßentyps 5 (lokale Straßen), e) Vegetationsindex und f) geographische Höhe.

hersagen korreliert, d.h. hohe Temperaturen und hohe Sonneneinstrahlung sind im Mittel
für hohe Ozonkonzentrationen verantwortlich. Eine Erhöhung der NO2-Werte hingegen
sorgt für eine Abnahme des bodennahen Ozons wie in Abb. 5.5 d) erkennbar ist. Ähnliches
gilt für die Beziehung zwischen relativer Luftfeuchtigkeit und Ozon, allerdings ist der
absenkende Einfluss von RH auf vorhergesagtes O3 relativ gering. BLH zeigt eine schwache
positive Korellation mit Ozon. Der O3-Jahresgang, mit einem maximum in der frühen
Mitte des Jahres, ist ebenfalls erkennbar (vgl. Abb. 5.5 c)), allerdings fällt dieser wesentlich
schwächer aus als in den Stationsmessungen in Abb. 5.15a erkennbar ist.

Einfluss der Variablenkorralation auf FI und PDP

Für die Interpretation der Feature Importance gilt, dass die statistische Abhängigkeit der
Merkmale untereinander die berechneten MDA-Werte beeinflussen kann. Der Extremfall
kann durch das duplizieren eines Eingangsfeatures in einem Modell für PM2.5 (mit allen
verfügbaren Merkmalen) veranschaulicht werden. Die AOD-Variable wird dazu einem
sonst identischen Modell mehrmals als Eingangsvariable übergeben. Anschließend wird
erneut die Feature Importance ermittelt. Es ist zu erkennen, dass die in Abb. 5.6 in blau
gezeigten ursprünglichen MDA-Werten der Variable AOD_1, bei hinzufügen der identischen
Merkmalen AOD_2, AOD_3 und AOD_4 in das Modell, auf diese verteilt werden. Insofern
sollte die FI für eine korrelierte Eingangsvariable nie im Vakuum betrachtet werden und stets
zusammen mit Blick auf die anderen Modellvariablen interpretiert werden. Dazu wurden die
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5 Ergebnisse

Abbildung 5.5: Partielle Abhängigkeiten des Modells zur O3-Vorhersage von den Variablen a)
Temperatur in 2 m Höhe, b) Stärke der Sonneneinstrahlung auf die Erdoberfläche, c) Jahrestag,
d) vom NO2-Modell vorhergesagte NO2-Bodenkonzentration, e) Grenzschichthöhe und f) relative
Luftfeuchtigkeit.

Pearson-Korrelationskoeffizienten zwischen den einzelnen Eingangsvariablen bestimmt und
in Abb. 5.7 dargestellt. Starke lineare Korrelationen finden sich z.B. zwischen Variablen die
mit der eintreffenden Strahlungsleistung zusammenhängen. Temperaturparameter (T2m,
TD2m und LST) sind klar von der Stärke der Sonneneinstrahlung (SST, STR) abhängig
und beeinflussen wiederum den Wassergehalt der Atmosphäre (TCWV, RH) weshalb die
beteiligten Variablen stark korreliert sind. Dazu kommen offensichtliche Korrelationen, wie
zwischen DoY und Month, zwischen geographischer Höhe (alt) und Luftdruck (SP) und
zwischen Bevölkerungsdichte und Straßendichte, besonders für kleine Straßen. Zu beachten
ist bei den obigen Betrachtungen, dass sich unter den Eingangsvariablen mit Sicherheit
auch nichtlinear korrelierte Merkmale befinden, welche durch die Berechnung der linearen
Korrelationen nicht erkenntlich werden, aber dennoch Einfluss auf die FI nehmen können.
Dies ist unter anderem zwischen DoY bzw. Month und Variablen mit stark ausgeprägtem
Jahresgang zu vermuten, bei denen sich ein maximum oder minimum in der Mitte des
Jahres zeigt (z.B. SSR, T2m, usw.).

Bei der Interpretation der PDP muss ebenfalls auf Korrelationen zwischen den Variablen
geachtet werden, da die Berechnung der partiellen Abhängigkeiten von der vollständigen
Unabhängigkeit der Merkmale ausgeht. Um den Einfluss dessen zu prüfen, wurden Modelle
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Abbildung 5.6: Vergleich der
Feature Importance eines Modells
mit verschiedenen Eingangsvaria-
blen mit einem Modell mit mehre-
ren identischen Eingangsvariablen
(AOD_1-4). Die Information der
einzelnen Merkmale ist redundant,
wodurch sich die MDA-Wertung auf
diese Aufteilt.

Abbildung 5.7: Pearson Korrelation zwischen ei-
nigen Eingangsvariablen. Es werden nur Variablen
angezeigt, für welche bedeutende Korellationen beste-
hen.

trainiert, in denen für jedes Merkmal alle in Abb. 5.7 erkenntlich stark damit korrelierten
Variablen aus dem Modell entfernt wurden, auch wenn dadurch ein geringfügig größerer
Modellfehler entsteht. Anhand der neuen Modelle konnte festgestellt werden, dass die
partiellen Abhängigkeiten der um korrelierte Merkmale reduzierten Modelle mit denen
der ursprünglichen Modelle sehr gut übereinstimmen. Die PDP wurde daher ungeachtet
der starken Korrelationen dazu genutzt, die wichtigsten physikalischen Zusammenhän-
ge zwischen Eingangsvariablen und Zielvariablen der PM2.5-, NO2- und O3-Modelle zu
untersuchen.

5.3 Räumliche Verteilung und zeitliche Entwicklung

Aufgrund der eingeschränkten Verfügbarkeit von Satellitendaten sind die täglichen Flä-
chendaten teilweise sehr lückenhaft. Die Betrachtung von (Jahres-) Mittelwerten ist deshalb
sinnvoll. Die absolute Abdeckung unterscheidet sich aufgrund der unterschiedlichen Me-
thoden zur Datengewinnung zwischen PM2.5 mit 12.7% und NO2 bzw. O3 mit 36.6%
deutlich. Die Abbildungen 5.8 a)-c) stellen die Mittelwerte der vorhergesagten Schadstoff-
konzentrationen über den jeweiligen gesamten Untersuchungszeitraum dar und Abb. 5.10
zeigt Histogramme der Werte. Zusätzlich wird die in Kapitel 4.5.4 beschriebene Analyse
zur Identifikation von Hot- und Coldspots an den Daten angewandt (siehe Abb. 5.9).
Zur besseren Orientierung sind (nur) in diesen Karten einige der größten Städte des Un-
tersuchungsgebiets markiert. Um zu erkennen, ob sich die Schadstoffverteilung während
des Messzeitraums verändert, werden außerdem die jeweiligen Jahresmittelwerte gebildet.
Um die mittlere Belastung der Bevölkerung durch PM2.5, NO2 und O3 abschätzen zu
können, muss die ungleiche Verteilung der Bevölkerung auf das Gesamtgebiet berücksichtigt
werden. Dazu werden, wie in Gleichung 5.1 gezeigt, die flächenbezogenen Mittelwerte des
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5 Ergebnisse

(a) PM2.5: µ = 10.91 µg
m3 , Cov = 12.7 % (b) NO2: µ = 7.56 µg

m3 , Cov = 36.6 %

(c) O3: µ = 83.84 µg
m3 , Cov = 36.6 %

Abbildung 5.8: Darstellung der über den gesamten Untersuchungszeitraum (PM2.5: 2018 bis
2022, NO2 und O3: 2018 bis 2020) gemittelten PM2.5-, NO2 und O3-Modellvorhersagen für die
Schadstoffbodenkonzentration. Es ist jeweils der Mittelwert über das Gesamtgebiet (µ) und die
mittlere Abdeckung der enthaltenen Tage (Cov) angegeben

Schadstoffs X über den Untersuchungszeitraum mit der Bevölkerungsdichte multipliziert,
über die Gesamtfläche summiert und anschließend durch die Gesamtbevölkerung geteilt:

EXP X =

∑
i,j (pop_dens)i,j ×Xi,j∑

i,j (pop_dens)i,j
. (5.1)

Dabei ist EXP X die mittlere Belastung der Bevölkerung durch den Schadstoff X, (pop_dens)i,j
die Bevölkerungsdichte und Xi,j der zeitliche Mittelwert jeweils am Gitterpunkt (i, j).

Tabelle 5.3: Jahresmittelwerte der vorhergesagten Schadstoffkonzentrationen über das Gesamte
Untersuchungsgebiet.

Jahr: 2018 2019 2020 2021 2022
PM2.5 [µg/m3] 11.95 11.20 10.35 10.42 10.53
NO2 [µg/m3] 7.53 8.15 7.00 - -
O3 [µg/m3] 88.13 81.48 81.86 - -
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(a) PM2.5: Iglobal = 0.95 (b) NO2: Iglobal = 0.63

(c) O3: Iglobal = 0.90

Abbildung 5.9: LISA in den Gesamtmittelwerten der PM2.5-, NO2 und O3-Modellvorhersagen.
Rote Flächen zeigen Hotspots (HH) auf und blaue Flächen signalisieren Coldspots (LL), wobei
nur Hot- bzw. Coldspots mit einer zusammenhängenden Fläche von mehr als 250 Gitterpunkten
(∼ 70km2) gezeigt werden. Iglobal gibt die Stärke der globalen Autokorrelation an.

PM2.5

Die vorhergesagten PM2.5-Mittelwerte (Abb. 5.8a) betragen im gesamten Untersuchungs-
gebiet im Durchschnitt 10.91 µg/m3, variieren jedoch mäßig mit der geographischen Lage
zwischen dem Minimum von 5.21 µg/m3 und dem Maximum von 26.89 µg/m3. Die Fein-
staubwerte fallen in den Alpen generell deutlich geringer aus als in flachen Regionen, mit
Ausnahme großer und gut erschlossener Täler (z.B. Inntal oder Etschtal) für die vergleichs-
weise hohe Werte bestehen bleiben. Zudem lassen sich in der unmittelbaren Nähe größer
europäischer Ballungsräume wie Paris, Berlin, Köln, Düsseldorf, aber auch im industrie-
und bevölkerungsreichen Ruhrgebiet erhöhte PM2.5-Werte erkennen. Die LISA-Analyse in
Abb. 5.9a liefert neben den bereits genannten Gebieten großflächige Hotspots zwischen den
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(a) PM2.5 (b) NO2 (c) O3

Abbildung 5.10: Histogramme der Verteilung der Flächendaten auf dem Gesamtgebiet für a)
PM2.5, b) NO2 und c) O3.

besonders Bevölkerungsreichen Teilen der Niederlande (Randstad) und Brüssel, sowie für
weite Teile Ostdeutschlands, Polens und Tschechiens. Naturbelassene Gebiete wie Harz,
Schwarzwald, Bayerischer Wald, usw. sind dagegen klar als Regionen mit deutlich geringerer
Belastung zu erkennen. Für die Verteilung von PM2.5 ergibt sich eine mittlere Belastung
der Bevölkerung von 11.96 µg/m3.

Für PM2.5 wurden Daten für fünf Jahre betrachtet, deren Mittelwerte in Tab. 5.3 und
flächenhafte Verteilungen in Abbildung A.1 zu finden sind. 2018 stellt sich ein Jahresmit-
telwert von 11.95 µg/m3 ein, welcher im Jahr 2019 um 0.75 µg/m3 (auf 11.20 µg/m3)
und 2020 erneut um 0.85 µg/m3 (auf 10.35 µg/m3) abnimmt. Die Folgejahre erfahren da-
gegen einen geringen Anstieg des PM2.5-Mittels auf 10.42 µg/m3 (2021) und 10.53 µg/m3

(2022). Der anfängliche Rückgang von PM2.5 ist in den Flächendaten sehr deutlich zu
erkennen und dabei nicht nur in Ballungsräumen, sondern Großflächig ausgeprägt. In
Norddeutschland und den Niederlanden liegt laut den Karten in Abb. A.1 eine deutlich
geringere Grundbelastung für die letzten Jahre 2020 bis 2022 im Vergleich zu 2018 und
2019 vor, wobei die stärkste Verbesserung der Luftqualität im Jahre 2020 erkennbar ist.

Abbildung 5.11 zeigt den Verlauf des PM2.5-Mittelwertes zusammen mit Daten zu
Brandaktivitäten in Zentraleuropa. Letztere sind Daten aus Betrachtungen von MODIS-
Satellitendaten des EFFIS [106]. Sie enthalten die pro Woche verbrannte Fläche aller über-
wiegend innerhalb des Untersuchungsgebiets liegenden Länder (Deutschland, Tschechien,
Schweiz, Österreich, Belgien und Niederlande). Die PM2.5-Daten wurden zur Unterdrückung
des Wochengangs ebenfalls als Wochenmittelwerte aufgenommen. Es zeigen sich merkliche
Brandereignisse zwischen Februar und März in 2018, 2019 und 2022, sowie im Juni und Juli
2022. Weitere Brandflächen konnten von Juni bis September 2018, im Mai und Juni 2019
und im April der Jahre 2020 und 2021 beobachtet werden. Die Feinstaubwerte schwan-
ken dabei überwiegend zufällig und relativ geringfügig, um den fünfjährigen Mittelwert.
Auffällig sind jedoch die besonders hohen PM2.5-Werte im Januar/Februar 2018 sowie die
besonders geringe Belastung im Februar/März 2020. Etwas schwächer, aber merklich unter
dem Mittel, liegen auch die PM2.5-Werte von September bis November 2019 und Februar
bis Mai 2021.

Des Weiteren wurden in Abb. 5.12 jeweils die Verläufe der Monatsmittelwerte des vom
PM2.5-Modell vorhergesagten Feinstaubs und der Niederschlagsmenge im Untersuchungs-
gebiet als Abweichungen vom fünfjährigen Mittelwert aufgetragen. Neben den in Abb.
5.11 beobachteten PM2.5-Schwankungen zeigen sich für den Niederschlag besonders geringe
Werte im Februar, Juli und Oktober 2018, im Januar und April 2020, sowie im März 2022.
Starke Niederschläge können im März, Oktober und November 2019, Februar 2020, Mai
und Juli 2021 und im September 2022 beobachtet werden.
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Abbildung 5.11: Mit einem Binomialfilter (1/4 [1, 2, 1]) geglättete Wochenmittelwerte für PM2.5
und die verbrannte Fläche in den Ländern Deutschland, Tschechien, Schweiz, Österreich, Belgien
und Niederlande. Die grauen Linien geben für PM2.5 den Mittelwert zwischen 2018 und 2022 und
für die verbrannte Fläche den Mittelwert zwischen 2006 und 2024 an.

Abbildung 5.12: Der mittlere Niederschlag und Monatsmittelwerte für PM2.5 auf dem Untersu-
chungsgebiet für die Jahre 2018 bis 2022. Die Daten sind aufgetragen als Abweichung vom zwischen
2018 und 2022 gemessenen Mittelwert. Die Niederschlagswerte wurden zur besseren Interpretier-
barkeit invertiert aufgetragen.

NO2

Der Mittelwert der bodennahen Stickstoffdioxidbelastung liegt zwischen Anfang 2018 und
Ende 2020 bei 7.56 µg/m3 . Der Abb. 5.8b ist klar zu entnehmen, dass NO2 im Vergleich zu
PM2.5 oder Ozon wesentlich inhomogener Verteilt ist, wobei nahezu jede größere Stadt mit
deutlich höheren Schadstoffwerten als in den ländlichen Regionen auffällt. In Abb. 5.9b sind
dementsprechende Hotspots zu erkennen. Die Inhomogenität in der NO2-Verteilung zeigt
sich sowohl an der schmalen und asymmetrischen Werteverteilung in Abb. 5.10b, als auch
an der Spanne der Extremwerte, welche mit maximalen Stickstoffdioxidkonzentrationen von
71.17 µg/m3 und Minima von 1.62 µg/m3 die größte unter den untersuchten Schadstoffen
darstellt. Wie schon bei PM2.5 finden sich in den Alpen und vielen naturbelassenen Regionen
vergleichsweise niedrige NO2-Werte, wobei sich Gebirgstäler durch höhere Werte deutlicher
von ihrer Umgebung abheben. Generell sind die Coldspots in Abb. 5.9b zahlreicher und
gleichmäßiger über das Untersuchungsgebiet verteilt als bei den andern Schadstoffen, fallen
allerdings auch wesentlich kleiner aus, wodurch viele unter die gesetzte Mindestgröße von
∼ 70 km2 fallen. Die am stärksten verschmutzten Städte sind Paris, Hamburg, München,
Frankfurt am Main, Berlin und Prag, wobei die bedeutendste großflächige Verschmut-
zung auf den Westen der Niederlande, Nordbelgien und das Ruhgebiet begrenzt sind. Im
Durchschnitt ist jeder Einwohner im Gesamtgebiet über den Untersuchungszeitraum einer
NO2-Konzentration von 16.77 µg/m3 ausgesetzt.

Die zeitliche Entwicklung ist anhand von Tab. 5.3 und der Abbildungen A.2 an den
entsprechenden Jahresmittelwerten zu erkennen. Analog zu PM2.5 ist ein allgemeines
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Absinken der NO2-Konzentration im Jahr 2020 (7.0 µg/m3) im Vergleich zu den Vorjahren
(2018: 7.53 µg/m3, 2019: 8.15 µg/m3) zu vermerken. Davon abgesehen ähneln sich die
Schadstoffkarten der drei Jahre in ihrer räumlichen Verteilung stark.

Analog zu PM2.5 sind in den Abbildungen 5.13 und 5.14 die wöchentlichen bzw. monatli-
chen NO2-Werte zwischen 2018 und 2020 gegen die verbrannte Fläche und den Neiderschlag
aufgetragen. Der Verlauf der NO2-Konzentration zeigt vereinzelte Erhöhungen zwischen
März und November 2018, sowie einen deutlichen Anstieg im Januar und Februar 2019.
Werte unter dem Dreijahresdurchschnitt finden sich im Januar 2018, zwischen August
und Oktober in 2019, sowie besonders im Februar 2020 mit ebenfalls leicht erhöhten
Niederschlagswerten für den Rest des Jahres.

Abbildung 5.13: Mit einem Binomialfilter (1/4[1, 2, 1])
geglättete Wochenmittelwerte für NO2 und die verbrannte
Fläche in den Ländern Deutschland, Tschechien, Schweiz,
Österreich, Belgien und Niederlande. Die grauen Linien
geben für NO2 den Mittelwert zwischen 2018 und 2020 und
für die verbrannte Fläche den Mittelwert zwischen 2006 und
2024 an.

Abbildung 5.14: Der mittlere Niederschlag und Monats-
mittelwerte für NO2 auf dem Untersuchungsgebiet für die
Jahre 2018 bis 2020. Die NO2-Daten sind aufgetragen als
Abweichung vom zwischen 2018 und 2020 gemessenen Mit-
telwert. Die Niederschlagswerte beziehen sich auf den Mit-
telwert zwischen 2018 und 2022 und wurden zur besseren
Interpretierbarkeit invertiert aufgetragen.

O3

Ozon ist von den betrachteten Schadstoffen am gleichmäßigsten im Untersuchungsgebiet
verteilt (siehe Abb. 5.8c und Abb. 5.10c) und liegt im Mittel mit einer Konzentration von
83.84 µg/m3 vor. Die Extremwerte belaufen sich auf 96.69 µg/m3 und 54.73 µg/m3, womit
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5.4 Saisonale Schadstoffverteilung

der Maximalwert dichter am Mittelwert liegt als das Minimum. Südlich gelegene Gebiete sind
mit Ausnahme der Alpen nach Abbildung 5.8c und Abb. 5.9c stärker belastet als der Norden,
wobei sich in den Küstenregionen der Nordsee die geringsten Werte und größten Coldspots
befinden. Im Inland sind Coldspots erneut in den Alpen und vegetationsdichten Gebieten
zu finden, insbesondere im Bayerischen Wald und im Riesengebirge (Polen/Tschechien)
(siehe Abb. 5.9c), aber auch generell verringerte Werte im Schwarzwald, Thüringer Wald
u. Thüringer Schiefergebirge (siehe Abb. 5.8c). Abweichend von PM2.5 und NO2 zeigen
sich für die dort erwähnten Ballungsräume, also Großstädte und das Ruhrgebiet, sowie
für Täler in den Alpen wesentliche lokale Absenkungen der Ozonbelastung. Speziell in
Paris, Bremen, Hamburg, Berlin und München, sowie über dem Ruhrgebiet lassen sich
Coldspots erkennen, während sich Hotspots Großflächig über den Südwesten Frankreichs
und Mitteldeutschland erstrecken. Ebenso kann im Nordböhmischen Becken ein Hotspot
erkannt weren. Die mittlere Belastung der Bevölkerung im Untersuchungsgebiet beträgt
77.73 µg/m3.

Die Ozonmittelwerte für 2018 liegen mit 88.13 µg/m3 deutlich über den Mittelwerten der
anderen Jahre, welche 81.48 µg/m3 für 2019 und 81.86 µg/m3 für 2020 betragen (siehe Tab.
5.3 und Abb. A.3). Ebenfalls auffällig in Abb. A.3b ist die vergrößerte Niedrigozonfläche
an der Nordseeküste der Niederlande im Jahr 2019.

(a) Trend der Jahresmittelwerte (b) Mittlerer Jahresgang

Abbildung 5.15: Schadstoffwerte der PM2.5-, NO2- und O3-
Stationsmessungen: a) Jahresgang der Messdaten als Monatsmittelwerte.
Die eingefärbten Flachen beschreiben die Standardabweichung innerhalb des
Monats. b) Entwicklung der Jahresmittelwerte der Stationsdaten von 2018 bis
2022.

5.4 Saisonale Schadstoffverteilung

Angesichts des merklichen Jahresganges der Messwerte für PM2.5, NO2 und O3 (vgl. Abb.
5.15a) wird eine Separierung der flächenbezogenen Schadstoffwerte nach den Jahreszeiten
durchgeführt. Die räumliche Verteilung ist in Abb. 5.16 dargestellt, Mittel- und Extremwerte
sind in Tab. 5.4 zu finden und die auf Hot- und Coldspots untersuchten Jahreszeitenmittel
sind in Abb. B.1, B.2 und B.3 enthalten.

Für PM2.5 und Stickstoffdioxid liegen die Schadstoffbelastungen in Winter 39% bzw.
44% über dem Gesamtdurchschnitt (aller Jahre), während im Sommer ein Rückgang
der Schadstoffe um 20% bzw. 25% zu beobachten ist. Für NO2 lässt sich zudem im
Herbst ebenfalls eine 26%-ige Erhöhung und im Frühling eine 20%-ige Verringerung der
Konzentrationen feststellen. Die jahreszeitliche Verteilung der Ozonkonzentrationen verhält
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Tabelle 5.4: Räumliche Mittel- und Extremwerte in den flächenhaften Mittelwerten der Schad-
stoffwerte für die einzelnen Jahreszeiten.

PM2.5 [µg/m3] NO2 [µg/m3] O3 [µg/m3]
Mittel Min. Max. Mittel Min. Max. Mittel Min. Max.

Gesamt 10.91 5.21 26.88 7.56 1.62 71.17 83.84 54.73 96.69
Winter 15.10 4.74 45.55 10.92 2.52 72.64 60.18 30.31 80.43
Frühling 11.16 4.64 34.84 6.09 1.17 60.13 98.96 64.32 110.46
Sommer 8.73 4.37 18.52 5.69 0.60 78.84 103.02 60.33 126.28
Herbst 10.99 4.65 25.60 9.51 1.71 71.41 55.53 32.46 73.91

sich qualitativ umgekehrt zur vorhandenen NO2-Menge, mit deutlich stärkerer Belastung
im Frühling und im Sommer (18 bzw. 23% über dem Jahresmittel) und geringeren Werten
im Herbst und Winter (34 bzw. 28% unter dem Jahresmittel). Die räumliche Verteilung
von NO2 erfährt über die Jahreszeiten keine signifikante Veränderung, abgesehen davon,
dass sich im Winter die Werte vor allem um die Ballungsräume erhöhen und sich die
entsprechenden Hotspots vergrößern (vgl. Abb. 5.16 und B.2). Zudem entfällt aufgrund der
großflächig geringen NO2-Konzentraion im ländlichen Bereich im Sommer und Frühling
der entsprechende Coldspot in den Alpen (vgl. Abb. B.2c und B.2b). PM2.5 erfährt in
der kalten Jahreszeit einen relativ gleichmäßigen Anstieg, in sämtlichen Regionen, wobei
im Norden von Tschechien für alle Jahreszeiten ein Hotspot vorliegt (vgl: Abb. B.1). Für
Ozon ist die bereits in Kap. 5.3 beobachtete geringere Bodenkonzentration innerhalb von
Städten im Winter und Herbst deutlich stärker ausgeprägt als im Sommer und Frühling.
Es können im Sommer nur noch für wenige Städte (z.B. Paris und Bremen), dafür aber für
die Küsten- und Alpenregionen größere Coldspots ausgemacht werden. Im Südwesten des
Untersuchungsgebiets, bzw. im Südosten im Frühling, breiten sich die größten Ozonhotspots
über das Flachland um die Alpen aus. Gebirge und naturbelassene Gebiete, die in den
warmen Jahreszeiten mit leicht verringerten Ozonkonzentrationen auffallen, verändern sich
über das Jahr nur geringfügig und liegen im Winter eher über dem Saisondurchschnitt
(vgl. Abb. 5.16).

5.5 Schadstoffverteilung bei verschiedenen meteorologischen
Bedingungen

In Folgenden soll durch Einteilung der Tage im Untersuchungszeitraum nach bestimmten
meteorologischen Kriterien der Einfluss von Wetterverhältnissen auf die von den RF-
Modellen vorhergesagte Luftqualität ersichtlich werden.

5.5.1 Auswirkung der Windbedingungen

Zunächst wird die Schadstoffkonzentration für verschiedene Windverhältnisse untersucht.
Ein Maß für die Windstärke an einem Tag im gesamten Untersuchungsgebiet wird durch
Mittelung der tagesspezifischen ECMWF-Daten für den Wind erhalten. Anschließend wer-
den die Daten so aufgeteilt, dass jeweils ca. 15% der Tage mit den höchsten und niedrigsten
mittleren Windgeschwindigkeiten zusammengefasst werden, wie in Abb. 5.17 dargestellt ist.
Dabei muss eingeräumt werden, dass die so erhaltenen mittleren Windgeschwindigkeiten
im Winter Tendenziell höher ausfallen als im Sommer, und somit saisonale Unterschiede
bei der Interpretation berücksichtigt werden müssen. Zusätzlich dazu soll der Einfluss der
Windrichtung untersucht werden, wozu Großwetterlagenklassifikationen aus Kap. 4.5.2

48



5.5 Schadstoffverteilung bei verschiedenen meteorologischen Bedingungen

Abbildung 5.16: Jahreszeitliche Mittelwerte der Modellvorhersagen des bodennahen a) PM2.5, b)
NO2 und c) O3.
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zum Einsatz kommen. Die Vorhersagen werden dazu über ihre Windindizes nach Haupt-
windrichtungen gruppiert und jeweils ein Mittelwert gebildet. Dabei ist wiederum auf die
ungleiche Verteilung der Hauptwindrichtungen in den einzelnen Jahreszeiten zu achten,
die in Abb. 5.18 zu sehen ist. Die häufigste Windrichtung ist die Südwestlage mit 38%
aller Tage, gefolgt von Nordwest mit 28% und unbestimmt (XX) mit 21%. Nordöstliche
und südöstliche Anstromrichtungen treten nur an 7% bzw. 6% der Tage auf. Im Winter ist
Nordwesten die häufigste Windrichtung, während zu den übrigen Jahreszeiten verstärkt
Südwestwinde vorliegen.

Abbildung 5.17: Aufteilung der Daten nach
Stärke der mittleren Windgeschwindigkeit pro
Tag. Der linke und rechte Extrembereich jen-
seits der schwarzen vertikalen Linien enthält
jeweils ca. 15% der Daten.

Abbildung 5.18: Verteilung der Hauptwind-
richtung aus den Großwetterlagen auf die Jah-
reszeiten.

PM2.5

Der Bereich mit mittleren Windstärken (siehe Abb. A.4b) zwischen 2.5 und 5 m/s weist
ähnliche Feinstaubmittelwerte und -verteilungen auf wie die Gesamtmittelewerte in Abb.
5.8a. Zwischen Stark- und Niedrigwindniveau ist jedoch ein deutlicher Unterschied zu
erkennen. Bei geringen Windstärken stellt sich im Untersuchungsgebiet ein erhöhter Mit-
telwert von 11.89 µg/m3 ein; bei höheren Windgeschwindigkeiten fällt dieser unter den
Durchschnitt auf 9.03 µg/m3 ab. Hohe Windstärken sind oft mit stärkerer Wolkenbe-
deckung verbunden, weshalb die Datenabdeckung in diesem Bereich deutlich schlechter
ausfällt und Artefakte wie in Abb. A.4c entstehen. Wenn davon ausgegangen wird, dass der
dadurch entstandene Fehler gering ist, kann geschlussfolgert werden, dass die Region von
der Nordseeküste in Belgien und den Niederlanden, bis zur Rhein-Ruhr-Region bei hohen
Windstärken zu Coldspots in der Feinstaubkonzentration werden (vgl. Abb. B.4c). Dieselbe
Region stellt bei niedrigen Windstärken den stärksten PM2.5 Hotspot im Gesamtgebiet dar
(vgl. Abb. B.4c). Die Windrichtung hat ebenfalls starken Einfluss auf die PM2.5-Belastung.
Die höchsten Feinstaubwerte finden sich im Mittel für Südostwind (13.05 µg/m3), wobei
Nordwestwind mit 9.23 µg/m3 die niedrigste Belastung mit sich bringt (Abb. A.5). Dieser
Unterschied ist vermutlich auf die Saisonalität des Windes zurückzuführen. Die Metropol-
region Rhein-Ruhr ist als markanter Hotspot gut für die Untersuchung von Änderungen in
der PM2.5-Verteilung mit der Windrichtung geeignet.

Beim Verglich der Hotspots im Gesamtmittelwert (Abb. 5.9a) mit denen in Abb. 5.19 lässt
sich der Einfluss der Windrichtung auf die PM2.5-Verteilung erkennen. Der vom Ruhrgebiet
und den Städten Köln, Bonn und Düsseldorf ausgehende großflächige Hotspot fällt für die
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Hauptwindrichtung NW besonders groß aus. Des Weiteren ist in den Abbildungen 5.19 a)
(NW) c) (SW) und d) (SO) zu erkennen, dass sich dieser tendenziell verstärkt Abwärts der
jeweiligen Windrichtung ausbreitet.

(a) NW (b) NO

(c) SW (d) SO

Abbildung 5.19: Ausschnitte der PM2.5-Hotspots über dem Ruhrgebiet bei
nordwestlicher, nordöstlicher, südwestlicher und südöstlicher Anstromrichtung.
Die Pfeile kennzeichnen die jeweilige Hauptwindrichtungn nach der Wetterla-
genklassifikation des DWD.

NO2

Ähnlich wie bei PM2.5 sind für NO2 nur die Windextreme von Interesse die sich analog mit
niedrigen Werten von 6.81 µg/m3 bei starkem Wind und hohen Werten von 7.90 µg/m3 bei
schwachem Wind auszeichnen. Die NO2-Konzentration nimmt bei zunehmenden Windge-
schwindigkeiten vor allem in den Ballungsräumen deutlich ab und die Hotspots verkleinern
sich (vgl. Abb. A.6c und B.6c). Anders als bei PM2.5 hat die Hauptwindrichtung für
Stickstoffdioxid keinen signifikanten Einfluss auf die mittlere Bodenkonzentration (vgl.
Abb. A.7). Allerdings lässt sich in Abb. 5.20b, 5.20d und 5.20c (NO, SO und SW) für die
Hotspots rund um das Ruhrgebiet erneut eine Verstärkung der Schadstoffreichen Gebiete
windabwärts des Ballungsgebiets erkennen.
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(a) NW (b) NO

(c) SW (d) SO

Abbildung 5.20: Ausschnitte der NO2-Hotspots über dem Ruhrgebiet bei
nordwestlicher, nordöstlicher, südwestlicher und südöstlicher Anstromrichtung.
Die Pfeile kennzeichnen die jeweilige Hauptwindrichtungn nach der Wetterla-
genklassifikation des DWD.

O3

Die Ozonkonzentrationen zeigen ähnliche Windabhängigkeiten wie PM2.5 (Abb. A.8 u.
A.9). Sie ist besonders gering für hohe Windgeschwindigkeiten (72.42 µg/m3) und die
Windindizes NO (79.76 µg/m3), NW (79.16 µg/m3), und SW (81.29 µg/m3). Dagegen
fällt sie höher aus bei niedrigen Windgeschwindigkeiten (92.18 µg/m3) und südöstlicher
und unbestimmter Anstromrichtung (SO: 90.09 µg/m3, XX: 89.00 µg/m3). Für die nord-
westliche und südwestliche Hauptwindrichtung vergrößern sich die Coldspots an der Nord-
bzw. Ostseeküste, während im südlichen Inland die im Gesamtmittel beobachteten Ozon-
hotspots zu finden sind (siehe Abb. A.9b und A.9d). Bei Nordostwind ist im Osten, also
in Österreich, Tschechien und Teilen Ostdeutschlands und Polens ein Ozonminimum im
Inland zu erkennen (vgl. Abb. A.9e), wohingegen Ostdeutschland, Polen und Tschechien
bei Südostwind besonders hohe Ozonkonzentrationen aufweisen (vgl. Abb. A.9c).
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5.5.2 Auswirkung des atmosphärischen Feuchtegehalts

Der Wassergehalt der Atmosphäre spielt eine wichtige Rolle in den chemischen Prozessen der
Schadstoffe, weshalb im Folgenden nach Unterschieden zwischen den Feuchteklassen (trocken
(T) und feucht (F)) der Großwetterlagen gesucht wird. Da hierbei mögliche Einflüsse der
Jahreszeitlich bedingten Emissions- und Temperaturunterschiede verhindert werden sollen,
die sich aus der in Abb. 5.21 gezeigten ungleichen Verteilung der Feuchteindizes zwischen
Sommer und Winter ergeben, wird der Datensatz im Folgenden zusätzlich nach Jahreszeiten
aufgespalten.

Abbildung 5.21: Relative Häufigkeit der Tage
deren Großwerterlage als feucht oder trocken ein-
gestuft wurde, in Abhängigkeit der Jahreszeit.

Tabelle 5.5: Mittlere Schadstoffkonzentrationen über die Gesamtfläche des Beobachtungsgebiets,
jeweils für feuchte (F) und trockene (T) Wetterbedingungen

PM2.5 [µg/m3] NO2 [µg/m3] O3 [µg/m3]
Feuchteindex: T F T F T F
Gesamt 11.16 10.53 7.90 7.16 79.25 89.14
Winter 15.20 14.69 11.35 9.87 59.90 60.85
Frühling 11.34 10.83 6.15 5.98 96.62 102.11
Sommer 7.66 9.43 5.44 5.85 94.94 108.33
Herbst 10.96 10.99 9.63 9.33 55.23 55.99

Im Winter und Frühling lassen sich leichte Erhöhungen der Feinstaubkonzentration
bei trockenen Bedingungen erkennen, wohingegen im Sommer in solchen Wetterlagen
wesentlich weniger Feinstaub vorliegt (siehe Tabelle 5.5). Die räumliche Verteilung der
Daten zeigt wenig Auffälligkeiten für die einzelnen Bereiche. Lediglich im Herbst sind
für feuchte Verhältnisse in Ostdeutschland, Polen und Tschechinnen die Feinstaubwerte
sichtbar gegenüber denen der trockenen erhöht. Für NO2 liegt nur während der kalten
Jahreszeit ein verringerter Mittelwert für als feucht klassifizierte Tage vor, wobei sich
im Bezug auf die relative räumliche Ausdehnung wenig verändert. Die Ozonwerte weisen
für feuchte Konditionen generell, besonders jedoch im Sommer, einen Anstieg auf. Es ist
anzumerken, dass die Abdeckung durch Satellitendaten in trockenen Bedingungen mit 42%
höher ausfällt als in feuchten Bedingungen (32%).
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5.6 Wochenendeffekt

Die Veränderungen der anthropogenen Aktivitäten im Verlauf einer Woche finden größten-
teils unabhängig von anderen Umwelteinflüssen statt. Der Unterschied in den Schadstoff-
konzentrationen zwischen Wochenende (Samstag und Sonntag) und dem Rest der Woche
(Montag bis Freitag) kann daher direkt auf den Menschen zurückgeführt werden und wird
im Folgenden Untersucht.

Tabelle 5.6: Mittlere Schadstoffkonzentrationen über die Gesamtfläche des Beobachtungsgebiets,
jeweils von Montag bis Freitag und von Samstag und Sonntag für verschiedene Jahreszeiten.

PM2.5 [µg/m3] NO2 [µg/m3] O3 [µg/m3]
Wochentag Mo-Fr Sa-So Mo-Fr Sa-So Mo-Fr Sa-So
Gesamt 10.88 10.99 7.79 6.97 83.85 83.86
Winter 15.58 14.16 11.20 10.16 59.94 60.80
Frühling 11.03 11.57 6.25 5.70 98.59 99.88
Sommer 8.73 8.74 5.87 5.19 103.45 101.91
Herbst 10.99 11.03 9.94 8.52 54.75 57.33

(a) Sommer (b) Winter

Abbildung 5.22: Mittlerer Änderung der NO2, O3 und PM2.5-Konzentraiton am Wo-
chenende gegenüber dem jeweiligen jahreszeitlichen Mittel des (a) Sommers und (b)
Winters. Die Stärke des Effekts ist für Gebiete mit verschiedenen Bevölkerungsdichen
dargestellt.

Tabelle 5.5 zeigt, dass die NO2-Konzentration an Wochenenden ca. 8% unterhalb des
Gesamtmittelwertes liegt. Der Unterschied zwischen Wochenenden und Tagen unter der
Woche fällt in den einzelnen Jahreszeiten unterschiedlich stark aus, wobei vor allem die
Unterschiede in den Extrema (Sommer und Winter) interessant sind. Im Sommer beträgt
dieser ca. -12% des Jahreszeitenmittelwerts und -10% bzw. -15% im Winter bzw. Herbst.
Abb. 5.22 zeigt, dass die relative Stärke der Abnahme tendenziell mit der Bevölkerungsdichte
der Region steigt, was auf unterschiedlich starke Effekte in ländlichen und urbanen Regionen
schließen lässt.

Für bodennahes Ozon fällt der Wochenendeffekt im Sommer mit -1.5% geringfügig
negativ aus, ist für den Winter (+1.4%) und Herbst (+4.6%) jedoch positiv. Der Effekt ist
im Sommer größtenteils unabhängig von der Bevölkerungsdichte (vgl. Abb. 5.22a), wobei
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er im Winter analog zu NO2 mit dieser in seiner Stärke zunimmt (vgl. Abb. 5.22b).
Zur Vollständigkeit wurden auch die Feinstaubdaten entsprechend aufgeteilt, wobei

sich hier für den Winter ein Wochenendeffekt von -9.4% ergibt, der anfänglich mit der
Bevölkerungsdichte wächst. Dagegen fällt dieser im Frühling geringfügig positiv aus (+4.8%)
und ist vernachlässigbar klein zu den übrigen Jahreszeiten.

5.7 Saisonale Abhängigkeiten zwischen Ozonkonzentration
und NO2

Die aus Kapitel 2.4 bekannten Beziehungen zwischen Ozon- und Stickoxidkonzentrationen
sollen im Folgenden untersucht werden. Dazu wird für jede Jahreszeit auf den entsprechen-
den Daten je ein Ozonmodell mit den gleichen Hyperparametern und Eingangsvariablen
wie das Gesamtmodell trainiert. Für diese saisonalen Modelle wird ihm Anschluss die
partielle Abhängigkeit zwischen O3 und NO2 ausgewertet.

Die saisonalen Ozonmodelle besitzen aufgrund der geringeren Trainingsdatenmenge mit
R2 = 0.8 im Winter und 0.82 im Sommer eine etwas geringere Modellgenauigkeit. Die
partiellen Abhängigkeiten zur Vorläufersubstanz NO2 sind in Abb. 5.23 dargestellt, wobei
auf die Verwendung unterschiedlicher Achsenlimits hingewiesen sei. Für Winter und Herbst
ist die Relation zwischen O3 und NO2 in Abbildung 5.23a und 5.23d am eindeutigsten
und streng monoton fallend. Im Sommer ist für geringe NO2-Werte zunächst ein Anstieg
des Ozons mit zusätzlichem NO2 zu erkennen, ab Konzentrationen über 6 µg/m3 sinkt
die Ozonkonzentration jedoch ab (vgl. Abb. 5.23c). Das Verhalten im Frühling zeigt
ebenfalls eine Antikorrelation der beiden Schadstoffe, diese ist allerding deutlich schwächer
ausgeprägt als im Winter bzw. Herbst (vgl. Abb. 5.23b).

(a) Winter (b) Frühling

(c) Sommer (d) Herbst

Abbildung 5.23: Partielle Abhängigkeiten des Vorhergesagten Ozons
vom bodennahen NO2 (NO2_pred). Es wurden separate Modelle für die
Daten aus (a) Winter, (b) Frühling, (c) Sommer und (d) Herbst trainiert.
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6 Diskussion

Im folgenden Teil der Arbeit sollen die Ergebnisse aus Kapitel 5 näher untersucht und
mithilfe der in den Grundlagen (Kapitel 2) vermittelten Kenntnisse über die troposphärische
Schadstoffentwicklung interpretiert werden.

6.1 Modellgenauigkeit

Die Genauigkeiten der drei Random Forest Modelle zur Vorhersage von bodennahen PM2.5-,
NO2-, und O3-Konzentrationen aus Satellitendaten und weiteren unterstützenden Variablen
wurde ermittelt. Der grundlegend sehr geringe Bias und die hohe Bestimmtheit (R2) lassen
darauf schließen, dass alle drei Modelle gut für die Vorhersage bodennaher Schadstoff-
konzentrationen geeignet sind. Da R2-Werte in der Regel den besseren Vergleichswert für
Regressionsmodelle darstellen [107] wird im Folgenden primär auf diese eingegangen, um
Modelle zu vergleichen.

Demnach lässt sich für das trainierte PM2.5-Modell die geringste Modellgenauigkeit unter
den drei Schadstoffmodellen feststellen. Es liefert ähnlich gute Ergebnisse wie vergleichbare
Modelle in den Untersuchungen von Handschuh et al. [28][27] und Hu et al. [108]. Letztere
stellten zudem einen positiven Einfluss von Faltungsebenen auf die Modellgenauigkeit
fest. Bei einem solchen Ansatz erhält das Modell nicht nur Daten für den entsprechenden
Gitterpunt und Zeitpunkt, sondern zusätzlich Informationen über die räumliche und
zeitliche Umgebung, z.B. erhält das Modell zusätzliche Informationen über nahegelegene
PM2.5-Messungen (vgl. Hu et al. [108]) oder zu Messungen am Vortag. Die zeitliche
Kreuzvalidierung zeigt klar, dass zeitliche Trennung der Daten einen starken Einfluss auf
die Modellgenauigkeit ausübt, wobei die Verschlechterung der Vorhersagen für die striktere
Trennung stärker ausfällt. Die räumliche Kreuzvalidierung konnte dabei mit wesentlich
kleineren Verschlechterungen noch vergleichsweise gute Bestimmtheitsmaße hervorbringen.
Beim Einsatz des Modells auf Daten außerhalb des Untersuchungszeitraums muss daher
mit erheblichen Verringerungen in der Genauigkeit der Vorhersagen gerechnet werden, was
die universelle Anwendbarkeit des Verfahrens einschränkt. Das sich PM2.5-Vorhersagen
in ML-Modellen durch zeitliche Kreuzvalidierung in der Regel stärker verschlechtern als
durch räumliche Kreuzvalidierung deckt sich mit den Beobachtungen bestehender Studien
z.B. von Zhu et al. [109] und Handschuh et al. [110].

Auch für die Vorhersage von oberflächennahen NO2-Konzentrationen mit RF-Modellen
finden sich ähnliche Genauigkeiten in bestehenden Studien wie der von M. Li et al. [111].
Bessere Ergebnisse konnten wiederum von Cao [112] mithilfe eines Faltungs-Neuralen
Netzes und moderat veränderten Vorhersagevariablen erreicht werden. Balamurugan et
al. [19] setzten dagegen ein Gradient-Boosting-Tree Modell (GBT) sehr ähnlicher Da-
tengrundlage wie in diese Arbeit zur Vorhersage von bodennahem NO2 ein und konnten
Bestimmtheitsmaße von R2 = 0.88 erreichen. Unterschiede im Untersuchungszeitraum und
vor allem im Untersuchungsgebiet könnten für die stark unterschiedlichen Modellgenau-
igkeiten verantwortlich sein. Die am dichtesten besiedelten Länder Europas, also Belgien
und die Niederlande, welche auch die höchste Dichte an Messstationen aufweisen, fielen
nicht in den Trainingsbereich von Balamurugan et al. [19] (ausschließlich Deutschland) und
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könnten die Beziehung zwischen Eingangsvariablen und NO2 deutlich komplexer ausfallen
lassen als bei der Betrachtung eines einzelnen Landes. NO2-Modelle für unterschiedliche
Regionen Mitteleuropas können sich daher stark voneinander unterscheiden. Dies erklärt
auch die Ergebnisse der räumlichen Kreuzvalidierung, die eine deutliche Verschlechterung
bei der Trennung von Test- und Trainingsdaten nach (Bundes-) Ländern zeigt. ML-basierte
Stickstoffdioxidvorhersagen scheinen, ungeachtet des verwendeten Modelltyps, starke Ver-
ringerungen in der Modellgenauigkeit bei räumlich getrennter Auswertung zu erfahren
und bei zeitlicher Trennung größtenteils unbeeinflusst zu bleiben, wie der Vergleich mit
anderen Untersuchungen zeigt [19][112]. Ein Einsatz des Modells auf Gebieten außerhalb
des Untersuchungsraums, ohne weitere Trainingsdaten für diese Flächen, ist daher nur mit
deutlich geringerer Präzision möglich.

Das Ozonmodell zeigt besonders gute Genauigkeiten und schneidet von den drei Modellen
am besten ab. Es stellt eine leichte Verbesserung gegenüber früheren Studien dar, in denen,
im Kontrast zu dieser Arbet, kein gestaffelter Aufbau aus NO2- und O3-Modellen angesetzt
wurde (vlg. W. Wang et al. [31]). Ähnlich gute Vorhersagewerte für bodennahes Ozon
konnten durch ein Ensemble-Modelle von X. Liu et al. [37] oder mittels GBT-Modell von
Balamurugan et al. [19] erzielt werden. Bei letzteren kam, wie hier, ein gestaffelter Model-
laufbau mit Nutzung des vorhergesagten NO2-Werts und mit vergleichbaren Datenquellen
zum Einsatz. Die Modellleistung scheint sich bei räumlicher und zeitlicher Kreuzvalidierung
nur geringfügig zu verändern, was sich mit den Ergebnissen von Balamurugan et al. [19]
deckt und für die Übertragbarkeit des Modells auf andere Zeiträume und Gebiete spricht.

Es konnte festgestellt werden, dass alle drei hier trainierten Modelle dazu neigen, niedrige
Extremwerte in den Vorhersagen zu überschätzen und hohe Extremwerte zu unterschätzen.
Dies ist ebenfalls an den zum Vergleich herangezogenen Modellen von Handschuh et al.
[28][27], Cao [112], Balamurugan et al. [19] und M. Li et al. [111] zu finden. Dies könn-
te eine direkte Folge der entscheidungsbaumbasierten Vorhersagemethoden sein, in der
Wertebereiche durch ihren Mittelwert approximiert werden und so Extremwerte nicht gut
repräsentiert werden können.

Modellansätze, in denen räumliche- oder zeitliche Faltungen der Daten vorgenommen
wurden (vgl. Hu et al. [108] und Sun et al. [113]) waren dem hier verwendeten Ansatz
tendenziell überlegen. Tatsächlich bleiben durch die unabhängige Vorhersage der Schad-
stoffkonzentrationen pro Gitterpunkt, Informationen aus benachbarten Gebieten unberück-
sichtigt, die z.B. durch den Transport von Schadstoffen oder deren Vorläufersubstanzen
Einfluss auf die Schadstoffkonzentration nehmen können. Besonders eine Berücksichtigung
der Windrichtung bei der Faltung und der Nähe des Gitterpunkts zu starken stationären
Schadstoffquellen wie Flughäfen oder Kraftwerken könnte die Informationslage des Vor-
hersagemodells deutlich verbessern. Eine zeitliche Faltung der Eingangsdaten könnte vor
allem für langlebigere Schadstoffe, deren Konzentration sich über den Zeitraum von Tagen
ändert, hilfreiche Informationen bereitstellen.

6.2 Physikalische Auslegung der Modellabhängigkeiten

Im Folgenden werden die Ergebnisse der Feature Importance Analyse interpretiert und
ggf. anhand der partiellen Abhängigkeiten überprüft, ob die erlernten Zusammenhänge das
entsprechenden Modells physikalisch sinnvoll sind.
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6.2 Physikalische Auslegung der Modellabhängigkeiten

PM2.5

Die wichtigste Variable für die Vorhersage von bodennahen Feinstaubwerten ist durch den
Jahrestag (DoY) gegeben. Dieser kann aufgrund der starken Korrelation zusammen mit
dem drittwichtigsten Merkmal (Month) gemeinsam betrachtet werden (vgl. Abb. 5.7).
Die Wichtigkeit dieser Variablen ist einerseits darin zu begründen, dass PM2.5 durch
Unterschiede in den menschenverursachten Emissionen, aber auch durch meteorologische
Bedingungen eine starke Saisonalität besitzt. Zeitabhängige Merkmale können Muster
im Jahresgang der Luftverschmutzung an das Modell weitergeben und so die Vorhersage
deutlich verbessern. Dies ist auch am Verlauf der partiellen Abhängigkeit zwischen PM2.5
und DoY zu erkennen (vgl. Abb. 5.3 a)). Der zum Teil unstetige Verlauf ist ein Anzeichen
darauf, dass das PM2.5-Modell den Jahrestag nutzt um besondere Feinstaubereignisse in
den Trainingsdaten zu erlernen. Aufgrund der begrenzten Anzahl an Messjahren, lassen sich
durch in Kombination von DoY- mit der Year-Variable einzelne Zeitepisoden identifizieren
und die jeweiligen Feinstaubverhältnisse vorhersagen, ohne einen direkten Zusammenhang
mit den physikalischen Verursachern oder der AOD herstellen zu müssen. Dies deckt
sich mit den Ergebnissen der temporalen Kreuzvalidierung, bei der die in den Daten
vorhandenen Muster durch zeitliche Trennung nicht mehr erkannt werden und es so zu
einer Verschlechterung der Modellgenauigkeit kommt.

Die AOD wird insgesamt als zweitwichtigster und unter den physikalischen Merkmalen als
wichtigster Vorhersageparameter identifiziert. Hohe PM2.5-Konzentrationen tragen direkt
zu der Aerosolmenge in der vertikalen Atmosphärensäule bei, deren Absorptionsstärke
durch die AOD charakterisiert wird, weshalb die streng monoton steigende partielle
Modellabhängigkeit (Abb. 5.3 b)) einen durchaus sinnvollen physikalischen Zusammenhang
zwischen PM2.5 und AOD darstellt.

Auch die Höhe der Grenzschicht wirkt sich als eines der wichtigsten Merkmale auf die
bodennahe Feinstaubkonzentration aus. Innerhalb der Grenzschicht steht die Atmosphäre
in direkter Wechselwirkung mit der Erdoberfläche. Durch Reibungskräfte verursachte
Turbulenz sowie Konvektion spielen eine entscheidende Rolle für die Ausbreitung und dem
Transport atmosphärischer Spurenstoffe [114][115]. Eine hohe Schichthöhe erlaubt eine
großräumigere Verteilung der Staubpartikel und resultiert so in einer geringeren PM2.5-
Bodenkonzentration, was sich ebenfalls im Verhalten des Modells wiederspiegelt (Abb. 5.3
c)) [116]. Die saisonale Abhängigkeit der Grenzschichthöhe fließt dabei zudem in die Funk-
tion der DoY-Variable ein. In den Wintermonaten ist die Grenzschicht oft niedriger [117],
was die Feinstaubkonzentration erhöht, wobei die Emissionen durch Heizungsaktivitäten
zusätzlich verstärkt werden. Tageszeitliche Schwankungen der Grenzschichthöhe können
vom Modell jedoch nicht berücksichtig werden, da lediglich ein einzelner Zeitschritt pro
Tag verarbeitet wurde.

Auch die Beschaffenheit der Grenzschicht spielt eine Rolle für die PM2.5-Konzentration,
da sie zusätzliche Informationen zur vertikalen Verteilung der Aerosole liefert. Bei hoher
turbulenter Diffusivität werden die Luftmassen innerhalb der Schicht besser durchmischt,
was dazu führt, dass Staubpartikel schneller und effektiver verteilt werden und weniger
Feinstaub in Bodennähe vorliegt [118]. Als Parameter für diese Beschaffenheit wurde
die Variable BLD betrachtet, die die Energiedissipation durch turbulente Vorgänge in
der Grenzschicht beschreibt. Auch hier hat das Modell einen physikalisch sinnvollen
Zusammenhang gelernt (vgl. Abb. 5.3 d)).

Generell konnte festgestellt werden, dass sich das PM2.5-Modell durch Hinzufügen
von Daten mit geographischem Bezug wie Bevölkerungsdichte oder Straßendichte kaum
verbessern ließ. Dies wiederspricht der Erwartung, dass PM2.5 zum Teil an ortsfeste Quellen
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wie urbane Emissionen gebunden ist.
In feuchter Umgebung kann es zu hygroskopischem Wachstum von Feinstaubpartikeln

kommen, bei dem Aerosole Feuchtigkeit aus der Luft anziehen und so ihre chemischen
Eigenschaften und Absorptionseigenschaften ändern [119]. Dies kann sich direkt auf die
Beziehung zwischen PM2.5-Konzentration und der gemessenen AOD auswirken weshalb es
nicht den Erwartungen entspricht, dass wichtige Indikatoren des Prozesses wie die relative
Luftfeuchtigkeit (RH) eine derart geringe Rolle in der Modellvorhersage einnehmen. Die
Wichtigkeit von RH für die PM2.5-Vorhersage ist dabei in machen Studien significant [118],
wird jedoch von anderen als schwach befunden [110, 120]. Es ist denkbar, dass der Einfluss
der Luftfeuchtigkeit durch andere korrelierte Merkmale wie TP, BLH oder SSR in das
Modell eingeht.

NO2

Durch das Fehlen signifikanter natürlicher Quellen wird die örtliche NO2-Belastung haupt-
sächlich durch anthropogene Prozesse gesteuert, wobei Verkehrsemissionen den größten
Beitrag zu den Stickoxidemissionen liefern. Es ist daher nicht ungewöhnlich, dass die
wichtigste Eingangsvariable in der Vorhersage von bodennahem Stickstoffdioxid die Bevöl-
kerungsdichte ist. In bevölkerungsreichen Gebieten erhöht sich das Verkehrsaufkommen
und somit auch die Emissionen, weshalb der Anstieg der NO2-Vorhersagewerte mit der
Bevölkerungsdichte in Abb. 5.4 a) sinnvoll ist. Bei 7000 Einwohnern pro km2 erreicht die
mittlere NO2-Konzentartion jedoch einen Hochpunkt und stiegt danach nicht weiter. Als
möglicher Grund dafür kommt in Frage, dass besonders dicht besiedelte Gebiete häufig gut
durch öffentlichen Nahverkehr erschlossen sind und der Bedarf bzw. das Aufkommen an
Individualverkehr dadurch nicht weiter zunimmt.

Das Einbeziehen der Straßendichte sollte ebenfalls Aufschluss über die Verkehrsemis-
sionen liefern. In der Nähe von Straßen, deren Dichte z.B. durch rd_type_5 (lokale
Straßen) beschrieben ist, zeigt sich eine höhere NO2-Belastung, was ebenfalls den Erwar-
tungen entspricht. Die verschiedenen Straßendichten sind merklich untereinander und mit
der Bevölkerungsdichte korreliert, weshalb ihre Wichtigkeit von der Feature Importance
wahrscheinlich unterschätzt wird.

Ein Großteil des in der Troposphäre enthaltenen NO2 befindet sich in bodennähe [121],
weshalb der troposphärische Stickstoffdioxidgehalt direkt mit der Bodenkonzentration
korreliert. Der Vorhersagewert in Abb. 5.4 b) steigt dementsprechend bei verstärkten
NO2-Konzentrationen in den Satellitendaten.

Einen wichtigen Hinweis darauf, wieviel des troposphärischen NO2 am Boden vorhanden
ist, liefert wie schon bei PM2.5 die Höhe der Grenzschicht. Auch hier erlaubt eine hohe
BLH eine bessere Verteilung des Schadstoffs und sorgt so für eine Verringerung der
Bodenkonzentration, was mit dem Verhalten in Abb. 5.4 c) übereinstimmt.

Die fünftwichtigste Variable ist durch den NDVI gegeben, welcher eine Verringerung
der NO2-Werte für höhere Bedeckungen mit Vegetation zeigt. Dies könnte einerseits der
Fall sein, da der NDVI negativ mit der Bevölkerungsdichte korreliert ist, andererseits kann
Vegetation auch direkt als Senke für NO2 dienen, da Pflanzen während der Photosynthese
NO2 über die Blätter in ihren Stoffwechsel aufnehmen können und es so aus der Luft
entfernen [122].

Die Beziehung zwischen Höhenlage (alt) und Schadstoffbelastung ist in Abb. 5.4 f)
nicht eindeutig identifizierbar. Während (Boden-) Erhöhungen relativ zur umgebenden
Geographie durch stärkeren Luftstrom die NO2-Konzentration theoretisch verringern und
lokale Absenkungen (Täler) die Wahrscheinlichkeit auf Inversionslagen erhöhen und den
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Abtransport von Luftschadstoffen generell erschweren, lässt sich nur schwer eine Aussage
über den Einfluss der absoluten geographischen Höhe treffen.

Insgesamt ist auffällig, dass zeitliche Variablen kaum eine Rolle in der Vorhersage von
NO2 spielen, obwohl auch für NO2 ein Jahresgang in Abb. 5.15a erkennbar ist. Es ist
möglich, dass dieser durch die saisonalen Änderungen im NDVI oder der Grenzschicht-
höhe bereits ausreichen charakterisiert ist. Da die zeitliche Kreuzvalidierung jedoch gute
Ergebnisse liefert, kann zum einen vermutet werden, dass sich nur wenige Episoden im
Untersuchungszeitraum finden, die sich durch Modell-relevante Besonderheiten in der Stick-
stoffdioxidkonzentration auszeichnen. Zum anderen ist der Transport von NO2 aufgrund der
im Vergleich zu PM2.5 erhöhten Reaktivität und somit verringerten mittleren Lebensdauer
[123, 124], nur auf kleinen Skalen möglich. Dadurch mitteln sich diese Effekte über das
Untersuchungsgebiet raus.

O3

Lufttemperatur und Sonneneinstrahlung bestimmen im Wesentlichen, wie schnell che-
mische und photochemischen Prozesse in der Atmosphäre ablaufen. Durch das Fehlen
direkter Emissionsquellen ist die Bodenkonzentration von Ozon direkt von diesen Größen
abhängig. Die steigende partielle Abhängigkeit des Modells von diesen beiden wichtigsten
Vorhersagevariablen (vgl. Abb. 5.5 b), 5.5 a)) beschreibt die Beschleunigung der entspre-
chenden Bildungsprozesse und ist somit physikalisch sinnvoll. Hinzu kommt, dass hohe
Temperaturen die Freisetzung biogener und anthropogener VOCs fördern, was zusätzlich
zur Erhöhung des Ozons beiträgt.

Als wichtiger Bestandteil der Ozon-Chemie ist NO2 ebenfalls unter den wichtigsten
Eingangsvariablen zu Finden. Die genaue Interpretation der partiellen Abhängigkeit wird
in Kap. 6.4 näher erläutert.

Es ist wahrscheinlich, dass sich die Abhängigkeit zwischen der Jahrestagsvariable (DoY)
und O3 größtenteils aufgrund der saisonalen Variationen von NO2, T2m, und SSR ergeben.
Die Abhängigkeit von der Hilfsvariable lässt sonst auf keinen physikalischen Zusammenhang
schließen.

Ebenfalls wichtig ist die relative Luftfeuchtigkeit, wobei die O3-Konzentration des Mo-
dells mit steigender Luftfeuchtigkeit leicht absinken (vgl. Abb. 5.5 f)). Die in der Luft
enthaltene Feuchtigkeit kann sich sowohl positiv als auch negativ auf die Ozonkonzentra-
tion auswirken. Bei der Produktion von Hydroxylradikalen durch die Reaktion (R 2.6)
reagiert die Feuchtigkeit in der Luft mit Sauerstoffradikalen, welche sonst über (R 2.17)
und (R 2.15) zur Bildung von Ozon beitragen könnten. Dadurch kann die Konzentration
des bodennahen Ozons in speziell in Regionen mit geringen NOx-Konzentrationen stark
negativ mit der relativen Feuchtigkeit korreliert sein [125][126]. In stark verschmutzten
Umgebungen, mit hohen NOx-Konzentrationen, stellen sich konkurrierende Reaktionen ein
die den Ozon-reduzierenden Effekt der Luftfeuchtigkeit ausgleichen oder sogar Umkehren
können[127][128]. Zum einen führt eine verstärkte Bildung von OH-Radikalen zu einer
Beschleunigung der Ozonbildung aus VOCs (vgl. (R 2.23)-(R 2.26)). Zum anderen erhöht
sich auch die Abbaurate der Vorläufersubstanz NO2 zu Salpetersäure nach Reaktion (R 2.7),
was zu einer komplizierten Beziehung zwischen Feuchtigkeit und Ozonkonzentration führt.
Der vom Modell erlernte O3-RH-Zusammenhang ist unter bestimmten atmosphärischen
Bedingungen denkbar, resultiert jedoch höchstwahrscheinlich aus der negativen Korrelation
von relativer Luftfeuchtigkeit mit T2m und SSR.

Die Wichtigkeit der Grenzschichthöhe ist bei Ozon unter den untersuchten Schadstoffen
am geringsten. Unter Vernachlässigung anderer Faktoren, wie des Transports aus höheren
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Atmosphärenschichten, ist ein ähnlicher physikalischer Zusammenhang zwischen BLH und
Ozonkonzentration am Boden zu erwarten wie für andere Schadstoffe. Dafür ist wieder
die durch eine hohe Grenzschicht hervorgerufene bessere Durchmischung verantwortlich.
Eine niedrige Grenzschicht sollte zudem zur Folge haben, dass sich VOCs und andere
Vorläufersubstanzen ebenfalls stärker an der Oberfläche sammeln, wodurch die Ozonkon-
zentration erhöht wird. Da die BLH jedoch positiv mit der Sonneneinstrahlung und der
Temperatur, sowie negativ mit der relativen Luftfeuchtigkeit korreliert, erlernt das Modell
einen Zusammenhang, der den physikalischen Erwartungen wiederspricht.

Generell hängt die Ozonvorhersage gemäß der Feature Importance nur geringfügig von
Zeitvariablen (DoY, Month) und fast gar nicht von Ortsvariablen (pop_dens) ab. Das
bestätigen auch die Ergebnisse der zeitlichen bzw. räumlichen Kreuzvalidierung, die nur
sehr geringe Verschlechterungen in der Modellgenauigkeit hervorrufen. Die Abhängigkei-
ten beschränken sich daher hauptsächlich auf die zugrundeliegenden Meteorologischen
Bedingungen und die Konzentration von NO.

(a) NDVI (Mittelwert) (b) pop_dens

(c) alt (d) rd_type_5

Abbildung 6.1: Darstellung einiger räumlicher Variablen: (a) NDVI als Mittelwert über den
gesamten Untersuchungszeitaum, (b) Bevölkerungsdichte, (c) geographische Höhe und (d)
Dichte lokaler Straßen.
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6.3 Ursachen räumlicher und saisonaler Variabilität der
Schadstoffverteilung

Die Verteilung der Schadstoffe über das Untersuchungsgebiet ergibt mehrere Hotspots
und Coldspots die zum Teil auf menschliche, aber auch natürliche Ursachen zurückgeführt
werden.

PM2.5

Die mittlere Feinstaubbelastung der Bevölkerung liegt leicht über der Belastung der
Untersuchungsfläche, was mit der beobachteten Erhöhung der PM2.5-Konzentration in
Ballungsräumen übereinstimmt. Verantwortlich dafür sind menschenverursachte Emissionen
wie z.B. aus Straßenverkehr und Energiewirtschaft. Die markantesten Variationen in der
räumlichen Verteilung entstehen jedoch an naturdichten Regionen (vgl. Abb. 6.1a), was
mit dem geringen Beitrag des NDVI zur Modellperformance im Wiederspruch steht.
Der NDVI wurde von S. Guo et al. [129] als einen der wichtigsten Einflussfaktoren auf
PM2.5 beschreiben. Vegetation kann dabei durch verschiedene Effekte eine mindernde
Wirkung auf die Feinstaubkonzentration haben. Einerseits kommt es durch eine hohe
Pflanzendichte zu einer verstärkten (trockenen) Disposition von PM2.5, was jedoch stark
abhängig von der Art der Pflanzen ist [130]. Blätteroberflächen von Bäumen können durch
die gute Durchströmung der Baumkronen mehr Feinstaub aufnahmen als niedrig wachsende
Pflanzen wie Gras [131]. Zusätzlich beeinflusst besonders hohe Vegetation den Transport
von Feinstaub durch die Luft. Vor allem in urbanen Gebieten bilden Gewächse effektive
Barrieren, die den Transportweg von PM2.5 am Boden erschwert, wodurch sich starke
PM2.5-Quellen von menschlichen Lebensräumen trennen lassen und so windabwärts liegende
Regionen von hohen Belastungen bewahrt werden [132]. Wälder sind aus diesen Gründen
bekannte Senken für atmosphärische Schadstoffe wie PM2.5, was sich in der räumlichen
Verteilung der PM2.5-Konzentrationen wiederspiegelt.

Generell kann beim Vergleich der Feinstaubkarten mit der geographischen Höhenlage
festgestellt werden, dass sich Coldspots in der PM2.5 Konzentration bevorzugt in bergigen
Regionen finden. Dagegen ist für flache oder regional abgesenkte Gebiete wie Norddeutsch-
land, die Beneluxländer, Nordtschechien oder entlang des Rhein tendenziell mehr PM2.5
vorhergesagt. In den Alpen zeigt sich die flächen- und intensitätsmäßig größte Absen-
kung der Feinstaubbelastung (vgl. 5.8a). Neben der vergleichbar geringen Bevölkerungs-
und Straßendichte in Gebirgsregionen (vgl. 6.1b und 6.1d) sorgen diese zusammen mit
dichten Wäldern um die Region (vgl. Abb. 6.1a) für die geringe Luftverschmutzung mit
PM2.5. Berge stellen bedeutende Hindernisse für den Luftstrom dar und verringern somit
die interregionale Ausbreitung bzw. den Abtransport von Schadstoffen, was vor allem in
Gebirgs- und Flusstälern zu einer Ansammlung von PM2.5 führt [133]. Die hohe Belastung
nördlich von Prag, welche über das gesamte Jahr zu beobachten ist kann unter anderem
dadurch erklärt werden, dass hier ein Gebiet mit starken (wirtschaftlichen) Emissionen von
Gebirgen umschlossen wird. Im Nordböhmischen Becken befinden sich mehrere Braunkohle-
Tagebaustätten, und die entsprechenden Braunkohlekraftwerke2 welche potentiell einen
erheblichen Beitrag zur lokalen Feinstaubbelastung leisten.

Generell erhöhte Feinstaubwerte im Winter lassen sich neben der bereits erwähnten
Saisonalität von meteorologischen Bedingungen wie BLH vor allem in Städten auf ver-

2Braunkohlekraftwerke in (Nord-)böhmischen Becken: Kraftwerk Prunéřov, Kraftwerk Chvaletice, Kraft-
werk Mělník. Braunkohle-Tagebau im Nordböhmischen Becken: Tagebau Nástup-Tušimice, Tagebau
Vršany, Tagebau lom Bílina.
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stärkte Heizemissionen und verstärkten Kraftwerksbetrieb wegen erhöhtem Strombedarf
zurückführen. Ostdeutschland und Polen sind vor allem in Herbst und im Winter verstärkt
belastet. Mögliche Gründe hierfür sind die Lage einiger der emissionsreichsten Kraftwerke
Europas in der Nähe der deutsch-polnischen Grenze [134], Agraremissionen oder mögli-
cherweise Langstreckentransport von Feinstaub und Vorläufersubstanzen aus Osteuropa,
was in Kap 6.7 weiter diskutiert wird.

NO2

Da die Verweilzeit von NO2 in der Troposphäre wesentlich geringer ausfällt als die von
Feinstaubpartikeln und kaum natürliche Quellen vorhanden sind, sind die Hotspots für
NO2 stärker um die Ballungsräume lokalisiert als die des Feinstaubs. Sie sind, wie schon in
Kap. 6.2 diskutiert, eine Folge der starken Verkehrsemissionen in den jeweiligen Regionen.
Die große Bedeutung menschlicher Einflüsse als NO2-Prädiktor wird zudem durch die
Ähnlichkeit der Verteilung des flächenhaften NO2 mit der Bevölkerungs- und Straßendich-
te ersichtlich. Die mittlere Bevölkerungsbelastung fällt aufgrund der stark lokalisierten
NO2-Hotspots deutlich höher aus als der Flächenmittelwert. Aus denselben Gründen wie
schon bei PM2.5 verringern Gebirge die NO2-Belastung, während Täler stärker verschmutzt
sind. Außerdem stellt sich eine ähnliche Beziehung zum NDVI ein, wobei die Abbaupro-
zesse von NO2 durch Vegetation bereits in Kap. 6.2 erläutert wurden. Im Gegensatz zu
PM2.5 bleibt die Position der NO2 Hot- und Coldspots über das Jahr relativ konstant,
was aufgrund der Wichtigkeit der statischen Eingangsvariablen wie Bevölkerungs- und
Straßendichte nicht verwunderlich ist. Dass in den Herbst- und Wintermonaten jedoch
deutlich mehr Stickstoffdioxid und tendenziell größere Hotspots vorliegen, ist zum einen den
geänderten meteorologischen Bedingungen geschuldet. Beispielhaft hierfür sind die niedrige
Grenzschichthöhe oder die geringere Sonneneinstrahlung, welche das NO2-O3-Gleichgewicht
durch eine Verlangsamung der photolytischen Prozesse zugunsten von NO2 verschiebt. Zum
anderen, kommt es im Winter zu erhöhtem Heiz- und Kraftwerkbetrieb, wobei durch kalte
Temperaturen zusätzlich die Abgaseffizienz von Verbrennungsmotoren negativ beeinflusst
wird, was eine Erhöhung der NO2-Belastung nach sich zieht.

O3

Obwohl NO2 als nötige Vorläufersubstanz von O3 gilt, ist die tatsächliche Beziehung zwi-
schen den Konzentrationen der beiden Gase nicht vollständig durch eine einfache Partielle
Abhängigkeit (Abb. 5.5d) erklärbar. Das Zusammenspiel mit anderen Substanzen wie
VOCs oder OH lässt viele meteorologische Einflüsse auf die Ozonkonzentration zu, wie
die FI-Analyse für Ozon aufzeigt. Die stärkere Sonneneinstrahlung im Sommer beschleu-
nigt zum einen die Bildungsprozesse von O3 aus NO2 nach Gl. (R 2.22) und erhöht so
großflächig die Konzentration des Schadstoffs. Gleichzeitig wird die photolytische Bildung
von atomarem Sauerstoff nach Gleichung (R 2.19) durch verstärkte Sonneneinstrahlung
begünstigt. Dies führt zusammen mit dem erhöhten atmosphärischen Wassergehalt im
Sommer nach (R 2.6) zu einer höheren Konzentration von OH-Radikalen, welche sich
an der Ozonproduktion und am NO2-Abbau beteiligen. Des Weiteren begünstigen hohe
Temperaturen und intensive Einstrahlung den Übergang von anthropogenen VOCs in die
Atmosphäre, sowie die Freisetzung biogener VOCs durch Vegetation, welche zur chemi-
schen Bildung von troposphärischem Ozon führen (siehe Gl. (R 2.23)-(R 2.26)). Mit der
Sommersonnenwende (Sommeranfang) am 21.06. wird die Anzahl der mittleren täglichen
Sonnenstunden maximal, wobei Juli und August für gewöhnlich die heißesten Monate des
Jahres sind. Im Gegensatz dazu trifft zur Wintersommersonnenwende (21.12.) im Mittel
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die geringste Strahlungsmenge auf die Erdoberfläche. Diese Faktoren erklären, weshalb sich
im Frühling und im Sommer deutlich mehr Ozon in der unteren Atmosphäre befindet als
im Winter oder Herbst.

Die flächenhafte Verteilung von Ozon aus der Modellvorhersage zeigt höhere Konzen-
trationen in ländlichen Regionen als in Städten und deckt sich mit den Messungen des
Ozontrends in Abb. 2.6. Dies führt dazu, dass die mittlere Schadstoffbelastung pro Person
für O3 unter dem Flächenmittelwert liegt. Im Gegensatz zum NO2-Modell gehen in das
Ozonmodell kaum räumliche Variablen wie Bevölkerungs- und Straßendichte ein, die dem
Modell eine Einordnung eines Pixels nach urban oder rural ermöglichen. Der dennoch stark
betonte Unterschiede zwischen Stadt und Land sind daher v. a. auf die ungleiche Verteilung
von NO2 zurückzuführen. Durch die starken NOx-Emissionen in den Ballungsräumen trägt
möglicherweise der Titrationseffekt (vgl. Kap. 2.4) zur Verringerung der Ozonwerte in
Städten bei. Dies erklärt ebenfalls, weshalb sich die Ozon-Coldspots in den Städten im
Winter vergrößern, da zu dieser Jahreszeit die NOx-Emissionen deutlich ansteigen und den
Titrationseffekt und damit den Unterschied zwischen Stadt und Land verstärken. Auch
wenn die Modellanalyse keine starken Zusammenhänge zwischen Ozon und NDVI vermuten
lässt, da der Parameter nicht Teil der ausgewählten Variablen ist, kann vor allem in den
südlichen Regionen ein räumlicher Zusammenhang zwischen NDVI und Ozonkonzentration
beobachtet werden (vgl. Abb. 6.1a). Erhöhte Ozonwerte in vegetationsreichen Gebieten
(Schwarzwald, Bayerischer Wald, Naturpark Vosges du Nord) und den Alpen im Winter
und Herbst sind vermutlich ebenfalls auf die Schwächung des Titrationseffekts durch die
geringeren NOx-Emissionen an diesen Stellen verantwortlich. Die Umkehrung der Korrelati-
on im Frühling und Sommer weist auf eine mögliche Änderung der NOx-O3-Beziehung hin,
welche in Kap. 6.4 näher erläutert wird. Vor allem zu den warmen Jahreszeiten stellt sich an
Küstenregionen ein ausgeprägtes Land-See-Windsystem ein. Durch die am Tag wesentlich
schnellere Erwärmung der Luftmassen über dem Land stellt sich zur untersuchten Tageszeit
generell ein Seewind ein, der Seeluft ins Landesinnere transportiert. Mit Ausnahme von
Emissionen aus der Schifffahrt ist diese Luft aufgrund fehlender Quellen frei von Vorläufer-
substanzen wie (biogenen) VOCs und Stickoxiden, wodurch sich entlang der Nord- und
Ostseeküsten des Untersuchungsgebiets besonders ozonarme Regionen herausbilden.

6.4 Bestimmung des Ozonproduktionsregimes

Ein zentraler Faktor in der Ozonbildung ist, gemäß der Feature Importance Analyse und
theoretischen Betrachtung, die Verfügbarkeit von Vorläufersubstanzen wie NO2 und VOCs.
Das Verhältnis zwischen NO2-Konzentration und gebildetem Ozon ist, wie in Abb. 2.5
erkennbar, im Allgemeinen stark nichtlinear und zusätzlich abhängig vom Zusammenspiel
mit weiteren reaktiven Stoffen in der Atmosphäre, sowie den meteorologischen Rahmenbe-
dingungen. Es wird grob zwischen NOx-gesättigten Bedingungen, unter denen zusätzliche
Stickoxide eine Verringerung der Ozonkonzentrationen verursachen, und NOx-sensiblen
Bedingungen (VOC-gesättigt) unterschieden, die sich durch eine positive Korrelation der
beiden Schadstoffe auszeichnen. Ist die Ableitung

d[O3]

d[NO2]

deutlich positiv, so bestehen NO2-sensible Bedingungen, wobei bei deutlich negativen Wer-
ten eine NO2-Sättigung vorliegt. Sillman et al. [135] setzten das Verhältnis der jeweiligen
Konzentrationen [O3] zu [NOy] (reaktive Stickstoffspezies inklusive NO und NO2) zur
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Bestimmung der Ozonproduktionsverhaltens ein. Die NO2-Konzentrationen fallen aufgrund
der erhöhten primären Emissionen durch menschliche Aktivitäten, wie z.B. Pendelverkehr,
an den Wochenenden (Sa-So) merklich geringer aus als zu den üblichen Arbeitstagen
(Mo-Fr). Effekte durch wechselnde Wetterbedingungen können bei Betrachtung des Wo-
chenendeffekts durch Mittelung über hinreichend viele Untersuchungstage als Ursache für
Ozonschwankungen ausgeschlossen werden. Somit eignet sich die aus dem Wochenendeffekt
resultierende Änderung in der Ozon- und Stickstoffdioxidkonzentration gut zur Bestimmung
der vorherrschenden Ordnung, was auch der Einsatz in bestehenden Studien zeigt [136,
137], denn sie liefern die Größen d[O3] und d[NO2]. Für die Jahreszeiten Winter und Herbst
sind die Ergebnisse aus Kapitel 5.7 zum Teil durch den Titrationseffekt zu erklären, wiesen
jedoch stark auf eine NOx-Sättigung im Untersuchungsgebiet hin, da( d[O3]

d[NO2]

)
Winter

≈ [O3]Sa−So − [O3]Mo−Fr
[NO2]Sa−So − [NO2]Mo−Fr

=
60.80 µg

m3 − 59.94 µg
m3

10.16 µg
m3 − 11.20 µg

m3

≈ −0.827 < 0

(6.1)

Im Sommer können anhand der partiellen Abhängigkeit (Abb. 5.23c) beide Regime be-
obachtet werden, allerdings spricht die positive Reaktion der Ozonkonzentration auf die
sinkenden NO2-Werte am Wochenende für eine generelle Einordung der Bedingungen als
NOx-sensibel: ( d[O3]

d[NO2]

)
Sommer

≈ [O3]Sa−So − [O3]Mo−Fr
[NO2]Sa−So − [NO2]Mo−Fr

=
101.91 µg

m3 − 103.45 µg
m3

5.19 µg
m3 − 5.87 µg

m3

≈ 2.26 > 0 .

(6.2)

Die wahrscheinlichste Ursache für den Wechsel der Ordnung ist das Zusammenspiel zwi-
schen den Konzentrationen von NOx und VOCs, welches zu unterschiedlichen Beziehungen
zwischen NO2 und Ozon führen kann. Die blaue Linie in Abb. 2.5 trennt die beiden
Ordnungen nach dem vorliegenden Verhältnis voneinander. Die NO2-Emissionen fallen
im Sommer deutlich geringer aus, während gleichzeigt mehr VOCs und OH-Radikale
freigesetzt werden (siehe Kap. 6.3), was ein höheres [VOC]/[NOx]-Verhältnis und damit
NOx-sensible Bedingungen hervorruft. In den kalten Jahreszeiten ist dieses wiederum
wesentlich geringer, was einen Wechsel zur NOx-Sättigung hervorruft. Bestehende Stu-
dien, wie die von X. Jin et al. [138], Beekmann et al. [139] und Balamurugan et al. [19],
beschreiben ähnliche Jahreszeitliche Änderung der Abhängigkeit von bodennahem Ozon
in Europa mit NOx-gesättigten Bedingungen im Winter und je nach Region gemischten
Bedingungen im Sommer. X. Jin et al. [138] halten zudem einen Trend zu verstärkten
NOx-sensiblen Bedingungen fest, vermutlich hervorgerufen durch die Umsetzung von Maß-
nahmen zur Abgasreduzierung. In den Vorhersagedaten konnten keine klaren Unterschiede
im Ozonbildungsverhalten zwischen ländlichen und urbanen Regionen festgestellt werden,
obwohl aufgrund der deutlich erhöhten Stickstoffdioxidkonzentrationen in den Städten
und biogenen VOCs-Emissionen in vegetationsreichen Gebieten ein durch NOx begrenztes
System auf dem Land wahrscheinlicher scheint. Daraus kann geschlussfolgert werden, dass
der Einfluss von biogenen VOCs auf die Ozonbildung im Untersuchungsgebiet relativ gering
ausfällt, und die VOC-Emissionen durch anthropogene Quellen in den Ballungsräumen
ähnlich zunehmen wie die Stickoxidemissionen. Curci et al. [140] schätzen den Zuwachs von
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O3 durch biogene Emissionen in Europa im Sommer auf ∼ 5%, was diese Vermutung un-
terstützt, jedoch kann auch nicht ausgeschlossen werden, dass eine korrekte Differenzierung
zwischen städtischen und ländlichen Bedingungen über die Möglichkeiten der verwendeten
Modelle und Methoden hinausgeht.

6.5 Irreguläre Einflüsse auf die Schadstoffentwicklung

Um Modellvorhersagen besser interpretieren zu können und zukünftige Modelle zu ver-
bessern, ist es wichtig festzustellen, inwiefern diese auf zeitlich oder räumlich isolierte
Schwankungen in den Schadstoffemissionen oder den meteorologischen Rahmenbedingungen
reagieren.

Ist die Vorhersage der bodennahen Schadstoffe besonders abhängig von nichtphysika-
lischen Variablen wie DoY, DoW, Year etc., so ist dies ein Hinweise darauf, dass die
übrigen (physikalischen) Variablen die Schadstoffquellen und relevanten meteorologischen
Rahmenbedingungen wohlmöglich nicht ausreichend beschreiben. Besonders die PM2.5-
Vorhersage stützt sich in diesem Fall auf zeitlich nahe Schadstoffmessungen aus dem
Modelltraining anstatt auf Satellitenmessungen der AOD oder Meteorologie, wie anhand
der Feature Importance Analyse in Kap. 6.2 deutlich wird. Im Verlauf der durchschnittlichen
PM2.5-Belastung des Untersuchungsgebiets finden sich viele Zeitabschnitte in denen die
Konzentration deutlich unter bzw. über dem für den Jahresabschnitt typischen Durschnitt
liegt. Diese decken sich zu großen Teilen mit Episoden mit besonders viel bzw. besonders
wenig Niederschlag (siehe Abb. 5.12), welcher unter anderem für das Auswaschen von
Feinstaub aus der Luft verantwortlich ist und ein Wiederaufwirbeln der Partikel auf nassen
Oberflächen unterbindet (siehe Kapitel 2.2). Da bei Regenwetter die Satellitenbeobachtung
durch Wolken verhindert wird, liegen während dieser Ereignisse keine Trainingsdaten
für die Modelle vor, weshalb dieser starke Zusammenhang zwischen Niederschlag und
Feinstaubkonzentration nicht in der Feature Importance bzw. den PDPs zu finden ist.
Der Mangel an Trainingsdaten zu Niederschlagsmengen und die dennoch starke zeitliche
Korrelation mit Regenereignissen ist ein weiterer Hinweis darauf, dass das PM2.5-Modell
die fehlenden Informationen zu wichtigen Merkmalen durch die Zeitvariablen DoY und
Year ausgleicht (siehe Abschnitt 6.2). Der Niederschlag ist daher trotz seiner geringen
FI als eine der wichtigsten bestimmenden Faktoren für PM2.5 anzusehen. In bestehenden
Untersuchungen zu Einflussfaktoren von PM2.5 wurde dieser ebenfalls als besonders wichtig
und als stark reduzierend für die Feinstaubkonzentration befunden [141, 142, 143, 144].
Für NO2 lassen sich in Abb. 5.14 ebenfalls Ähnlichkeiten zwischen der Abweichung der
Schadstoffkonzentration und der der (negativen) Niederschlagsmenge feststellen. Nasse
Deposition von NO2 stellt den treibenden Faktor hinter diesem Zusammenhang dar. Dabei
löst sich NO2 in Regentropfen und wird mit diesen zu Boden getragen, was es effektiv
aus der Atmosphäre entfernt. Regenfälle sind demnach zuverlässige Indikatoren für eine
Reduzierung der NO2-Bodenkonzentration, was ebenfalls von bestehenden Studien bestätigt
wird [145, 146]. Dabei bestehen geringfügig konkurrierende Effekte in Form von erhöhter
NO2-Produktion durch Blitze während Gewittern. Diese werden zwar in der Regel durch
den auswaschenden Effekt von Regenfällen überschattet [145], können aber einen Beitrag
zur Ozonproduktion leisten [147].

Während Trockenepisoden erhöht sich zudem die Gefahr für Waldbrände, welche poten-
ziell viel PM2.5 und NO2 freisetzen. Ein Vergleich der wöchentlichen Brandfläche mit den
mittleren NO2-Vorhersgen (Siehe Abb. 5.13) zeigt keine nennenswerten Zusammenhänge,
allerdings werden in den Monaten Februar und März der Jahre 2018 deutlich höhere
Feinstaubwerte vorhergesagt die, wie in Abb. 5.11 erkenntlich, mit Brandereignissen ein-
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hergehen. Bei der Betrachtung muss allerdings eingeräumt werden, dass auf mindestens
genauso viele der in den Daten verzeichneten Brände keine merkliche Erhöhung des PM2.5
folgt, weshalb ein kausaler Zusammenhang zwischen den Ereignissen unwahrscheinlich ist
oder dieser an weitere Bedingungen geknüpft ist. Kleinere Brände könnten außerdem zu we-
nig Schadstoffe emittieren, um im flächenmäßigen Mittelwert einen merklichen Unterschied
zu machen, weshalb zusätzlich die jeweilige Brandstelle untersucht werden muss. Mithilfe
der vom DWD bereitgestellten Kartendarstellungen des Waldbrandindex (Monatsmittel)
[148] werden Orte und Monate mit besonders starken Bränden innerhalb Deutschlands mit
den entsprechenden Vorhersagen für PM2.5 und NO2 sowie TCNO2-Daten abgeglichen.
Auch hier kann kein eindeutiger Zusammenhang festgestellt werden.

Ein weiterer Einflussfaktor im Feinstaubaufkommen ist der gelegentlich nach Euro-
pa transportierte Saharastub. Die Abb. C.1 [149] des DWD zeigt die Staubereignisse in
Deutschland der letzten Jahre (am Hohenpeißenberg). Zwischen 2018 und 2022, ist vor allem
der Monat März des Jahres 2022 von starken Staubereignissen betroffen. Diese überschnei-
den sich zeitlich mit der deutlichen Erhöhung der vorhergesagten PM2.5-Bodenkonzentration
(vgl. Abb. 5.11) und kommen somit ebenfalls als mögliche Ursache in Frage. Es ist un-
klar, wie genau sich der Saharastaub aufgrund seiner Zusammensetzung und vertikalen
Verteilung in der Atmosphäre auf den Zusammenhang zwischen AOD und PM2.5 am
Boden auswirkt. Innerhalb der Stationsmessungen ist eine ähnliche Erhöhung festzustellen,
allerdings bleibt diese in den entsprechenden AOD-Werten aus. Dies legt nahe, dass die Un-
terschiede in der Vorhersage nicht auf Basis der Satellitendaten, sondern wenn dann durch
zeitliche Zuordnung zu dem Ereignis zustande kommen oder eine Folge meteorologischer
Bedingungen darstellen.

Innerhalb des Untersuchungszeitraums liegen außerdem die im Jahr 2020 im Zuge der
COVID-19 Pandemie von vielen Regierungen eingeführten Lockdown Maßnahmen zur
Kontaktbeschränkung mit dem Ziel die Ausbreitung des Coronavirus zu bremsen. Folglich
haben sich mit dem Beginn der Maßnahmen im März 2020 auch die Aktivitätsmuster der
betroffenen Bevölkerung und dadurch die damit verbundenen anthropogenen Emissionen
stark verändert. Der Einfluss auf die Luftqualität ist in den minimalen Vorhersagewerten für
NO2 und PM2.5 für das Jahr 2020 erkenntlich, was bereits von einer Vielzahl bestehender
Studien beobachtet wurde [136, 150, 151, 152]. Die Reaktion der vorhergesagten Schad-
stoffwerte auf plötzliche Veränderungen in den Emissionen unter statistisch unveränderten
meteorologischen Bedingungen zeigt, dass sich die generierten Schadstoffkarten potenziell
dazu eigenen, um die Effektivität von Umweltrichtlinien zu testen. Wenn sich beispiels-
weise durch das Einführen strengerer Abgasrichtlinien eine tatsächliche Verringerung der
Emissionen einstellt, kann diese durch die Modelle in einer Verbesserung der Luftqualität
beobachtet werden.

6.6 Einfluss des Feuchtegehalts der Atmosphäre

PM2.5

Der Wassergehalt der Atmosphäre spielt eine wichtige Rolle bei der Bildung sekundärer
Aerosole. Hygroskopisches Wachstum (siehe, Kap. 6.2) beeinflusst den Wassergehalt und
lässt die absolute Masse speziell von sekundären anorganischen Aerosolen wie Nitraten
und Sulfaten ansteigen. Die Stationsmessungen geben dagegen die Trockenaerosolmasse
wieder. Bei hohen relativen Flüchtigkeiten wird zudem verstärkt Ammoniumnitrat gebildet
[153], da die Reaktionsrate der Reaktion (R 2.3b) von der OH-Konzentration Abhängt.
Deswegen ist generell mit einer positiven Korrelation zwischen dem Wassergehalt in
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der Atmosphäre und der gemessenen PM2.5-Konzentration zu rechnen. Ein Anstieg von
PM2.5 wird in den Sommermonaten beobachtet, jedoch zeigt sich im Winter - und in
abgeschwächter Form auch im Frühling – ein gegensätzlicher Zusammenhang. Viele Studien
haben bereits die Beziehung zwischen PM2.5 und Luftfeuchtigkeit untersucht, wobei sowohl
positive als auch negative Korrelationen festgestellt wurden [143, 144]. Die bedeutendsten
saisonalen Unterschiede des bodennahen PM2.5 liegen neben der Stärke der Emissionen
in der chemischen Zusammensetzung der sekundären anorganischen Aerosole [154]. Die
unterschiedliche Reaktion des Modells auf die Luftfeuchtigkeit im Winter und im Sommer
könnte damit im Zusammenhang stehen, allerdings konnte keine konkrete Erklärung auf
Basis der theoretischen Betrachtungen gefunden werden.

NO2

Die NO2-Kozentration zeigt für Frühling, Sommer und Winter ein qualitativ ähnliches Ver-
halten wie PM2.5. Der bedeutendste Abbaumechanismus für NO2 besteht in der Umwand-
lung zu Salpetersäure über die Reaktionswege in Abb. 2.2. Die Erhöhung des Wassergehalts
der Atmosphäre erleichtert die Bildung von OH-Radikalen nach Gleichung (R 2.6). Damit
wird sowohl in Gleichung (R 2.7) als auch in Gleichung (R 2.13) der NO2-Abbau durch
feuchte Bedingungen beschleunigt, was zu einer Verringerung der Bodenkonzentration
führen sollte. Im Winter kann beobachtet werden, dass sich die Modellvorhersage mit
zunehmender Feuchtigkeit erhöht, jedoch zeigt sich im Sommer ein gegenteiliges Verhal-
ten. Dies kann Ursache der Antikorrelation zwischen relativer Luftfeuchtigkeit und der
Grenzschichthöhe sein (vgl. Abb. 5.7), durch die das Modell höhere Schadstoffbelastungen
für feuchte Wetterlagen vorhersagt. Ferner liegt in den Sommermonaten ein Großteil des
NOx als NO vor und NO2-Emissionen sind zu dieser Zeit generell geringer. Es ist daher
möglich, dass der Einfluss des NO2-Abbaueffekts durch die Feuchtigkeit nur im Winter
besonders stark ausgeprägt ist und die Modellvorhersage aus diesem Grund im Sommer
von den Erwartungen abweicht.

Eine Erhöhung des atmosphärischen Wassergehalts fördert die Wolkenbildung und geht
daher in der Regel mit einer dichteren Wolkendecke über dem Untersuchungsgebiet einher,
was auch an der geringeren Abdeckung für als feucht klassifizierte Tage erkennbar ist. Als
Folge des Schattenwurfs durch die Wolkendecke nimmt die mittlere Bestrahlungsstärke am
Boden ab. Da starke Sonneneinstrahlung die Lebensdauer von NO2 durch Beschleunigung
der photolytischen Reaktionen erheblich verkürzt (vgl. Gl. (2.11)), könnte eine Erhöhung
des Wassergehalts der Atmosphäre somit gerade im Sommer, einen Anstieg der NO2-
Konzentraion zur Folge haben, wie auch in den Modellvorhersagen beobachtet wird.

O3

Die Auswirkungen auf die Ozonkonzentration sind dabei erheblich komplexer. Einerseits
verstärkt die Sonneneinstrahlung die Bildung von Ozon aus NO2, sowie die Freisetzung von
VOCs. Andererseits läuft die Ozonbildung im Sommer, wie in Kap. 6.4 erläutert wurde,
zum Teil unter NOx-sensitiven Bedingungen ab und reagiert dann positiv auf den Anstieg
der NO2-Konzentration. Dazu kommt, dass bei starker Bestrahlung auch die Lebenszeit der
O3-Moleküle verringert wird, da diese nach Gleichung (R 2.16a) und (R 2.16b) abgebaut
werden können. So ist eine Erhöhung der Ozonkonzentration durch teilweise Beschattung
einer Fläche und der Erhalt des entstandenen Ozons durch Bewölkung denkbar, wodurch
sich die positive Korellation zur Feuchte erklären liese.
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6 Diskussion

6.7 Schadstofftransport

Neben der Position der Quellen und Senken bestimmt vor allem der Transport von Schadstof-
fen deren räumliche Verteilung. Bei geringen Windgeschwindigkeiten ist die Durchmischung
der Luftmassen in der unteren Atmosphäre besonders schlecht, weshalb Schadstoffe länger
in der Nähe ihrer Quellen verweilen und die Luftverschmutzung, vor allem in Gebieten mit
starken Emissionen, steigt. Bei hohen Windgeschwindigkeiten ist die untere Atmosphä-
re besser durchmischt, was besonders in den Ballungsräumen zu einer Verringerung der
vorliegenden Schadstoffwerte führen sollte. Die PM2.5-, NO2- und O3-Modelle bestätigen
dieses Verhalten durch die vorhergesagten Schadstoffwerte, welche für höhere Windge-
schwindigkeiten deutlich geringer ausfallen und wodurch die Windgeschwindigkeit als
eine der wichtigsten Einflussfaktoren hervorgeht. Die starke negative Korellation zwischen
PM2.5 und Windstärke bzw. NO2 und Windstärke findet sich ebenfalls in der Literatur
[143, 155, 156, 157, 158]. Gegensätzlich zu den Modellergebnissen wurden bereits direkte
positive Korrelationen zwischen Windgeschwindigkeit und bodennahem Ozon Tu et al.
[159], Borhani et al. [160] und Yildizhan et al. [161] festgestellt. Allersdings spielen dabei
die Windrichtung und Konzentration von Vorläufersubstanzen vor Ort und Windaufwärts
eine entscheidende Rolle, weshalb die Beobachtungen je nach untersuchtem Gebiet stark
unterschiedlich ausfallen können.

Auch wenn für verschieden starke mittlere Windgeschwindigkeiten offensichtlich Un-
terschiede in der vom Modell vorhergesagten Schadstoffkonzentration und -verteilung zu
beobachten sind, fällt der Einfluss der Wind-Variable im RF-Modell nur gering aus. Sie
wurde bei der Variablenauswahl für keines der Modelle als gute Vorhersagevariable erkannt.
Eine mögliche Erklärung dafür ist die positive Korrelation zwischen Windstärke und BLD
(vgl. Abb. 5.7). Außerdem ist, wie schon die Feuchte, eine hohe Windgeschwindikeit mit
einer dichteren Wolkendecke verbunden, wie anhand der Abdeckungen der Modellda-
ten in Abb. A.4, A.6 und A.8 erkennlich ist. Diese hat wiederum eine Reduzierung der
Sonneneinstrahlung zur Folge, was die Ozonproduktion schwächt.

Durch den Abtransport von Schadstoffen kann die Luftqualität zwar lokal verringert wer-
den, allerdings trägt dieser windabwärts der Quellen zur Erhöhung der Luftverschmutzung
bei. Dies kann eindeutig durch das Verhalten des PM2.5- und NO2-Hotspots im Ruhrgebiet
und die umliegenden Regionen beobachtet werden, die je nach Hauptwindrichtung unter-
schiedlich über die Umgebung ausgedehnt sind. An Tagen an denen ein Gebiet windabwärts
der größten Städte liegt erfährt dieses eine deutlich höhere Luftverschmutzung als an
anderen Tagen. Für Ozon ist der Effekt zu schwach, um eine merkliche Veränderung der
Hotspots zu erkennen, die auf eine Abhängigkeit von der Windrichtung hinweisen könnte.
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7 Zusammenfassung und Ausblick

Ziel dieser Arbeit war die Identifikation und Analyse der wichtigsten meteorologischen
Einflussfaktoren auf die Konzentration von PM2.5, NO2 und O3 in Bodennähe. Zusätzlich
sollte die räumlichen und zeitlichen Variabilität der Luftqualität über Deutschland und
Teilen der angrenzenden Länder untersucht werden. Zu diesem Zweck wurden zunächst die
fundamentalen Bildungs- und Abbauprozesse in der Atmosphäre sowie Grundlagen zur
Satellitenmessung vermittelt (Kapitel 2). Daraufhin wurden die verarbeiteten Daten, sowie
das eingesetzte maschinelle Lernmodell (ML-Modell) und die Analysemethoden vorgestellt
(Kapitel 3 und 4). Zuletzt wurden die erhaltenen Ergebnisse präsentiert (Kapitel 5) und
mit Hinsicht auf die zentralen Ziele der Arbeit interpretiert (Kapitel 6).

Es wurden drei Random Forest Modelle entwickelt, die zur Ableitung von bodenna-
hen PM2.5-, NO2- und O3-Konzentrationen über dem Untersuchungsgebiet dienten. Als
Datengrundlage wurden Satellitendaten zur Aerosol Optischen Dicke (MAIAC) und tro-
posphärischem NO2 (TROPOMI) mit Schadstoffinformationen aus in-situ Messungen,
meteorologischen Variablen, sowie Daten zur menschlichen Präsenz und geographischen
Beschaffenheit verwendet. Wie in ähnlichen Studien zuvor wurde für die Ozonvorhersage
ein gestaffeltes Modell entwickelt, das die eigenen NO2-Vorhersagen als Vorläufersubstanzen
berücksichtigt.

Die Modelle wurden zunächst unterschiedlichen Testverfahren unterzogen, um ihre allge-
meine Leistung und Genauigkeit zu beurteilen. Bei 10-facher Kreuzvalidierung konnten
generell gute Bestimmtheitsmaße (R2) von 0.76, 0.79 und 0.91 für die PM2.5-, NO2- und
O3-Modelle erreicht werden. Teils geringere Genauigkeiten unter räumlicher und zeitlicher
Kreuzvalidierung und Vergleiche mit anderen Studien lassen darauf schließen, dass die Wahl
des Untersuchungsgebiets und des Untersuchungszeitraums die Modellleistung merklich
beeinflussen kann.

Anhand von Feature Importance Analysen konnten die für die Genauigkeit der RF-
Modelle bedeutendsten Eingangsvariablen identifiziert werden. Für die Feinstaubvorhersage
stellten sich Zeitvariablen wie der Jahrestag, sowie die Satelliten-AOD als die wichtigsten
Informationsquellen heraus. Dagegen stützt sich das NO2-Modell auf räumliche Variablen
zur örtlichen Bevölkerungsdichte und die entsprechenden Satellitendaten zum NO2-Gehalt
der troposphärischen Luftsäule. Für Ozon sind hauptsächlich meteorologische Parameter
in Form von Sonneneinstrahlung und Lufttemperatur relevant, allerdings leistet auch
die Menge des verfügbaren NO2 einen entscheidenden Beitrag zur Modellgenauigkeit.
Mithilfe von Partial Dependence Plots (PDPs) konnten die von den Modellen erlernten
Abhängigkeiten zwischen den Schadstoffkonzentrationen und den verarbeiteten Variablen
visualisiert und untersucht werden. Die meisten Abgängigkeiten entsprechen dabei qualitativ
den erwarteten physikalischen oder chemischen Prozessen in der Atmosphäre.

Die räumliche Variabilität betreffend, konnten durch das bilden lokaler Indikatoren
räumlicher Autokorrelation (LISA) auf den flächenhaften Vorhersagen der Schadstoffe,
Hotspots von PM2.5 und NO2 in urbanen und industriereichen Regionen identifiziert
werden. Gebirge und vegetationsreiche Gebiete decken sich dabei mit lokalen Absenkungen
in den Konzentrationen der beiden Schadstoffe. Gegenteilig führte der Titrationseffekt,
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7 Zusammenfassung und Ausblick

vor allem in Herbst und im Winter, zur Ausbildung von Ozon-Coldspots in den meisten
größeren Städten und es besteht ferner ein Nord-Süd-Gradient in der Ozonverteilung mit
tendenziell größeren Konzentrationen in südlich gelegenen Regionen.

Die saisonalen Schwankungen der Schadstoffmittelwerte über dem Untersuchungsgebiet
stellen die stärkste zeitliche Variabilität der PM2.5-, NO2- und O3-Konzentrationen dar. In
den Wintermonaten weisen Feinstaub und Stickstoffdioxid die höchsten Bodenkonzentra-
tionen auf, hervorgerufen durch verstärkte anthropogene Emissionen und als Folge einer
tendenziell niedrigeren und stabileren atmosphärischen Grenzschicht, die zur Anreicherung
von Schadstoffen in Bodennähe führt. Ozon zeigt dagegen die minimale Konzentration in
den Herbst- und Wintermonaten mit einem klaren Maximum im Sommer, was die Folge
höherer Temperatur und stärkerer Sonneneinstrahlung ist, welche die chemischen Prozesse
zur Ozonbildung und die Freisetzung von Vorläufersubstanzen wie flüchtigen organischen
Verbindungen (VOCs) beschleunigen. Durch Untersuchung des Wochenendeffekts und der
zusätzlichen Analyse der partiellen Abhängigkeiten saisonal trainierter Modelle konnte auf
dem betrachteten Gebiet ein genereller Übergang von VOC-sensitiven Bedingungen der
Ozonproduktion in den Wintermonaten, hin zu geringfügig NOx-sensitiven Bedingungen
im Sommer festgestellt werden.

Zu den wichtigsten meteorologischen Einflussfaktoren gehören neben der bereits erwähn-
ten Lufttemperatur und Intensität der Sonneneinstrahlung für O3 sowie Grenzschichthöhe
für PM2.5 und NO2 auch die Windstärke. Starke Winde sorgen für eine gute Durchmischung
der unteren Atmosphäre und reduzieren so die Bodenkonzentration aller drei Schadstof-
fe erheblich. Auch konnte durch eine Betrachtung des PM2.5- und NO2-Hotspots über
dem Ruhrgebiet bei verschiedenen Windrichtungen der Transport von Schadstoffen in
windabwärts gelegenen Regionen beobachtet werden. Daher gilt die Windrichtung je nach
der relativen Lage zu starken Schadstoffemissionen, als einflussreicher meteorologischer
Parameter.

Daten zur Niederschlagsmenge wurden durch die Feature Importance für alle Schadstoffe
als relativ unwichtig befunden. Vergleiche der zeitlichen Verläufe der mittleren Nieder-
schlagsmenge und des mittleren Feinstaubs auf dem Untersuchungsgebiet zeigen jedoch
eine starke Antikorrelation zwischen den Daten auf. Wegen mangelnden Satellitendaten
bei Regenfällen aufgrund von Wolkenbedeckung, gehen diese kaum in das Modelltraining
mit ein. Dieser „Schönwetterbias“ des Modells ist eine der zentralen Herausforderungen
beim Arbeiten mit Satellitendaten und ML-Modellen.

Eine weitere Herausforderung stellen die Abhängigkeiten zwischen den einzelnen Ein-
gangsvariablen dar. Es konnte beobachtet werden, dass starke Korrelationen zwischen
den Modellvariablen die Interpretation der Feature Importance Werte erschweren können.
Durch sie lassen sich Veränderungen in den Schadstoffdaten nur schwer eindeutig einem
der beteiligten meteorologischen Parametern zuschreiben.

Neben der Bewältigung der genannten Herausforderungen ist eine Erweiterung und
Verbesserung der in dieser Arbeit eingesetzten Modelle und Analyseverfahren in der
Zukunft erstrebenswert.

Die Schadstoffe NO2 und O3 aber vor allem PM2.5 werden aufgrund ihrer gesundheit-
lichen Relevanz in der Literatur bevorzugt diskutiert. Im Rahmen zukünftiger Arbeiten
sind weitere Stoffe wie Schwefeldioxid (SO2), Kohlenstoffmonoxid (CO) und Formaldehyd
(HCHO) jedoch ebenfalls von potentiellem Interesse. Sie beteiligen sich zum einen erheblich
an der Bildung sekundärer Aerosole [162, 163]. Zum anderen ist HCHO eng mit der Kon-
zentration von nicht-Methan VOCs (NMVOCs) verbunden [164], die zusammen mit NOx,
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CO und Methan (CH4) eine der wichtigsten Vorläufersubstanzen von troposphärischem
Ozon darstellen [165][166]. Die genannten Stoffe sind als TROPOMI-Datenprodukt verfüg-
bar [167], weshalb die Analyse und Modellumsetzung analog zu denen für NO2 in dieser
Arbeit durchgeführt werden könnte. Zusätzlich könnten die abgeleiteten Schadstoffdaten als
Vorläufersubstanzen in die Vorhersagemodelle für PM2.5 und O3 eingehen und ihr Einfluss
entsprechend analysiert werden.

Auf Basis der Variablenabhängigkeiten und den Ergebnissen anderer wissenschaftlicher
Studien [108, 112], wird außerdem davon ausgegangen, dass sich die Modellgenauigkeit
durch die räumliche und zeitliche Faltung der Eingangsdaten noch verbessern lässt. Dabei
könnten dem Modell für die Vorhersage der Schadstoffwerte an einem Gitterpunkt zusätz-
liche Daten zu Schadstoffquellen, Bodenmessungen oder Geographie aus der Umgebung
übergeben werden. Diese könnten weiterführend unter Einbezug der Windrichtung verar-
beitet werden, um den regionalen Transport von Schadstoffen zu berücksichtigen. Daten zu
vorangegangenen Tagen oder meteorologischen Ereignissen beinhalten ebenfalls Informa-
tionen die potenziell für die Vorhersage nützlich sind. Viele der Schwächen des gewählten
Modellaufbaus (z.B. fehlende Berücksichtigung des Transports, fehlende Trainingsdaten
durch Wolkenbedeckung während Regenfällen, usw.), die durch die isolierte Betrachtung
einzelner Gitterpunkte entstehen, könnten dadurch überwunden oder abgeschwächt werden.
Die genaueren Modellvorhersagen könnten neben zuverlässigeren Schadstoffkarten einen
noch besseren Einblick in die zugrundeliegenden atmosphärischen Prozesse liefern.
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Anhang

A Abbildungen flächenhafter Schadstoffmittelwerte

Abbildung A.1: Flächenhafte PM2.5 Mittelwerte der einzelnen Messjahre.

(a) (b) (c)

(d) (e)

Abbildung A.2: Flächenhafte NO2 Mittelwerte der einzelnen Messjahre.

(a) (b) (c)
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A Abbildungen flächenhafter Schadstoffmittelwerte

Abbildung A.3: Flächenhafte O3 Mittelwerte der einzelnen Messjahre.

(a) (b) (c)

Abbildung A.4: Flächenhafte PM2.5-Mittelwerte für verschiedene mittlere Windstärken.

(a) (b) (c)
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Abbildung A.5: Flächenhafte PM2.5-Mittelwerte für verschiedene Hauptwindrichtungen.

(a) (b) (c)

(d) (e)

Abbildung A.6: Flächenhafte NO2-Mittelwerte für verschiedene mittlere Windstärken.

(a) (b) (c)

100



A Abbildungen flächenhafter Schadstoffmittelwerte

Abbildung A.7: Flächenhafte NO2-Mittelwerte für verschiedene Hauptwindrichtungen.

(a) (b) (c)

(d) (e)

Abbildung A.8: Flächenhafte O3-Mittelwerte für verschiedene mittlere Windstärken.

(a) (b) (c)
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Abbildung A.9: Flächenhafte O3-Mittelwerte für verschiedene Hauptwindrichtungen.

(a) (b) (c)

(d) (e)
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B Abbildungen zur Hot- und Coldspotanalyse

B Abbildungen zur Hot- und Coldspotanalyse

Abbildung B.1: LISA für die PM2.5-Mittelwerte der einzelnen Jahreszeiten.

(a) (b) (c)

(d)
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Abbildung B.2: LISA für die NO2-Mittelwerte der einzelnen Jahreszeiten.

(a) (b) (c)

(d)
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B Abbildungen zur Hot- und Coldspotanalyse

Abbildung B.3: LISA für die O3-Mittelwerte der einzelnen Jahreszeiten.

(a) (b) (c)

(d)

Abbildung B.4: LISA für die PM2.5-Mittelwerte bei Verschiedenen mittleren Windstärken.

(a) (b) (c)
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Abbildung B.5: LISA für PM2.5-Mittelwerte bei verschiedenen Hauptwindrichtungen.

(a) (b) (c)

(d) (e)

Abbildung B.6: LISA für die NO2-Mittelwerte bei Verschiedenen mittleren Windstärken.

(a) (b) (c)
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B Abbildungen zur Hot- und Coldspotanalyse

Abbildung B.7: LISA für NO2-Mittelwerte bei verschiedenen Hauptwindrichtungen.

(a) (b) (c)

(d) (e)

Abbildung B.8: LISA für die O3-Mittelwerte bei Verschiedenen mittleren Windstärken.

(a) (b) (c)
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Abbildung B.9: LISA für O3-Mittelwerte bei verschiedenen Hauptwindrichtungen.

(a) (b) (c)

(d) (e)
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C Zusätzliche Abbildungen

C Zusätzliche Abbildungen

Abbildung C.1: Saharastaubmessungen am Hohenpeißenberg. [149]
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