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Abstract

We start with a short introduction of some newer thermodynamical approaches to the description of nonequilibrium processes related to the interaction of short laser pulses with matter. Then we shall use the example of electronic thermal conductivity to show why the equations usually derived in standard solid state theory have to be reconsidered. This is mandated by the loss of local thermal equilibrium, the nonstationarity, and the enhanced contribution from electron-electron scattering. Based on Boltzmann’s equation we derive an expression for the thermal conductivity with new qualitative and quantitative properties. These results are supported by comparison with experiments. 
Keywords: nonequilibrium, thermal conductivity, diffusivity, metals, short laser pulses
1. Introduction – temperature concept

Undoubtedly, the interaction of short laser pulses with matter is a nonequilibrium process and, for this reason, standard thermodynamics is not appropriate for description. Up to date, however, we have no generally accepted theory for the description of processes far away from equilibrium. But there is a number of promising different approaches like the extended thermodynamics 
, the nonextensive thermodynamics 
 and the nonequilibrium statistical operator method 
. Complementary, a number of statistical schemes have been proposed 
,
,
 all based on the projection-operator method. Although these approaches are usually more general than the thermodynamical techniques they are in many cases too complicated for a description of real problems. On the other hand, the thermodynamical methods are only applicable after a short initial period of time needed for the establishment of a “quasi”-temperature. This is not new, even the famous Boltzmann equation needs a correlation time for its applicability. This constitutes no serious problem as long as the duration of laser pulse is much longer, say, 100fs as a conservative estimate, than the initial correlation time. The most important effect of nonequilibrium, at least for the following investigation, is the loss of the local thermal equilibrium. This means that the electron and phonon systems possess different temperatures. Besides of this deviation from classical thermodynamics, short pulse laser interaction is characterized by a second important effect: nonstationarity. Both peculiarities are in strong contrast to the basic assumptions of standard solid state physics 
, namely, local thermal equilibrium and a steady state. Exactly for these reasons, we have to reconsider the equations for the electrical and thermal currents and the corresponding conductivities. In the following we shall derive, as an example, the change of the equations for the thermal conductivity and thermal diffusivity and compare the results with experimental data. A more detailed treatment is given in 
.
2. Thermal conductivity
Extensive compilations of data for the thermal conductivity 
 are available in the literature. They are, however, of limited value for the description of short laser pulse experiments because the experiments were carried out under steady state conditions where the electrons and phonons are described by a single common temperature. In the following, we restrict ourselves to the contribution of the electrons to the thermal conductivity in metals because it is about two orders of magnitude higher than that of the phonons. 
In the semi-classical theory of conduction in metals the electronic thermal conductivity is defined by 
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where without loss of generality we have assumed that the heat is only carried by the electrons in a single band. Four points are remarkable in equation (1)

:

1. The Fermi-Dirac-distribution 
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 indicates that we are very close to equilibrium. 
2. The temperature T is the same for electrons and phonons everywhere and at all times. 
3. The chemical potential µ (T) is usually taken at T=0K because the first correction is proportional to (kBT/µ0)2.
4. In defect-free systems the scattering time ( is dominated by the electron-phonon scattering since the effect of the elec-

     tron-electron scattering is reduced by Pauli’s exclusion principle.

For the description of short laser pulse interaction with metals we have to modify all four points: 
1. We need a nonequilibrium distribution function in view of the fact that the system may be far away from equilibrium.

2. The electrons and phonons must be characterized by different temperatures where the electronic one can even be
     higher than the critical temperature of the metal. 
3. Therefore a temperature correction to the Fermi energy should be included. 
4. The electron-electron scattering has to be taken into account while its phase space is enhanced. Moreover, it can 
    become the primary scattering process. 
The first problem, the determination of the nonequilibrium distribution function, has been solved by a perturbation expansion of the Boltzmann equation 
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up to second order where all terms, except for the last one, keep their usual meaning. This additional term represents the phonon-assisted absorption or emission of photons during the scattering. It is discussed in more details in 8. 

Formally, we can write for the expansion 


[image: image4.wmf]m

n2

no12

n0

fpffpfpf...

=

==+++

å


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (3)

where f0 is the Fermi-Dirac distribution and the expansion parameter is defined by
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where I(t) is the laser intensity, ( the scattering time, n the electron density, ( the laser frequency, and ( the optical absorption depth. We skip the derivation here, which can be found in 8, and give only the results. The first and second order expressions read
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where Te is the electron (quasi)temperature. Consequently, the short initial time is identified as the time needed for the establishment of the electron temperature as mentioned above. This time may be quite short due to the strong electron-electron interaction. 
With Sommerfeld’s expansion up to the 2nd order ,the temperature dependence of the chemical potential is given by 
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Within the frame of the Fermi liquid theory, the electron-electron scattering time can be expressed by 
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where the parameter ( can be taken from the experiment 
 or calculated by means of a proper theoretical expression 
,
. 
After insertion of equations (1)

 and integration over k-space we get for the thermal conductivity in first order (7)

 into equation (5)

 through 
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and in second order
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The function z(Te, Tph) is specified by the ratio of the electron-phonon scattering time over the temperature dependent part of the electron-electron scattering time 
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G(Te) is given in equation (6)

 by the expression in the parentheses. The remaining abbreviations N(Te, Tph, () and p0(Tph, (, t) have the following meaning 


[image: image12.wmf](

)

(

)

(

)

(

)

(

)

2

L

2

L

22

eph

epheph

222

Be

t

ophph

0ph

zT,T

NT,T,1zT,T.

4kT

I(T)

pT,,te.

n

-t

-

t

w

w=++

p

t

w=

wd

h

h


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (11)

The first terms in equations (9)

, respectively, agree with the standard expression for the electronic thermal conductivity (Wiedemann-Franz law). The subscript “LTE” indicates that the conductivity (LTE  is related to the case of local thermal equilibrium, i.e., Te=Tph=T.(8)

 and 
It is worth noting that the second order term possesses some peculiarities: It is explicitly depending on the laser properties (I0, (, (L) and on time. For this reason, a universal plot of the thermal conductivity as a simple function of temperature is not possible anymore. As an example, the values of (2 in the figures are calculated for the fluence F=50mJ/cm2, (L=500fs, and (=1eV. The abscissas in figures 1 and 2 have a double meaning: In the case of local thermal equilibrium, the three shorter curves run up to the melting point and T represents the common temperature, Te=Tph=T, of the system in this case. For the remaining curves T corresponds to the electron temperature, T=Te, because we have chosen a fixed Tph=300K for a clear presentation. Additionally, we have incorporated a linear approximation. Although, this is often used in the literature it may become a poor guess as discussed below.
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Figure 1: Thermal conductivity of gold in the case of nonlocal thermal equilibrium at fixed Tph=300K; upper solid
 
                curve: (1+(2, dotted curve: linear approximation, dashed-dotted curve: (2, and for the local thermal equilibrium 
                Te=Tph=T: lower solid curve (1, dotted curve: (LTE, o experimental data taken from 9; for the laser parameters 
                used cf. text
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                Figure 2: Thermal conductivity of copper in the case of nonlocal thermal equilibrium at fixed Tph=300K; upper solid
 
                curve: (1+(2, dotted curve: linear approximation, dashed-dotted curve: (2, and for the local thermal equilibrium 
                Te=Tph=T: lower solid curve (1, dotted curve: (LTE, o experimental data taken from 9; for the laser parameters 
                used cf. text
Furthermore, it should be noted that for gold the contribution of the electron-electron scattering improves the agreement between theory and experiment even in the case of local thermal equilibrium. It should be remembered that due to the explicit time dependence of (2 the upper solid curves and the dash-dotted curves in the figures are only snapshots taken at t=(L. This aspect is dealt with in more detail in 8. 
Although the linear approximation results from (8)

 
(8)

 in the limit z<<1 and kB·Te<<(0 it has to be used with caution since, at least for copper and gold, since the true behavior is completely different for copper at temperatures above 1300K and for gold above 2000K. Instead of a further linear increase the thermal conductivity decreases roughly inversely proportional to Te. Closely related to this point is the behavior of the electronic thermal diffusivity ae, the ratio of the thermal conductivity over the electronic specific heat. In the linear approximation ae is almost constant because the electronic specific heat and the thermal conductivity are proportional to Te. In contrast to this it follows from equation 
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with b=4(2((ph. As long as b· Te2 is much smaller than unity the nonlinear diffusivity corresponds to the standard expression but if the electron temperature becomes high enough anl starts to decrease. To give an impression by means of an example, b is approximately 8.4 for gold at Te=6000K. The resultant changed behavior has certainly consequences for the electron and phonon temperature distribution in metals. Since both the thermal diffusivity and the transport of heat inside the metal are reduced the energy is temporally confined to regions near the surface. Consequently, one anticipates a stronger increase of the temperatures in this region. 

Unfortunately, a direct measurement of this effect is not possible but we can make an indirect check utilizing an experiment performed by Wang et al. (●) 
. The authors have measured the maximum of the electron temperature at the surface. 
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Figure 3: Maximum electron temperature of gold as a function of the delay time, experimental (●) and calculated 
behavior; for details see text.
The gold sample has been irradiated with two almost identical pulses at different delay times Δt as indicated in Figure 3. The theoretical curves were calculated by means of the extended two temperature model (ETTM)
, which is based on the hyperbolic differential equation, with both ( in the linear approximation (dashed curve) and with the above derived nonlinear expression (dotted and solid curves). The horizontal curve corresponds to the maximal electron temperature reachable with the single laser pulse I1. For two delayed pulses this means that the temperature produced by the first pulse is completely relaxed before the second pulse arrives. As can be seen from the experiment this takes more as 1.25ps. The agreement with the theory (maximum of the dotted curve) is very satisfying. The same is true for the zero delay (solid curve). For the linear relation, however, (dashed curve), the electron temperature stays well below the maximum because the transport into the metal is too fast. It should be mentioned that the two temperature model, which is based on the parabolic differential equation, gives too low values even if we take the nonlinear conductivity. The physical origin lies in the implicit prediction by the model that a temperature gradient is built up instantaneously. This point is strongly related to another unphysical property of the parabolic heat conduction, namely, if a sudden temperature perturbation is applied at one point in the solid, it will be felt instantaneously and everywhere at distant points.

In the ETTM this is not the case because there is a temporal delay, which is governed by Allen’s
 temperature relaxation time. 

4. Conclusions

In this paper, methods for the description of nonequilibrium processes are briefly sketched. Furthermore, we have given specific reasons for the necessity of reconsidering the equations for the thermal conductivity and diffusivity. It is shown that two points are mainly responsible for the manifestation of new phenomena: the local thermal nonequilibrium expressed by different temperatures in the electron and phonon system and the excitation of the electrons far above the Fermi energy. The latter opens up a large phase space for electron-electron scattering and, therefore, makes this process much more important and sometimes even dominant. This is in strong contrast to its contribution in the case of local thermal equilibrium. Based on a perturbation expansion of the Boltzmann equation, we have derived new expressions for the thermal conductivity. It is remarkable that the thermal conductivity becomes a function of the laser properties (frequency, pulse duration, intensity) in second order. Already in first order it is a strong nonlinear function of the electron temperature. Accordingly, the thermal diffusivity and, concomitantly, the energy transport become modified. 
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