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ABSTRACT

For the description of the interaction of a fs-laser pulse with a solid, the standard values of the properties of a solid are not suited because they have experimentally been determined or theoretically derived under the assumptions of a steady state and local thermal equilibrium. Depending on the property considered and the laser pulse duration either one or both of these conditions may be violated. This is caused by the appearance of a local thermal nonequilibrium, a nonsteady state, and the possibly large difference between the temperatures of the electron and phonon subsystem. 

For a deeper understanding and for the predictability of experimental results, it is essential to have knowledge of the optical properties and especially of the absorption and of the optical penetration depth on the fs time scale. In this paper, we derive equations for the optical properties of metals in the case of local thermal nonequilibrium between the electron and phonon system. For given laser intensities, we calculate, as an example, the optical properties for gold. For this purpose, we need the time dependent temperatures of the electrons and phonons. They are evaluated by means of our extended two temperature model. Finally, we compare the results with the standard equilibrium behavior as well as with the experimental findings and close with a short discussion. 

INTRODUCTION

The knowledge of the absorption and the optical penetration depth during the interaction of a laser pulse with metals is important both for modelling and application. In the case of long laser pulses, one can simply take the needed information from compilations where, for example, the reflectivity and the absorption coefficient are listed as functions of frequency and temperature. For ultra short laser pulses, however, these values become doubtful because they are usually determined under the conditions of local thermal equilibrium and a steady state. Since just these assumptions are violated for pulses in the fs- and partly also in the ps-range we have to expect deviations from the standard behaviour. Such a statement is supported both by experiments on transient thermal reflectivity (Sun et al. 1994, Bonn et al. 2000) and also by the investigations of the change in the behaviour of the thermal properties (Hüttner 1998). Indeed, the electrons may have a temperature, which not only is much higher than that of the phonons but also even higher than any value under which a solid or liquid state could exist. 

In addition, as traditional solid state physics is also based on the above mentioned two conditions, one has to use a nonequilibrium approach for the calculation of the optical properties. 

The first task, the determination of the electron distribution function 
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, for local thermal nonequilibrium was solved by Hüttner (1999). There, we have derived 
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 by a perturbation treatment of the Boltzmann equation together with an additional photon operator. In the following, we will use this function for the calculation of the frequency dependent electrical conductivity.

ELECTRICAL CONDUCTIVITY

For an electron gas interacting with laser radiation the Boltzmann equation may be written as 
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where all terms, except for the last one, have their usual meaning. The additional term represents the phonon-assisted absorption or emission of photons. It depends essentially on the absorbed intensity including its time dependence, the electron density, the absorption coefficient and the laser frequency. A detailed discussion can be found in Hüttner (1999). Shortly, Eq. (1) is solved by expanding f into a power series for the small parameter, p = (·( , defined by 
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Here, for the reader’s convenience we give only the first and further below the second order solution to equation (1)

. Assuming that the electron temperature is well-established, which implies a lower boundary for the laser pulse duration (L of about 100fs, we find in first order 
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with f0 as the Fermi-Dirac distribution function and H(t) as the time envelope function of the laser pulse. The abbreviation (o follows from Eq. (16) when I(t) is replaced by Io. The function h(t) of the electric field is defined by I(t)~|E(t)|2~H(t)|E|2~|h(t)E|2.

Evaluating the integration we get 
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with the expansion parameter p0 = (0( corresponding to the number of absorbed photons during the scattering time ( and µ as the temperature dependent chemical potential. The scattering rate ((E,Te,Tph)-1 is composed of the sum of the rates for electron-phonon and electron-electron scattering. Within the frame of the Fermi liquid theory, we can write it as 
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where ( is an experimental parameter (Parkins et al. 1981). 

First order contribution

In first order, the electrical current density is defined by 
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Taking into account that odd powers of the velocity vanish, and using the condition (<<(L we obtain from equations (6)

 for the current density 
(4)

 and 
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Both contributions to the current density are linearly independent if the incidence of the laser radiation is parallel to the surface normal because the electric field is perpendicular to the thermal gradient in this case. Furthermore, since the time dependence of the electron temperature is related to the laser pulse duration, we can consider jT as a constant in comparison with the fast time dependence of jE. For this reason, the thermal part does not give a direct contribution to (((). Therefore, we neglect it in the following. 

Depending on the electron temperature, three cases may be considered for the frequency-dependent conductivity:

1.: Te = Tph, (ph = (D << (e-e  (where (D is Drude’s scattering time)
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The function h(t) appears in equation (3)

. A justification for this approximation are the facts that the function h(t) is slowly varying in comparison with the fast exponential term and, second, numerical calculations between the difference of the complete and the approximated expressions deviate by less than one percent. 
(8)

 because this term can be extracted from the time integral in equation 
2.: (D < (e-e, Te > Tph
For convenience, we rewrite equation. (5)

 in the form
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where the function z(Te, Tph) is defined by the ratio of the electron-phonon scattering time over part of the electron-electron scattering time depending on the temperature  
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For the conductivity, we get now 
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For kB Te << µ0, we can make the approximation (-(f0/(E) ( ( (E - (0) and finally find 



[image: image15.wmf](

)

(

)

ephD

ephD

h(t)

,T,T

1zT,Ti

sw=s

+-wt

 .
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (12)

Equation (11) improves Drude’s theory by taking into account the effect of electron-electron scattering. The magnitude of the effect depends on the value of the parameter ( and, of course, on the electron temperature. 

3.: (D > (e-e, Tph << Te
In this case, we use Sommerfeld’s expansion for developing ((Te) and get with the free electron density of levels from equation (11)
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and finally, after evaluation of equation (13)

 together with the time function of the electric field  



[image: image17.wmf](

)

(

)

(

)

(

)

(

)

222

Be

2

0

1ephD

222

Be

D

2

0

z1z

kT

z

1z1

121z6

24

,T,T,th(t)

z1z

kT

i1

6

24

ìü

éù

+G

p

++--

ïï

êú

+

m

ïï

ëû

ïï

sw=sG×

íý

ïï

éù

+G

p

ïï

+wt--

êú

ïï

m

ëû

îþ


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (14)

with (D as Drude’s dc-conductivity and the new abbreviation
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Drude’s ac-conductivity follows from Equation (14)

 in the limits kB Te << µ0, z ( 0, and h(t)=constant. 
Second order contribution
The next order is obtained by insertion of equation (4)

 into the following expression  
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Due to the energy and temperature dependence of the relaxation time (, the solution of the integral becomes rather long. For this reason, we will not give the complete expression here but restrict ourselves to the terms needed for the calculation of the electrical current density. One can considerably reduce the number of integrals by taking into account that the electric current density is proportional to ( v·f. Therefore, terms containing odd powers of v vanish upon integration over k-space. Furthermore, in agreement with the first order treatment, we can neglect the terms proportional to (T. The remaining integral reads 
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Solving the integral, we obtain for the electrical current density in second order 
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From this we get for the real and imaginary part of the complex conductivity in the free electron approach  
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and
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where p0 is redefined by p0=(0·(D=(I0(D)/(nћ(() (I0 peak intensity, n electron density, ( absorption depth). The chemical potential is replaced in the expressions by (0 because the first correction is proportional to (kB Te/(0)4. 

Using the familiar relation between the complex dielectric function and the complex ac-conductivity,
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we are now able to determine the optical properties for the case of local thermal nonequilibrium up to second order.

Aiming of showing the changes for all optical properties, we first make a numerical evaluation because no paper reporting a closed measurement of the properties is known. 

  It is worth noting that such a numerical evaluation cannot directly be compared with published transient thermal reflection measurements. This is due to the fact that the theoretical optical properties depend explicitly on the time function of the laser pulse and therefore, for example, the absorption is zero after the pulse. The experiment, however, probes the time dependence of the absorption caused by a preceding pump pulse. 

For this purpose, we calculate for gold the time dependences of the surface temperatures of the electron and phonon subsystems with the extended two temperature model (Hüttner and Rohr 1996) improved by using the nonlinear electronic thermal conductivity derived by Hüttner (1998). The main effect of the nonlinear electron-temperature dependence, which is caused by the electron-electron scattering, is an enhancement of the surface temperatures because the thermal diffusivity is reduced. 

For simplicity’s sake, a top-hat profile is used for the time dependence of the laser pulses.
This way, the intrinsic time dependence of the properties can be assessed more easily because it is not masked by the shape of the laser pulse. The laser data used for (=1eV and (L=500fs, are Iabs=10GW/cm2 and Iabs=20GW/cm2, respectively. The surface temperatures are plotted in Figs. 1 and 2.

             Figure 1: Surface temperatures of the electrons of gold for a hat-top profile with (=1eV,  [image: image1.wmf]r

f(k,t)


                            (L=500fs, Iabs=10GW/cm2, and Iabs=20GW/cm2, respectively.
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                                 Figure 2: Surface temperatures of the phonons of gold for a hat-top profile

The cusps of the electron temperatures reflect the sharp cut-off of the hat-top profile.
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                          Figure 3: Real part of the electrical conductivity: full and dashed curves display the 

                                         theory up to second order, dashed-dotted curve Drude’s theory

In the next step, we use the calculated values of the temperatures as input data for the determination of the electrical conductivity. The resulting curves for the real and imaginary part are given in figures 3 and 4.
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                  Figure 4: Imaginary part of the electrical conductivity: full and dashed curve displays 

                               the theory up to second order, dashed curve Drude’s theory

At t=0, the different behavior of the two parts of the conductivity is due to the appearance of (1+z(Te,Tph)) in the denominator of the imaginary part, equation (20)

. Although the electron-electron interaction is small at room temperature, it is already responsible for a deviation from Drude’s theory. Furthermore, the strong dependence on intensity is worthwhile noting. While the real part is enhanced by more than one order of magnitude the decrease of the imaginary part is only about 20 percent. 

A similar behavior can be seen in the next four figures for the real and imaginary part of the dielectric function and the refractive index, respectively. As is well-known, the real and imaginary part of the refractive index, respectively, are related to the complex dielectric function by
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For convenience and later use, we also give here the expressions for the absorption depth and for the absorption, respectively 
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                      Figure 5: Real part of dielectric function: full and dashed curves display the theory 

                                     up to second order, dashed-dotted curve Drude’s theory
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                        Figure 6: Imaginary part of dielectric function: full and dashed curves display the 

                                       theory up to second order, dashed-dotted curve Drude’s theory
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                    Figure 7: Real part of refractive index: full and dashed curves display the theory up 

                                   to second order, dash-dotted curve Drude’s theory 
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                        Figure 8: Imaginary part of refractive index: full and dashed curves display the theory

                                       up to second order, dash-dotted curve Drude’s theory 
The most important quantities for applications and simulations, the optical penetration depth and the absorption, are plotted in  figures 9 and 10. Both quantities are crucial for the stored laser energy, the resulting energy density in the solid and, if the latter is large enough, the character of the ablation process. .

[image: image46.wmf]0,0

0,2

0,4

0,6

0,8

1,0

2000

4000

6000

8000

10000

Laser pulse profile

t

L

   = 500 fs

w

L

  = 1 eV

 

Surface temperature of the electrons

 T

e

  I

abs

 = 20 GW/cm

2

 T

e

  I

abs

 = 10 GW/cm

2

T

e

(K)

t (ps)

                  Figure 9: Optical penetration depth in nm: full and dashed curves display the theory 

                                 up to second order, dash-dotted curve Drude’s theory 
At first glance, the absorption depth is only slightly changed, about one percent at 10GW/cm2 but already about ten percent at 20GW/cm2. In fact, this strong nonlinear behavior may result in a dramatic modification at higher intensities. 

Inspecting figures 3 to 10, one can recognize the important consequences of the existence of local thermal nonequilibrium for the optical properties of the metal. While in the standard theory the increase of the phonon temperature, more exactly T=Te=Tph, only leads to slight modifications (dash-dotted curves), the properties under fs-laser pulses are overwhelmingly dominated by the appearance of a local thermal nonequilibrium between the electrons and phonons (full and dashed curves). At first sight, the similarity of the shapes of the curves suggest that this is mainly caused by how the electron temperature evolves. A closer investigation, however, shows that this is more or less the case for the properties dominated by the real part of the conductivity. Those properties, which are more directly governed by the imaginary part of the conductivity, show a delicate balance of the contributions from the change in the electron and phonon temperature mainly caused by the product ((D(Tph). The absorption coefficient provides a prime example. Although the change of the imaginary part of the dielectric function is much larger than the change of the real part, as given in table 1, it is not able to compensate for the “loss” of the real part with increasing phonon temperature. For this reason, the absorption coefficient decreases. This is in complete analogy to the behavior in the standard theory if the frequency is increased. 
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                       Figure 10: Absorption: full and dashed curves display the theory up to second 

                                       order, dash-dotted curve Drude’s theory 
The most serious change, an increase by almost a factor of 20, surely appears in the absorption. Such an enhancement and the corresponding decrease of the reflection have been observed in many experiments (Banyai et al 1991, Bonn et al. 2000, Fedosejevs et al. 1990, Sun et al. 1994).

Another important fact is given by the different nonlinear response of the several optical properties to the change of the temperatures. A slight increase of the relative change of the phonon temperature by 27% leads to a variation of the relative change of the absorption depth by more than a factor of five. 

Since gold has one of the smallest coefficient of energy exchange, one can expect that this effect may still be larger for other metals provided of the phonon temperature stays below the evaporation point. 
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	15,94
	0.100
	  5.67
	  5.67
	  5.79
	  5,88
	-0.042
	0.042
	-0.018
	0.018

	29.23
	0.127
	14.73
	14,73
	16.20
	17.59
	-0.208
	0.210
	-0.086
	0.094


Table 1: Relative change, (x/x = [x(()-x(0)]/x(0), of the electron and phonon temperature (Te, Tph), the real and imaginary part of the conductivity ((’, (’’), the dielectric function ((’, (’’) and the refractive index (n, k), the absorption depth (() and the absorption (A) for I=10GW/cm2 (second line), and I=20GW/cm2 (third line), respectively.

Next, we give a direct comparison of the theory with experiments. From figures 5 and 6 or from table 1 it follows that the relative change of the imaginary part of the dielectric function is much larger than for the real part. This outcome agrees well with the experiment reported by Elsayed-Ali et al. (1991). The authors found for gold films that in response to a fs laser pulse the imaginary part of the dielectric function undergoes a significantly higher perturbation than the real part. Moreover, using the experimental data for the fluence F=4mJ/cm2, the pulse duration (L=150fs, and the photon frequency (=2eV , which is well below the interband transition energy, we find for the maximal deviations 
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, which exactly correspond to the difference of two orders seen in the experiment. 

[image: image48.wmf]0,0

0,2

0,4

0,6

0,8

1,0

300

350

400

450

 

Surface temperature of the phonons 

 T

ph

  I

abs

 = 20 GW/cm

2

 T

ph

  I

abs

 = 10 GW/cm

2

t

L

  = 500 fs

w

L

 = 1 eV

T

ph

 (K)

t (ps)

Hohlfeld et al. (1996) carried out a measurement of the relative change of the transient thermal reflectivity of gold for a p-polarized wave with I=10GW/cm2, (L=100fs and (=2eV at incident angles of 43° (pump) and 48° (probe). The results together with our theoretical calculations are plotted in figure 11.

              Figure 11: Relative change of transient thermal reflectivity of gold for a p-polarized light with 
                             (=2eV at incident angles of 43° (pump) and 48° (probe); Inset: normalised absorption 

                             and normalized electron temperature 
From the inset we recognise that the alteration of the absorption at early times is primarily governed by the electron temperature, at later times, however, the contribution from the electron-phonon scattering becomes more pronounced due to the rise of the phonon temperature and the fall of the electron one. 

CONCLUSION

The nonequilibrium distribution of the electrons and the existence of different temperatures for the electron and phonon subsystems surely are the most essential features appearing in the interaction of fs-laser pulses with matter. Although both effects appear also in the case of low intensities (Fann et al. 1992), their consequences become, of course, more pronounced at high intensities. The replacement of the Fermi-Dirac function by the nonequilibrium distribution function expands the available phase space for the electrons and brings additional terms to the equations. On the other hand, the decoupling of the temperatures enhances the effect of electron-electron scattering. At high electron temperatures, the electron-electron scattering rate becomes comparable or even greater than the electron-phonon scattering rate and starts dominating the interactions. Together with the larger phase space, this outcome is responsible for the qualitative and quantitative change of the optical properties discussed in this paper and for the thermal conductivity investigated by Hüttner (1998). It is worth noting that the new properties principally are common to all metals and not restricted to the often in pump and probe experiments considered noble metals. 

A complete self-consistent modeling of the electron and phonon temperature including the full temperature dependence of all material properties involved represents a formidable mathematical challenge and is still a completely open issue. 
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