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Thermodynamics and transport properties in the transient regime
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Abstract

The nonequilibrium behaviour in the transient regime of metals excited by ultrashort optical pulses is investigated by means of a second order expansion of the Boltzmann equation. By definition, the transition range is located between the time necessary for the establishment of the electron temperature and the time where a description by the standard steady state equations is justified. Relaxation functions are derived for the electrical and thermal currents, and the relaxation times related to them are determined. It is shown that for the electrical transport the relaxation time corresponds to Drude's momentum scattering time whereas the corresponding time for the heat flow is identified as the electron temperature relaxation time. Further, expressions for the electrical and thermal conductivity are obtained in the case of a local thermal nonequilibrium between the electron and phonon subsystems in first and second order, respectively. Consequences for the determination of the temperature distributions inside metals are discussed. The solution of the Boltzmann equation is also used for the calculation of the time dependent energy distribution function of the electrons. The results are in good agreement with the experiment. 

1. Introduction

In the past few years, the availability of lasers with a pulse duration well down into the femtosecond range has opened a wide field for theoretical investigations and experimental applications. For example, these new laser systems offer the possibility of structuring exposed material with high precision and minimal thermal stress. This is closely related to the appearance of new phenomena like the phase explosion or the existence of different temperatures for the electrons and phonons. 

In the transient region where a steady state not yet exists, the standard equations for the solid state lose their validity and have to be replaced by relaxation expressions governed by characteristic times. Some of these equations and times are derived in section 3. 

Short laser pulses usually possess high power densities and an electron may absorb energies as high as some few eV's between two scattering events. Consequently, the electron system can be driven far out of equilibrium and, hence, a description of its properties by a first order solution to the Boltzmann equation, still the standard approach in the solid state physics, may become inappropriate. In this case, the application of the Fermi-Dirac function even with different temperatures for the electron and phonon subsystems may not be justified. One way to handle this difficulty is to seek higher order solutions to the Boltzmann equation. Section 4 is devoted to such a nonequilibrium approach. The consequences of nonequilibrium are illustrated in some few examples: for the electronic energy distribution function and for the thermal and electrical conductivity. 

2. Nonequilibrium electron distribution

We will investigate processes related to the absorption of pico- and subpicosecond laser pulses in metals. For this reason, we separate the entire system into two subsystems. The establishment of a state of equilibrium is achieved in each of the two systems with different relaxation times, where (ee<<(pp. Furthermore, it is reasonable to assume that in most cases the phonon system does not change essentially during the interaction with subpicosecond laser pulses, at least when the hierarchy of relaxation times meets the condition (ee<<(ep<<(pp. While the phonon-phonon relaxation time in metals is always much longer than the characteristic time for energy exchange, (ep, second inequality, (ep can be approximately of the same order of magnitude as (ee if the coefficient for the energy exchange is very large. Nevertheless, we can assume the establishment of a local electron temperature after the duration of some (ee. This assumption will, however, introduce a lower limit of about 100 fs for the investigations following below.

During the interaction of a strong laser field with metals, electrons absorb photons and transfer to states with the energy E ± ( As a result, a nonequilibrium distribution is generated. Aiming to describe such an electron subsystem we start from the Boltzmann equation. For an electron gas interacting with laser radiation this kinetic equation may be written as 



                   (1)

where all terms, except the last one, keep their usual meaning. This additional term represents the phonon-assisted absorption or emission of photons and is discussed in more details below. 

In our calculations we require that the following conditions are satisfied: a) interband transitions are excluded, b) the skin effect is normal, and c) the relaxation of the electron distribution is due to electron-electron and electron-phonon collisions. That means, we consider a free electron system at not too low temperature and exclude additional scattering processes as caused, for example, by magnons.

3. Relaxation functions

Since we are mainly interested in the physics that occur on short time scales we have to go, as mentioned above, beyond the steady state approach presented in most text books on solid state physics. For that purpose we introduce relaxation functions for the currents and calculate the characteristic relaxation times belonging to them. 

For times much larger than the corresponding relaxation times the derived equations must meet, of course, the standard steady state expressions as, e.g., the Fourier law for the heat flow jQ and Ohm's law for the electrical current je. It depends, therefore, strongly on the ratio of the relaxation time belonging to the investigated quantity over the typical process time whether a relaxation function is very necessary or not. That is, we have to compare in this paper the duration of the laser pulse with the distinct relaxation times. Since the latter can be different by orders of magnitude for various processes in the same material one has to check this condition for any physical quantity considered. This will be done in the next section for the electrical and thermal current.

3.1 Electrical current

Multiplying Eq. (1) by the product of the electronic charge times the velocity and integrating over the wave vector yields 



                              (2)

Let us examine the integrals in Eq. (2) step by step. The first one obtains simply 



  .                                       (3.1)

For the evaluation of the second integral we have to replace f(k, t) in the usual manner of perturbation theory by the Fermi-Dirac distribution (Ashcroft and Mermin 1976). Then we can integrate by parts using the property that f(k, t) vanishes at k = ± ( much faster than the energy can increase when the wave vector tends toward infinity. Considering the explicit time dependence of the temperature contained in fo we get an additional term. The evaluation yields 
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                        (3.2)

where the integrals containing (E-µ) and 

, respectively, vanish.

For calculating the third integral we assume here and in the following a constant effective mass and then find after integration by parts 



                                             (3.3)

where n is the electron density.

Utilizing the property of detailed balance for the scattering rates one can rewrite the fourth integral as 
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                     (3.4)

where the k'-integration over the transition rate was replaced by a relaxation time ((k, t). The final expression, however, turns out to be zero since the current vanishes in the case of equilibrium if we assume a lifetime independent of k.

The fifth integration is straightforward and results in 



 .                       (3.5)

where the relaxation time has been approximated by a constant. 

Expanding the operator G(f[k, t]) into a series of increasing numbers of multiphoton absorption and emission processes, respectively, and taking, for example, only the lowest order, we obtain 
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                          (3.6)

where H(x) is the Heaviside step function. The same will, of course, happen also for the higher order terms. 

Section 4 below contains a more detailed treatment of this part of the nonequilibrium distribution (see especially Equ. (20)).

With equations (3.1) through (3.6), inserted into Eq. (2) and multiplied by (e, we arrive at the sought relaxation function for the electrical current 



  .                                                                (4)

Since the term proportional to the electric field exceeds the second one by a factor of order ((/kBT)2, we can ignore the thermoelectric contribution and directly compare the right hand side of Eq. (4) with the Drude form of the electrical conductivity. This way we realize that the relaxation time of the electrical current can be identified with Drude's momentum scattering time, i.e., (e = (. Consequently, after some few times ( a steady state behavior is established. Using experimental data for the specific resistivity, the number of conduction electrons and the free electron mass mo, an estimate for ( gives values between some few and some tens of femtoseconds at room temperature (Ashcroft and Mermin 1976). A more accurate determination can be achieved by a band structure calculation of (n/m)eff (Allen et al. 1986) or by using the "exact" high temperature expression (Pinski and Allen 1981) (in practice, even T > (D may be enough) 



                                                                   (5)

with (tr as the transport electron-phonon coupling constant. In most cases (tr can be replaced by the usual electron-phonon coupling constant (. Although Eq. (5) is a good approximation in many situations, it should be keeping in mind, however, that the observed resistivity depends on both the electron-phonon and the electron-electron collisions. Equation (5), however, covers only the former mechanism. These distinctions will become clearer in section 4 where we will give a sketch of the derivation of the thermal conductivity for the general case of nonequilibrium between the electrons and phonons. 

3.2 Thermal current

In order to repeat the calculation in view of the thermal current one has to multiply Eq. (1) by the product of the energy difference (E - () times the velocity 


 EMBED Equation.2  

                        (6)

The first integration is similar to Eq. (3.1) and we get immediately the thermal analogy 



 .                                    (7.1)

Again, due to the lack of knowledge of the temperature dependence of f(k, t), we replace it in the next integral by the equilibrium distribution and obtain 
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 (7.2)

It should be noted that in the case of a local thermal nonequilibrium the temperature T refers to the temperature of the electrons and not to that of the phonons.

Since the difference of the mean energy and the Fermi energy, <E> - µ, calculated by means of f(k, t) is not necessarily zero as in Eq. (3.2) one gets for the thermoelectric contribution 



                                      (7.3)

Because the thermal current is also zero in the equilibrium the next integral vanishes in analogy with Eq. (3.4) if we make the same substitutions:
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         (7.4)

For the calculation of the fifth integral it is convenient to separate off the integration over k' and then to define a relaxation time for the heat flow, such that 



             (7.5)

To make the calculation of the last term containing the phonon-assisted photon processes as simple as possible we again restrict ourselves to the lowest order, like in Eq. (3.6) 


[image: image6.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

[

]

{

}

(

)

(

)

(

)

(

)

(

)

[

]

{

}

0

E

d

E

f

E

f

E

H

E

f

E

f

)

E

(

1

~

k

d

E

f

E

f

E

H

E

f

E

f

)

E

(

v

t

,

k

f

G

)

E

(

v

0

0

0

0

0

0

0

0

=

þ

ý

ü

î

í

ì

-

w

-

w

-

+

-

w

+

m

-

u

-

-

w

-

w

-

+

-

w

+

m

-

u

-

=

m

-

u

-

ò

ò

ò

h

h

h

h

r

h

h

h

r

r

r

   (7.6)

The vanishing of the whole expression can be most easily seen by a transformation of E ± (( into E' followed by a subdivision of the integrand into (E'-() and (. 

The differential equation of the thermal current is obtained immediately if one inserts the solutions (7.1) through (7.6) into Eq. (6) and then multiplies the whole equation by (Q 



                                                           (8)

where we have neglected the small contribution of Eq. (7.3. This is no restriction for s-polarized waves or for laser radiation parallel to the normal of the surface because in both cases the electric field is perpendicular to the heat flow and, therefore, cannot contribute. 

For the determination of the relaxation time (Q, we match the right hand side of Eq. (8) with the Fourier law. Within the framework of Eliashberg's theory the high temperature thermal resistivity (T > (D) can be written as an integral involving the coupling function (2·F(() (Grimvall 1986) 



 .                                              (9)

From Eqs. (8) and (9) we get for (Q 



  .                                               (10)

where we stress by the additional index "e" that T belongs to the electron subsystem. After rewriting, in the high-T limit the mean square of the energy density stored in the electron system is given by 



 .                                          (11)

After insertion of equations (10) and (11) into (8) we finally find that the relaxation time of the heat flow corresponds to the electron temperature relaxation time 



                                                        (12

first derived by Allen (1987). The amount of the relaxation time (Q is primarily determined by the coefficient of the heat exchange hex. This important quantity manifests the interaction between the electron and phonon subsystems. It depends on the coefficient of the specific heat of the electrons (e, the electron-phonon coupling constant ( also called the mass enhancement coefficient, and the averaged square of the phonon frequency. The present definition of the relaxation time (Q differs from Maurer's (1969) derivation especially by the temperature dependence. In his theory it is inversely proportional to the temperature. The difference can be traced back to the treatment of the electron system. In Maurer's approach, there is no coupling to the phonons and the relaxation takes place only in the electron system.

For the differential function of the thermal current it follows by substitution of Eq. (10) into Eq. (8) 



  .                                                                 (13)

This is known as the Maxwell-Cattaneo equation (Joseph and Preziosi 1989). Considering the integral version of Eq. (13) 



                                                       (14)

we recognize that the heat flow described by Eqs. (13) or (14) is nonlocal in time. Both expressions state that the heat flow at time t consists of the sum of flows at earlier times weighted by an exponential that accounts for temperature relaxation caused by the coupling to the phonon bath. It is worthwhile noting that in the limit of vanishing relaxation time both converge into Fourier's law. From this we can conclude that the Fourier law is well defined if (Q is much smaller than any time relevant for the process. On the other hand, an arbitrarily small time constant is certainly unphysical since a many-body property like the heat flow needs a finite period of time for its development. 

The generalized equation for the heat flow in the electron system, Eq. (14), forms the basis of the extended two-temperature model (ETTM) (Hüttner and Rohr 1996, 1998) whereas the phonons are taken into account in the usual manner like, e.g., in the two-temperature model (TTM) (Anisimov et al. 1974). On short time scales, in the order of (Q, both models predict completely different behavior. In the ETTM the electron temperature possesses a damped wavelike behavior in contrast to the diffusive one expected by the TTM. In thin films, however, also the phonon temperature can display a nondiffusive distribution due to the time evolution of the spatially varying electron temperature caused by the back scattering of the temperature wave from the rear side.

Depending on the magnitude of the coefficient of electron-phonon energy exchange, the time (Q can be much larger than the momentum relaxation time ( even for Te = Tph. For a crude estimate we combine equations (5) and (12) to 
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                                                           (15)

where <(2> can be approximated in the Debye model by ½·(D2. As can be seen from table 1, the values of (Q calculated by the simple Eq. (15) with ( = (D are not far away, perhaps except for Sn and Pb, from those evaluated by the more sophisticated Eq. (12). 

	Metal
	((300K) (fs)
	(D (K)
	hex (GW/cm3K)
	(Q (fs) (Eq. (12))
	(Q (fs) (Eq. (15))

	In
	  3.5
	112
	    87
	357
	  297

	Sn
	  2.1
	170
	  145
	227
	    78

	Pb
	  1.3
	  88
	  122
	393
	  180

	Nb
	  4.0
	277
	2912
	  74
	    56

	Ag
	36.8
	215
	    25
	780
	  859

	Au
	27.6
	170
	    26
	784
	1030


         Table 1: Relaxation times for the heat flow as calculated from Eqs. (12) and (15), respectively, at 

         T=300K also given is the Drude scattering time, the Debye temperature and the coefficient of 

         electron-phonon energy exchange 

Although the differential equations for the electrical and thermal current possess the same mathematical structure we conclude from the relaxation times listed in table 1 that one must use equation (13) for a description of short time experiments in the thermal case whereas the steady state approximation, j = (·E, should usually be sufficient in the electrical one. 
This is an important outcome since Eq. (13) leads to a hyperbolic differential equation for the electron temperature with the above discussed wavelike properties in contrast to the diffusive nature of the often used two-temperature model. 

As a consequence, the experimental determination of the coefficient of heat exchange should not be based on fitting the measured electron temperature to the TTM but to a solution of the hyperbolic equation of heat conduction (HHCE). Since both approaches formally agree in the limit of (Q equal to zero one expects different values, especially for metals with small coefficient of heat exchange or large (Q. Physically spoken the TTM would postulate a faster heat transport than the ETTM. Consequently, the fitting of the experimental temperature data to a solution of the TTM could be leading to too small coefficients of heat exchange. This conjecture is supported by comparing the theoretical values evaluated by means of Eq. (12) with the experimental ones fitted to the electron temperature calculated by means of the TTM (Brorson et al. 1990) in table 2.

	Metal
	(e·10-5 (J/cm3K2)
	(<(2>fit (meV2)
	(lit.
	<(2>lit.
	hex,fit (GW/cm3K)
	hex,theo. (GW/cm3K)

	Au
	    6.7
	  23
	0.15
	178
	   26
	    30

	Ag
	    6.5
	
	0.12a
	344b
	   35c
	    46

	Cu
	    9.7
	  29
	0.10
	377
	   94
	  123

	Nb
	  71.7
	320
	1.04
	275
	3888
	3475

	Pb
	  16.0
	  45
	1.55
	  31
	  122
	  130

	Ti
	    8.5
	350
	0.54
	601
	1207
	1711

	V
	117.7
	280
	0.82
	352
	5571
	5741

	W
	  13.7
	112
	0.26
	425
	  259
	  256


Table 2: The theoretical coefficient of heat exchange as calculated by Eq. (12) with the values from columns 2, 4, and 5; the fitted values result from columns 2 and 3. Data for (e are taken from Ashcroft and Mermin (1976), the other values from Brorson et al. (1990) if not otherwise stated. a Allen (1987), b <(2>=0.5·<(D2>, c Groeneveld et al. (1990)
Before concluding this section we have yet to discuss an important point. The statement above, that the ETTM merges with the TTM in the limit of (Q equal to zero, is not quite correct. The time (Q can vanish if either the electronic specific heat is zero or the coefficient of heat exchange becomes extremely large. The first possibility is obviously unphysical because an electron gas cannot be heated up if the coefficient of specific heat is zero. On the other hand, the second possibility implies that the coupling strength between the electron and phonon subsystems tends to infinity but then both systems have the same common temperature at any time. Consequently, a consideration of two temperatures becomes meaningless and, hence, the two-temperature model as well. In this respect, Fourier's law together with the energy balance would manifest the entire physics and the calculation of the temperature distribution (Te=Tph=T) could be done by standard methods (Carslaw and Jäger 1959). As a result the reduction of the ETTM to the TTM by taking the temperature dependent relaxation time (Q equal to zero is not possible, for physical reasons, in a strict sense. 

Furthermore, it is worthwhile noting that the temperature dependence of the theoretically derived (Q as predicted in Eq. (12) is supported also by the experiments (Schoenlein et al.1987) for not too high intensities. Necessary corrections for high values were introduced and discussed for gold in (Wang et al. 1994). 

4. Solution of the Boltzmann equation and thermal conductivity
It is well known that first order solutions of the Boltzmann equation are restricted to the physics near the equilibrium. Accordingly, only steady state properties can be deduced. Here we are interested especially in the interaction of short laser pulses with metals where a steady state behavior cannot be assumed a priori. Hence, in this section we investigate the transient regime and deal, for this reason, first with a perturbation treatment of the Boltzmann equation up to the second order.

This will be followed by a discussion of the nonequilibrium distribution function with special regard to the role of the photon operator G(f). In conclusion, based on the derived nonequilibrium distribution function the thermal and electrical conductivities are calculated. 

4.1 Solution of the Boltzmann equation

We seek a solution of the Eq. (1) by expanding f into a power series for the small parameter, p = (·( , defined by 



                                                                   (16)

where I(t) is a time-dependent laser intensity and ( is the optical absorption depth. Physically spoken p is an estimate of the number of photons absorbed between two scattering events. Since p must be smaller than unity our approach is restricted to not too high intensities. This condition means that the deviation of the electron distribution from the equilibrium as caused by laser-induced processes is relatively small and that, for this reason, one can consider the light action as a perturbation. The expansion reads 



                                                       (17)

where the unperturbed part fo corresponds to the Fermi-Dirac function that governs the electrons before the interaction starts. By insertion of Eq. (17) into Eq. (1) and by using the relaxation time approximation we find listed with increasing order of p for the 1st order terms



                                      (18)

and for the 2nd order ones 



                                  (19)

where we have again taken into account in Eqs. (18) and (19) the explicit time dependence of the local temperature. 

Before one can integrate the distribution functions it is necessary to specify the expression (G(f). This function was introduced in (Zinoviev 1980) for the description of the photoemission of electrons as a result of the irradiation of metals with short laser pulses. To this end, the authors have been required that the laser pulse length is much longer than the scattering time of the electrons. In practice, (L>100fs should be long enough. That corresponds to our supposed lower boundary necessary for the establishment of the temperature. Under these conditions they derived for a Gaussian temporal profile 



                (20)

with H(E-() as the Heaviside step function to ensure the positiveness of the energy value. For the sake of simplicity, we restrict ourselves to one-photon processes (s=1) in the following. This approximation is justified by the dependence of the expansion parameter p on the intensity Io. Typical upper values of Io are in the order 1012-1013 W/cm2 where higher order processes are not important yet. 

Also using a Gaussian distribution for I(t) integration of Eq. (18) yields 



        (21)

in which the notations of the explicit time dependencies of the electron temperature and the scattering time are omitted for brevity. The abbreviation (o follows from Eq. (16) when I(t) is replaced by Io. Provided, (L>>(, it is allowed to extract from the integral as constants those terms that vary slowly with the time, i.e., the Gauss functions, the temperature, and its gradient. These conclusions result from the fact that electron temperature cannot increase faster than the laser intensity. This is not true for the time derivative of the temperature which may be a rapid function of time. Nevertheless, integrals containing the derivative of the temperature with respect of time vanish if the condition (L>>( is fulfilled. This can be easily seen when we integrate by parts 



 .                    (22)

With the abbreviation po=(o·( we finally obtain for the first order term pf1 



  .                     (23.1)

using a time-independent relaxation time. 

The next order is obtained by insertion of Eq. (23.1) into Eq. (19) 



 .                (23.2)

In the general case, due to the energy and temperature dependence of the relaxation time (, the solution of the integral becomes rather long. It is therefore more convenient to calculate only the terms relevant for a special investigated problem. For example, the electric current is proportional to ( v·f and, therefore, terms containing odd powers of v vanish upon integration over the k-space. 

We will now apply the solutions (23.1) and (23.2) to some special problems. As a first one, we investigate the energy relaxation of the nonequilibrium electron distribution. In the case of one-photon processes we obtain for this distribution function from the Eqs. (17) and (23.1) 



             (24)

where the relaxation time ( is not yet specified. Under the interaction with a laser field the electrons are excited to states above the Fermi energy with roughly EF+((. Under the random phase approximation of the Fermi-liquid theory the lifetime of a nonthermal electron due to both elastic and inelastic electron-electron collisions is given by (Pines and Nozieres 1966)



  .                                            (25)

where ( (Parkins, Lawrence and Christy 1981) is an experimental parameter. Under usual conditions when the intensity is not very low, especially the electron temperature changes considerably during the duration of the laser pulse and can be strongly time dependent. Nevertheless, it is justified to assume that the scattering time is not explicit time dependent as can be seen from the following conservative estimate. Neglecting any time delay of the electron temperature and assuming an exponential increase, Te = To·exp( t / (L ), we get 



                                                            .

in agreement with our lower boundary.

The time evolution of the distribution function of a thin gold film was measured by Fann et al. (1992). Figure 1 shows their data for a fluence of 300(J/cm2 at a photon energy of 1,84eV and a pulse length of (L=180fs. The theoretical curves in figure 2 are calculated from Eqs. (24) and (25) with the same data used in the experiment show a satisfying agreement. 
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                      Figure 1: Experimental electron energy distribution function taken from Fann et al. (1992)
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Figure 2: Theoretical electron energy distribution function vs energy with 300 µJ/cm2 absorbed laser fluence at five time delays. The dashed line is the Fermi-Dirac function and the corresponding electron temperature Te is shown.

It should be noted that our explanation of the time dependence of the relaxation of the nonequilibrium energy distribution is more general as that proposed by Fann et al. (1992). In their model, the electron distribution function is divided into thermal and nonthermalized parts. A solution is given for the latter by assuming an unknown nascent distribution under the additional approximation of instantaneous excitation at t=0 fs. Further, the temperature dependence of the scattering time is neglected. For the Gaussian laser function of our approach, a solution is derived for the complete electron system characterized by an energy and temperature dependent scattering time. In addition, the time dependence of the electron temperature at the surface was calculated by means of the ETTM for a 30Å Au-film. As can be seen in figure 3, a second temperature increase appears after around 0.5 ps due to the hyperbolic equation and the concomitant reflection of the temperature wave from the rear side. We are not able to decide here if the differences between the temperature at later times are coming from a weakness of the ETTM model or if they could be traced back to the relative large experimental uncertainty of 30% in the absorbed fluence. 

The corresponding change of the phonon temperature, not plotted here, is only 9 degrees from T=300K to 309K at t=1ps in agreement with the experimental finding of Groeneveld et al. (1990). 
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                  Figure 3: Electron surface temperature as a function of time for a Au-film with thickness of d=30nm

A doubtless resolution of such a wavelike property (Fig. 3) is not possible by a pump and probe experiment due to the unavoidable spatial and temporal averaging. We can, however, interpret the maximum of the electron temperature at t=400fs in their fit, i.e., long after the laser pulse as an indication. Such behavior cannot occur in a diffusive model like, for example, the TTM. 

Since the choice of time t=0fs is somewhat arbitrary we have selected it in such a way that the ratio of the calculated temperatures at t=0fs and t=130fs is roughly the same as the ratio of the values found in the experiment. That is, t=0fs in figure 2 corresponds to t = 100fs in figure 3. 

In a second example, we use our nonequilibrium distribution function for a short derivation of the thermal conductivity. A more detailed treatment based, however, only on the first order term, Eq. (23.1), but including the thermoelectric contributions is reported in Hüttner (1998). 

The heat flow is defined by q = -((T if the thermal gradient is a well-defined quantity. This depends on the condition that the mean free path is much smaller than the characteristic length of the thermal gradient, i.e., Lmfp<<T / |(T|. This may be not valid in the case of short laser pulses. Nevertheless, in the following we assume that the condition is fulfilled. Furthermore, we take into account that, on short time scales, the electron temperature can be much higher than the phonon temperature and expand, therefore, the chemical potential as a function of the electron temperature up to the second order. Under these circumstances the thermal conductivity reads 



                                                   (26)

with 

 (Ashcroft and Mermin (1976) p. 47) and x = Te/(o where (o is the chemical potential at zero Kelvin. For a heat flow perpendicular to the surface, an approximation especially appropriate for short laser pulses as shown by many authors, we get from Eq. (23.1) for laser radiation parallel to the surface normal 
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The inverse of the transport scattering time ((E,Te,Tph)-1 consist of the sum of the electron-phonon scattering rate and of the electron-electron one. Using Eq. (25) we can write for it 
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Its explicit form can be rewritten as 
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where the function z(Te, Tph) is defined by the ratio of the electron-phonon scattering time over the temperature dependent part of the electron-electron scattering time 



  .                                          (30)

Converting the sum into an integral and using the free electron density of states we obtain after integration 
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where the conductivity (LTE is related to the case of local thermal equilibrium, i.e., Te=Tph=T. It contains only the electron-phonon scattering and reads 
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The function G(Te) is defined by 
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Equation (32) is, of course, nothing else the Wiedemann-Franz law with the dc electrical conductivity. 

When local thermal equilibrium can be assumed then G(Te) ( 1, since (o is typically of the order of some ten thousands Kelvin, and (1 becomes similar but not identical to the standard expression ( = (LTE. Nevertheless, even in this case the correction due to z(Te, Tph) may not be negligible depending on the absolute value of ( as can be seen in the figure 4. 

The second order term of the Boltzmann equation, Eq. (23.2), is handled in the same way. One can largely reduce the evaluation of this expression by formally interchanging the time integration with the integration over the k-space and observing that after multiplication with the velocity only even powers can contribute. Taking this into account we find for the distribution function 
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Insertion into Eq. (27) leads to the second order correction 



 .             (35)

After a straightforward but cumbersome computation one obtains for (2 
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where G(Te) was already introduced in Eq.(33) and the abbreviation N(Te, Tph, () has the following meaning 



                                          (37)

Furthermore, we have rewritten po(t) with the aim to extract the expression from the energy integral by multiplying the numerator and the denominator with (ph, respectively. It then reads 
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It is worthwhile noting that (2 is explicitly depending on the photon frequency and on the time and not merely implicitly from the latter due to Te(t) and Tph(t) like (1 and (LTE. The contribution of (2 to the thermal conductivity is effected by the magnitude of the laser intensity which, however, is subjected to some restriction in our model caused by the necessary smallness of the expansion parameter p. 

In figure 4 are shown plots of the complete thermal conductivity and of (2 for gold in the standard way, that is as a function of the temperature, as well as in the case of nonlocal thermal equilibrium at a fixed temperature of Tph=300K, and for Te=Tph=T evaluated for the fluence F=50mJ/cm2, (L=500fs, (=1eV and (=2.4·1013s eV-2. Although the assumed constancy of the phonon temperature is only an approximation it is not a strong restriction as mentioned above.

Additionally the often used expression for the dependence of thermal conductivity on the electron temperature is plotted
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where T0 is an arbitrary reference temperature. Although this approximation results from Eq. (31) for z<<1 and kB·Te<<(0 it has to be used with care since already at fairly low electron temperatures, for gold about 2000 K, the true behavior is completely different. By further increasing the electron temperature the thermal conductivity starts decreasing roughly inversely proportional to Te instead of pursuing the postulated linear dependence. Without doubt, such changed behavior must have consequences on the calculations of the electron and phonon temperature distribution in metals irrespective of the model selected (ETTM or TTM). Since the thermal diffusivity, the ratio of the thermal conductivity over the electronic specific heat, and, therefore, the transport of the heat inside the metal is reduced at higher temperatures one anticipates an increase of the temperatures to higher values near the surface. Work in this direction is in progress and will be reported elsewhere. 

Due to the explicit time dependence of (2 it cannot be correctly described as a simple function of the temperature. With the aim to give at least an estimate of its contribution we have set the time t equal to the laser pulse length (L for an evaluation. This approach is justified by figure 5 where the thermal conductivity is given as a function of time. To find these curves we have determined with the above parameters the approximate time dependence of electron and phonon temperature at the surface by means of our ETTM and used these data as the input quantities for the calculation of the conductivities. This is not a completely self-consistent evaluation since only the main part of (1, the expression in front of the opening brace in Eq. (31), was taken into account in the temperature calculation. Figures 6 and 7 present the used electron and phonon temperatures as a function of time. As expected, for the case of linear temperature dependence of the thermal conductivity the electron temperature reaches lower values and decreases faster than for the more exact expression. The phonon temperature seems to be opposite but this is caused by the assumed constancy of the coefficient of heat exchange. Taking into account the above mentioned correction for hex at high electron temperatures we would find (Q reduced by a factor of 2-3 (Wang et al. 1994) and, therefore, some slightly faster relaxation. We have not done this in the calculation of figures 6 and 7 because both the coefficient of heat exchange and the coefficient of the specific heat of the electrons have to be modified in the ETTM. To be consistent, one has to do this from the beginning and not in the final formula. Such extensions would, however, require a complete recalculation of the ETTM.




Figure 4: Thermal conductivity of Au for the case of nonlocal thermal equilibrium at fixed Tph=300K: Solid upper curve (1+(2, dashed curve Eq. (39), dashed-dotted curve (2, and for the local thermal equilibrium Te=Tph=T: solid curve (1, dotted curve (LTE,  experimental data taken from Weast (1982); for the laser parameter used cf. text



 

Figure5: Thermal conductivity of Au as a function of time: Solid curve (1+(2, dashed-dotted curve only the expression in front of the opening brace in Eq. (31), dotted curve (2, dashed curve Eq. (39)
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Figure 6: Temperature of the electrons at the surface calculated by means of the ETTM: with the main part of Eq. (31) (solid curve) (see text) and with ( given by Eq. (39) (dashed curve)
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   Figure 7: Temperature of the phonons at the surface calculated by means of the ETTM: with the 

                   the main part of Eq. (31) (solid curve) (see text) and with ( given by Eq. (39) (dashed curve)

Concluding this section, we discuss the consequences of the different electron and phonon temperatures on the frequency dependent electrical conductivity. This point is especially significant for the calculation of the optical properties of metals (Hüttner 1994, 1995). Using Eq. (17) the electrical current is given by 
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Restricting to the first order term and taking into account that odd powers of the velocity vanish we obtain from Eq. (23.1) for the current 
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Since both the electron-phonon and electron-electron scattering processes contribute to the specific resistivity we have to insert for the scattering time the expression supplied by Eq. (29). From this it follows directly for the frequency dependent conductivity 
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where we have omitted the thermoelectric part by using the same points as discussed in the thermal case in context with Eq. (26). It can be shown that the correction due to the temperature dependence of the chemical potential is smaller for the electrical conductivity compared to the thermal one. For this reason, we approximate in what follows the Fermi energy by its value (o at zero temperature. Thus, in the free electron case we find after integration over the angels and altering the variables from k to E: 
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where (D is the Drude conductivity, that is (D = ne2(D / m, and (D is the related scattering time. To evaluate the integral we apply the Sommerfeld expansion and obtain for the complex electrical conductivity 
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with the new abbreviation 



  .                                     (45)

Figure 8: Real part of the conductivity (s-1) of gold as a function of the frequency (eV) calculated 

at t=0; dotted and solid line Eq. 44 for Tph=300K and Te=10 000K and 3000K, respectively, (o) Drude theory
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It is easy to verify that Eq. (44) turns into the familiar Drude expression for a stationary electric field in the case of local thermal equilibrium and for not too high temperatures, that is for z << 1. Although, the correction terms to 

the standard expression of the electrical conductivity are of similar structure as those to the thermal one their quantitative contribution is smaller. The reason for this behavior can be found in the product (·(D that is much larger than unity for laser frequencies in the visible range and above. On the other hand, even small changes of the complex conductivity can lead to significant corrections to the optical properties due to the interlocked structures of the real and imaginary part that are involved. In figures 8 and 9, a comparison between Drude's conductivity and the first order modifications are plotted.
 Figure 9: Imaginary part of the conductivity (s-1) of gold as a function of the frequency (eV) calculated 

 at t=0; dotted and solid line Eq. 44 for Tph=300K and Te=10 000K and 3000K, respectively, (o) Drude theory
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It is remarkable that the corrections to the real part are much larger than to the imaginary one. This outcome agrees well with the experiment reported by Elsayed-Ali et al. (1991). The authors found for gold films that in response to a fs laser pulse the imaginary part of the dielectric function undergoes a significantly higher perturbation than the real one. 

Taking into account the second order of the expansion, Eq. (23.2), one obtains considerably stronger changes of the real and imaginary part. In this respect, the resulting expressions again depend explicitly on time and on the laser power through the expansion parameter po. The equations belonging to them are rather long and will, therefore, be presented in a separate paper together with the conclusions for the optical properties. 

In conclusion, of this section, we discuss the relationship between the electrical and thermal conductivity known as the Wiedemann-Franz law 
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where L0 is the Lorenz number, L0 = 3((kB/3e)2. 

Regarding only the lowest order terms, Eqs. (31) and (44), it becomes immediately clear that they do not carry out such a simple relation because the electrical conductivity is time dependent but the thermal one is not. This is not surprising since both currents are driven by different forces. The electric field vanishes when the laser pulse is over, the thermal gradient, of course, remains. In the static case, however, where the electron and phonon temperature coincide we obtain 
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if only the leading terms were taken into account. That is the Wiedemann-Franz law keeps its validity also at higher temperatures due to the mutual canceling of the correction term (1+z). This is confirmed by accurate measurements of the Lorenz ratio of liquid metals (Ida and Guthrie 1993).

5. Summary 

In this paper we have investigated the nonequilibrium electron distribution in metals in the transient regime by means of a second order expansion of the Boltzmann equation. By definition the transition range is located between the time necessary for the establishment of the electron temperature and the time where a description by the standard steady state equations is justified. The lower time limit is estimated to be about 100 fs while the upper one depends on the regarded physical property and therefore it can span a long time interval. 

For the description of the electrical and thermal currents in the transition range we have derived relaxation functions and calculated the relaxation times related to them. It was shown that for the electrical transport the relaxation time corresponds to Drude's momentum scattering time. It is, for this reason, usually smaller than the lower time boundary of the model. Consequently, the steady state equation (Ohm's law) is sufficient for the calculation of the electrical conductivity and of related properties. Nevertheless, also Ohm's law becomes modified due to the local nonequilibrium between the electrons and phonons. 

For the heat flow, however, the situation is completely different because it is governed by the temperature relaxation time. This quantity is given by the ratio of the electronic specific heat over the coefficient of energy exchange between the electron and phonon subsystems. For metals with a strong electron-phonon coupling and a high Debye temperature this coefficient is large and, consequently, the relaxation time is small. In the case of noble metals, for example, the situation is opposite and the relaxation time can take on values as long as picoseconds. If this happens the calculation of the electron temperature distribution must be based on the hyperbolic differential equation and no longer on the parabolic one. As a consequence, the spreading of the temperature looses its normal diffusive character and shows wavelike behavior damped by phonon emission. Furthermore, new effects can appear in thin films like spatial and temporal modulations caused by the backscattering from the rear side. For applications it may be important that higher temperatures near surface result from the delay of the heat transport in comparison with the diffusive description. This phenomenon is additionally amplified by the nonlinear temperature dependence of the electronic thermal conductivity that was at first derived by Hüttner (1998) and extended here to the second order corrections. 

Moreover, the nonequilibrium energy distribution of the electrons in gold was evaluated during and after the interaction with a fs laser pulse. The comparison with the experiment offers a good agreement. 

In conclusion, a closed theory is proposed for the treatment of the local thermal nonequilibrium between the electron and phonon subsystems and for the transient behavior of electronic properties. This approach was successfully used to the calculation of the electrical and thermal conductivity that now depend explicitly on the time and the laser frequency and to the determination of the time evolution of the electron energy distribution.
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^(4))/(480*({0:E.F}NAME)^(4)))�

.EQN 10 -67 445 0 0

{0:\l.pel}NAME({0:T.ph}NAME,{0:T.e}NAME)~({0:\l.o}NAME({0:T.ph}NAME)*{0:T.e}NAME*{0:eVK}NAME)/({0:T.ph}NAME*{0:f}NAME({0:T.ph}NAME,{0:T.e}NAME))*(({0:T.e}NAME)^(2))/(12*({0:E.F}NAME)^(2))*(({0:\p}NAME)^(2))/((1+{0:z}NAME({0:T.ph}NAME,{0:T.e}NAME))*(

{0:Nom}NAME({0:T.e}NAME))^((3)/(2)))�

.EQN 4 64 456 0 0

{0:\l.NEQ}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME)~({0:\l.o}NAME({0:T.ph}NAME)*{0:T.e}NAME*{0:eVK}NAME)/({0:T.ph}NAME)*{0:p}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME)*2*({0:Lp}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME)+{0:Lm}NAME({0:\w}NAME,{0:T.ph}NAME,

{0:T.e}NAME)+{0:L.0}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME))�

.EQN 14 -99 191 0 0

{0:\l.app}NAME({0:T.ph}NAME,{0:T.e}NAME)~({0:\l.o}NAME({0:T.ph}NAME)*{0:T.e}NAME*{0:eVK}NAME)/({0:T.ph}NAME*{0:f}NAME({0:T.ph}NAME,{0:T.e}NAME))�

.EQN 0 41 192 0 0

{0:\l.app}NAME(400,1)={0}?_n_u_l_l_�

.EQN 3 21 443 0 0

{0:\l.old}NAME({0:T.ph}NAME,{0:T.e}NAME)~({0:\l.o}NAME({0:T.ph}NAME)*{0:T.e}NAME*{0:eVK}NAME)/({0:T.ph}NAME)�

.EQN 2 77 382 0 0

{0:G}NAME(1,300,0.1)={0}?_n_u_l_l_�

.EQN 0 20 383 0 0

{0:Nom}NAME(0.1)={0}?_n_u_l_l_�

.EQN 0 13 386 0 0

{0:z}NAME(300,0.1)={0}?_n_u_l_l_�

.EQN 7 -170 446 0 0

{0:\l.comp}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME)~{0:\l}NAME({0:T.ph}NAME,{0:T.e}NAME)-{0:\l.pel}NAME({0:T.ph}NAME,{0:T.e}NAME)+{0:\l.NEQ}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME)�

.EQN 1 107 360 0 0

{0:\l.LTE}NAME({0:T.ph}NAME)~({0:\l.gg}NAME({0:T.ph}NAME)*{0:T.ph}NAME)/({0:T.ph}NAME*{0:f.p}NAME({0:T.ph}NAME))�

.EQN 0 32 361 0 0

{0:\l.NEQ}NAME(1,300,0.1)={0}?_n_u_l_l_�

.EQN 8 -9 362 0 0

{0:\l.gg}NAME(300)={0}?_n_u_l_l_�

.EQN 5 -51 101 0 0

{0:M}NAME:((({0:watt}NAME)/({0:cm}NAME*{0:K}NAME)))^(0)�

.EQN 1 -19 98 0 0

{0:i}NAME:0;11�

.EQN 0 47 363 0 0

{0:\l.LTE}NAME(409)={0}?_n_u_l_l_�

.EQN 0 23 364 0 0

{0:z.p}NAME(300)={0}?_n_u_l_l_�

.EQN 6 -33 119 0 0

{0:T.ph}NAME=�

.EQN 0 10 120 0 0

{0:\l.gg}NAME({0:T.ph}NAME)=�

.EQN 1 -49 99 0 0

({0:Te}NAME)[({0:i}NAME):273,300,350,400,500,600,700,800,900,1000,1100,1200�

.EQN 0 9 100 0 0

({0:\L}NAME)[({0:i}NAME):3.18*{0:M}NAME,3.15*{0:M}NAME,3.13*{0:M}NAME,3.12*{0:M}NAME,3.09*{0:M}NAME,3.04*{0:M}NAME,2.98*{0:M}NAME,2.92*{0:M}NAME,2.85*{0:M}NAME,2.78*{0:M}NAME,2.71*{0:M}NAME,2.62*{0:M}NAME�

.EQN 45 -69 455 0 0

15&&(_n_u_l_l_&_n_u_l_l_)&{0:\l.old}NAME(273,{0:T.e}NAME),{0:\l}NAME(273,{0:T.e}NAME),({0:\L}NAME)[({0:i}NAME),{0:\l.o}NAME({0:T.ph}NAME),{0:\l.NEQ}NAME(1,273,{0:T.e}NAME),{0:\l.LTE}NAME({0:T.ph}NAME)@(10)^(4)&&(_n_u_l_l_&_n_u_l_l_)&{0:T.e}NAME*

{0:eVK}NAME,{0:T.e}NAME*{0:eVK}NAME,({0:Te}NAME)[({0:i}NAME),{0:T.ph}NAME,{0:T.e}NAME*{0:eVK}NAME,{0:T.ph}NAME�

0 0 1 1 1 0 0 1 1 T (K)

0 0 1 1 1 0 0 1 1 Thermal conductivity (W/cmK)

0 3 6 0 2 2 Spur 1

0 1 6 0 2 2 Spur 2

4 0 6 0 2 2 Spur 3

0 2 6 0 2 2 Spur 4

0 4 6 0 2 2 Spur 5

0 1 5 0 2 2 Spur 6

0 3 1 0 2 2 Spur 7

0 4 0 0 2 2 Spur 8

0 1 1 0 1 1 Spur 9

0 2 2 0 1 1 Spur 10

0 3 3 0 1 1 Spur 11

0 4 4 0 1 1 Spur 12

0 1 5 0 1 1 Spur 13

0 2 6 0 1 1 Spur 14

0 3 0 0 1 1 Spur 15

0 4 1 0 1 1 Spur 16

1 1 1 74 93 18 0 2 

����������


_957684127
10 2289 720 3230 10 2290

.MCAD 304020000 1 95 396 0

.CMD PLOTFORMAT

0 0 1 1 1 0 0 1 1 

0 0 1 1 1 0 0 1 1 

0 1 0 0 1 1 NO-TRACE-STRING

0 2 1 0 1 1 NO-TRACE-STRING

0 3 2 0 1 1 NO-TRACE-STRING

0 4 3 0 1 1 NO-TRACE-STRING

0 1 4 0 1 1 NO-TRACE-STRING

0 2 5 0 1 1 NO-TRACE-STRING

0 3 6 0 1 1 NO-TRACE-STRING

0 4 0 0 1 1 NO-TRACE-STRING

0 1 1 0 1 1 NO-TRACE-STRING

0 2 2 0 1 1 NO-TRACE-STRING

0 3 3 0 1 1 NO-TRACE-STRING

0 4 4 0 1 1 NO-TRACE-STRING

0 1 5 0 1 1 NO-TRACE-STRING

0 2 6 0 1 1 NO-TRACE-STRING

0 3 0 0 1 1 NO-TRACE-STRING

0 4 1 0 1 1 NO-TRACE-STRING

0 1 1 21 15 0 0 3 

.CMD FORMAT  rd=d ct=10 im=i et=3 zt=15 pr=3 mass length time charge temperature tr=0 vm=0

.CMD SET ORIGIN 0

.CMD SET TOL 0.001000000000000

.CMD SET PRNCOLWIDTH 8

.CMD SET PRNPRECISION 4

.CMD PRINT_SETUP 0.200000 0.200000 1.200000 1.200000 0

.CMD HEADER_FOOTER 1 1 *empty* *empty* *empty* 0 1 *empty* *empty* *empty*

.CMD HEADER_FOOTER_FONT fontID=14 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD HEADER_FOOTER_FONT fontID=15 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFAULT_TEXT_PARPROPS 0 0 0

.CMD DEFINE_FONTSTYLE_NAME fontID=0 name=Variablen

.CMD DEFINE_FONTSTYLE_NAME fontID=1 name=Konstanten

.CMD DEFINE_FONTSTYLE_NAME fontID=2 name=Text

.CMD DEFINE_FONTSTYLE_NAME fontID=4 name=Benutzer^1

.CMD DEFINE_FONTSTYLE_NAME fontID=5 name=Benutzer^2

.CMD DEFINE_FONTSTYLE_NAME fontID=6 name=Benutzer^3

.CMD DEFINE_FONTSTYLE_NAME fontID=7 name=Benutzer^4

.CMD DEFINE_FONTSTYLE_NAME fontID=8 name=Benutzer^5

.CMD DEFINE_FONTSTYLE_NAME fontID=9 name=Benutzer^6

.CMD DEFINE_FONTSTYLE_NAME fontID=10 name=Benutzer^7

.CMD DEFINE_FONTSTYLE fontID=0 family=Times^New^Roman points=14 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFINE_FONTSTYLE fontID=1 family=Times^New^Roman points=14 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFINE_FONTSTYLE fontID=2 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFINE_FONTSTYLE fontID=4 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFINE_FONTSTYLE fontID=5 family=Courier^New points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFINE_FONTSTYLE fontID=6 family=System points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFINE_FONTSTYLE fontID=7 family=Script points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFINE_FONTSTYLE fontID=8 family=Roman points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFINE_FONTSTYLE fontID=9 family=Modern points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD DEFINE_FONTSTYLE fontID=10 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1

.CMD UNITS U=1

.CMD DIMENSIONS_ANALYSIS 0 0

.CMD COLORTAB_ENTRY 0 0 0

.CMD COLORTAB_ENTRY 128 0 0

.CMD COLORTAB_ENTRY 0 128 0

.CMD COLORTAB_ENTRY 128 128 0

.CMD COLORTAB_ENTRY 0 0 128

.CMD COLORTAB_ENTRY 128 0 128

.CMD COLORTAB_ENTRY 0 128 128

.CMD COLORTAB_ENTRY 128 128 128

.CMD COLORTAB_ENTRY 192 192 192

.CMD COLORTAB_ENTRY 255 0 0

.CMD COLORTAB_ENTRY 0 255 0

.CMD COLORTAB_ENTRY 255 255 0

.CMD COLORTAB_ENTRY 0 0 255

.CMD COLORTAB_ENTRY 255 0 255

.CMD COLORTAB_ENTRY 0 255 255

.CMD COLORTAB_ENTRY 255 255 255

.TXT 3 3 1 0 0

Cg a71.500000,71.500000,49

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\fs28 Thermal 

conductivity of gold for two temperatures}}

.EQN 4 109 308 0 0

{0:\w}NAME~1,1.1;4�

.EQN 3 -109 107 0 0

{0:ps}NAME~(10)^(12)�

.EQN 0 10 108 0 0

{0:eV}NAME~1.52*(10)^(15)�

.EQN 0 13 109 0 0

{0:eVK}NAME~11002�

.EQN 0 13 120 0 0

{0:tonne}NAME~0,0.01;1�

.TXT 2 61 294 0 0

Cg a42.400000,42.400000,17

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue255;}{

\fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2\fs16 

pulse time in ps:}}

.EQN 0 12 295 0 0

{0:\t.L}NAME~0.5�

.TXT 2 -110 110 0 0

Cg a94.500000,94.500000,60

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue255;}{

\fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2\fs16 

Tph(t) is a polynominal fit to the corresponding Orign-curve}}

.EQN 3 1 111 0 0

{0:RT}NAME~300�

.TXT 0 97 296 0 0

Cg a46.100000,46.100000,19

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue255;}{

\fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2\fs16 

fluence in mJ/cm^2:}}

.EQN 0 13 297 0 0

{0:farad}NAME~50�

.EQN 1 -96 112 0 0

{0:T.ph}NAME({0:tonne}NAME)~{0:RT}NAME-42*{0:tonne}NAME+191*({0:tonne}NAME)^(2)+39*({0:tonne}NAME)^(3)�

.TXT 3 -14 113 0 0

Cg a96.000000,96.000000,33

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue255;}{

\fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2\fs16 

Approx. surface temperature (eV):}}

.EQN 0 127 298 0 0

{0:I}NAME={0}?_n_u_l_l_�

.TXT 1 -30 299 0 0

Cg a30.100000,30.100000,21

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue255;}{

\fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2\fs16 

intensity in GW/cm^2:}}

.EQN 0 17 300 0 0

{0:I}NAME~({0:farad}NAME)/({0:\t.L}NAME)�

.TXT 2 -115 114 0 0

Cg a58.000000,58.000000,109

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue255;}{

\fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2\fs16 

Te(t) is a polynominal fits to the corresponding curve in }{\cf2\fs16 

Orign, Au\\Bulk\\100GW,0.5ps, WL=WL(t)}{\cf2\fs16                }}

.EQN 3 152 201 0 0

{0:\d}NAME~20�

.EQN 1 -53 301 0 0

{0:Ne}NAME~5.9*(10)^(22)�

.EQN 2 -100 115 0 0

{0:T.e}NAME({0:tonne}NAME)~({0:RT}NAME-5280*{0:tonne}NAME+179990*({0:tonne}NAME)^(2)-315491*({0:tonne}NAME)^(3)+230105*({0:tonne}NAME)^(4)-78173*({0:tonne}NAME)^(5)+10199*({0:tonne}NAME)^(6))*(1)/({0:eVK}NAME)�

.EQN 6 0 104 0 0

{0:\s.o}NAME({0:T.ph}NAME,{0:tonne}NAME)~(9.065*(10)^(17))/(2.04*({0:T.ph}NAME({0:tonne}NAME))/(273))�

.EQN 0 19 105 0 0

{0:\w.p}NAME({0:T.ph}NAME,{0:tonne}NAME)~(9.024)/(\(1+5.1*(10)^(-5)*({0:T.ph}NAME({0:tonne}NAME)-300)))�

.EQN 0 34 106 0 0

{0:M}NAME({0:T.ph}NAME,{0:tonne}NAME)~(1.1)/(1+5.1*(10)^(-5)*({0:T.ph}NAME({0:tonne}NAME)-300))�

.TXT 1 46 302 0 0

Cg a99.400000,99.400000,19

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue255;}{

\fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2\fs16 

Fermi energy in eV:}}

.EQN 0 14 303 0 0

{0:E.F}NAME~5.53�

.TXT 0 13 304 0 0

Cg a36.100000,36.100000,37

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue255;}{

\fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2\fs16 

optical penetration depth in 10^-7cm:}}

.TXT 7 -27 305 0 0

Cg a91.300000,91.300000,11

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue255;}{

\fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain

\cf1\fs20 \pard {\cf2\fs16 ratio x(}{\cf2\f1\fs16 w}{\cf2\fs16 ):}}

.EQN 0 10 306 0 0

{0:x}NAME({0:\w}NAME)~{0:\w}NAME*({0:E.F}NAME)^(-1)�

.TXT 2 -107 92 0 0

Cg a52.400000,52.400000,16

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue255;}{

\fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2\fs16 

Drude time in ps}}

.EQN 0 16 93 0 0

{0:\t.D}NAME({0:T.ph}NAME,{0:tonne}NAME)~(4*{0:\p}NAME*{0:M}NAME({0:T.ph}NAME,{0:tonne}NAME)*{0:\s.o}NAME({0:T.ph}NAME,{0:tonne}NAME)*{0:ps}NAME)/(({0:\w.p}NAME({0:T.ph}NAME,{0:tonne}NAME))^(2)*({0:eV}NAME)^(2))�

.EQN 1 49 279 0 0

{0:\t.D}NAME({0:T.ph}NAME,0.2)={0}?_n_u_l_l_�

.EQN 6 42 307 0 0

{0:x}NAME(1)={0}?_n_u_l_l_�

.TXT 1 -109 94 0 0

Cg a99.400000,99.400000,27

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue255;}{

\fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2\fs16 

e-e scattering time T-part:}}

.EQN 0 19 95 0 0

{0:\b}NAME~2.4*(10)^(13)�

.EQN 0 13 96 0 0

{0:\t.\bT}NAME({0:T.e}NAME,{0:tonne}NAME)~(({0:\b}NAME*4*({0:\p}NAME)^(2)*({0:T.e}NAME({0:tonne}NAME))^(2)))^(-1)*{0:ps}NAME�

.EQN 1 35 277 0 0

{0:\t.\bT}NAME({0:T.e}NAME,0.2)={0}?_n_u_l_l_�

.TXT 7 -65 97 0 0

Cg a90.300000,90.300000,8

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue255;}{

\fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2\fs16 

ratio z:}}

.EQN 0 16 98 0 0

{0:z}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)~({0:\t.D}NAME({0:T.ph}NAME,{0:tonne}NAME))/({0:\t.\bT}NAME({0:T.e}NAME,{0:tonne}NAME))�

.TXT 0 23 99 0 0

Cg a99.400000,99.400000,19

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue255;}{

\fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2\fs16 

Fermi energy in eV:}}

.EQN 0 14 100 0 0

{0:E.F}NAME~5.53�

.EQN 0 16 103 0 0

{0:z}NAME({0:T.ph}NAME,{0:T.e}NAME,0.4)={0}?_n_u_l_l_�

.EQN 6 -69 101 0 0

{0:B}NAME~2.9*(10)^(-5)�

.TXT 0 15 102 0 0

Cg a60.400000,60.400000,69

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard Coefficient of 

e-e-thermal resistivity from MacDonald-PRL 44('80) 489}

.EQN 0 56 280 0 0

{0:T.e}NAME(0.2)={0}?_n_u_l_l_�

.EQN 5 -71 75 0 0

{0:L.o}NAME~2.44*(10)^(-8)�

.TXT 0 20 76 0 0

Cg a56.400000,56.400000,13

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard Lorenz number}

.EQN 0 23 77 0 0

{0:a}NAME~0.04�

.TXT 0 7 78 0 0

Cg a27.400000,27.400000,30

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard deviations of linear behaviour}

.EQN 4 -7 79 0 0

{0:\d\r}NAME~7.2*(10)^(-9)�

.TXT 0 20 80 0 0

Cg a55.400000,55.400000,20

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard slope of resistivity}

.EQN 4 -63 81 0 0

{0:\r.eph}NAME~2.04*(10)^(-6)�

.TXT 0 20 82 0 0

Cg a55.400000,55.400000,20

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard resistivity at 273 K}

.EQN 0 22 83 0 0

{0:\r.ep}NAME({0:T.ph}NAME,{0:tonne}NAME)~({0:\d\r}NAME*{0:T.ph}NAME({0:tonne}NAME))*(1+({0:a}NAME*{0:T.ph}NAME({0:tonne}NAME))/(373))�

.EQN 10 -44 84 0 0

{0:\l.gg}NAME({0:T.ph}NAME,{0:tonne}NAME)~({0:L.o}NAME*{0:T.ph}NAME({0:tonne}NAME))/({0:\r.ep}NAME({0:T.ph}NAME,{0:tonne}NAME)+{0:B}NAME*{0:T.ph}NAME({0:tonne}NAME)*({0:L.o}NAME*{0:T.ph}NAME({0:tonne}NAME)))�

.TXT 0 45 85 0 0

Cg a42.400000,42.400000,81

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;}{\fonttbl{\f0

\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard conductivity derived 

from the Wiedemann-Franz law\par see - Wiser - HT-HP 21 ('89) 25}

.TXT 1 62 247 0 0

Cg a100.100000,100.100000,42

{\rtf\ansi \deff0{\colortbl;\red0\green0\blue128;\red0\green0\blue255;}{

\fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \pard {\cf2\fs16 

small parameter, theory is valid for p<<1:}}

.EQN 7 -1 269 0 0

{0:p}NAME({0:\w}NAME,{0:T.ph}NAME,{0:tonne}NAME)~((10)^(23)*{0:I}NAME*{0:\t.D}NAME({0:T.ph}NAME,{0:tonne}NAME))/(1.6*({0:Ne}NAME*{0:\w}NAME*{0:\d}NAME))*({0:e}NAME)^(-(((({0:tonne}NAME-{0:\t.L}NAME))^(2))/(({0:\t.L}NAME)^(2))))�

.EQN 1 -105 86 0 0

{0:f}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)~1+{0:z}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)�

.EQN 0 30 348 0 0

{0:Nom}NAME({0:T.e}NAME,{0:tonne}NAME)~1-(({0:\p}NAME)^(2))/(12)*(({0:T.e}NAME({0:tonne}NAME))^(2))/(({0:E.F}NAME)^(2))-(7*({0:\p}NAME)^(4)*({0:T.e}NAME({0:tonne}NAME))^(4))/(960*({0:E.F}NAME)^(4))�

.EQN 0 45 321 0 0

{0:z}NAME({0:T.ph}NAME,{0:T.e}NAME,0.2)={0}?_n_u_l_l_�

.EQN 3 61 271 0 0

{0:p}NAME(1,{0:T.ph}NAME,0.5)={0}?_n_u_l_l_�

.EQN 3 -57 275 0 0

{0:T.e}NAME(0.2)={0}?_n_u_l_l_�

.EQN 1 -78 346 0 0

{0:f}NAME({0:T.ph}NAME,{0:T.e}NAME,0.2)={0}?_n_u_l_l_�

.EQN 1 106 270 0 0

{0:\l.o}NAME({0:T.ph}NAME,{0:tonne}NAME)~({0:L.o}NAME*{0:T.ph}NAME({0:tonne}NAME))/({0:\r.ep}NAME({0:T.ph}NAME,{0:tonne}NAME))�

.EQN 1 -70 88 0 0

{0:\l.gg}NAME({0:T.ph}NAME,0)={0}?_n_u_l_l_�

.EQN 0 17 89 0 0

{0:\r.ep}NAME({0:T.ph}NAME,0)={0}?_n_u_l_l_�

.EQN 3 79 251 0 0

{0:\l.o}NAME({0:T.ph}NAME,0.5)={0}?_n_u_l_l_�

.EQN 7 -134 90 0 0

{0:\l}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)~({0:\l.o}NAME({0:T.ph}NAME,{0:tonne}NAME)*{0:T.e}NAME({0:tonne}NAME)*{0:eVK}NAME)/({0:T.ph}NAME({0:tonne}NAME)*{0:f}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME))*(({0:Nom}NAME({0:T.e}NAME,{0:tonne}NAME))^

((1)/(2))-({0:T.e}NAME({0:tonne}NAME))/({0:E.F}NAME)*((({0:\p}NAME)^(2))/(24)*({0:T.e}NAME({0:tonne}NAME))/({0:E.F}NAME)+(7*({0:\p}NAME)^(4)*({0:T.e}NAME({0:tonne}NAME))^(3))/(480*({0:E.F}NAME)^(3)))*(1)/(({0:Nom}NAME({0:T.e}NAME,{0:tonne}NAME))^((1)/(2))

))�

.EQN 2 106 252 0 0

{0:z.p}NAME({0:T.ph}NAME,{0:tonne}NAME)~({0:\t.D}NAME({0:T.ph}NAME,{0:tonne}NAME))/({0:\t.\bT}NAME(({0:T.ph}NAME({0:tonne}NAME))/({0:eVK}NAME)))�

.EQN 0 23 253 0 0

{0:T.ep}NAME~273,275;1000�

.EQN 1 17 254 0 0

{0:f.p}NAME({0:T.ph}NAME,{0:tonne}NAME)~1+{0:z.p}NAME({0:T.ph}NAME,{0:tonne}NAME)�

.EQN 12 -39 255 0 0

{0:G}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)~1+{0:z}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)+({0:z}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)*({0:\w}NAME)^(2))/(4*({0:\p}NAME)^(2)*({0:T.e}NAME({0:tonne}NAME))^(2))�

.EQN 6 -106 264 0 0

{0:\l.app}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)~({0:\l.o}NAME({0:T.ph}NAME,{0:tonne}NAME)*{0:T.e}NAME({0:tonne}NAME)*{0:eVK}NAME)/({0:T.ph}NAME({0:tonne}NAME)*{0:f}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME))�

.EQN 0 41 265 0 0

{0:\l.app}NAME({0:T.ph}NAME,{0:T.e}NAME,1)={0}?_n_u_l_l_�

.EQN 0 28 281 0 0

{0:T.ph}NAME(0.2)={0}?_n_u_l_l_�

.EQN 3 0 282 0 0

{0:\l.o}NAME({0:T.ph}NAME,0.2)={0}?_n_u_l_l_�

.EQN 1 36 379 0 0

{0:Lp}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)~(\({0:Nom}NAME({0:T.e}NAME,{0:tonne}NAME)+{0:x}NAME({0:\w}NAME)))/(({0:G}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME))^(3))*({0:G}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME,

{0:tonne}NAME)+({0:z}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)*{0:\w}NAME)/(12*{0:E.F}NAME)+(7*({0:\p}NAME)^(2)*{0:z}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)*{0:\w}NAME*({0:T.e}NAME({0:tonne}NAME))^(2))/(480*({0:E.F}NAME)^(3)))-(({0:\p}NAME)^(2))/(

\({0:Nom}NAME({0:T.e}NAME,{0:tonne}NAME)+{0:x}NAME({0:\w}NAME))*({0:G}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME))^(2))*((({0:T.e}NAME({0:tonne}NAME))^(2))/(24*({0:E.F}NAME)^(2))+(7*({0:\p}NAME)^(4)*({0:T.e}NAME({0:tonne}NAME))^(4))/(480*(

{0:E.F}NAME)^(4)))�

.EQN 6 -103 311 0 0

{0:\l}NAME({0:T.ph}NAME,{0:T.e}NAME,0.2)={0}?_n_u_l_l_�

.EQN 6 103 380 0 0

{0:Lm}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)~(\({0:Nom}NAME({0:T.e}NAME,{0:tonne}NAME)-{0:x}NAME({0:\w}NAME)))/(({0:G}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME))^(3))*({0:G}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME,

{0:tonne}NAME)-({0:z}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)*{0:\w}NAME)/({0:E.F}NAME*{0:T.e}NAME({0:tonne}NAME))+(7*({0:\p}NAME)^(2)*{0:z}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)*{0:\w}NAME*({0:T.e}NAME({0:tonne}NAME))^(2))/(480*({0:E.F}NAME)^(3

)))-(({0:\p}NAME)^(2))/(\({0:Nom}NAME({0:T.e}NAME,{0:tonne}NAME)-{0:x}NAME({0:\w}NAME))*({0:G}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME))^(2))*((({0:T.e}NAME({0:tonne}NAME))^(2))/(24*({0:E.F}NAME)^(2))+(7*({0:\p}NAME)^(4)*({0:T.e}NAME(

{0:tonne}NAME))^(4))/(480*({0:E.F}NAME)^(4)))�

.EQN 3 -102 349 0 0

{0:\l.pel}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)~({0:\l.o}NAME({0:T.ph}NAME,{0:tonne}NAME)*{0:T.e}NAME({0:tonne}NAME)*{0:eVK}NAME)/({0:T.ph}NAME({0:tonne}NAME)*{0:f}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME))*(({0:T.e}NAME({0:tonne}NAME))^(2))/(12

*({0:E.F}NAME)^(2))*(({0:\p}NAME)^(2))/({0:f}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)*({0:Nom}NAME({0:T.e}NAME,{0:tonne}NAME))^((3)/(2)))�

.EQN 6 110 381 0 0

{0:L.0}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)~-((1)/(\({0:Nom}NAME({0:T.e}NAME,{0:tonne}NAME))*((1+{0:z}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)))^(2)))*(({0:\w}NAME)/(2*{0:E.F}NAME)+(({0:\p}NAME)^(2)*({0:T.e}NAME({0:tonne}NAME))^(2))

/(48*({0:E.F}NAME)^(2))+(7*({0:\p}NAME)^(4)*({0:T.e}NAME({0:tonne}NAME))^(4))/(480*({0:E.F}NAME)^(4)))�

.EQN 5 -110 383 0 0

{0:\l.old}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)~({0:\l.o}NAME({0:T.ph}NAME,{0:tonne}NAME)*{0:T.e}NAME({0:tonne}NAME)*{0:eVK}NAME)/({0:T.ph}NAME({0:tonne}NAME))�

.EQN 6 106 382 0 0

{0:\l.NEQ}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)~({0:\l.o}NAME({0:T.ph}NAME,{0:tonne}NAME)*{0:T.e}NAME({0:tonne}NAME)*{0:eVK}NAME)/({0:T.ph}NAME({0:tonne}NAME))*{0:p}NAME({0:\w}NAME,{0:T.ph}NAME,{0:tonne}NAME)*2*({0:Lp}NAME({0:\w}NAME,

{0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)+{0:Lm}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)+{0:L.0}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME))�

.EQN 9 -110 287 0 0

{0:\l.comp}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)~{0:\l}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)-{0:\l.pel}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)+{0:\l.NEQ}NAME({0:\w}NAME,{0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)�

.EQN 17 32 309 0 0

{0:\l}NAME({0:T.ph}NAME,{0:T.e}NAME,0.2)={0}?_n_u_l_l_�

.EQN 5 83 371 0 0

{0:\l.LTE}NAME({0:T.ph}NAME)~({0:\l.o}NAME({0:T.ph}NAME)*{0:T.ph}NAME)/({0:T.ph}NAME*(1+{0:z.p}NAME({0:T.ph}NAME,{0:tonne}NAME)))�

.EQN 0 32 372 0 0

{0:\l.NEQ}NAME(1,{0:T.ph}NAME,{0:T.e}NAME,0.2)={0}?_n_u_l_l_�

.EQN 22 -147 185 0 0

&&(_n_u_l_l_&_n_u_l_l_)&{0:\l.app}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME),{0:\l.comp}NAME(1,{0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME),{0:\l.NEQ}NAME(1,{0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME),{0:\l.old}NAME({0:T.ph}NAME,{0:T.e}NAME,{0:tonne}NAME)@1&&(

_n_u_l_l_&_n_u_l_l_)&{0:tonne}NAME�

0 0 1 1 1 0 0 1 1 Time [ps]

0 0 1 1 1 0 0 1 1 Thermal conductivity [W/cmK]

0 4 6 0 2 2 Spur 1

0 1 6 0 2 2 Spur 2

0 2 6 0 2 2 Spur 3

0 3 6 0 2 2 Spur 4

0 1 4 0 1 1 Spur 5

0 2 5 0 1 1 Spur 6

0 3 6 0 1 1 Spur 7

0 4 0 0 1 1 Spur 8

0 1 1 0 1 1 Spur 9

0 2 2 0 1 1 Spur 10

0 3 3 0 1 1 Spur 11

0 4 4 0 1 1 Spur 12

0 1 5 0 1 1 Spur 13

0 2 6 0 1 1 Spur 14

0 3 0 0 1 1 Spur 15

0 4 1 0 1 1 Spur 16

1 1 1 60 85 18 0 2 
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