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ABSTRACT

Fibre-reinforced laminated composites are constructed layer-by-layer, enabling ease of directional stiffness
tailoring. Their vast design space is typically explored using two-steps. First, the optimum stiffness for
given loads is conceptualised using continuous optimisation of lamination parameters (LPs). Then, discrete
optimisation determines a fibre stacking sequence (SS) that closely matches these LPs. While fibre angles are
conventionally limited to 45° multiples, finer increments (e.g., +15°) can enable lighter structures. However,
existing SS design methods do not scale well with this increased problem dimensionality. To overcome this
challenge, we propose LP2SS, a novel methodology utilising fast Fourier transforms (FFT) and a branch-
and-bound optimiser. By treating LPs as a signal, FFTs identify the number of fibre layers oriented at
different angles, akin to estimating the magnitude of different frequencies within a signal. This fibre angle
distribution guides the branch-and-bound optimiser, enabling efficient SS design with accurate LP matching,
while satisfying empirical design rules. The ingenious use of FFTs is key to LP2SS’s performance, achieving
solutions within tenths of a second, compared to minutes required by state-of-the-art methods. Validated on
established benchmarks and a newly proposed comprehensive test set, LP2SS marks a significant advancement

in the optimal design of large-scale laminated composite structures.

1. Introduction

As demand for commercial aviation rises, governments have set ambi-
tious emission reduction goals [1]. One approach to achieve this is to
enhance fuel economy by reducing structural weight. Fibre-reinforced
laminated composites have been essential in this effort, owing to su-
perior specific strength relative to their isotropic counterparts (metal-
lic alloys). Today, they comprise over half the structural weight of
modern aircraft [2,3]. Meanwhile, researchers are working on further
weight reduction by capitalising on their layer-by-layer construction
and tailoring directional stiffness throughout a structure [4,5].

From an optimisation perspective, the design variables of laminated
composites (ply! thickness and fibre orientation in each of N layers)
belong to a discrete set of allowable values. This results in a vast,
discrete, and non-convex design space, posing a complex optimisation
problem [6-8]. For circumventing this, a two-step design procedure
is commonly followed, among other multi-step variants [9]. First,

the composite’s conceptual stiffness is optimised for given loads with
lamination parameters (LPs). Then, a stacking sequence (SS) of different
plies is designed to match the optimum stiffness. Commonly, LPs are
designed using continuous optimisation, while SS is designed to match
the LPs using discrete optimisation [6]. This separation helps manage
the problem’s inherent complexity.

Historically, engineers opted to orient fibres only along multiples of
45° (6 € [0, £45, 90]) (or [445°]), for analytical and manufacturing
convenience [10]. Such laminates still remain prevalent, owing to
years of experience making aircraft with them. However, more weight
reduction can be enabled with a broader range of angles like § €
[0, +£15, +30, +45, +60, +75, 90] (or [415°]), as the fibre’s direc-
tional properties are better utilised [5]. At the same time, structural
design is largely governed by response-driven constraints (e.g., strain
failure/buckling), and SS design guidelines (e.g., Symmetry, Balance,
10% Rule, Disorientation, etc.) to eliminate unwanted stiffness coupling
and be robust under in-service loads [11,12]. As such, expanding the
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number of allowable fibre angles increases design options, but also
magnifies the computational challenge.

Although genetic algorithms [13] and branch & bound [14] are widely
used for SS design, benchmark studies show nearly a four-fold increase
in their computation time when expanding fibre angle choices from
[445°] to [A15°] [14]. In response, this paper presents a robust and
efficient SS design method, to match conceptual stiffness described
by given LPs. The following section review existing approaches and
highlight the need for improved methods to design SS with [415°].

2. Preliminaries: Design and optimisation using lamination pa-
rameters

The design space offered by laminated composites can be effectively
navigated, as described in Fig. 1. First, the conceptual optimum stiffness
is determined using LPs, and then the SS is designed to match that
optimal stiffness.

I: Simpler parameterisation allowing efficient
stiffness optimisation

Stiffness Matrix

= A B 5
e B D

Stacking Sequence of a laminate Lamination Parameters
(Discrete Design Space) (Continuous Design Space)

II: Design manufacturable Stacking Sequence
to match optimised stiffness

Fig. 1. Overview of Laminate Design using LPs.

For completeness, it is noted that, to the best of the authors’ knowl-
edge, LP-based designs are not yet used in the aerospace industry. A
brief overview of the industry’s current design practices is provided in
Appendix A.1.

Classical laminated plate theory describes laminate stiffness us-
ing the ABD matrix: A- Extensional Stiffness, B- Coupling Stiffness,
and D- Flexural Stiffness. In order to determine the conceptual op-
timum stiffness, the directional stiffness values in the matrix can be
optimised. However, given that these values are highly correlated,
assigning them arbitrarily is challenging. Hence, Tsai et al. [15] param-
eterised laminate material properties using trigonometric identities to
linearly describe ABD using laminate height 4 and 12 non-dimensional
quantities (the LPs)?.

A=hTy+ LV + LV + LV + Ly
h2

B=(I VE+LVE+ LVE+ VP 1
h3

D=y +T, vP+ LV + VP + 1, v))

Here, V[i’;f ‘41]) ) are the 12 LPs, and I entities are matrices describing
ply material properties that are invariant to orientation (see Appendix
A.2 for formulations). For Symmetric-Balanced laminates, 6 LPs (V8

and V3A4) can be nullified in optimisation. Mathematically, the LPs

2 LPs are valid only for the design of laminates or sandwich structures [16],
with plies and/or core, respectively, made of the same material.
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form a continuous and convex design space [17], making the use of
gradient-based optimisation particularly effective. While each LP can
numerically lie within [-1,1], the design domain is not a full 12D
hypercube due to inherent correlations among them [10]. Appendix A.3
gives an overview of how design space and constraints can be defined
for LP optimisation.

SS design is now performed such that their LPs closely match
the conceptual optimum from the previous step. For a given SS with
equi-thickness plies, its LPs are calculated as follows:

N

VA

1 . .
0234 = N [cos 26,,cos 40, sin 20k,sm40k]
k

=1
R 2 W (N 2NV ‘ .
VP = FZ{<7_H1) (5 —k) } [c0526.cos 40, sin20,.sin46,] (2)
k=1

N 3 3

VP = % Y { (F-k+1) -(5-4) } [cos 26, cos 4, sin 26, sin 46,
k=1

Here, 0, represents the orientation of the kth ply. Now, the task is to

design a discrete SS whose LPs match the optimised set. These SS also

need to satisfy empirical design guidelines that are commonly followed

in the aerospace industry [12,18,19]:

1. To nullify in-plane and out-plane coupling stiffness (B matrix),
mid-plane symmetry of a stacking sequence can be enforced.
Eliminating this behaviour without symmetry is explored by
York et al. [20].

2. To nullify coupling responses within the A matrix (extension-
shear coupling), the off-axis plies (orientations apart from 0 and
90) can occur in balanced pairs, that is, every +6 should have
a —0. Such in-plane orthotropy can also be achieved without the
balancing rule [21].

3. The 10% Rule requires at least 10% of plies to be oriented
along the four principal directions (0, +45, 90°), ensuring min-
imum in-plane stiffness for protection under secondary loads.
For non-conventional orientations ([415°]), a more generalised
version [19,22] ensures adequate stiffness across all directions.

4. To induce less residual stresses in the laminate while curing, the
disorientation guideline restricts orientation change between
consecutive layers not to exceed 45°.

5. To avoid crack bridging, the contiguity guideline does not allow
more than 0.6 mm of material with the same orientation to be
placed together.

6. For damage tolerance against impact and improved buckling
performance, surface layers should have a +45° ply.

Designing an N-layer SS (discrete) while matching the optimum LPs
(continuous) and satisfying these design guidelines can be a complex
computational task. The jump between these two design spaces —
converting LPs, i.e., predetermined stiffnesses, into an SS — is com-
monly referred to as the ‘inverse problem’ of laminate design. Over
the past few decades, many solutions have been proposed to address
this challenge [6,23]. They can be broadly classified into five cate-
gories: Analytical, Gradient-based, Mixed-Integer Linear Programming,
Population-based, and Layerwise approaches.

Analytical Methods: Miki [24] proposed a simple formulation to
design a Symmetric-Balanced SS with up to three orientations [+6,, +6,,
6; = 0°], matching only V4 LPs, with user-defined ply fraction.
Hammer [25] showed that a three-layer SS is enough to match any
set of V4 LPs, while Autio [26] showed a two-layer SS sufficed for
any set of VP LPs. With conventional angles ([445°]), Diaconu [27]
considered both ¥4 and V? LPs together. However, these techniques
treat ply thickness as a continuous variable—making them impractical.
Van Campen et al. [28] proposed a practical solution for analytically
designing a four-layer Symmetric-Balanced SS ([+0,,+6,]¢). Viquerat
et al. [29] then accessed a broader design space by designing more than
four layers of an SS ([+0,,+0,,.....+0y 21 ) using polynomial homo-
topy continuation (PHC). This method can solve a system of equations,
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Table 1

Composite Structures 378 (2026) 119939

Comparison of state-of-the-art SS Design methods from LPs using [445°], and their overall performance scalability to [415°] designs.

Guideline Design Space Solution Quality Computational Performance Scalability
enforcement Exploration Efficiency for [415°]
Analytical + - + -
Gradient + - - -
Population + + - -
Layerwise + + + -
MILP - - + -
Table 2
even with more unknown values than equations (non-square systems). Optimisation problem in focus.
Nevertheless, PHC is sensitive to initial parameters and computation- Description
ally expensive: approximately two hours to solve square systems (e.g., a Objective minimise ALPs
12-layer SS to match 12 LPs), with non-square cases taking longer. (mismatch between desired and realised stiffness)
Variables SS: [0,,60,,....0x0]s,
Gradient-based Methods: By using local gradient information, the 0 € [445°] or [415°]
Constraints Symmetry, Balanced, 10% Rule, Damage Tolerance,

angles within an N-layer SS can be iteratively optimised to minimise the
mismatch between target and realised LPs. Grédiac used the steepest-
descent method with a least-squares objective [30,31], while Peeters
et al. [32] applied the method of moving asymptotes with a convex-
quadratic approximation of structural responses. Given the discrete
and non-convex nature of the problem, these techniques often strug-
gle to escape local minima as the dimensionality increases. Sankalp
et al. [33] introduced deflation constraints to address this, though their
computational performance remains untested.

Mixed-Integer Linear Programming: Non-gradient-based approaches,
such as Mixed-Integer Linear Programming (MILP), enable handling
constrained optimisation tasks with both discrete and continuous de-
sign variables. They have been used for SS design in various stud-
ies [34,35], with recent implementations by Ntourmas et al. [36]
demonstrating effectiveness even for variable stiffness designs from
LPs. These methods require explicit formulation of design guidelines as
constraints, and their scalability with increasing problem size remains
uncertain. More recently, a novel study re-cast the MILP formulation
using quantum computing operators [37] (density matrix renormalisa-
tion group algorithm, or DMRG), showing competitive computational
efficiency on the order of a few minutes for SS design with [445°]
plies while enforcing design guidelines using penalties [38]. However,
DMRG is nondeterministic and its scalability with [415°] angles is
uncertain.

Population-based Methods: These methods simultaneously explore
different parts of the design space using a population of candidate
solutions, often guided by nature-inspired heuristics (e.g., ant colony,
bird swarms, or evolution [39]). Genetic Algorithm (GA), inspired
by Darwinian evolution, is the most widely used SS design method
due to its ease of implementation. The population evolves through
stochastic operations like selection, crossover, and replacement, grad-
ually converging towards a SS that matches target LPs and follows
design guidelines.® Earlier implementations, such as OptiBLESS (Op-
timisation of BLEnded Stacking Sequence [13]), enforced guidelines
like disorientation solely through penalties. Nevertheless, this does
not guarantee that the offspring populations inherit the traits. Newer
implementations, such as pyTLO (python Tapered composite Laminate
Optimisation [41]), encode these guidelines as constraints, ensuring
offspring populations stay guideline-compliant even after genetic oper-
ations. However, with increasing number of layers and using finer angle
resolutions ([415°]), GAs become computationally expensive, requiring
larger populations to preserve diversity and avoid local minima. These
demands make GAs less practical.

Layerwise methods: These methods sequentially design SS layer-by-
layer. Narita et al. [42,43] used a simple 1D enumeration process,

3 See [40,41] for details on encoding SS and design guidelines with GA
operators.

Disorientation, Contiguity (Design Guidelines)

selecting the optimal orientation of every layer to minimise mismatch
between desired and realised LPs. However, greedy selection for every
layer need not guarantee a global optimum solution. This problem
was then reformulated as a decision tree with branch-and-bound (BB)
optimisation, to explore a broader solution space. The fractal branch
and bound (FBB) method [44-46] utilised the fractal nature of LP
space, showing how each angle choice influences the realisable LPs. It
enabled informed selection of angles, while pruning infeasible branches
or guideline-violating partial SS solutions. As the evaluation cost of
this method increased heavily with problem size, Liu et al. [47] used
a simpler objective function (least square difference of LP mismatch)
to improve search speed at the expense of optimality. They mitigated
this trade-off by redesigning the SS multiple times. Fedon et al. [48]
improved this workflow with LAYLA (LAY-ups for LAminates), which
uses beam search, a group-wise redesign strategy, and a computation-
ally efficient method to enforce design guidelines (RELAY [49]). Beam
search explores multiple solution branches in parallel to avoid greedy
selection. Then, the SS is divided into multiple groups and iteratively
redesigned to reduce mismatch. LAYLA can design even 300-layer SSs
in few minutes, while adhering to design guidelines. While it scales
well for conventional laminates ([445°]), its effectiveness decreases for
non-conventional laminates ([415°]), where reported results indicate
a four-fold increase in computation time and a significant drop in
solution quality.

Amongst state-of-the-art methods, BB offer the best trade-off be-
tween efficiency and solution quality. With increasing problem di-
mensionality, GAs incur high computational costs, while MILP lacks
solution quality. BB’s strength lies in pruning the search tree to signif-
icantly reduce the portion of the design space explored. Pruning can
be either informed [44] (precise but expensive), or heuristic [47,48]
(faster but sub-optimal). While heuristic exploration strikes a sufficient
balance between solution quality and efficiency with [445°], this advan-
tage visibly diminishes with [415°]. Here, mismatch errors increase due
to the limited exploration of a larger design space, and computational
times rise with the evaluation of more fibre angle combinations. While
BB still outperforms other methods under these conditions, this remains
a key limitation. Table 1 collectively presents all these inferences.

As such, state-of-the-art methods still face the challenge of designing
an N-layer SS to match input LPs while using a wide range of angles
([415°]) and adhere to all relevant design guidelines. With the advent of
comprehensive multi-disciplinary [50] and multi-fidelity [51] optimi-
sation methods, computational limits like this can hinder the depth of
design trade studies, resulting in heavier or suboptimal structures. This
gap highlights the need for an efficient SS design approach that does
not compromise on optimality, as tabulated in Table 2. To address this
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Fig. 2. Illustrative comparison of different BB trees for SS design. (Top) All combinations. (Middle) Beam search expands a subset of promising nodes. (Bottom)
Beam search with further reduced nodes, excluding angles outside a FAD. Translucent nodes do not contribute to computation.

need, this paper presents a novel, computationally efficient methodol-
ogy for SS design, even with increased dimensionality. The following
section outlines the key concepts behind the proposed method.

3. Proposed methodology for efficient and scalable stacking se-
quence design from lamination parameters

BB methods reduce computational cost through pruning, but at the ex-
pense of limiting the explored design space and compromising solution
quality [48]. As a result, this study focused on enriching the design
process, rather than limiting it. This enrichment was achieved by in-
troducing an intermediate step: the design of a fibre angle distribution
(FAD), which specifies the number of plies oriented at different angles.

Once determined, the FAD serves as an informative guide for SS
design, with minimal computational overhead. This effect is illustrated
in Fig. 2: the top shows a full BB tree with all nodes expanded, the
middle shows beam search reducing the number of explored nodes,
and the bottom demonstrates how FAD knowledge further focuses the
search by guiding ply angle selection only from a designed set. This
reduces computational effort even before pruning, while still making
informed choices. Additionally, design guidelines — such as symmetry,
balance, and the 10% rule — can be accounted for solely through FADs,
further reducing the burden on a BB optimiser.

To enable this FAD-guided approach, this study introduces an effi-
cient method to design them. Since FADs do not encode any through-
thickness information and solely describe in-plane stiffness (A4), they
are sufficiently represented using V4 LPs:

VA= %[(Nl x1(01)) + (Ny x 1(0,)) + (N3 * 1(03)) + -+ .] 3)

This formulation resembles a Fourier Series: a function is expressed
as a weighted sum of sinusoidal components. Here, the trigonometric
function #(6;) captures the stiffness contribution at angle 6;, and the
coefficients N; represent the number of plies—i.e., the FAD. Based
on this analogy, Fast Fourier Transforms (FFTs) were repurposed for
laminated composite design. While FFTs are typically used to identify
the magnitude of different frequencies in a signal, here, they were used
to determine the number of plies at different orientations (their FAD).

This leads to a two-step solution to the inverse problem of con-
verting LPs into SS. First, FFTs enable a fast and elegant derivation
of FADs from V4 LPs (LP2FAD). Second, a simple yet robust BB
implementation, guided by the FAD, can design a SS to match given
VD LPs (FAD2SS). These two deterministic sub-problems, leveraging
well-known mathematical techniques, form the basis of the proposed
methodology. This method is encapsulated and published open-source
as a Python package named LP2SS [52] (lamination parameters (LP)
to (2) stacking sequences (SS)), reflecting its overall functionality.

The remainder of this paper is organised as follows: Section 4
explains the implementation of LP2SS (see Fig. 3), which is then
evaluated against the state-of-the-art in Section 5. Section 6 discusses
the results and demonstrates how LP2SS enables designs with [415°],
which are typically difficult and computationally expensive to realise.
These findings are then consolidated with conclusions in Section 7 .

4. Implementation of LP2SS

For the inverse problem of converting LPs to SS (LP2SS), the proposed
method follows two steps: FAD design and SS design. The following
subsections detail the implementation of the novel FFT-based method
behind LP2FAD, and then the robust BB method behind FAD2SS.
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@ fad2ss. py

Branch and
Bound

Lamination
Parameters (LPs)

4+ Symmetry
+ Balanced
4+ 10% Rule

Fibre Angle
Distribution (FAD)

Stacking
Sequence (SS)

4+ Damage Tolerance
4+ Contiguity
4+ Disorientation

Fig. 3. LP2SS: Proposed methodology to convert LPs into SS (Ip2ss.py = lp2fad.py + fad2ss.py).

4.1. Step 1: LP2FAD - From lamination parameters to fibre angle distribu-
tion

This subsection outlines how FFTs are performed on V4 LPs to design
the FAD of a N-layer SS. The process starts by writing V4 as a signal.
Since multiple unique FADs can share the same V4, multiple valid
signal forms can exist. Hence, these periodic signals, composed of
sinusoids with repeating patterns, were studied and parameterised with
VA LPs. This approach allowed efficient design of multiple FADs for
the same V4. Having this multiplicity is essential to avoid overfitting
and preserve the overall solution quality of LP2SS: a single FAD may
perfectly match a given V4 (in Step-1), but can lack the necessary
angles to match given VP LPs (later in Step-2). Since FFT outputs need
not be integers, post-processing is done to round ply counts to integers
summing to N, while enforcing design rules.

4.1.1. Signal representation of V4 lamination parameters

FFTs can be used to estimate the magnitude of different frequencies
in a signal. For FAD estimation, V4 was reinterpreted as a signal
(L4) whose frequency and magnitude corresponded with fibre angles
and their ply counts, respectively. Mathematically, the argument of a
sinusoid is a product of frequency and time [53]. Hence, a fictitious
time variable T was inserted into the V4 LP formulation:

N

N
VA = L Y [cos (26,), cos (46,)] & LAT) = L Y [cos (26,1)] 4
= Na

<

Normal Representation Signal Representation

Due to the focus on Symmetric-Balanced laminates, only the cosines
in V1A2 LPs are focused on. As such, this parameterisation writes V1A2
as a laminate signal L4, where the arguments 26 and 46 are now

harmonically related.

To apply FFT on the laminate signal L4, its values must be described
(sampled) over discrete steps of the fictitious T domain. An appropriate
sampling rate and number of samples (N') are critical to ensure reliable
FFT results without aliasing. As per the Nyquist-Shannon theorem [54],
the sampling rate must be at least twice a signal’s highest angular

frequency — equating to 1 sample per second for the given parame-
terisation.* The value & must be chosen to capture one full period of a
signal. As illustrated in Fig. 4, periodicity can vary based on a signal’s
constituent frequencies (or, angles in this case):

Vi=0and V5 =0

0.8 1
0.6 1
0.4
0.2
0.0 —

Laminate Signal LA

<
8]

;

¢
\\

Fibre Angle Distribution
—— [0s, 456, 905]
= [01, 152, 302, 452, 602, 752, 90:]

|
<
IS

1

706 1 T T T T T
0 2 4 6 8 10 12
Time (s)

Fig. 4. L* of two unique 12-layer FADs with same V4 LPs. Sampled points
with identical values are marked red, and rest in black.

As seen in Fig. 4, the laminate signals of FADs consisting [445°] and
[415°] angles exhibit distinct periodicity. and symmetries. The [445°]
FAD exhibits a period of 4, thus requiring N' = 5 samples (at T =
[0,1,2,3,4]). Meanwhile the [415°] FADs exhibit a period 12, requiring
N =13 samples (at T = [0, 1,2,3,4,5,6,7,...,12]).

By simple substitution in Eq. (4), it can be understood that L4
numerically equals 1, V4, VZA, at T = [0, 1,2]. Moreover, the mid-period
symmetry implies that the values at T = 1 and T = 3 are identical
for [445°]. The pattern then repeats beyond T = 4. Hence, the signal
pattern for [445°] can be tabulated as follows (in Table 3):

Table 3
L# Signal Pattern for [445°] laminates.

Angle Increments T=0 T=1 T=2 T=3 T=4 T>4

[445°] 1 w v v 1

f repeated

4 Sampling Rate and periodicity calculation detailed in Appendix B.1.
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Table 4
Exact signal pattern for laminates made of [0°,15",30"] orientations.
Orientations T=0 T=1 T=2 T=3 T=5 T=6
[0°, 15°,30°] 1 VIA VZA 6.46 — 10.]9VIA + 4.73V2A 20.39 — 30.58VIA +1 1.19VZA 3532 - 51.98VIA + 17.66V2A 41.78 — ()14171/]" + 20.39V2A

For [415°], similar use of substitution and symmetries is not suf-
ficient to describe the entire sample set, as values at T = [3,4,5,6]
still need to be determined. This problem was handled in two differ-
ent ways. Their values can be analytically determined, or manually
approximated as a function of V4 LPs. These two types formed the
basis of a database of pre-observed patterns. This database evolved
throughout the study until a desired number of diverse solutions could
be generated. The sufficient number of patterns was determined later
in Section 4.2.3, through actual SS design attempts with [415°].

Analytical Exact Patterns: To analytically determine values of L# at
any given T, they were described as a linear combination of the known
quantities LA(T = [0, 1,2]):

LAT) = ap (LAT = 0)) + by (LAT = 1) + o (LAT =2))
= LAT) = ap + by VA + cp V) (5)

Upon assuming a set of three ply orientations to be used (similar to the
three-layer logic of Hammer [25]), the coefficients a, by, and ¢ can
then be solved for a given value of T, by equating Egs. (4) and (5)°:

ar 1 cos(20;) cos(46)) cos (20,T)
br |=| 1 cos(26,) cos(46,) cos (26,T) (6)
er 1 cos(20;) cos (463) cos (2057)

Thus, using Eq. (6), the value of the signal can be exactly calculated
for any timestamp T'. From [415°], a set of three angles can be chosen
in 7C3 ways (., seven unique |6| exist within [415°]). Ergo, 35 ‘Exact’
signal patterns can be formulated. For example, the exact pattern for
[0°,15°,30"] is shown in Table 4. The pattern is described only up
to T = 6 due to the signals’ mid-period symmetry. For brevity, the
complete list of Exact patterns is presented in the Appendix (Table 11).

Manual Approximate Patterns: To design FADs with more than three
unique angles, exact patterns are infeasible. Hence, signal patterns
were approximated with ¥4 LPs using visual pattern matching. This
approach inherently fixes the contributions of some ply orientations,
while others (typically three) remain designable. While this can be
done in innumerable ways, the signal representation helps handle this
situation with ease. This visual pattern approximation exercise can be
explained with the following example. A combination V]A2 =1[0.17,-0.1]
was randomly chosen from the feasible V4 LP space. From an in-house
laminate database®, multiple FADs made of [415°] that match these
LPs were noted. Their corresponding L* signals were then plotted for
analysis in Fig. 5.

In Fig. 5, the signal values at timestamps T = 4 and 5 are equal,
while a variation can be observed at timestamps 7" = 3 and 6. Nev-
ertheless, these common and uncommon points (at T > 2) were
manually approximated as a function of V4 LPs. However, the sample
value at T = 3 and 6 can be represented by multiple equivalent V4
parameterisations. In such cases, the most effective approximation was
chosen by perturbing the reference FAD’s ply counts and identifying
which yielded the closest matching signal. In this manner, a manually
approximated FAD can be made as shown in Table 5.

By repeating this exercise with laminates from across the design
space, several ‘Approximate’ patterns for [415°] were made.

5 An expanded derivation of this solution is presented in Appendix B.2.
6 This was generated via brute-force enumeration for N = 5 till 15 and is
published alongside this study [55].
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Fig. 5. LA Signals of FADs corresponding to V]’_*2 =1[0.17,-0.1]. Sampled points
with equal values across all the FADs are marked in red.

Table 5

Approximate Signal Pattern corresponding to Vl"2 =1[0.17,-0.1].
T=0 T=1 T=2 T=3 T=4 T=5 T=6
1 I/IA I/2A 0 _Vl/l _I/IA _2[/2/\

4.1.2. Deriving fibre angle distribution from the fast fourier transform of
laminate signals

For a target set of V4 LPs, different periodic signals can be created
using pre-observed patterns. Applying FFT on them paved the way
for efficiently designing multiple unique FADs. For an example case
(v, = 1052,0.15] and N = 20), the pattern in Table 5 yield the
following frequency spectrum in Fig. 6.
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Fig. 6. Frequency Spectrum of L4 (Vl’_‘2 = [0.52,0.15] and N = 20): FFT
magnitudes (left y-axis), and Number of Plies (right y-axis).

Only the positive real components of the spectrum are considered,
as imaginary or negative FFT values (if present) have no physical mean-
ing in the laminate signal parameterisation used here. The spectrum is
then normalised by dividing each value by the average FFT sum per
layer (total sum of FFT values divided by N). The resulting FAD (for
all |0]) is listed in Table 6.

Since V{fz are composed of cosine terms, the fibre orientation 6 is
invariant to sign; that is, +6 and —6 contribute equally. Consequently,
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Table 6
FAD (V |6]) obtained from Lf (Vl"2 =1[0.52,0.15] and N = 20).
Ply Orientation (°) 0 15 30 45 60 75 90
Ply Count 4.91067 5.488 4.57733 3.33333 0.08933 1.17866 0.422667
Table 7
Analysing a non-integer FAD (V|6|) obtained from FFT of L* made of: Vl’*2 =[0.52,0.15] and N = 20.
Ply Orientation (°) 0 15 30 45 60 75 90 Sum
Ply Count 4.91067 5.488 4.57733 3.33333 0.08933 1.17866 0.422667 20
Even Integer 4 4 4 0 0 0 14
Residual 0.91067 1.488 0.57733 1.33333 0.08933 1.17866 0.422667 6

Table 8
Symmetric-Balanced FAD (V|d|) obtained from L4 (Vl"2 = [0.52,0.15] and
N =20) using an Approximate Pattern.

Ply Orientations (°) 0 15 30 45 60 75 90
Ply Count 4 6 6 2 0 2 0
Mismatch Error ¢, 0

ply counts are expressed as |0|, combining contributions from both +6
and —6. In this example, the ply counts sum to the desired N = 20,
yielding LPs Vl’} = [0.52,0.15]. As such, a FAD for any value of N
can be inferred from the FFT results upon normalisation. However,
non-integer ply counts must be corrected for manufacturability. Addi-
tionally, design guidelines such as balance and the 10% rule must be
met. Therefore, additional post-processing of the FAD is necessary.

4.1.3. Enforcing manufacturability and design guidelines for fibre angle
distribution

When the FAD obtained from FFT contains non-integer ply counts, a
rounding procedure is applied to ensure manufacturability. This process
ensures that off-axis || values are balanced while maintaining a total of
N plies. This is illustrated using the FAD example from Table 6, where
each ply count is first decomposed into its even-integer and residual
(fractional) components, as shown in Table 7. An emphasis is placed
on having even ply counts, so that |#| can be equally split between +6
and —6, for a balanced solution.

Here, the even components sum to 14, meaning six additional plies
must be added to reach the required N = 20. This was done by rounding
up ply counts while ensuring the off-axis plies remain balanced. In this
case, 112 valid rounding combinations are possible.” Optionally, this
step can also consider sign-sensitive angle bins (i.e., treating +6 and
—0 as distinct rather than the aggregated |6|). This allows for a broader
set of combinatoric possibilities — potentially resulting in FADs that
are mathematically in-plane orthotropic — even without enforcing the
balanced laminate rule.

Each rounded FAD was then evaluated based on its closeness to the
target laminate parameters, using Euclidean distance:

— A A
4= \/Z(lVDcsign - VTargctl)z &)

VI’)“Zsign is computed from each rounded FAD and VT"a,g‘z , is the original
design target. The FAD with the lowest error was selected, as shown in
Table 8.

Symmetry was enforced by determining the FAD for one-half of
the laminate. For odd-symmetric cases, the same procedure is followed
while allowing one angle to have an odd-ply count, which is the middle
ply. For the balanced rule, off-axis ply counts (|0|) are evenly split
between +6 and —0. If the 10% rule is desired, the same number of plies

7 This combinatoric was based on distributing six additional plies (as three
balanced pairs), across seven absolute angle bins.

is preallocated to [0°, +45°, 90°], and the remainder of the FAD is de-
signed to match the given V4. For non-conventional angle sets ([415°]),
only the LP-based formulation of the 10% rule is considered [22].

4.2. Step 2: FAD2SS - from fibre angle distribution to stacking sequences

Once multiple FADs are designed in Step 1 (LP2FAD), the top four
solutions are selected to be converted to SS in Step 2 (FAD2SS). A
BB algorithm with beam search was developed to optimally assign the
through-thickness positions of the plies in the FAD. After this, an open-
source laminate repair tool was employed to enforce design guidelines
for the SS.

4.2.1. Designing stacking sequence with branch and bound

In this study, a BB algorithm was implemented in Python to design
SS from a given FAD. As motivated earlier (Section 3), BB treats SS
design as a decision tree search problem, by designing SS layer by layer.
The beam search method allowed simultaneous evaluation of multiple
solution branches, guided by a heuristic cost function defined as the
mean squared error between the obtained and desired V' ? LPs.

— 1 D D 2
&p = ZZ(|VDesign - VTargell) ®)

This formulation was chosen over the previously used Euclidean dis-
tance (Eq. (7) in Step-1) to reduce computational burden: LP mismatch
can be computed incrementally for a (partially) designed SS by adding
each layer’s contribution, without repeatedly computing a fourth root.

To ensure ease of use and repeatability, the implementation was
kept free of tuning or hyperparameters (e.g., branching limits or re-
finement cycles). The number of simultaneously explored solutions in
beam search (beam width) was suitably fixed® to avoid sensitivity to
hyperparameter tuning.

4.2.2. Enforcing design guidelines for stacking sequence

The design guidelines to enforce at this stage are Damage Tolerance,
Disorientation, and Contiguity. Damage Tolerance can be addressed by
constraining the outermost ply angle to 45°, while the others require
more nuanced handling. Initial efforts to enforce them using pruning
in the BB method (in Section 4.2) limited design space exploration
and often led to local optima. A posterior repair strategy was therefore
adopted, using RELAY [49], an open-source Python-based tool.
RELAY minimally modifies a SS designed by FAD2SS — mainly
through ply shifts and, if necessary, angle changes — to enforce guide-
lines like Disorientation and Contiguity, while preserving the target V4
and VP LPs [49]. Its effectiveness depends on three hyperparameters:
nD1 (number of redesigned plies), nD2 (ply shifts tested to reduce VP
mismatch), and nD3 (repetitions of the shift algorithm). The developer
recommended default values (nD1 = 6, nD2 = 10, nD3 = 2) to balance
computational cost and repair success. However, since repairs are not

8 Testing across a range of values showed performance converging at a
beam width of 10.
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always successful, this study uses an adaptive strategy: if the repair
fails, nD1 was increased by two and retried (up to five times).

4.2.3. Assuring stacking sequence solution diversity

As discussed earlier, a FAD matching the desired V4 LPs need not
contain fibre angles that help match the desired V'? LPs. Therefore, in
LP2FAD, multiple FADs are created using a database of pre-observed
signal patterns. However, the sufficiency of this database must be
validated through actual SS design attempts to ensure the desired
solution diversity across various ply counts and the enforcement of
desired design guidelines. Hence, an exhaustive validation process was
undertaken.

Average Time-Taken to design SS with exactly matching input LPs

0.250 1 —e— Without Guidelines

With Guidelines
0.225 1

0.200 ~
0.175 1

0.150 1

Time (s)

0.125 +
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0.050 - . r T T T
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Fig. 7. LP2SS with a database of 66 signal patterns, sufficient to exactly match
all possible SS for N =5,6,7,8, ..., 15 (1.6 million SS).

To this end, all symmetric and balanced SS from N =5 to 15 with
[A15°] were enumerated—approximately 1.6 million unique sequences.
For each SS, corresponding LPs and compliance with the design guide-
lines (10% Rule, Disorientation, Damage Tolerance, and Contiguity)
were noted to form a reference test dataset. Mismatch error from
here onward will be represented as a mean squared error between the
designed and target LPs (VIA, VZA, VID, V2D, V3D, and V4D). This metric
was chosen to be consistent with previous comparative studies [48].

_1 AD AD |2
e =2 2 WVaigen ™ Vierge) ©

Design Target

For a given case, if LP2SS failed to design a SS with mismatch
error’ below 102 and satisfy applicable guidelines, new signal patterns
were added by manually analysing the corresponding enumerated SS
and parameterise their signal pattern with LPs. This approach helped
identify a robust pattern database to design any N-layer SS, with the
angular diversity to help satisfy design guidelines.

Ultimately, a total of 66 unique signal patterns (listed in Appendix
B.3) sufficed to design all test cases with exact LP matching (mean
squared error ~ 1073) and guideline-compliance. Fig. 7 shows each
case was solved within a few tenths of a second on average. With
multiple FADs available, the implementation readily supports designing
multiple unique SS, efficiently enabling alternative designs on demand.
Since the methods within LP2SS are deterministic and scalable, this
validation over small N values ensures robust and diverse solutions
with increasing dimensionality. The following subsection demonstrates
LP2SS on a representative mechanical design problem.

9 A mismatch limit of mean squared error 1072 was conservatively
estimated from design case studies seen in literature [56,57].

Composite Structures 378 (2026) 119939

4.3. Demonstration on a loaded plate design case

This subsection illustrates the use of LP2SS in the optimisation of
a loaded composite plate. The case, adapted from Liu et al. [47],
considers a simply supported rectangular plate of dimensions 100 mm x
150 mm, designed for a buckling load of 100 kN (longitudinal compres-
sion). The plate stiffness was optimised using LPs, with the software
VICONOPT [58], resulting in the following target vectors:

V4 =[-0.1196, —0.0585, 0. 0],
VP =[0.0483, ~0.721, —0.0196, 0.0], N =28

For complete details of the plate setup and LP optimisation, readers are
referred to the original study [47]. Using these LP targets, the proposed
LP2SS method was used to design the loaded plate. Table 9 summarises
the resulting SS for varying sets of imposed guidelines, along with the
corresponding runtimes and LP-mismatch (as defined in Eq. (9)).
Table 9

LP2SS results for the simply supported loaded plate design case.

Design Guidelines Resulting SS Time (s) Error ¢

Symm + Bal + 10% Rule [45,45,0,-45,-45,-45,-45, 0.29 1.04E-05
0,45,45,90,90,90,90]g

Symm + Bal + 10% Rule [—45,45,45,-45,-30,30,60, 0.41 1.20E-05

+ Contiguity —60,0,-75,0,90,90,75]g

Symm + Bal + 10% Rule [—45,-45,0, 45,45, 30, 60, 0.57 1.76E-03

+ Disorientation + Contiguity 75, -60,90,90, 75,30, 0]g

Across all cases, LP2SS consistently designed laminates that satisfy the
imposed guidelines within sub-second runtime while maintaining the
target stiffness with negligible mismatch. This example demonstrates
the method’s practical applicability in efficiently translating optimised
LPs into SS. The following section further evaluates its robustness and
comparative performance against state-of-the-art methods.

5. Comparison of LP2SS with state-of-the-art

This section compares LP2SS with established SS design methods
across varying problem sizes and complexities. The evaluation uses
benchmark datasets with LPs spanning diverse regions of the design
space, effectively representing optimal solutions for various mechanical
problems. The objective is to assess each method’s ability to design
guideline-compliant SS for all cases with minimal runtime and low LP
mismatch.

Methods Evaluated: These include GA, BB, MILP, and LP2SS (the
proposed method). OptiBLESS [13] and pyTLO [41] (GA), LAYLA [48]
(BB), DMRG [37] (MILP using quantum-inspired solver). OptiBLESS
and pyTLO are used for [445°] and [415°] designs, respectively, due
to their respective limitations in initial population generation with
design guidelines. DMRG was tested exclusively with [445°], as the
current implementation supports only this configuration while adhering
to design guidelines. Given the nondeterministic nature of MILP and
GA implementations, they were run multiple times, and the best solu-
tion was presented. The hyperparameters used for all State-of-the-art
methods are listed in Appendix B.5.

Benchmark Datasets: Tests were conducted using two benchmarks,
each containing 100s of guideline-compliant SS across varying ply
counts. Since the LPs corresponding to these SS are realisable, all
design methods can be expected to recreate these SS, or equivalent
ones, that satisfy all constraints. The benchmark from the University
of Bristol [14], contains 200 SS with [445°] angles for each N = [40,
80, 200]. However, it lacks LP values attainable only with finer angle
resolutions. This gap is addressed by introducing a new benchmark
in this study [55], comprising over 450 SS for each ply count with
[415°] angles, for N = [10, 20, 40, 80, 100, 200]. Compared to the
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Table 10
Test Matrix for Evaluating LP2SS and State-of-the-Art Methods.

Composite Structures 378 (2026) 119939

Criteria Bristol Benchmark [14]

Newly Proposed Benchmark [55]

Composition

Ply Counts (N)
Admissible Angles
Methods Evaluated

40, 80, 200
[445°], [415°]

MILP (DMRG), LP2SS

LPs from SS with [445°] angles

GA (OptiBLESS, pyTLO), BB (LAYLA),

LPs from SS with [415°] angles
10, 20, 40, 80, 100, 200
[415°] only

GA (pyTLO), BB (LAYLA),
LP2SS

Design Guidelines

Symmetry, Balance, 10% Rule, Disorientation (46 < 45°), Contiguity (max 5 plies)

Bristol benchmark, these datasets represent a more diverse spread of
stiffness combinations across the design space — as evident from the
LP projection plots provided in Appendix B.4.

Evaluation metrics: Performance across a range of N was assessed
using two metrics: (i) LP mismatch error and (ii) Computational time.
As different methods operate well with different objective functions
(e.g., root mean square error, or absolute error), the mean squared error
(Eq. (9)) of all solutions were used for consistent comparisons. The tests
enforce all key design guidelines: Symmetry, Balance, Disorientation
(46 < 45°), Contiguity (max. five plies), and the 10% rule. For non-
conventional angles, the ply-count-based 10% rule is replaced with
the LP-based formulation from Abdalla et al. [22], which ensures the
designed V4 LPs lie within a feasible domain. The complete test plan
is summarised in Table 10.

5.1. Performance evaluation with existing benchmarks

Each case from the Bristol datasets (200 cases for each N = 40, 80, and
200) was provided as an LP target to the design methods. Although
originally derived from a [445°] SS, these targets were also attempted
to be designed using [415°]'°, to evaluate scalability. Figs. 8(a) and 8(b)
present the trends in LP mismatch error and runtime for both angle sets.

These evaluations reaffirmed the trends noted in the literature
review. GAs like OptiBLESS and pyTLO struggle to consistently make
guideline-compliant SS without incurring high LP mismatch errors and
long runtimes. Although pyTLO shows decreasing mismatch errors with
increasing N (., greater design freedom), it remains inefficient. DMRG
(MILP), though nondeterministic, offers slightly faster runtimes than
LAYLA (BB) but incurs higher mismatch errors. LAYLA (BB) and LP2SS
show comparable solution quality when using [445°], but only LP2SS
maintains or improves performance when extended to the more vast
[415°] space. Unlike the previous section, while testing with fewer
layers, LP2SS does not always achieve perfect LP matches, due to
the heuristic pruning of its BB method in FAD2SS. Nonetheless, it
outperforms other methods, generating precise, guideline-compliant SS
in under a second—compared to minutes required by state-of-the-art
alternatives. This superior scalability is more evident when considering
the total time taken to complete the Bristol benchmark. While other
tools require at least 20 hrs, LP2SS completes this test suite in under
20 mins.

5.2. Performance evaluation with newly proposed benchmarks

To further assess scalability, the newly introduced [415°] benchmarks
were used. For these test cases, Fig. 8(c) shows how mismatch error
and runtime evolve with increasing N.

LP2SS achieves perfect LP matching for N = 10, with runtimes
comparable to LAYLA and significantly outperforming pyTLO. The
latter highlights a practical lower bound on runtime for GA-based
methods, which cannot operate any faster due to their inherent pop-
ulation generation and evaluation overhead. As N grows, both pyTLO

10 As [445°] C [415°], both sets are valid for the Bristol Benchmark tests.

and LAYLA suffer from increased mismatch errors and runtime, often
converging to suboptimal solutions — highlighting their limited ability
to utilise an expanded design space fully. LP2SS, in contrast, main-
tains unparallelled computational efficiency and precision across all N,
demonstrating its robustness with expanded design spaces.

6. Discussion

6.1. Conventional [445°] vs non-conventional [A15°] fibre angles

The use of non-conventional fibre angles 6 € [415°] enables better util-
isation of a fibre’s directional properties, compared to the conventional
[445°]. In order to visualise this in terms of the stiffness design space,
the V4 LPs were uniformly sampled for symmetric-balanced conditions
(V;f4 = 0). LP2SS was then used to attempt designing a solution for
each sampled point. Plotting the resulting mismatch errors over these
samples reveals the realisable regions of the design space- as shown by
the zero error points (in Fig. 9).

Using [415°] enables a broader range of stiffness combinations to
be realised with fewer layers, compared to [445°]. These realisable
V4 combinations correspond to a FAD, which can be rearranged into
different SS with distinct V' ? values. LP2SS, with its proven robustness,
demonstrates how the [415°] design space is larger and more closely
approximates the continuous LP design space than that of [445°].

6.2. Implications of using fast fourier transforms

FFTs provide an elegant and highly efficient way for designing mul-
tiple unique laminates with similar stiffnesses. By using a database
of pre-observed signal patterns, laminate signals were instantaneously
transformed into multiple unique FADs. This supports robust design of
guideline-compliant SS.

A key implication of using FFTs is their dependence on a manually
curated signal-pattern database. As demonstrated by over 1.6 million
test cases (Sections 4.2.3 and 5), the 66 patterns in LP2SS suffice
to match stiffness targets and enforce guidelines within tenths of a
second, regardless of the layer count. Nevertheless, to achieve the
same performance and robustness for a different set of ply orientations
(such as [45°]), will require expanding the database through additional
manual effort.

6.3. Implications of using a multi-step method (LP2SS = LP2FAD + FAD2SS)

The multi-step architecture of LP2SS — comprising FAD design, SS
design, and posterior guideline enforcement — distinguishes it from
existing methods. A known caveat of such approaches is the potential
for suboptimal interaction between steps: a FAD perfectly matching
VA LPs, may lack the necessary angles for a guideline-compliant SS,
matching V'? LPs. For example, a FAD composed of [0°, +60°,90°] will
inherently violate the disorientation rule. LP2SS manages this situation
by designing multiple unique FADs upfront using the signal pattern
database. This provides alternative set of ply angle selections, enabling
viable solutions. Designing FADs prior to SS design also simplifies the
BB implementation. Unlike state-of-the-art BB methods [14,47], LP2SS
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Performance for the Bristol Benchmarks with [A45°]
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Fig. 10. Computational Performance of all tested methods to design SS from
LPs and enforce design guidelines: [445°] (top), and [415°] (bottom).

avoids dynamic branching limits and groupwise refinements without
compromising solution quality.

6.4. Time complexity and scalability of LP2SS

Fig. 10 presents the computational performance of all tested methods
for guideline-compliant SS design from LPs. Unlike other methods
that exhibit linear or quadratic!' growth in runtime with increas-
ing ply counts, LP2SS consistently achieves sub-second performance
across all angle sets. This superior scalability stems from three factors:
the innovative use of FFTs for FAD design, a simple yet effective
BB implementation, and a combination of pre-observed laminate sig-
nal pattern database with efficient programming practices to reduce
dynamic memory allocation.

Compared to the many minutes required by state-of-the-art meth-
ods, LP2SS achieves sub-second runtimes. Since such methods are
typically applied across multiple structural regions or repeatedly within
optimisation loops, this efficiency translates into substantial cumu-
lative computational savings, enabling faster trade studies without
compromising solution quality.

While conventional sub-laminate or homogenised strategies in in-
dustrial workflows (briefly discussed in Appendix A.1) allow for ease
of design iterations, they limit simultaneous optimisation of in-plane
(A) and out-of-plane (D) stiffness. LP-based designs enable this, of-
fering more efficient load-path tailoring. LP2SS makes such designs
practically accessible, marking a substantial advancement in the do-
main of efficient composite laminate design from conceptual stiffness
requirements.

7. Conclusion

This paper presents LP2SS, a novel and efficient approach to address
the ‘Inverse Problem’ of converting Lamination Parameters (LPs) to

11 For brevity, the polynomial regression lines from Fig. 10 are included in
Appendix B.6.
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Stacking Sequence (SS). The proposed SS design method is determinis-
tic, delivering high accuracy in LP matching while being exceptionally
time-efficient. The method is structured as follows: first, the Fibre Angle
Distribution (FAD) is created using a novel fast Fourier transform (FFT)-
based approach, which then serves as a basis for designing SS using a
Branch and Bound method with Beam search. Both steps were accom-
panied by post-processing to ensure integer ply counts and adherence
to design guidelines.

The use of FFTs enabled an elegant way to design multiple unique
FADs and eventually SS. While considerable hours were spent manually
parameterising signal patterns with LPs, exhaustive testing schemes
ensured that LP2SS was robust and ready for practical use in designing
SS with [415°]. The use of such fibre angles allows broader portions
of the feasible LP design space to be matched with fewer layers,
facilitating lighter designs compared to the conventional [445°].

Furthermore, testing against popularly-used genetic algorithms (GA)
[13,41], Mixed-Integer Linear Programming (MILP)(with quantum-
inspired solver) [37], and branch & bound(BB) [14] methods showed
that LP2SS outperforms the state-of-the-art in all metrics. Even with
increasing problem dimensionality (increasing N, [415°], and design
guideline enforcement), LP2SS consistently provides closely matching
results within a second, establishing its efficiency and effectiveness for
large-scale composite structural design.

To further develop LP2SS and this line of work, we recommend the
following:

» Application for variable stiffness laminates: To maximise
LP2SS’s capability of making multiple unique SS solutions, fur-
ther development is needed to effectively utilise them while
designing variable stiffness with laminate blending [41] or fibre
steering [9].

Increasing solution diversity: LP2SS can currently design us-
ing the conventional [445°] and non-conventional [415°] angles.
Accommodating greater diversity for variable stiffness designs or
finer increments (e.g., [45°]) requires manually adding more sig-
nal patterns. Automating this signal curation process will ensure
robust scalability of LP2SS.

Data availability

The raw data required to reproduce these findings are available to
download from [55]. The code is available on a public, open access
repository [52].
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Appendix A. Theoretical background

A.1. Design practices followed in industry

Early design practices relied on sizing pre-defined sub-laminates: ho-
mogenised angle sequences that satisfied empirical design rules. These
sub-laminates served as building blocks to construct guideline-compliant
laminates. The recent concept of Double-Double laminates formalises
this strategy using the [+¢, +y] building block, enabling rapid, albeit
sub-optimal designs [59]. They have also been adopted in gradient-
based structural optimisation efforts [60].

Nevertheless, Airbus’s optimisation strategy for the A350 demon-
strates relatively more design freedom compared to classic homogeni-
sation approaches [61,62]. With a library of optimisation methods
in play, their approach first optimises the SS thickness and their ply
angle %’s across the structure, assuming a uniform through-thickness
distribution of angles. A blended SS is then optimised to meet design
guidelines and a minimum reserve factor for different structural failure
modes. However, this approach fixes the load paths early (4 stiffness),
and consequently restrain out-of-plane stiffness tailoring (D stiffness).

A.2. Material invariants

U U 0 u, 0 0 A
= u, u o = o -u, o rz=% 0o 0 U
0 0 U 0 0 o0 U, U, 0
U, -U; 0 A
=l -u, u, o L= o o -u
0o 0 -U, Uy -U; 0
Where,
1
U, = 3 (3011 +305, +20), +40¢6)
1
U2=§(Q11—Q22)
1
Us=3 (11 + 02 — 20, —40¢)
1
Us=3 (Q11 + 05 + 601, —40Q46)
1
Us = 3 (011 + 02 =205 +404)

These Q entities are the reduced material stiffness values:

E, vioEy 0
1=vipvy 1—Vé2V21

0= VigEo 1 0
1=vipvyy 1=viavyy

Gy,



R. Manikandan et al.

The reduced stiffness matrix Q can be characterised using five material
properties that can be obtained from uniaxial mechanical tests: E,
(Young modulus in longitudinal (fibre) direction), E, (Young modulus
in transverse (matrix) direction, G|, (In-Plane Shear modulus), v,,,
and v,; (Poisson’s ratio). The (1-2) notation used here represent the
principal directions of orthotropy.

A.3. Requisites for lamination parameter optimisation

The lamination parameters (LPs) are mathematically described in a
continuous and convex design space [17]. Such properties allow the use
of time-efficient gradient-based optimisation algorithms. However, that
does not easily assure optimality, as the optimisation objectives (struc-
tural responses such as buckling, strain failure criterion, aeroelastic
requirements, etc. [12]) need not be convex. As a consequence, several
studies can be found in the literature that use different gradient-based
methods to optimise LPs [9,63,64]. Moreover, appropriate optimisation
constraints need to be used to account for the following: mathemat-
ically feasible domains of LPs, correlations between them, and the
practically realisable regions of LPs upon following design guidelines.
This is still an actively studied topic in literature, and an appropriate
list of constraints can be referred from [22,23,63,65].

For completeness, it is noted that, analogous to how LPs help
optimise stiffnesses under Classical Laminate Theory, an alternative
formulation — Polar Parameters — can be used for First-order Shear
Deformation Theory based stiffnesses [66].

Appendix B. Implementation

B.1. Sampling requirements for FFT of laminate signals

To avoid aliasing and ensure reliable FFT outputs, a signal must
be appropriately sampled. The Nyquist-Shannon theorem was followed
to achieve the same [54]. For the parameterisation used to represent
VA 1Ps as signals (in Eq. (4)), frequency corresponds with 26, and
0 € (-90,90]. Hence, the highest frequency is 2 % 90° or z rad. As such,
the sampling rate in fictitious time T can be quantified as follows:

Sampling Rate > 2 * Highest Angular Frequency in Signal

=Sampling Rate > 2 = max(w)

7
=Sampling Rate > 2 = z
2z

=Sampling Rate > 1

This implies that a laminate signal L needs to be sampled at least
once a second.

The precise quantity of these samples (N) was then determined
with another criterion: they must be able to describe a signals funda-
mental period [54]. While real signals may be aperiodic, the laminate
signals are periodic due to their pure sinusoidal composition.

This periodicity-based criterion is motivated by how the Fast Fourier
Transform (FFT) processes signals. Specifically, the FFT of N samples
produces an output array of N frequency bins. Each bin represents a
specific frequency and contains their corresponding amplitude. These
bins are uniformly spaced between 0 (0° here) and the maximum
detectable frequency (90° here).

Therefore, by sampling a period of the signal at the required rate,
the number of bins will be spaced such that the desired frequency
information are captured. For example, consider a laminate design
with ply orientations |0| € 15°,45°,60°,90°. Their signal periodicity is
determined by calculating the fundamental frequency:

360
Fundamental Frequency

Periodicity =

=Periodicity = - .360
Greatest Common Divisor(2 = [15°,45°,60°,90°])
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=Periodicity = %

=Periodicity = 12

Hence, the periodicity of the design case in this example is 12. So by
using M = 13 samples (from 7 = 0 to 12), the frequency bins generated
by them correspond to [0°, 7.5°, 15°, 22.5°, 30°, 37.5°, 45°, 52.5°,
60°, 67.5°, 75°, 82.5°, 90°]. They contain the desired ply orientation
information for this example case (|0| € [15°,45°,60°,90°]).

B.2. Derivation of exact signal patterns
For a given T, a b and ¢ can be solved by equating Egs. (4) and (5):

N

1

N D [c0s26,T1 = ap (LT = 0)) + by (LT = 1)) + ¢ (L{(T =2))
1 N

= D [c0s26,T1 = ar

k=1
| &
— ) [cos 20, -O])
k=1 (N kz:;
s 1 g
+ by <ﬁ ;[00329,( . 1]> +cr (ﬁ %[00329,( -2]>

The summation rule adds the contribution of all N plies in the
symmetric half of the FAD. For convenience, they are now replaced
as a sum of p different ply orientations and their respective volume
fractions v (the fraction of plies belonging to a certain orientation).
For example, in a 20-layer FAD, if 5 plies have the orientation 45°, the
volume fraction v of 45° is 0.25 (", 5/20=0.25).

cos(20,T)
=>[v w v, | COS(Z;HZT)
cos(2'0pT)
cos(26; - 0)
—ap [ Wov e, ] ‘:05(2192 -0)
cos(Zép -0)
[ cos26, - 1) |
+ by [ Vi Y Vp ] COS(Z;GZ.I)
cos(Zép - 1)
[ cos(26, - 2) 1
+ep [ v v, ] 005(21192 -2)
cos(2'0p -2)
cos(26,T) cos(26, - 0)
- cos(2.6'2T) —ar cos(Z?Z -0)
cos(Z'GPT) cos(2ép -0)
[ cos(26; - 1) 1
+by cos(2.92 - 1)
cos(lép - 1)
[ cos20, -2) |
+op cos(21?2 -2)
cos(2'9p -2)
cos (291T) 1 cos (291) cos (401)
S| cos (2.92T) _ 1 cos (.202) cos (46,) Z;
cos (Z.GPT) l cos (.26'1,) cos ('40[]) ‘r
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Table 11
Analytically-derived Signal Patterns for Laminates consisting [415°].
Orientations T=0 T=1 T=2 T=3 T=4 T=5 T=6
[0, 15,30] 1 v Vi 6.46 — 10.19V,* + 473V, 20.39 - 3058V + 11.19V* 3532 - 51.98V4 + 17.66V* 41.78 = 6117V +20.39V
[0, 15,45) 1 v Vi 373 - 646V +3.73V 7.46 — 12.93V + 646V 7.46 — 13.93V, + 746V, 6.46 — 12,92V + 746V,
[0, 15,60] 1 v v 1-2.73V4 + 273V 273V + 373V —3.73VA + 473V 1+546(V4 - V)
[0,15,75] 1 VA VA —1+21 2+ —2-VA 4y =3 4+4VA
[0,15,90] 1 VA v 173+ VA + 1731 -2+ —3.46+ V" + 346V 3441
[0,30,45] 1 VA VA 35V +3v 4-6VA 43V VA “3+6V4 -21
[0,30,60] 1 VA VA 1-2vA 2V VA VA 1
[0,30,75] 1 v v —0.46 +0.19V + 1.26V* —0.39 +0.58¥;* + 0.8V 0.68 — 0.02V* +0.34¥* 021 + 117V = 039V
[0,30,90] 1 VA VA —1+VA+VA VA VA 1
[0,45,60] 1 VA VA 1-vA+vp WA -V VA 1-2v/ +2v
[0,45,75] 1 v Vi 0.26 +0.46V4 +0.26V1 0.53 +0.92V* — 0.46V,* 0.53 - 0.07VA +0.53V* —0.46 +0.92V +0.53V
[0,45,90] 1 VA v VA 1 VA v
[0,60,75] 1 v VA 1+0.73V4 - 073V 0.73V +0.26V} —0.26V + 1.26V1 1+ 146V — 146V,
[0, 60, 90] 1 VA VA 1+VA-vA VA VA 1
[0,75,90] 1 VA v L73+ VA - 1731 -2+ 346+ V1 - 3461, 3441
[15,30,45] 1 v v 273 - 473V +2.73V) 273 - 473V + 173V ~2.73 4373V =273V —6.46 +9.46V/1 — 5.46V}
[15,30,60] 1 v v 0.86 — 2V + 1.73V* -0.5 ~0.86+ VA — 1.73VA —2vp
[15,30,75] 1 v v 0.5+ v -0.5 05—V -V -2y
[15,30,90] 1 VA VA ~1+0.73V + 073V, —0.73V +0.26V; —0.26V* — 1.26V;* 1— 146V — 146V
[15,45,60] 1 4 v 0.73 = 126V +0.73V}* -0.73 + 1.26V," — 173V} —0.73 + 026V — 073V} 0.46 — 2.53V* + 146V}
[15,45,75] 1 v v 0 - -V -1
[15,45,90] 1 v v —0.26 +0.46V* - 0.26V; 0.53 - 0.93V* — 0.46V,* -0.53 - 0.07V,* = 0.53%; —0.46 - 0.92V +0.53V;!
[15,60,75] 1 v Vi 05-V -0.5 0.5-VA+VA —2p
[15,60,90] 1 v v 0.46 +0.19V — 1.26V* ~0.39 - 0.58%;* + 0.8V ~0.67 - 0.02V, - 0.34v; 021 - L17V{* — 039V
[15,75,90] 1 VA v 1-2v -2+ 2-VA -4y —3+41
[30,45, 60] 1 VA VA -2v 2+ VA 34411
[30,45,75] 1 v v -0.73 - 1.26V = 0.73V* —0.73 - 1.26V; — 173V 0.73 + 026V + 073V 046 +2.53V* + 146V,
[30,45,90] 1 VA Vi “1-VvA-va VA=t VA L+2V4 21
[30,60,75] 1 v v ~0.86 -2V — 173V -0.5 0.86 + VA + 1737 2V
[30,60,90] 1 v v —1-2v/ —2vy v v 1
[30,75,90] 1 VA v —-1-273V4 - 273V 273V 43,73V —3.73VA - 473V L+546(V + V)Y
[45,60,75] 1 v v —2.73 - 473V = 273V 273 +4.73V + 173V 2734373V + 273V —6.46 — 9.46V — 546V,
[45,60,90] 1 VA VA —3-5pA-3pph 4+6V 43V VA =3-6Vp—2vp
[45,75,90] 1 v v ~3.73 - 6,46V —3.73V 7.46 + 12,92V + 6,46V ~7.46 — 1393V — 746V 6.46 + 12.93V4 + 746V
[60,75,90] 1 28 v —6.46 — 10.19V — 473V 20.39 + 3058V + 11.19V* -35.32 - 51.98V — 17.66V;" 4178 + 6117V + 20,39V
1 cos(20,) cos(46)) cos (26,T) as follows. A uniform sample of V4 values was selected from the
ZT | 1 cos(26,) cos(46,) cos (26,T) enumerated datasets of earlier (with N = 5 to 15). For each sample V4,
= = : : : : three corresponding VP targets were chosen—one nearby, one at the
r 1 cos(20,) cos(46,) cos (26,T) median distance, and one farthest, from the original V4. This ensured a

To solve this system of equations, the dimensions across both ends
should match. Hence, p = 3:

ar 1 cos(26)) cos(46,) cos (20,T)
=| by |=| 1 cos (292) cos (402) cos (292T)
cr 1 cos(26;) cos(46;) cos (265T)

B.3. Complete list of signal patterns made for [A15°] laminates

The analytically-derived and the manually-approximated signal pat-
terns are presented in Tables 11 and 12 respectively.

B.4. Comparison of benchmark datasets

The original Bristol benchmarks [48] feature LP values that belong
to SS with [445°] angles and ply counts of N = [40,80,200]. In order
to have a more comprehensive assessment of a method’s performance
when designing SS with finer angle increments, new benchmarks were
created using [415°] increments with a broader range of ply counts:
N = [10,20,40,80,100,200]. As shown in the 2D projections in Fig.
11, the new datasets cover a more diverse and extensive spread of LP
values, all corresponding to real SS that satisfy design guidelines. Both
datasets follow the same set of design guidelines, as stated in Table
10. The total number of test cases in all benchmark datasets can be
summarised in Table 13.

Given that more stiffness combinations are possible with [415°]
compared to [445°], the new benchmarks include many more test
cases. An exception occurs for N = 10, as the number of guideline-
compliant SS was limited. The laminates in these datasets were created
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varied and challenging set of test cases. The reference SS corresponding
to these LPs were generated using the open-source GA pyTLO [41],
with an exhaustive initial population and number of generations to
ensure optimal convergence. This process ensured that all targets in
the new benchmarks are realisable and well-distributed (at least in 2D
projections).

B.5. Hyperparameters of all state-of-the-art methods seen in comparison
studies

All methods were evaluated using hyperparameters recommended
by their respective developers, ensuring fair and representative com-
parisons. Adjustments were made only when a method failed to pro-
duce feasible results with [415°] angles. For LAYLA [48], when the
default repair parameters were insufficient for providing a guideline-
compliant solution, the parameter controlling number of redesigned
plies (np;) was incremented by 2 to enable feasible design. The full
set of parameters are listed in Table 14.

For OptiBLESS [13], the parameters used in the work of Fedon
et al. [48] are listed in Table 15. That work applied OptiBLESS to the
bristol benchmark cases, and the same results are used in this study
when comparing against LP2SS under identical conditions. However,
due to limitations in OptiBLESS’s population generation method, no
hyperparameter setting was found that effectively designed feasible
solutions for higher ply counts (N=200) and [415°] test cases, while
satisfying all design guidelines. As a result, pyTLO [41] was employed
for those cases, with its parameters detailed in Table 16. The GA
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Benchmark Dataset for N=10 Benchmark Dataset for N=20
1 1 | 1
- ; s A15° Dataset v - s A15° Dataset
‘\\ . oo e I’ PO Y
T>N 0 AR ,,’ ‘(>"" 04 se-sbose % SRPU— .
\ ;
Nt L
-1

Benchmark Dataset for N=80

¢ A45° Dataset
¢ A15° Dataset

1 1 1 1
A45° Dataset

A15° Dataset

Benchmark Dataset for N=100

1 1 1 1

/ e A15° Dataset

e A45° Dataset
¢ A15° Dataset

Fig. 11. LP projections of test datasets used in this study: [445°] from Bristol and the newly proposed [415°].
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Objective Function

Root Mean Squared Error

Feasibility penalty factor

100

16

used to yield feasible results with [415°].

Table 12
Manually Approximated Signal Patterns for Laminates consisting [415°].
Approximate Pattern T=0 T=1 T=2 T=3 T=4 T= T=6
1 1 I/1A I/ZA 0 _I/ZA _I/lA _21/2/4
2 1 VA VA 0 v VA 0
3 1 v VA 0 1-vp 1-vp 0
4 1 I/1A I/QA 0 l/zA I/ZA 0
5 1 v VA 0 v VA 0
6 1 VA 128 -V vA-vh VA -V
7 1 I/IA I/ZA _I/ZA 1/2/1 — I/IA I/[A _I/IA
8 1 I/1A I/ZA I/IA I/ZA I/IA _I/IA
9 1 VA 128 VA VA VA VA
10 1 v 2 0.5V -V ~0.85V;* v
11 1 v v v 0.5V 05V + VY 0.5V
12 1 VA VA 0.36(V,* = V") 0.34V v 0.337
13 1 I/l/\ 1/2/\ 1+ I/I/\ _ I/ZA V'ZA I/l/\ 1
14 1 w v 084V, +0.34V 0.59¥,* 087V +0.59V 043V
15 1 VA VA —2v 0.5V + V) VA 0.5V - v
16 1 VA 128 0.36(V* — VY -0.3411 -V -0.6
17 1 I/IA I/ZA I/IA + I/ZA _I/lA I/[A _2I/IA
18 1 v Vi v 0.5V + V5 v —05(// + V)
19 1 VA 128 —2vh 0.2V, VA -0.8V,4
20 1 I/lA I/ZA —ZI/IA SI/ZA I/IA 41/2/\
21 1 v Vi 0 166V - 0
22 1 VA VZA VA -05 -0.5 0.5+ VZA) —2V2A
23 1 v v 034V, +0.84¥1 0.594¥" 0.594V +0.87V 04375V
24 1 v Vi -2V 0.2V v -0.8V
25 1 VA VA 721/]:‘ sV VIAA 4y
26 1 VA v i LO0669(VA - V1) YA —app
27 1 VA VA 03661V -2V -0.268V* -2V
28 1 I/l/\ 1/2/\ 21/2/\ 0 I/z/\ _ I/I/\ V'ZA
29 1 v Vi 0.5V 0 Z8% —2v
30 1 v v v 0 Vv v
31 1 v v v v vt T
Table 13 Table 16
Total number of test cases for different ply counts and [46] across benchmark pyTLO Hyperparameters [41].
datasets. Maximum generations 1000
N Bristol New Benchmarks Population Size 100
Benchmarks [415°] [55] Elitism % 5
[445°] [48] Crossover % 75
10 N 68 Mutatior{ "/f) 25
Fitness limit 1E-4
20 N 450 Feasibility penalty factor 100
40 200 450 . .
80 200 450 NO'. of.lteratloné 1
100 B 450 Objective Function Root Mean Squared Error
200 200 450
Table 17
DMRG Hyperparameters [38].
Table 14 No. of Sweeps 40
LAYLA Hyperparameters [48]. Maximum Bond Dimension 8
Maximum Outer loops 5 Sweep Sequence L
Branching limit of beam search 50 Objective Function Root Mean Squared Error
Fitness limit 1E-10 No. of Iterations 5
No. of iterations 1 Disorientation Penalty 1/N
Objective Function Mean Squared Error Contiguity Penalty 0.5/N
No. of redesigned plies n, 6 (+2) Balance Penalty 0.2/N
No. of ply-shifts tested n, 10
No. of repetitions of ply-shift algorithm n; 2
implementation of pyTLO was robust enough to converge to similar re-
sults when re-run multiple times. Hence, they were not re-run multiple
ga]t)'ll:LlEzS H . 13.48 times, like OptiBLESS and other nondeterministic methods require.
P - yper;.)arame ers [13,48]. For DMRG [38], the hyperparameter settings were adopted directly
Maximum generations 100 , L. . .
Population Size 200 from the developer’s publication, as shown in Table 17. Given the
Elitism % 1 nondeterministic nature, the tool was re-run for multiple iterations to
Crossover % 75 match the same solution quality as the developer. As the current state
Fitness limit 1E-10 of DMRG is tuned primarily for [445°] angles, they were unable to be
No. of iterations 5

B.6. Empirical time complexity of tested SS design methods

The time taken to design an N-layer SS was empirically determined
for each method using polynomial regression of results from the
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Table 18
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Empirical time complexity of LP2SS and other SS design methods, as a function of ply count N

and allowable angle set.

[445°]

[415°]

LP2SS t =0.00127N + 0.01366
BB t =0.32730N - 2.97030
MILP t =0.35954N —9.04419
GA t =1.21673N + 102.57415

t =—(9.71723E — 06)N? + (5.20035E — 03)N + 0.12097
t = (1.47236E — 03)N? + 0.66927N — 4.54268

t=(5.62316E — 03)N? + 0.61318 N +46.51798

comparison studies (in Section 5). The resulting equations approximate
time complexity as a function of the number of layers (N) and the angle
set used ([445°] or [415°]), and are summarised in Table 18.

These regressions reflect the average behaviour observed during
testing. The Branch & Bound (BB) results are based on LAYLA [48].
Mixed Integer Linear Programming (MILP) results are based on the
Quantum-inspired DMRG method [38]. For Genetic Algorithm (GA),
OptiBLESS [13] was used for cases involving [445°], while pyTLO [41]
for [A15°]. Estimates for MILP are not provided for [415°], as the current
state of DMRG can reliably produce results only for [445°].
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