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"When the well’s dry,

we know the worth of water."

— Benjamin Franklin






English Summary

Drought is a complex and reoccurring hazard event. It ranks among the costliest natu-
ral climate-related disasters and manifests in various forms, posing significant challenges
in mapping its characteristics and assessing its widespread impacts. Mainland Southeast
Asia (MSEA), a major region of tropical agriculture and vegetation ecosystems, has be-
come increasingly susceptible to drought hazards. As global warming continues, the fre-
quency and severity of droughts in this region are projected to intensify, presenting risks to
food security, biodiversity, and local economies. Despite the urgency of addressing these
challenges, the limited availability of publicly accessible, long-term ground-based climate
data in the study region hampers the development of an accurate and consistent region-
wide drought monitoring system. This data gap makes tracking, predicting, and mitigating
drought impacts more challenging. In this context, satellite-based data offers a great alter-
native. Satellite-based measurements can provide frequent and consistent records of land
surface variables at a high spatial resolution over large and remote areas. Many satellite
sensors, such as the Moderate Resolution Imaging Spectrometer (MODIS), enable the de-
tection and monitoring of long historical drought conditions, overcoming the limitations
of ground-based systems. This dissertation aims to harmonize long-term satellite observa-
tions for monitoring and assessing drought conditions at regional and local scales. Specif-
ically, this thesis first provided a detailed and comprehensive review of satellite-based
drought remote sensing. Subsequently, a monitoring framework for mapping vegetation-
based drought characteristics was developed, facilitating more automatic and consistent
observations. The research then examined the responses of vegetation-based drought to
multi-temporal climate and soil drought conditions, uncovering critical relationships be-
tween these variables. Finally, this thesis conducted a local scale assessment of agricultural

drought vulnerability in a drought-prone region.

A detailed review of 102 satellite-based drought studies within the region revealed a sig-
nificant increase in drought articles over the study period (2000-2021), especially over the
last eight years. Vietnam and Thailand had the largest number of drought articles, account-
ing for nearly 40%. Most studies focused on monitoring drought conditions using a single

vegetation-based or precipitation-based drought indicator (~ 53%). Agricultural and vege-
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English Summary

tative droughts received the most attention, but long-term drought studies and deep-learning
methods were still limited. Notably, no studies have offered spatial details of drought char-
acteristics derived from optical sensors. Also, little research has been conducted to investi-
gate the responses of vegetation to multitemporal climate-soil drought conditions and assess

drought vulnerability.

Given these research gaps, this analysis generated a gap-free monthly vegetation time
series derived from the MODIS data. A developed framework of mapping vegetation-based
drought characteristics enabled the automatic identification of the severe drought years
and their characteristics from 2000 to 2021. Apart from drought characteristics, the sea-
sonal trends of vegetation-based drought were identified using the Mann-Kendall test and
Theil-Sen slope estimator. The findings of this analysis indicated several severe drought
years in the study region, namely 2000, 2004-2005, 2010, 2016, and 2019-2020. Higher
drought duration and frequency were primarily detected in Central Myanmar, Cambodia,
eastern Thailand, and the Lower Mekong Delta. Central Myanmar witnessed the highest
drought occurrence rate (~ 60%), while other countries experienced nearly 40%, except
for Laos. Thailand and Vietnam experienced nearly 15 prolonged drought events over the
last two decades. This analysis also indicated that the longest drought events have pri-
marily been detected in Cambodia and Laos, where increased dry trends have been ob-
served. Land use types and elevation significantly influence drought conditions derived
from vegetation-based data, underscoring the complex interactions between environmen-

tal factors and drought severity.

Subsequently, vegetation-based drought conditions were examined with multitemporal
climate-soil drought indices, representing short-term, median-term, and long-term drought
conditions. This analysis revealed a significant positive relationship between vegetation-
based drought and climate-soil drought indices. Stronger drought responses were observed
in lower elevation zones, especially in rainfed cropland, mixed forests, and deciduous
forests. In contrast, evergreen forest and irrigated crop vegetation responded less to drought
indices, especially in high-elevation zones. Short-term drought disturbances accounted for
nearly 93% of the observed variations in the natural and undisturbed vegetation ecosystems
among the twelve climate-soil drought indices. In addition, this study assessed agricul-
tural drought vulnerability in the drought-prone region of Vietnamese Central Highlands
by integrating time series vegetation-climate-soil drought indices with socioeconomic data.
The analysis followed the vulnerability framework established by the Intergovernmental
Panel on Climate Change (IPCC), focusing on three key components: exposure, sensitivity,
and adaptive capacity. The findings revealed that exposure, largely driven by soil moisture

deficits, accounted for nearly 65% of the agricultural drought vulnerability. The highest lev-
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English Summary

els of vulnerability were concentrated in the central areas of Dak Lak and Gia Lai provinces,
where drought exposure and sensitivity were elevated. In contrast, Lam Dong province ex-
hibited lower drought vulnerability despite high exposure, thanks to its lower sensitivity
and stronger adaptive capacity, highlighting the critical role of socioeconomic resilience in

mitigating drought impacts.

1X



Vietnamese Summary

Han han 1a mot su kién nguy hiém phtc tap va tai dién. N6 dugc xép vao loai tham hoa
thién tai tw nhién ton thit cao nhit va biéu hién dudi nhidu hinh thirc khac nhau, dat ra nhimng
thach thirc dang ké trong viéc lap ban dd cac dic diém cua nd va danh gia tic dong rong rii cua
n6. Pong Nam A luc dia (MSEA), mot khu vuc quan trong vé hé sinh thai néng nghiép va tham
thuc vat nhiét d6i, ngay cang dé bi anh huéng boi cac mdi nguy hiém do han han. Khi tinh trang
néng 1én toan cau tiép dién, tan sut va mirc do nghiém trong ctia han han ¢ khu vuc nay duogc
du béo s€ gia tdng, gay ra rui ro cho an ninh luong thuc, da dang sinh hoc va nén kinh té dia
phuong. Mic du viée giai quyét nhitng thach thirc nay rat cp bach, nhung viée dit liéu khi hau
mat dat dai han c6 thé truy cap cong khai tai khu vuc nghién ctru con han ché da can tro viée
phat trién mot hé thong giam sat han han chinh x4c va nhat quan trén toan khu vyc. Nhiing han
ché vé dit liéu khién viéc theo ddi, du doan va giam thiéu tac dong ctia han han tré nén kho
khin hon. Trong bbi canh nay, dit liéu vé tinh 1a mot giai phap thay thé tiém niang. Cac phép do
dira trén vé tinh 6 thé cung cap thong tin thuong xuyén va nhat quan vé cac thong sd bé mit
dat & do phan giai khong gian cao trén cac khu vire rong 16n va khong thé tiép can dugc. Nhiéu
cam bién vé tinh, chang han nhu May quang phd hinh anh d6 phan giai trung binh (MODIS),
cho phép phat hién va gidm sat cac diéu kién han han trong lich su lau dai, khéc phuc nhiing
han ché cua cac hé théng trén mat dat. Lun an nay nham muc dich st dung cac quan sat vé
tinh dai han dé giam sat va danh gia cac diéu kién han han & quy mé khu vuc va dia phuong.
Cu thé, luan an nay dau tién cung cip mot danh gia chi tiét va toan dién vé cac nghién ctru vé
han dya str dung cong ngh¢ v¢ tinh. Sau d6, mot khuon khd giam sat dé 1ap ban dd cac dac diém
han han dya trén tham thyc vat da duoc phat trién, tao diéu kién cho cac quan sat ty dong va
nhat quan hon. Sau dé, nghién ctru di kiém tra cac phan ung ctia han han dua trén tham thuc
vat d6i vé6i cac diéu kién han han dya trén do Am dat va khi hau da thoi gian, kham pha ra mbi
quan hé quan trong giita cac bién nay. Cudi cing, luan an nay di tién hanh danh gia han han
nong nghiép.

Mot danh gia chi tiét 102 nghién ctu vé han han dya trén vé tinh trong khu vuc Dong Nam
A d3 chi ra ring c6 su gia ting dang ké cac bai bao khoa hoc vé han han trong giai doan nghién
ctru (2000-2021), dac biét 1a trong tAm nam qua. Viét Nam va Thai Lan co sb lugng bai bao vé
han han 16n nhét, chiém gan 40%. Hau hét cac nghién ctru tap trung vao viéc theo ddi tinh trang
han han béng cach str dung mét chi s6 han han dua trén tham thuc vat hodc dua trén lugng mua
(~53%). Han han nong nghi€p va han han thuc vat nhan duoc nhiéu su quan tam nhét, nhung
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cac nghién ctru han han dai han va phuong phap hoc siu van con han ché. Pang cha ¥ 1a khong
c6 nghién ctru ndo cung cap thong tin chi tiét vé khong gian cia cic dic diém han han thu duoc
tir cac cam bién quang hoc. Ngoai ra, rat it nghién ciru dugc tién hanh dé tim hiéu phan tng cia
tham thuc vat ddi v6i cac didu kién han han khi hau va d6 4m dat da thoi gian va danh gia mirc
do dé bi han han.

V6i nhitng khoang tréng nghién ciru, phén tich nay di tao ra mot bo dy lidu chudi thoi gian
thuc vat hang thang tir dir liéu MODIS. Mot khuon khé phat trién dé 14p ban dd cac dic diém
han han dya trén tham thuc vat cho phép tu dong xac dinh nhiing nam han han nghiém trong
va cac dic diém cua chung tir nam 2000 dén nam 2021. Ngoai cac dac diém han han, xu hudng
theo mua ctia han han dya trén tham thyc vat di duoc xéac dinh bang cach st dung kiém dinh
Mann-Kendall va uéc lugng d6 doc Theil-Sen. Nhitng phat hién cua phan tich nay chi ra mot
s6 nam han han nghiém trong trong khu vuc nghién ctru, cu thé 1a nam 2000, 2004-2005, 2010,
2016 va 2019-2020. Thoi gian va tan suét han han cao hon chu yéu duoc phat hién ¢ khu vuc
trung tim Myanmar, Campuchia, khu vuc phia Pong Thai Lan va Ha luu déng bang song Ciru
Long. Mién Trung Myanmar chtng kién ty 1é xay ra han han cao nhat (~60%), trong khi cac
qudc gia khac trai qua gan 40%, ngoai trir Lao. Thai Lan va Viét Nam di trai qua gan 15 dot
han han kéo dai trong hai thap ky qua. Cac phén tich gan day chi ra rang cac dot han han dai
nhat chi yéu dugc phat hién & Campuchia va Lao, noi d quan sat thay xu hudng kho han gia
tang. Cac loai hinh str dung dét va do cao anh huong dang ké dén tinh trang han han thu duoc
tir dit liéu dya trén tham thuc vat, cho thiy su twong tac phirc tap giita cac yéu to moi truong va
muc do nghiém trong cia han han.

Céac diéu kién han han dya trén tham thuc vét da duge kiém tra béng cac chi sb han han
khi hau va d6 am dat da thoi gian, dai dién cho cac diéu kién han han ngin han, trung han va
dai han. Phén tich nay cho thdy mdi quan hé tich cuc dang ké giita han han dua trén tham thyc
vat va cac chi sb han han khi hau-dat. Phan ung han hdn manh hon da dugc quan sat théy O cac
vung c6 do cao thép hon, dic biét 1a & dat tréng trot phu thudc vao nudc mua, ring hon giao va
rimg rung 14. Nguoc lai, rimg thuong xanh va cay trong duoc tudi tiéu it phan ung hon vai cac
chi s6 han han, dic biét 1a & cac vung cd do cao 1on. Han ngén han c6 thé giai thich gén 93%
cac bién dong quan sat dugc trong cac h¢ sinh thai tham thyc vat ty nhién va khong bi xdo tron
trong s6 mudi hai chi s6 han han khi hau-dat. Ngoai ra, nghién ctru nay danh gia mirc do dé bi
han han trong néng nghiép & ving d& bi han han ctia TAy Nguyén Viét Nam bang cach tich hop
cac chi s6 han han thyuc vat-khi hiu-dét theo chudi thoi gian véi dir liéu kinh té xa hoi. Phan
tich str dung khudn khd dé bj ton thwong do Uy ban lién chinh pha vé bién d6i khi hau (IPCC)

thiét 1ap, tap trung vao ba yéu t6 chinh: mic d6 phoi nhiém, d6 nhay va kha ning thich tng.
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Céc phat hién cho thdy muc d6 phoi nhiém, chi yéu 1a do thiéu hut 46 4m dat, dong gop gan
65% murc 46 dé bi han han trong nong nghiép. Mirc d6 d& bi ton thuong cao nhét tap trung &
cac vung trung tam cua tinh Pk Lak va Gia Lai, noi c6 muc do phoi nhiém va d6 nhay cam
vo1 han han cao. Nguoc lai, tinh Lam Déng c6 muc dd dé bi tdn thuong do han han thép hon
mic du mirc 46 phoi nhiém cao, nhd do nhay cam thép hon va kha nang thich rng manh hon,
nhin manh vai trd quan trong cta kha ning phuc hoi kinh té xa hoi trong viéc giam thiéu tac

dong cua han han.
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Chapter 1

Introduction

1.1 Drought hazards

Drought is a multifaceted and widespread phenomenon that occurs in most climatic
zones and ranks among the costliest of all climate-related hazards. A distinctive feature of
drought is its slow onset, often occurring over an extended period before its impact be-
comes visibly apparent. Given these characteristics, different definitions of drought have
been proposed over the past decades. These definitions are often considered within specific
disciplines and categorized according to different types of drought under both conceptual
and operational frameworks (Wilhite and Glantz, 1985). Conceptually, drought is a pro-
longed precipitation deficit in a specific region. Although this conceptual definition offers
a general understanding of drought, it has limited practical applications in addressing the
complexities of drought studies. By contrast, operational definitions seek to translate the
concept of drought into measurable characteristics, such as onset, termination, duration,
frequency, intensity, and severity. In practice, the operational definition has been widely
used to quantify drought characteristics over a given period of historical time. These defi-
nitions enable researchers and practitioners to examine drought conditions systematically.
Drought characteristics can be derived from historical or projected time series (e.g., daily,

monthly, and annual data).

Also, drought can be defined based on specific disciplines and is often classified into
different types (Wilhite and Glantz, 1985). Generally, drought is categorized into four
types: meteorological, agricultural, hydrological, and socioeconomic droughts (Wilhite and
Glantz, 1985; Mishra and Singh, 2010). Meteorological drought is probably the most well-
known type, occurring when there is a prolonged period of below-reference precipitation
over a specific region and timeframe (Mishra and Singh, 2010; Dalezios et al., 2017).
Other drought types typically originate from meteorological drought with different lagged

1
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timescales. A short-term lack of precipitation (e.g., 1-3 months) can deplete the soil mois-
ture, triggering agricultural drought (Wilhite and Glantz, 1985; Zhu et al., 2021). A deficit
in soil moisture below a pre-defined point can affect vegetation ecosystems and cause a
reduction in crop production or even crop failure. By contrast, a long-term shortage of pre-
cipitation can significantly lower the water surface and groundwater levels, resulting in hy-
drological drought (Wilhite and Glantz, 1985; Huang et al., 2017). Socioeconomic drought
occurs when the water demand exceeds the available supply, significantly impacting human
health, livelihoods, and economic activities (Zhu et al., 2021; Wilhite and Glantz, 1985).
More recent research has introduced a new category known as ecological drought, and this
type refers to water shortages within natural ecosystems that exceed the needs of plants and
animals, disrupting ecosystem functions and biodiversity (Jiang et al., 2021; Sadiqi et al.,
2022; Crausbay et al., 2020). Each type of drought may exhibit distinct characteristics and
impacts, yet they are interconnected, and all stem from a precipitation deficit. Figure 1.1
presents a comprehensive overview of the various types of droughts, along with their spe-

cific triggers and associated impacts.

1.2 Impacts of drought

Drought is ranked the costliest among natural climate-related hazards worldwide and
poses significant risks to human health, the environment, and economic stability. Agricul-
ture is the first and most direct sector impacted by drought hazards. It accounted for nearly
80% of all direct consequences on agricultural production during drought (Esfahanian et al.,
2017; Ha et al., 2022). Markova et al. (2018) reported that the Food and Agriculture Or-
ganization (FAO) estimated that droughts account for 18% of total crop damage in the
least-developed countries and low-and middle-income countries. Also, the recent report by
the United Nations Office for Disaster Risk Reduction revealed that drought hazards cause
annual agricultural losses of nearly USD 6.4 billion in the United States, while this figure
in Europe reached USD 9 billion (Erian et al., 2021). Africa also has faced significant chal-
lenges due to increasing drought frequency and intensity in recent years. In some regions
of Africa, drought has exacerbated food crises, poverty, and social instability. For example,
Anderson et al. (2021) reported that nearly 40-60% of the pastoralist population across
sub-Saharan Africa experienced food insecurity crises due to drought hazards and political
conflicts between 2009 and 2019. In Asia, drought has become more frequent and impacted
larger areas of economic losses. Shi et al. (2020) examined drought and flood disasters in
China from 1984 to 2010 and reported that drought affected about 3.8 million people and
cost nearly USD 300 million per decade. In Central Asia, drought is among the biggest

concerns, and recent studies revealed significant damage to vegetation due to drought in
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Figure 1.1: A simplified overview of main drought types and their connections. Meteorologi-
cal drought is associated with decreased precipitation, increased temperatures, and
evapotranspiration. Hydrological drought can be observed from decreased streamflow,
groundwater, and water surface (e.g., ponds and lakes). Agricultural drought is primar-
ily associated with decreased soil moisture, reduced crop production, and stressed veg-
etation ecosystems. Socioeconomic drought is primarily linked to water shortages for
human and economic activities. These drought conditions can be detected and moni-
tored by satellite sensors. This figure is adapted from a study by Ha et al. (2022).

this region (Yuan et al., 2022b; Liu et al., 2023; Guo et al., 2018b). In South Asia, drought
frequently affects agriculture, and reported that drought can cause nearly 40% of annual
rice production losses (Li et al., 2015). As drought is projected to increase in frequency and
severity, economic losses due to drought are expected to increase, especially in dryland and
less developed countries (Miyan, 2015; Price et al., 2022; Elkouk et al., 2022).

In Mainland Southeast Asia (MSEA), agriculture and fishery are among the most impor-
tant sectors, supporting nearly 57% of its population across five different countries (Brown
et al., 2008; ERCD-FAO, 2017). Rice is the main crop and plays a key role in local and
national economies across the region. Industrial crops are also largely grown in Vietnam,
Cambodia, and Thailand; for example, Vietnam is the second-largest coffee exporter world-
wide (Fridell, 2014). However, this region has been increasingly vulnerable to drought and
flood hazards in recent years. For example, the recent drought events in 2019 and 2020

caused an estimated loss of USD 840 million in Thailand. In Vietnam, Byrareddy et al.
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Table 1.1: A collection of reported drought years and their associated impacts across the MSEA
countries from 1960 to 2023. This dataset was sourced from the EM-DAT International
Disaster Database.

Associated People Cost
Country Drought Years Consequences Deaths  Af- Homeless (x103 Events
fected USD)
1977, 1987, 1988,
Laos 1991, 1999, 2019 - 0 4,250,000 0 90 6
Myanmar 1979, 1981, 2018 - 0 9,050,000 20,000 240,054 3
. 1987, 1994, 2001,
Cambodia 2002. 2005, 2016 - 0 9,050,000 0 240,054 6
1987, 1997, 1999, Food shortage
Vietnam 2002, 2005, 2015, ’ 8,545,558 0 8,763,728 8
Water shortage
2019
1991, 1993, 1999,
2002, 2005, 2008,
Thailand 2010, 2011, 2012, Pollution 77 42,982,602 0 4,364,113 15
2014, 2015, 2016,
2019
Total 102 64,886,748 20,000 13,410,955 38

(2021) reported that coffee production could be reduced by 6.7% during the drought years.
In Cambodia, the drought event in 2016 affected nearly 32% of rice growing areas (Son
and Thanh, 2022)). Notably, Venkatappa et al. (2021) used drought indicators and estimated
that drought damaged about 9.2 million hectares of cropland between 1980 and 2019, while
nearly 20.6 million tons of crop production was lost from 2015 to 2019. In addition, vegeta-
tion ecosystems in the region experienced significant changes due to drought. For instance,
drought has exacerbated the forest loss across the study region in addition to human dis-
turbances (Zhang et al., 2014; Chen et al., 2023). Apart from the estimated damage, the
International Disaster Database provides reports of historical drought hazards worldwide
from 1950 to the present. Table 1.1 provides a detailed description of drought years and
their impacts on the MSEA region over the past seven decades. While the dataset may not
capture every drought event in the region, it provides valuable insights into the severity and
scale of the impacts observed during these periods. It is important to note that the quality

of the recently collected data has significantly improved.

As seen in Table 1.1, the MSEA region has experienced several severe drought events
and significant losses over the past five decades. Thailand had the highest number of drought
events, with 13 events, whereas Myanmar had only three reported events. Generally, each
country suffered from 6 to 8 drought events during this period. Notably, nearly 98% of
economic losses due to drought came from Thailand and Vietnam. Vietnam was ranked
the largest economic loss due to drought, accounting for about 65% of the total loss in the

MSEA region. Over the past five decades, drought-related hazards have cost Vietnam an
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estimated USD 8.7 billion, while Thailand incurred losses of around USD 4.4 billion. In
contrast, Laos experienced the lowest financial impact from drought, with costs amounting
to just USD 2 million. Also, drought has affected nearly 65 million people across five coun-
tries. For example, Thailand suffered from 15 drought events, affecting about 43 million
people. Vietnam and Cambodia also had a large number of people affected by droughts,
around 8.5 and 9 million people, respectively. Notably, Thailand had 77 reported deaths
due to drought, and Myanmar had 25 deaths, whereas other countries primarily suffered
from economic losses. Drought events in Myanmar caused 20 thousand people to become
homeless. Food crises, water shortage, and pollution were common issues observed in the

region as the aftershocks of drought.

1.3 Drought monitoring and management

Drought has traditionally been monitored and assessed using in-situ climate and soil
moisture time series data, primarily through the measurements of historical precipitation
and temperature. From these datasets, different indices are then developed and proposed,
such as the most widely used Standardized Precipitation Index (SPI) (McKee et al., 1993),
Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010),
Palmer Drought Severity Index (PDSI) (Alley, 1984), and Soil Moisture Drought Index
(SMDI) (Sohrabi et al., 2015). These indices provide valuable insights into different as-
pects of drought, such as meteorological, agricultural, and hydrological conditions based
on in-situ climate or soil moisture measurements. While this method is considered one
of the most reliable for capturing detailed and accurate drought information (Wilhite and
Glantz, 1985), it is costly, labor-intensive, and challenging in data-sparse regions, including
the MSEA countries. For instance, AghaKouchak et al. (2015) reported that many agri-
cultural areas worldwide suffered from insufficient ground-based climate observations to
capture the spatiotemporal variability of drought variables. Another challenge with ground-
based meteorological drought monitoring is the lack of data standardization and consis-
tency across regions. In the MSEA region, for example, there is no standardized framework
or common platform for sharing meteorological station data. As a result, countries in the re-
gion collect and manage ground-based climate data differently, leading to variations in data
quality, length of records, and measurement protocols. These discrepancies make it diffi-
cult to develop a holistic and accurate regional drought monitoring system. Consequently,
most drought studies in the region have been limited to localized monitoring efforts. More-
over, climate-based indices cannot directly measure the impact of drought on vegetation

ecosystems.
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In recent years, remote sensing time series data has become a valuable alternative for
monitoring and characterizing drought conditions. Earth observation data have been widely
used to assess their impact on vegetation ecosystems, agriculture, and water resources.
Drought information can be retrieved from different remote-sensing platforms, including
thermal, multispectral, and microwave remote-sensing sensors. Among these, multispectral
remote sensing received more attention due to its robustness and high sensitivity to drought-
induced changes in vegetation health, soil moisture, and land surface conditions (Ha et al.,
2022; AghaKouchak et al., 2015; West et al., 2019; Jiao et al., 2021). Numerous drought
indices have been proposed to monitor drought conditions based on multispectral remote
sensing data, including the Normalized Difference Vegetation Index (NDVI) (Tarpley et al.,
1984), Vegetation Condition Index (VCI) (Liu and Kogan, 1996), Temperature Condition
Index (TCI) (Kogan, 1995a), Vegetation Health Index (VHI) (Kogan et al., 2004), and Nor-
malized Difference Drought Index (MNDDI) (Gu et al., 2007). Among these indices, NDVI
has been the most widely used for drought monitoring due to its simplicity and broad appli-
cability. However, it has some limitations due to its sensitivity to atmospheric disturbances
and soil moisture saturation (Bajgiran et al., 2008). To address these limitations, other veg-
etation drought-based indices have been developed. Notably, VCI was introduced to over-
come these shortcomings and recommended by the World Meteorological Organization
(WMO) for global and regional drought monitoring (Svoboda et al., 2016).

With the unprecedented time series data and open-access policies, satellite-based data
offers near-real-time, high spatial, and temporal observations of drought conditions over
large areas. The monitoring and characterization of droughts have recently shifted from in-
situ data to earth observation measurements. In the MSEA region, although in-situ drought
monitoring remained widely used, the shift from station-based to satellite-based monitor-
ing has become increasingly dominant in recent years. Our recent review study revealed
that there has been a significant increase in satellite-based drought studies in the region
over the last seven years (Ha et al., 2022). In the Lower Mekong Basin, the Mekong River
Commission already established a drought forecasting and early warning system in 2018
(https://servirglobal.net/). This system employs four main drought indices: the combined
drought index, the 1-month SPI, the soil moisture deficit index, and the standardized runoff
index. This effort highlighted the importance of remote sensing data in monitoring and man-
aging regional droughts. Several sensors such as Landsat, Sentinel-2, Moderate Resolution
Imaging Spectroradiometer (MODIS), and Advanced Very High Resolution Radiometer
(AVHR) have been widely used for monitoring drought hazards. MODIS has been widely
used among these sensors due to its long-term observations and high spatiotemporal res-
olution (daily frequency). Despite its long-standing satellite and high spatial resolution,

Landsat suffers from lower temporal resolution and frequent cloud cover in tropical areas
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1.4 Rationale of the thesis

(L1 et al., 2018a). Sentinel-2 is a promising sensor for monitoring drought with high spa-
tiotemporal resolution, but it has a short data history and has only been available since 2015.
AVHR has been observed on the earth since 1980, but it has a coarse resolution (~ 8 km),
making it less suitable for regional drought monitoring. Given its balance of daily temporal
coverage and moderate spatial resolution, MODIS remains one of the most effective sen-
sors for drought monitoring, offering valuable insights for both short-term assessments and

long-term trend analysis.

1.4 Rationale of the thesis

1.4.1 Research background

The MSEA is a major global crop-growing region and biodiversity hotspot. However, the
ongoing global warming and intensified human activities have heightened its vulnerability
to drought, posing significant threats to agriculture and ecosystems. This region has been
and continues to experience significant climate variability, including increased temperatures
and declined precipitation (Amnuaylojaroen and Chanvichit, 2019; Li et al., 2022b; Son
et al., 2012; Ha et al., 2023; Phan-Van et al., 2022; Supharatid et al., 2022). Rainfed crop-
land dominates agricultural production across MSEA countries (Ha et al., 2023), making
them particularly susceptible to shifts in rainfall patterns. Despite the growing vulnerability
to drought and its widespread impacts, there has been little effort to provide consistent and
region-wide monitoring and characterization of drought using earth observation time series.
Thus, this dissertation aims to provide a detailed review and development framework of
vegetation-based drought characteristics and their responses to multi-temporal climate and
soil conditions. Also, it proposed a temporal harmonization approach to assess agricultural
drought vulnerability by integrating remote sensing with socioeconomic time series data.
This dissertation aims to provide a more holistic understanding of drought characteristics
and vulnerability, delivering science-based insights for more robust drought mitigation and

planning strategies.

1.4.2 Research objectives

The main objective of this doctoral dissertation is to provide (1) a detailed and com-
prehensive review of satellite-based drought remote sensing, (2) a spatiotemporal analy-
sis of vegetation-based drought characteristics, (3) responses of vegetation-based drought
to multi-temporal climate and soil drought conditions, and (4) assessment of agricultural

drought vulnerability. The detailed research objectives are:
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Objective 1: The first objective surveys the literature review and explores the efforts
of satellite-based drought studies in Southeast Asia. Key areas of review include the spa-
tiotemporal patterns of drought studies, the use of sensors and platforms, drought indices,
and thematic drought applications. The primary goal of this review is to provide an overview
of drought studies and identify research gaps from existing drought studies using EO data

in the study region.

Objective 2: The second and primary objective covers the development and implemen-
tation framework for (1) generating a gap-free vegetation-based dataset and (2) monitoring
and mapping drought characteristics using vegetation-based time series in the MSEA re-
gion. Vegetation-based drought conditions and their trends will be explored across different

land cover types during dry and rainy seasons.

Objective 3: The third objective explores the responses of vegetation-based drought to
multi-temporal climate and soil moisture factors, considering land cover types and elevation
characteristics. This analysis aims to uncover how different ecosystems and terrains react to
drought conditions over time. Also, an explainable machine learning method is developed
to identify the drivers of vegetation-based drought related to climate and soil factors in

natural and undisturbed areas.

Objective 4: The final objective of this dissertation is to assess agricultural drought
vulnerability in a drought-prone region of the Vietnamese Central Highlands. This analysis
aims to develop a robust understanding of agricultural drought vulnerability in the region

by harmonizing temporal remote sensing and socioeconomic data.

Several research questions are formulated and investigated to address the respective ob-
jectives of this dissertation. The first group of questions concerns the existing literature

review:
Research questions 1:
* What progress has been made in monitoring drought within the study region?

* How many satellite-based drought studies have been conducted, and what are their

spatiotemporal patterns?

* What types of sensors, data sources, methods, indices, and thematic applications have
been employed to monitor and detect drought conditions, and how have these studies

cross-validated their output drought products to ensure accuracy and reliability?

* Which research gaps exist, and how can potential remote sensing and methods ad-

dress these gaps?
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The second group of questions addresses the implementation framework of automatic

monitoring and characterization of vegetation-based drought conditions.

Research questions 2:

What are the potentials and challenges of using satellite-based vegetation time series

for monitoring and characterizing drought conditions?

How can a drought event based on satellite-based vegetation be described using Run

theory?

What are spatiotemporal patterns of drought and their characteristics across the
MSEA region from 2000 to 20227

Which specific years experienced severe drought, and how did drought conditions

impact different land cover types during the dry and rainy seasons?

How accurately do vegetation-based drought indicators perform compared to tradi-

tional climate-based indices?

The next set of questions focuses on vegetation-based drought responses to multitempo-

ral climate and soil drought indices and the key driving factors influencing these responses

in natural and undisturbed ecosystems.

Research questions 3:

To what extent do climate and soil-based drought indicators influence vegetation-
based conditions in the MSEA region, and how do these relationships vary across

different land cover types and elevations?

What are the main drivers of vegetation-based drought conditions in natural and

undisturbed ecosystems in the MSEA region?

The final group of questions focuses on agricultural drought vulnerability in a drought-

prone region of the Vietnamese Central Highlands. Specifically, this section addresses the

following questions.

Research questions 4:

What is the vulnerability framework outlined by the Intergovernmental Panel on Cli-

mate Change (IPCC), and how is it applied in the context of agricultural drought?

Which variables are most appropriate for assessing agricultural drought vulnerability,
and how should they be assigned to each vulnerability component (exposure, sensi-

tivity, and adaptive capacity)?



Chapter 1 Introduction

* What methods are used to harmonize temporal remote sensing data with socioeco-

nomic time series for a detailed drought vulnerability assessment?

» To what extent does each variable contribute to the respective components of agricul-

tural drought vulnerability?

* What are the spatial patterns of agricultural drought vulnerability, and where are the

identified drought hotspots in the region?

1.5 Dissertation outlines

This dissertation has seven main chapters, each designed to answer the correspond-
ing questions of the objectives. The first chapter introduces drought concepts and types
and describes how they are identified, managed, and monitored using remote sensing and
ground-based observations (Chapter 1). The second chapter provides an overview of the
study area, focusing on its climatic, geographic, and agricultural characteristics (Chapter
2). The third chapter presents a detailed review of recent progress in EO-based drought
monitoring and characterization, identifying methodologies and research gaps from exist-
ing literature (Chapter 3). The next chapter developed a monitoring framework for mapping
drought characteristics and seasonal trends using vegetation-based time series data (Chap-
ter 4). The responses of vegetation-based drought to multitemporal climate-soil drought
indices are presented in Chapter 5. After characterizing and assessing drought conditions
across the MSEA region, Chapter 6 offers an agricultural drought vulnerability assessment
in the drought-prone Vietnamese Central Highlands before presenting a conclusion and

potential outlooks in Chapter 7.
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Chapter 2

Study area

2.1 Geographical location and topography

Mainland Southeast Asia (MSEA), a subcontinent of Asia located in Southeast Asia,
consists of five different countries: Cambodia, Laos, Myanmar, Thailand, and Vietnam (Fig-
ure 2.1). This region covers an area of nearly 2 million km?, covering a wide range of topo-
graphic features, and has become a major global producer of agriculture. Geographically,
the MSEA is bordered by China to the north, while its southern and eastern boundaries
extend to the Gulf of Thailand and the East Sea, respectively. One of the most significant
features in this region is the various characteristics of landforms, land cover types, water
surface, and dense network of river systems (e.g., Mekong River). These geographical fea-
tures enable various agricultural practices and growing vegetation ecosystems, especially

along the Mekong River.

The MSEA mountains are characterized by high elevations (usually above 1000 m) and
are primarily located in the northern and western parts of the region (Figure 2.1-a). The east-
ern extensions of the Himalayas contribute to the rugged terrain in the north of Myanmar,
forming high mountains and deep valleys. Truong Son Range, running along the border be-
tween Laos and Vietnam, and the Tenasserim Hills are other significant mountainous areas.
These highlands are crucial for biodiversity ecosystems and play a vital role in regulating

climate and hydrology, acting as watersheds for the major rivers.

In contrast, the central and southern parts of the region feature expansive lowland plains
and fertile river deltas. The Central Plains of Thailand and the Lower Vietnamese Mekong
Delta are among the most productive agricultural areas, known as the "Rice Bowls" of
Asia, due to their high rice productivity. Water surface frequently occurred in the Lower
Vietnamese Mekong Delta, Red River Delta, and Lower Thailand (Figure 2.1-b). These

low-lying areas are characterized by fertile alluvial soils deposited by river flooding, making
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Figure 2.1: The topographic map of the study area highlights elevation gradients and water surface
occurrence in Mainland Southeast Asia. The water surface occurrence produced from
Landsat data (Pekel et al., 2016), while the elevation was obtained from NASA/CGIAR.

them ideal for intensive agriculture. The Tonle Sap Lake in Cambodia, the largest freshwater
lake in the region, is another notable feature. In the south and east, the long coastlines along
the Gulf of Thailand and the East Sea serve as critical hubs for marine biodiversity, fisheries,

tourism, and economic development (e.g., marine transport and shipping industry).

2.2 Climatology and hydrology

The MSEA region lies in the tropics and experiences significant variations in precip-
itation and temperatures. Higher precipitation rates are primarily observed in the central
coast of Vietnam and parts of Myanmar, whereas Thailand and central Myanmar experi-
ence lower precipitation rates (Figure 2.2-a). For example, Thailand has recorded the least
precipitation, approximately 140 mm per month, over the past 20 years, while the central
coast of Vietnam witnessed the highest precipitation rate, above 250 mm per month. Higher
temperatures are reported in Thailand, Cambodia, Central Myanmar, and the Lower Viet-
namese Mekong Delta (Figure 2.2). Recent studies projected an increase (decline) in tem-
perature (precipitation) over the region in the upcoming decades (Supharatid et al., 2022;
Almazroui et al., 2020; Tangang et al., 2020). Consequently, drought conditions are ex-

pected to worsen, impacting agricultural production and ecosystems.

Regarding seasonality, the MSEA region experiences a predominantly tropical and sub-
tropical monsoon climate characterized by two wet and dry seasons. The region receives
significant rainfall during the rainy season due to the southwest monsoon season from May

to October (Mandapaka et al., 2017). This pattern can be observed in Figure 2.2¢. In con-
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Figure 2.2: Spatial distribution of precipitation (a) and temperature (b) in Mainland Southeast Asia
from 2000 to 2022. Monthly precipitation and temperature plots (c) are presented in bar
and line graphs, respectively.

trast, the northeast monsoon from November to April brings drier conditions, influencing
seasonal river flows and posing challenges for water management and agriculture. During
this period, there is limited precipitation across the region. The highest (lowest) tempera-
tures are observed in May and June (January and February). Overall, regions with higher
temperatures tend to coincide with areas of lower precipitation, making them more vulner-

able to drought conditions.

The MSEA countries exhibit variations in their climatic patterns and hydrological dy-
namics during both dry and rainy seasons (Figure 2.2). Cambodia, for instance, relies heav-
ily on the seasonal floods of the Mekong River to sustain the Tonle Sap Lake, and this source
of water is essential for its productive inland fisheries and agricultural production. Laos de-

pends on the Mekong River and its tributaries for hydropower and agriculture. Myanmar

13
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faces diverse climatic zones, from tropical to temperate, impacting water availability and
agricultural productivity. Thailand manages its water resources through the Chao Phraya
River Basin and faces water challenges during the dry season. Vietnam’s Red River and
Mekong Delta are critical for agriculture but increasingly susceptible to drought and salin-
ity intrusion. Overall, the Mekong River plays a significant role in shaping the lives and
economies of the MSEA countries. Still, this region has been increasingly vulnerable to

drought hazards due to human-induced activities and climate change (Shrestha et al., 2016).

2.3 Land cover

The MSEA region features a wide range of land cover and land use types (Figure 2.3).
Over the past two decades, significant changes in land cover and land use have occurred,
driven by different factors such as economic development, urbanization, agricultural expan-
sion, and deforestation. Here, the European Space Agency Climate Change Initiative (ESA
CCI) land cover products were used to examine land cover types in the study region and
their temporal characteristics (CCI, 2017). Overall, forests and agricultural lands dominate
the land use in the region, collectively accounting for nearly 85% of the total land use. For
example, cropland, rainfed and irrigated, accounted for nearly 38% of the landmass, while
forests cover nearly 42% of the study region. Forests are diverse, from evergreen forests to
deciduous forests, and this type is mainly observed in higher elevated mountains in Laos,
northern Myanmar, and northern and central Vietnam. Conversely, agricultural land is pri-
marily located in Central Myanmar, Thailand, and the Lower Mekong Basin. Rice, the
region’s main crop, is largely grown in Thailand and the Lower Vietnamese Mekong Delta.
These two countries are also the largest rice exporters worldwide, accounting for nearly
25% of global rice exports (Yuan et al., 2022a).

The distribution of land cover and land use types varies significantly among the coun-
tries based on the ESA CCI land cover dataset (Figure 2.4). In Thailand, nearly 60% of
the landmass is dedicated to agricultural practices, with forests covering approximately
25%. Vietnam, on the other hand, comprises about 39% cropland and 37% forestland. By
contrast, Laos is primarily covered by forests (~ 57%) and shrublands (~ 28%), whereas
cropland accounts for only 14%. Forests are similarly dominant in Myanmar, covering ap-
proximately 52% of its land area, and in Cambodia, where this land cover occupies about
46% of the country’s territory. Shrublands are also dominant in some countries, such as
Vietnam (~ 20%) and Myanmar (~ 18%). The other land uses (e.g., urban and water sur-

face) account for less than 5% of the landmass in each of these countries.
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Figure 2.3: Spatial patterns of main land use and land cover types obtained from ESA CCI land
cover products across the MSEA region. The inset plot in the map indicates the per-
centage of land cover types. Only stable pixels of land cover from 2000 to 2020 are
examined.

Over the past 20 years, rapid urbanization and socio-economic development have sig-
nificantly transformed land cover and land use across the region. However, the extent and
nature of these changes have varied between countries. Generally, deforestation has been
a major issue, driven by logging, agricultural expansion, and infrastructure development.
Cambodia and Myanmar have experienced some of the highest deforestation rates (Hansen
et al., 2013), while Vietnam and Thailand have implemented notable reforestation pro-
grams. For example, Cambodia suffered from nearly 50 thousand km? of forest loss from
1998 to 2018, while this figure for Myanmar was about 30 thousand km? over the same
period (Namkhan et al., 2021). Agricultural expansion has seen increased intensification
and diversification, with significant growth in cash crops such as rubber, coffee, and cas-
sava. Urban growth has transformed land use patterns, often at the expense of cropland
and forests. Vietnam and Cambodia witnessed annual urban growth (~ 14% per year) from
1992 to 2018 (Zhao et al., 2020). Recent studies projected land use change continues in

the study region, and this transformation is expected to exacerbate the drought condition
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Figure 2.4: Percentage of land cover types by the MSEA countries derived from ESA CCI land
cover products. Only stable pixels of land cover from 2000 to 2020 are examined.

and has major implications for biodiversity, water resources, and agricultural production
(Chuah et al., 2018; van Vliet, 2019).

2.4 Socioeconomic context

The MSEA region is home to nearly 260 million population, accounting for about 3.1%
of the global population. This region has experienced significant socio-economic transfor-
mations and urbanization over the past two decades. Despite these transformations, agricul-
ture remains the predominant sector, employing a large portion of the population. For in-
stance, nearly 70% of Myanmar’s population is employed in agriculture, while in Vietnam,
this figure is about 43%. Over the past 20 years, the region has seen a significant increase
in GDP per capita and a marked decline in the poverty rate. In Thailand, the poverty rate
has dramatically reduced from nearly 15% in 2000 to only 5.4% in 2020, and the country
now boasts the highest GDP per capita in the study region, averaging around US$20,000
(Bank, 2023). Similarly, Vietnam has achieved notable economic milestones, with its cur-
rent poverty rate reduced to approximately 5.7% and a GDP per capita of around US$4,500
(VGSD, 2023). Other countries still experienced high poverty rates, such as Laos (~ 24%)
and Myanmar (~ 49%).
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Among the countries in the region, Thailand has achieved significant economic transfor-
mation, advancing from a middle-income to an upper-middle-income country. The econ-
omy is diverse, with strong manufacturing, tourism, and agricultural sectors contributing to
its growth. Forest conservation efforts in Thailand’s northern and western highlands have
mitigated some deforestation, while urban expansion, notably in Bangkok and surrounding
areas, has reshaped land use patterns. Agriculture has diversified with increased cultivation
of plantation crops alongside traditional rice farming. Likewise, Vietnam with the popula-
tion of approximately 100 million has emerged as a rising economy with annual economic
growth averaging 6-7% (VGSD, 2023). This growth is largely driven by a shift from a
centrally planned to a market-oriented economy, alongside significant advancements in in-

dustrial production, services, and agriculture.

Cambodia, Laos, and Myanmar have also seen notable economic changes over the past
decades. For instance, Cambodia has achieved outstanding economic growth, boasting one
of the fastest-growing economies in the region from 1995 to 2019, with an impressive aver-
age annual growth rate of 7.6% (Bank, 2024). However, the COVID-19 pandemic severely
impacted its economy from 2020 to 2022. This country began to show signs of recovery
in 2023, achieving a growth rate of 5.4%. Despite their economic gains, this rapid de-
velopment has come with significant environmental costs, including deforestation driven
by logging, agricultural expansion, and urbanization, despite efforts to protect forested ar-
eas. Laos is still one of the least developed countries, and its economy mainly depends on
hydropower, mining, and agriculture. Myanmar has recently experienced socio-economic
changes, influenced by political reforms, impacting its landscape through logging, agricul-

ture, and urbanization.
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Chapter 3

A review of satellite-based drought in

mainland Southeast Asia*

This chapter provides a detailed review of drought monitoring and assessment using
satellite-based observation data in Southeast Asia from 2000 to 2021. There has been a
growing number of drought-related studies in the region. However, there has been no de-
tailed analysis and review to report the current progress of satellite-based drought studies.
Thus, this was the first review to explore different aspects of drought-related studies, in-
cluding temporal and spatial distribution of publications and remote sensing characteristics
in the study region. The findings of this chapter present the existing state-of-the-art methods

and limitations of previous research and highlight research gaps and potentials.

Specifically, Section 3.1 gives a methodological overview of the analysis of 102 research
articles focusing on EO-based drought studies. Section 3.2 presents the findings of our re-
view, highlighting the spatiotemporal distribution of studies, thematic applications, satellite
sensors, and other related topics. The chapter concludes with a discussion of the challenges
and opportunities associated with using satellite time series data for drought monitoring and
assessment in Southeast Asia, offering insights into the potential for future advancements
in this field.

3.1 Review objectives and methods

Drought has traditionally been monitored using in-situ measurement data, but this ap-
proach has major limitations, such as high cost and intensive labor. Recent advancements in
remote sensing technologies and growing open data policies have enabled climatologists,

hydrologists, and remote sensing researchers to access a vast amount of time series satellite

*This chapter is based in parts on Ha et al. (2022).
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Figure 3.1: The number of annual drought studies in Southeast Asia from 2000 to 2021 using
satellite-based earth observation and all other datasets sourced from Scopus database.
Gray color indicates all drought-related research, while dark red represents satellite-
based drought studies.

data for large-area drought monitoring and assessment. Consequently, these advancements
have fueled a significant increase in scientific literature, and some research working groups
have created extensive drought databases worldwide. For example, Vicente-Serrano et al.
(2010) has recently produced a global dataset of multitemporal SPEI from 1901 to the

present at 0.5 degrees.

While several reviews have been dedicated to surveying drought-related studies using
earth observation data at global and regional scales (Damberg and AghaKouchak, 2014;
Jiao et al., 2021; Barlow et al., 2016; Zhang and Zhou, 2015), there has been a lack of review
studies focusing on Southeast Asia, where drought is frequently reported. For example,
there has been a significant increase in drought studies using non-satellite and satellite-
based approaches in Southeast Asia over the past 21 years (Figure 3.1). Therefore, this
review summarizes recent progress in satellit-based drought studies, including spatial and
temporal distribution, sensor characteristics, thematic applications, and drought indices.
Also, this study discussed the potential of remote sensing measurements and its challenges

regarding drought monitoring and assessment in Southeast Asia.

This chapter conducted a systematic literature search using the two primary academic
platforms, Web of Science and Scopus. The preliminary investigation revealed a scarcity of
relevant studies before 2000 in the Southeast Asian region, prompting to limit the search
from January 2000 to December 2021. The review targeted peer-reviewed journal arti-
cles published in English, emphasizing EO-based methodologies for drought-related stud-

ies in Southeast Asia. The search expression included a variety of relevant terms, such as
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Figure 3.2: An overview framework of literature review from keyword search to analysis of drought
studies in Southeast Asia. This diagram is adapted from a study by Ha et al. (2022).

4L

"drought", "dry", "wildfire", and "remote sensing," alongside geographic terms related to
Southeast Asia and the Mekong River Basin. The overall framework of the literature review

undertaken in this study is presented in Figure 3.2.

The search query, structured as TS = ("drought*" OR "dry*" OR "wildfire") AND ("re-
mote* sens*" OR "earth observation" OR "satellite*" OR MODIS OR Landsat OR Sen-
tinel* OR SPOT OR AVHRR) AND ("Vietnam*" OR "Thailand" OR "Myanmar" OR
"Lao*" OR "Cambodia*" OR "Malaysia*" OR "Singapore*" OR "Indonesia*" OR "Philip-
pines" OR "Brunei" OR "Timor" OR "Mekong" OR "Southeast Asia*"), was used to search
keywords in both databases. Here, the asterisk means included the rest of the word, such as
Vietnam or Vietnamese. This search string began with drought and related terms/synonyms
to broaden the search scope. Next, this topic combined Boolean operators to link remote
sensing terms and geographic areas. This approach aimed to find as many drought-related

studies in the region as possible to ensure a comprehensive literature database.

The search results returned 1,295 articles, many of which were duplicates. After re-
moving duplicates, 954 articles remained. This study then manually reviewed titles and

abstracts to exclude irrelevant studies, particularly those not utilizing satellite data or those
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focused solely on non-satellite measurements. Articles were also screened to ensure they
met our pre-defined criteria, focusing on satellite-based EO products and covering drought’s
meteorological, hydrological, agricultural, and ecological aspects. Finally, the final review
included 102 articles covering various drought indicators and impacts, such as vegetation
stress, surface water and groundwater variability, and drought-induced forest fires. This
chapter included relevant drought-related studies utilizing satellite-based data published af-

ter 2021, where appropriate.

3.2 Results of the literature review

3.2.1 Annual number of drought studies

Southeast Asia is a major producer of agricultural products such as rice and coffee due
to its tropical climate and soil fertility. However, the region has faced increasingly frequent
droughts in recent decades, mainly driven by climate change and the El Nifio-Southern Os-
cillation (ENSO) phenomenon. These challenges have imposed significant threats to food
security, vegetation ecosystems, and water resources management in the region. As a re-
sult, there has been a growing interest in drought monitoring and assessment using remote
sensing data from national governments and academic institutions. Figure 3.3 illustrated the
annual increase in satellite-based articles focused on various drought monitoring methods

and assessments over the past two decades.

After the El Nifio event of 2015-2016, there has been a sharp increase in drought-related
research in Southeast Asia (Figure 3.3). The number of published articles grew from under
five in the first 15 years to nearly 25 in 2021. Before the ENSO events (2016), only a few
studies were reported concerning agricultural and forest fire topics. In contrast, nearly 80%
of drought studies have been published from 2018 to 2021. The highest number of drought
publications was observed in 2021 (21 articles), followed by 2019 (19 articles). Regarding
the drought types, agricultural drought was the most dominant from 2019 to 2021. This
period also has witnessed an increase in hydrological and forest-related fire studies. For

example, nearly 50% of hydrological studies were found during this period.

This peak in research output highlighted the growing concern and academic interest
in understanding and mitigating drought impacts in the region, especially after significant
drought events. The review also indicates that different drought types, agricultural, meteo-
rological, hydrological, and socioeconomic, have been studied in Southeast Asia. However,
agricultural drought has received the most attention, accounting for 57% of the total studies.
This focus is likely due to the heavy reliance on agriculture for livelihoods and food security

in the region, making it particularly vulnerable to drought conditions. Hydrological drought
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Figure 3.3: A stacked bar plot illustrated the increase in research publications on drought in South-
east Asia from 2000 to 2021. Among the different types of drought studies, agricultural
drought received the most attention, while hydrological and forest-related droughts were
the least frequently addressed.

was the second most examined type (~ 17%), reflecting the importance of understanding
climate patterns and their implications for drought forecasting and management. Meteoro-
logical droughts and forest fires due to drought were less frequently studied, particularly in

the first 15 years of the 21st century.

Drought studies in Southeast Asia have been disseminated across 60 journals. Notably,
most of these studies appeared in non-remote sensing journals, and studies in Thailand have

frequently been reported in local journals (Ha et al., 2022).

3.2.2 Spatial distribution of drought studies

Southeast Asian droughts have been observed and investigated across different spatial
scales based on their specific characteristics and impacts, such as severity and duration.
Drought hazards can occur at local, national, and regional scales. Thus, this review catego-
rized the studies into two spatial scales: national and transnational studies. National drought
studies focus on monitoring and assessing droughts within the administrative boundaries of
a single country, such as at the district, provincial, or national level. On the other hand,
transnational studies involve research conducted across two or more countries in the re-
gion, such as studies in Myanmar and Laos or the Lower Mekong Basin. The frequency of
transnational drought studies is presented in Figure 3.4, while local studies are displayed as
the total count of articles (Figure 3.5). Overall, a higher frequency of drought-related stud-
ies was found in Indonesia, Thailand, and Vietnam. These countries also had the highest

number of drought studies across the region from 2000 to 2021.
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Figure 3.4: Spatial distribution of study frequency across Southeast Asia using satellite-based data
from 2000 to 2023. Dark red indicates a higher frequency, while dark green presents a
lower frequency of drought studies.

Figure 3.4 revealed that most drought-related studies in Southeast Asia were primarily
concentrated in mainland regions. This region accounted for nearly 67% of the research.
Notably, Thailand and Vietnam become the most studied countries, with 19% and 20%,
respectively, underscoring their significance in drought research (e.g., drought monitoring
and assessment). The higher frequency of studies in these countries reflects a notable con-
cern for drought impacts and a robust scholarly interest in understanding and addressing
the challenges posed by droughts in the region. Drought studies covered Indonesia with a
frequency of approximately 16%, and it is ranked the third most studied country, followed
by Cambodia at around 12%. Myanmar, Malaysia, and Laos had lower drought study fre-
quency, from 6% to 8% of the studies. In contrast, other Southeast Asian countries were
covered in less than 2% of the research over the past two decades. Notably, the Philippines
and East Timor were among the least frequently studied, indicating a significant gap in re-
search on drought impacts and management in these countries. This imbalance in research
focus suggests that certain Southeast Asian countries may be underrepresented in the liter-
ature, potentially leading to a less comprehensive understanding of drought impacts across

the entire region.
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Figure 3.5: Spatial distribution of local and national EO-based drought studies across Southeast
Asia from 2000 to 2021. The color bar indicates the number of articles corresponding
to each country.

Regarding local and national drought studies, the analysis of drought studies revealed
a significant research effort in some countries. Indonesia had the largest number of local
and national drought studies, totaling 22 articles. Thailand ranked second with 21 stud-
ies, followed by Vietnam with 19 research articles. Malaysia contributed significantly, with
around nine articles dedicated to drought research, while Cambodia had seven. These find-
ings highlight a strong focus on these nations, likely due to their diverse climatic conditions
and varying degrees of vulnerability to drought. In contrast, other countries in the region
appear to be underrepresented in the literature. Notably, Myanmar and Laos have not fea-
tured any local or national drought studies using satellite-based observation data over the
past decades. In addition, the remaining countries have contributed fewer than four articles
each, indicating a significant gap in research coverage. This disparity suggests that regions
with limited research might lack comprehensive insights into drought impacts and manage-
ment, potentially hindering effective policy development and resource allocation in those

areas.
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Figure 3.6: The percentage of corresponding authors associated with drought-related studies using
EO data in Southeast Asia from 2000 to 2021.

The uneven distribution of drought studies is further highlighted by the significant role
of international collaboration in drought research in Southeast Asian countries. Figure 3.6
displayed a significant presence of foreign institutions, as nearly 50% of corresponding
authors come from outside the region. This indicates that while the research is geograph-
ically focused on Southeast Asia, a substantial portion of the academic leadership comes
from other parts of the world. Specifically, nearly 75% of corresponding authors are based
in Asia, underscoring the regional interest and expertise. In contrast, about 11% of the
corresponding authors are from Europe, and 10% are from America, reflecting the global

attention and interdisciplinary approach to studying drought impacts in Southeast Asia.

Within Southeast Asia, Thailand has been very active in drought monitoring and im-
pact assessment (e.g., local scale studies), with approximately 20% of the corresponding
authors coming from this country. Vietnam followed at around 11%, and Indonesia stood
at 10%. The remaining Southeast Asian countries each contributed less than 5% of the cor-
responding authorship. These numbers suggest that while certain countries like Thailand
and Vietnam are more prominently represented in leading drought research, many other
nations in the study region are underrepresented in drought research and limited funding.
This uneven distribution of corresponding authorship may have implications for the direc-
tion and focus of drought research in Southeast Asia, potentially affecting the development

of locally relevant strategies and solutions.
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Figure 3.7: Percentage of satellite sensors and their categories used for drought monitoring and
assessment over the past 21 years in Southeast Asia.

3.2.3 Satellite sensors of drought studies

In the last 21 years, numerous drought studies in Southeast Asia have employed a variety
of satellite sensors, including active microwave, passive microwave, and optical satellites.
For this review, remote sensing sensors were categorized into three primary types and fur-
ther reclassified into five distinct remote sensing categories. Figure 3.7 illustrated the dis-
tribution of sensors and remote sensing categories used for drought mapping in Southeast

Asia. In total, 15 satellite sensors were identified across these five categories.

Figure 3.7 indicated that multispectral sensors were the most used for drought monitor-
ing and assessment in Southeast Asia (~ 75%). Passive microwave sensors are the next most
frequently used, likely due to their ability to provide consistent data regardless of weather
conditions or time of day. In contrast, active microwave sensors have seen the least use in
the region, possibly due to their more complex data processing requirements and higher

sensitivity to surface roughness, which may limit their applicability in drought studies.

Regarding the specific sensors, the MODIS sensor was the most frequently used, ac-
counting for more than 40% of the studies (Figure 3.7). The TRMM and Landsat sensors
were ranked second with about 16%. The AVHRR ranked third with nearly 10%. Other sen-

sors have contributed under 5% over the past two decades (Figure 3.7). These remaining
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sensors have limited applications in drought studies in the region. For example, the Sentinel-
2 and SMAP sensors have rarely been applied to monitor drought conditions in Southeast
Asia. In the tropics of Southeast Asia, cloud cover is a major limitation for drought mon-
itoring using optical remote sensing sensors like Sentinel-2. In contrast, the complexity of
SMAP passive remote sensing soil moisture poses a significant challenge in understanding

and processing this data.

In addition, the pie chart in Figure 3.7 showed five major remote sensing categories used
for drought monitoring and assessment in the study region. Overall, optical remote sensing
received the greatest attention for monitoring and evaluating drought conditions, accounting
for 47% of the data sources. In contrast, passive and active microwave satellite products
were less used, representing less than 12% of the studies. The use of multi-sensor remote
sensing has seen a rise in popularity in recent years, particularly for identifying drought-
related phenomena, with around 29% of the publications in Southeast Asia incorporating
this approach. Thermal remote sensing is another significant category, contributing to nearly

13% of drought studies in the region.

3.2.4 Satellite-based drought indices and validation

Drought hazards come in different forms and impact the environment and economy dif-
ferently. Thus, several drought indices have been proposed to monitor and map various
drought types. The SPI has been commonly used for meteorological drought, while the
SWDI is more related to agricultural drought. Many drought indices have been used in
Southeast Asia to monitor drought conditions. These indices are derived from various satel-
lite sensors. This section considered 16 individual drought indices, categorizing them into
eight predefined groups, including vegetation indices, precipitation indices, temperature in-
dices, water indices, soil moisture indices, thermal indices, and others. Figure 3.8 illustrated
different drought indices obtained from remote sensing data used for drought monitoring
and assessment in Southeast Asia over the past 21 years. Overall, the majority of drought

studies in Southeast Asia used vegetation-based and precipitation-based indices.

Drought studies in Southeast Asia have used diverse drought indices. Some studies have
specified the name of drought indices, while others used anomaly indices or thematic re-
mote sensing variables as drought indices. Nearly 17% of the studies employed "other"
drought indices, such as evaporation indices and precipitation anomalies. Among the iden-
tified drought indices, the SPI was the most commonly used indicator, accounting for about
16% of the studies. The TAI index ranked third with 12%. Other indices, including NDVI,
VHI, SMA, VCI, and TVDI, were used less frequently, ranging from 4% to 8% of the stud-

ies. The remaining indices were employed in fewer than 4% of the cases. For example, the
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Figure 3.8: The percentage of individual indices and corresponding derived-input data used in
drought studies across Southeast Asia from 2000 to 2021. SPI: Standardized Pre-
cipitation Index, NDVI: Normalized Difference Vegetation Index, TAI: Temperature
Anomaly Index, VCI: Vegetation Condition Index, SMA: Soil Moisture Anomaly Index,
VHI: Vegetation Health Index, TVDI: Temperature Vegetation Drought Index, DHI:
Drought Hazard Index, EVI: Enhanced Vegetation Index, NDWI: Normalized Differ-
ence Water Index, NDDI: Normalized Difference Drought Index, PDSI: Palmer Drought
Severity Index, TCI: Temperature Condition Index, SVI: Soil Vegetation Index, SPEI:
Standardized Precipitation Evapotranspiration Index.

SPEI and TCT had less than 2.5% usage in the drought studies over the past 21 years in the

study region.

Regarding drought indicator categories, the pie chart in Figure 3.8 displayed six different
categories of drought indices used in Southeast Asia. The most commonly used category
was vegetation-based, accounting for about 30% of the studies. The precipitation indicator
group accounted for nearly 21%. In comparison, temperature-based indices ranked third,
representing approximately 18% of the studies. The other indicator groups, including soil
moisture and water indices, were used less frequently, each contributing to less than 10%
of the studies. The streamflow-based index group was the least used, appearing in only 2%
of the research, indicating a relatively limited focus on hydrological impacts in drought as-
sessment across the region. In short, nearly 70% of drought indices used in the examined
drought studies in Southeast Asia were derived from precipitation, vegetation, and temper-
ature data. By contrast, the streamflow-based and water-based drought indices had fewer

applications in the study region.
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Figure 3.9: Types of validation data used for drought analysis in the region from 2000 to 2021. This
figure is adapted from (Ha et al., 2022).

Regarding the cross-validation of drought indices, Figure 3.9 showed the percentage of
validation strategies against the satellite-derived drought indices. Overall, nearly 80% of
drought studies reported the accuracy assessment. Among the validation strategies, nearly
47% of the studies used in-situ climate measurements to cross-validate the drought prod-
ucts. Modeled data, including climate reanalysis data and satellite-based precipitation, re-
ported 34%. Notably, nearly 21% of the studies did not report the accuracy assessment.
Regardless of validation approaches, precipitation was the most commonly used data for
cross-validating the drought conditions. Nearly 73% of the studies using in-situ data se-
lected station-based precipitation for cross-validation. Likewise, precipitation from mod-
eled data was frequently used for drought validation, accounting for 34%. Temperature
and soil moisture from satellite-based observations or reanalysis data also gained popular-
ity in drought validation. Together they accounted for nearly 26% of the studies using the
modeled data (Figure 3.9). Other data, such as streamflow and water surface, were less fre-
quently used in drought studies. For example, only 6.5% of the in-situ streamflow data was

used to cross-validate drought conditions across Southeast Asia from 2000 to 2021.
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Figure 3.10: Correlation between spatial extent and spatial resolution reported in drought studies in
Southeast Asia from 2000 to 2021. The color bar presents the years of publications.

3.2.5 Spatial resolution and data categories

Drought studies in Southeast Asia have been investigated with varying spatial extents
and resolutions. Figure 3.10 showed the correlation between the spatial extent of a study
area and its mapping resolution. The spatial extent of these studies ranges widely, from
as small as 100 km? (local scale) to over 4 million km? (regional scale), with mapping
resolutions varying from 30 m to approximately 110 km. Since droughts typically affect
large regions, coarser resolutions are often preferred. The data suggests a positive trend
between the map resolution and the spatial extent: as the study area increases in size, the

spatial resolution of the produced map generally becomes coarser (Figure 3.10).

For spatial resolutions, the majority of drought studies in Southeast Asia employed rel-
atively coarse spatial resolutions. It is observed that around 64% of the drought maps were
generated with resolutions of 1 km or greater, while only 20% of the studies employed
resolutions finer than 100 m. Although more recent research has begun to explore drought
conditions at both low and high spatial resolutions, studies published before 2010 primarily
used coarser resolutions. Notably, between 2018 and 2020, two studies examined drought
at a very coarse resolution of approximately 111 km using data from the Gravity Recov-
ery and Climate Experiment (GRACE), a collaborative mission between NASA and the
German Aerospace Center (DLR). High spatial resolution data (< 50 m) were primarily
reported in local drought studies. No drought studies have covered over 1 million km? in

Southeast Asia using high spatial resolution (< 30 m) from 2000 to 2021.

Regarding spatial extent, over half of the studies were conducted across areas larger than

100,000 km?. However, at regional and sub-regional scales, there were no studies that cov-
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Figure 3.11: The duration of remote sensing data used in drought studies in Southeast Asia. The
colors in the figure present three main types of temporal data. Time series indicates a
continuous fixed period of data (e.g., monthly and annual), while multi-temporal data
means data spans multiple periods. Mono-temporal data indicates data collected during
a single period, representing a snapshot in time.

ered the entire region or mainland Southeast Asia with a resolution finer than 500 meters.
Given that the area of most Southeast Asian countries ranges from 200,000 to 800,000 km?,
more than half of the drought studies were focused on local and national levels. Only three
studies encompassed all Southeast Asian countries and four covered mainland Southeast

Asian territory.

Regarding the duration of remote sensing data, Figure 3.11 presented the distribution
of drought studies based on their duration. The majority of these studies in Southeast Asia
used multi-temporal and time-series remote sensing data. For example, nearly 71% of the
studies used time series data, while multi-temporal data accounted for 20%. In contrast,
the single-date (mono-temporal) analyses were the least common, representing only 8.8%
over the past two decades. There were only a few time-series drought studies before 2010,
but this number has grown significantly in recent years. For instance, the last five years
have seen a 10.7% increase in time-series drought publications. The year 2021 experienced
the highest percentage of time series studies (~ 25%). Multi-temporal analyses were most
frequently published in 2019, making up nearly 24% of the studies. In contrast, the use of
mono-temporal analysis has decreased by 2.9% over the past five years. Despite a grow-
ing interest in time-series monitoring and assessment in the region, long-term studies (e.g.,

those extending beyond 30 years) remain relatively scarce. The analysis revealed that nearly
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90% of drought studies utilized geospatial data covering periods of less than 30 years (Fig-
ure 3.11). On average, time-series studies spanned 18 years, while multi-temporal analyses
had a mean duration of less than seven years. Notably, two studies explored drought condi-

tions over periods exceeding 50 years.

3.2.6 Thematic application of drought studies

Drought is a complex phenomenon and can be quantified using different types of data
and indices. This complexity results in many different types of droughts, each impacting
the environment and economy differently. Each drought indicator can be used to assess dif-
ferent drought types, depending on the temporal lag or research objectives. For example,
drought can be derived from precipitation, such as SPI, and this index is considered a mete-
orological drought if the SPI derives from a 3-month accumulative precipitation. However,
the same index can be considered a hydrological drought if it is calculated over six months

or nine months.

In recent years, satellite time series have been among the most commonly used sources
for calculating drought indices. In Southeast Asia, there has been a rising interest in apply-
ing remote sensing to study droughts, resulting in a wide range of thematic applications.
In this review, drought studies were categorized into four main applications: agriculture,
hydrology, meteorology, and wildfire. These four applications were further divided into
specific applications. For instance, agricultural applications included subcategories: vege-
tation stress, soil moisture, land use change, and crop stress. Several studies used vegetation
indices to monitor drought effects on vegetation and forests, so these studies were grouped
under vegetation stress. Hydrological applications included studies concerning streamflow,
river, groundwater, and water surface variability. Figure 3.12 provided an overview of dif-
ferent drought applications and their subcategories in Southeast Asia from 2000 to 2021.
Overall, most drought applications are dedicated to agriculture-related topics, accounting
for nearly 58%. Hydrology is ranked second with nearly 16%, while wildfire and meteo-
rology had lower rates of applications, at 14 and 12%, respectively. Among the agricultural
applications, crop and vegetation stress received the most attention, accounting for nearly
43%. Fewer applications were contributed towards the soil moisture and land use droughts.
Water surface applications associated with drought accounted for 12% of the studies. Other
topics received less attention. For example, drought risk assessment witnessed only 2.8%

of the studies, while streamflow and drought hotspot analysis accounted for 4.7% each.

Given the different drought applications in Southeast Asia, this study surveyed six the-
matic areas of drought application themes in detail. These themes included soil moisture

and crop stress, vegetation stress, land use/land cover change due to drought, variations in
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Figure 3.12: Distribution of thematic applications in drought studies across Southeast Asia. The
figure presents drought applications across four major domains and nine subcategories,
including crop stress, land use change, soil moisture, vegetation stress, streamflow and
water surface variability, fire mapping, fire hotspot analysis, and fire risk assessment.

streamflow and water surfaces, forest fires linked to drought, and meteorological droughts.

The following sections provided a detailed discussion of these thematic applications.

3.2.6.1 Vegetation-related applications

Vegetation growth is highly sensitive to drought hazards due to its dependence on water
for essential processes, such as photosynthesis and nutrient uptake. Drought impacts can
reduce vegetation growth and increase vulnerability to pests and diseases. In some cases,
persistent drought conditions can damage the natural ecosystem (e.g., loss of biodiversity)
and agricultural production. Southeast Asia is a major region of agriculture and biodiversity
hotspot worldwide. For this reason, there has been a significant increase in drought stud-
ies dedicated to vegetation stress due to droughts over the past 20 years. Different aspects
of drought-induced vegetation have been investigated. However, vegetation-based drought
was the most investigated topic, accounting for nearly 31%. Thailand witnessed the largest
number of vegetation drought applications (28%), while Vietnam ranked second with 14%.
Indonesia and Malaysia together contributed to 23%. Other remaining countries had less
than 5% of vegetation drought studies. Regarding the spatial extent of these studies, local
and national vegetation drought studies were more frequently reported than regional appli-
cations. Nearly 90% of the studies were dedicated to local applications, while transnational

studies received little attention.
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Among the satellite-based indices, vegetation indices were the most commonly used
index to derive vegetation drought information. These indices can be derived from multi-
spectral sensors, such as Sentinel-2 and MODIS. Several vegetation indices have been used
to monitor drought conditions in Southeast Asia. In Thailand, vegetation indices were the
most used drought index for monitoring vegetation drought conditions, and these indices
were mainly obtained from MODIS NDVI time series (Abhishek et al., 2021; Laosuwan
et al., 2016; Rotjanakusol and Laosuwan, 2018; Thavorntam and Tantemsapya, 2013; Rot-
janakusol and Laosuwan, 2019b; Uttaruk and Laosuwan, 2019; Sangpradid et al., 2021;
Jomsrekrayom et al., 2021; Rotjanakusol and Laosuwan, 2019a; Thavorntam et al., 2015;
Preedapirom et al., 2024; Jeefoo, 2023; Thavorntam et al., 2022). In contrast, Landsat-based
vegetation drought monitoring has rarely been reported over the past two decades (Uttaruk
and Laosuwan, 2017; Khampeera et al., 2018). In Vietnam, vegetation indices have been
primarily employed for monitoring drought vulnerability (Tran et al., 2017), temperature-
based drought (Dang et al., 2020) over a relatively short time frame (e.g., 5-10 years). Some
recent studies investigated drought conditions using MODIS-based vegetation over the past
two decades (Tran et al., 2023; Phan et al., 2020). In Indonesia, several drought studies
used vegetation indices to monitor and assess local drought conditions (Rusdi et al., 2023;
Mujiyo et al., 2023). Other countries reported less frequent vegetation drought studies over

the study period.

In addition, several regional drought studies employed vegetation indices to report
drought conditions in Southeast Asia. Qian et al. (2019) employed EVI and other indices
to report the widespread decline of vegetation photosynthesis during the drought event in
2015-2016 across Southeast Asia. In the Lower Mekong Basin, Zhang et al. (2014) es-
timated the impact of drought on vegetation ecosystems, and they found that vegetation
productivity can be reduced by up to 14% during drought years. Other studies also moni-
tored forest changes during drought across the study region (Zhang et al., 2016; Perez and
Comiso, 2014).

Most studies employed vegetation time series to monitor drought conditions at local and
national levels using existing vegetation indices and drought classification systems. Little
research has been done on drought machine learning, drought characterization, and method
development. Xie and Fan (2021) tested different vegetation data reconstruction methods,
such as Fourier-based harmonic analysis, Savitzky-Goly filter, and Whittaker smoother to
derive drought information. They suggested that the reconstructed vegetation time series
outperformed the unconstructed vegetation series in monitoring drought. Another study in
Malaysia proposed a Southwest Monsoon drought classification system to assess natural

and plantation vegetation (Mohd Razali et al., 2016). Some studies explored the potential
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of microwave remote sensing and machine learning for monitoring drought in the region
(Couturier et al., 2001; Prasetyo et al., 2021). Multi-sensor drought monitoring derived
from vegetation indices has been reported in the studies by Arjasakusuma et al. (2018) and
Zhang et al. (2016)).

In short, vegetation indices have been widely used to monitor vegetation-based drought
conditions. Drought characteristics derived from vegetation indices have not been reported
in Southeast Asia from 2000 to 2021. In addition, machine-learning applications and high
spatial resolution have rarely been explored to monitor and characterize vegetation drought.
Multi-sensor and microwave drought monitoring also need more attention since this topic

has not yet been completely discovered in the region.

3.2.6.2 Soil moisture and crop stress applications

Soil moisture plays a key role in vegetation and crop growth, and if this impact persists
prolonged, it can lead to crop failure. The deficiency of soil moisture can be considered an
agricultural drought. In Southeast Asia, nearly 18% of the studies were dedicated to soil
moisture drought and its impact on crops over the past 21 years. It is observed that drought
studies in the region have extensively used vegetation indices as proxy soil moisture in-
dicators for monitoring drought conditions. Soil moisture and crop-related drought condi-
tions have been more frequently investigated in Thailand (Sa-Nguansilp et al., 2017; Rak-
sapatcharawong et al., 2020; Sriwongsitanon et al., 2015; Raksapatcharawong and Veer-
akachen, 2019), in Vietnam (Luong et al., 2021), in Cambodia (Abhishek et al., 2021; Son
and Thanh, 2022), and in the Lower Mekong Delta.

Satellite-based indices can be used to understand the spatial and temporal variability of
soil moisture drought and their impact on agriculture. In Southeast Asia, vegetation-based
indices have been widely used as proxy indicators for soil moisture drought. Several stud-
ies employed MODIS-based vegetation and temperature time series to detect agricultural
drought and its impacts on cropland. Amalo et al. (2017) calculated the vegetation health
index and detected nearly 2 thousand km? of extreme drought on agricultural land. In Cam-
bodia, Son and Thanh (2022) estimated that nearly 31% of rice-growing areas suffered from
severe drought conditions during the dry season in 2016. In Vietnam, Du et al. (2018) inves-
tigated agricultural drought in the Central Highlands and found that rice areas were more
sensitive to precipitation, while forests had higher responses to the temperatures. Rice pro-
ductivity in the Philippines has declined during the drought years (Parida et al., 2008), but
rice yields in Cambodia annually increased without a clear relationship between drought

parameters and rice yields (AghaKouchak et al., 2015). Other studies reported the impacts
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of drought on crop patterns and production across Southeast Asian countries (Chen et al.,
2011; Raksapatcharawong et al., 2020).

In addition to soil-vegetation-based indices, several studies employed vegetation-
temperature-related indices as proxy soil moisture for drought monitoring, while other stud-
ies used composite indicators or simulated crop-drought productivity relationships (Chen
et al., 2023; Perez et al., 2016; Son and Thanh, 2022; Shashikant et al., 2021). Overall,
most soil moisture and crop-induced studies in Southeast Asia derived drought information
from multispectral remote sensing observations. Soil moisture drought indices primarily

included VHI, VCI, and soil moisture anomaly.

3.2.6.3 Drought-related to forest fires

Persistent drought conditions can increase the probability and frequency of wildfires,
which can tremendously impact vegetation/forest ecosystems and the local economy.
Southeast Asia lies in the tropics, where forests account for large areas of landmass. Over
the past few decades, wildfires due to drought have frequently occurred and caused loss
of biodiversity and natural forest ecosystems (Fuller et al., 2004; Vadrevu et al., 2019).
In recent years, monitoring and mapping drought-induced wildfires received greater at-
tention from the local universities and government institutions in the region. Nearly 14%
of the studies were dedicated to forest-related fires due to drought, focusing on various
aspects from wildfire risk assessment and forest fire mapping to hotspot analysis. How-
ever, drought-induced wildfire studies were focused primarily on Indonesia and Malaysia.
For example, Indonesia ranked first with forest-related drought with about 70%, while
Malaysia ranked second with 21%. The remaining countries received little research interest

in drought-induced forest fires despite their frequent wildfires.

High temperatures are highly related to forest fires, and this property can be retrieved
from thermal remote sensing. Hence, satellite-based thermal indices have been widely used
to derive forest fire information due to drought. In Southeast Asia, a large number of
drought-induced wildfires used thermal indices derived from MODIS and AVHRR sensors.
During El Nifio years, forests experienced more severe impacts, prompting an increase in
studies during these periods (Gutman et al., 2000; Parameswaran et al., 2004; Noojipady
et al., 2017; Siegert et al., 2001; Wooster et al., 2012,?). In Indonesia, forest fires were ob-
served frequently in peatland and oil palms (Miettinen et al., 2017; Noojipady et al., 2017,
Sloan et al., 2017; Lohberger et al., 2018). Drought-induced forest fires caused the loss of
large-scale forest areas. For example, during the El Nino events in 1997 and 1998, nearly

3 million hectares of forests were lost on the island of Kalimantan, Indonesia (Fuller et al.,
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2004). A recent study estimated nearly 107 thousand drought-induced forest fire hotspots
during the drought event in 2015 across Indonesia and Malaysia (Miettinen et al., 2017).

Regarding the sensors of forest fire measurements, some studies employed a multi-
sensor approach to detect forest fire events and hotspots (Noojipady et al., 2017;
Parameswaran et al., 2004; Fanin and Van Der Werf, 2017). Overall, thermal anomaly in-
dices and burnt products are frequently reported to be used to detect forest fire events, while
other studies employed a burned mapping approach to identify the spatial extent of affected
areas. For instance, Fanin and Van Der Werf (2017) estimated more than 4 million hectares
of forest burnt during the drought event in 2015 with an accuracy of 84% using Sentinel-1
data. In short, drought-induced forest fire studies in the study region are mainly derived
from multispectral remote sensing sensors (e.g., MODIS and Landsat), and thermal-based
indices and burnt mapping are the frequently used methods for monitoring and detecting

forest fire events.

3.2.6.4 Streamflow and water storage applications

Variations in surface water and streamflow can indicate hydrological drought. This pro-
cess usually takes an extended period of time (e.g., six months or years) and has a significant
impact on the environment and local economy. For example, lower lakes and rivers can di-
rectly affect agricultural production and hydropower plants. Although Southeast Asia lies
in the tropics and experiences a good rainfall rate, this region also suffers from hydrological
drought. Notably, a recent investigation revealed that the Lower Mekong Delta experienced
a decline in water surface in some parts of the Lower Mekong Delta from 2001 to 2017
(Aires et al., 2020).

Given the importance of water resources, several studies were dedicated to surveying
hydrology-related drought in Southeast Asia. It is observed that drought has caused signif-
icant variations in the surface water of the Tonle Sap Lake in Cambodia (Frappart et al.,
2018; Tanaka et al., 2003). Specifically, Erban and Gorelick (2016) estimated that nearly
96% of rice crops in Cambodia remained uncultivated during the dry season because of the
shortage of surface water. Optical remote sensing approaches have become more widely
used in monitoring and estimating the dynamics of water surface, including rivers, lakes,
and streamflow (Aires et al., 2020; Erban and Gorelick, 2016; Gu et al., 2021). In addi-
tion, recent studies have combined multispectral and microwave remote-sensing satellites
for estimating surface water, for example, the use of MODIS, GRACE, ENVISAT, and
TRMM (Frappart et al., 2018; Hidayat et al., 2017). In this regard, Pham-Duc et al. (2019)
employed MODIS, GRACE, and ENVISAT sensors to monitor the monthly dynamics of

surface and subsurface water in the Lower Mekong Delta and reported that maximum (min-

38



3.2 Results of the literature review

imum) surface waters were observed from July to August (March to April). Other studies
cross-validated the satellite-based datasets for monitoring hydrological drought. In Viet-
nam, Le et al. (2020b) used in-situ measurements to cross-validate eight satellite-based
precipitation datasets and found the CHIRPS potential for detecting hydrological drought.
Correlation analysis was also used to analyze the relationship between surface water varia-
tion and droughts and the El Nino Southern Oscillation Index (ENSO) (Fok et al., 2018).

Despite some efforts, there is still limited research on subsurface water variability due
to drought. Recent studies employed the GRACE dataset to monitor subsurface waters in
the region (Pham-Duc et al., 2019; Jing et al., 2020). They reported a slight decline in
water surface and subsurface water from 2003 to 2016, while the GRACE has potential
for subsurface water monitoring. Also, little effort has been made to estimate hydrological
drought using machine learning and deep learning. Future research should be prioritized to

monitor and predict the hydrological drought given the increasing global climate crisis.

3.2.6.5 Drought-induced land use change

Land use changes and human activities can intensify drought conditions by degrading
soil and vegetation. This degradation reduces crop productivity and results in higher costs
for restoration and agricultural management. In Southeast Asia, increasing drought condi-
tions can influence land use patterns and ecological ecosystems. For example, prolonged
droughts have increased the frequency of forest fires across the region (Taylor et al., 1999).
With the ongoing climate crisis, droughts can quicken the rate of land desertification and,

therefore, threaten agricultural sectors.

Land-use-related drought studies received less attention in Southeast Asia during the
study period. Only 9.5% of the studies during this period investigated the impacts of drought
on land use patterns or related topics. Vietnam and Indonesia witnessed more studies on
this topic (Tran et al., 2019b; Hien et al., 2019; Tran et al., 2019a; Phan et al., 2020; Tran
et al., 2019c; Le et al., 2020a; Nita et al., 2020). For example, Hien et al. (2019) used cli-
mate and environmental data and estimated that nearly 35% of coastal parts of Binh Thuan
province could experience desertification. This study also projected that the desertified area
could reach nearly 140 thousand hectares by 2050. It is observed that MODIS and Landsat
satellite sensors have been widely used to investigate land use-drought relationships in the

region.
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3.2.7 Meteorological drought

A lack of precipitation over a short period is usually considered a meteorological
drought, which triggers other types of droughts. In Southeast Asia, meteorological drought
studies mainly investigated precipitation-based drought and assessed their accuracy among
different datasets. Most of these studies were conducted in Indonesia (~ 30%), and Thai-
land and Vietnam ranked second with 15% each. Other countries had a lower number of
studies investigating meteorological drought. However, it is observed that nearly 70% of

these studies were conducted in the MSEA region.

A wide range of precipitation datasets, both satellite-based and reanalysis products, have
been created to support drought monitoring and characterization, and these datasets have
different spatial and temporal resolutions and accuracy (Tian and Peters-Lidard, 2010; Sun
et al., 2018). For this reason, some studies in the region cross-validated the accuracy of
satellite-based precipitation for deriving drought information. Vu et al. (2018) used five
different precipitation datasets to monitor drought, and they reported a higher accuracy
obtained from Global Precipitation Climatology Center (GPCC) data. Other studies re-
ported higher accuracy of drought information derived from the Tropical Rainfall Mea-
suring Mission (TRMM) in Singapore and Malaysia (Tan et al., 2018, 2017). In Indonesia,
Kuswanto and Naufal (2019) employed TRMM and Modern-Era Retrospective analysis for
Research and Applications (MERRA-2) to estimate meteorological drought and found that
the MERRA-2 had higher accuracy than its counterpart.

Regarding precipitation-based drought methods, the SPI was the most frequently used
drought index to derive meteorological drought information in Southeast Asia, followed by
the SPEI. Dimyati et al. (2024) derived the SPI from Climate Hazards Group InfraRed Pre-
cipitation with Station (CHIRPS) data and reported that meteorological drought occurred
before the agricultural drought in Indonesia. One major limitation of using satellite-based
precipitation data is coarse spatial resolution. For example, the CHIRPS has a spatial resolu-
tion of 5 km, while the spatial resolution of TRMM-based data is ~ 28 km. This resolution
may not be sufficient to monitor and characterize drought conditions at field scale. In short,
there are still limited drought studies using satellite-based precipitation time series. The
SPI and SPEI were two primary precipitation-based drought indices in the region. Despite
their large-scale area and frequent observations, cross-validation and spatial enhancement

should be focused on to ensure the quality and accuracy of the drought products.
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3.3 Discussion and future directions

Southeast Asia witnessed a significant increase in satellite-based drought studies over
the past 21 years. However, these studies were unevenly distributed among the countries.
Nearly 70% of the studies were undertaken in four countries (Vietnam, Thailand, Indone-
sia, and Malaysia). This is likely due to frequent droughts and the availability of research
funding in these countries. For example, Indonesia reported 22 mega-drought events, which
affected nearly 8 million people from 1966 to 2021 (Ha et al., 2022). Likewise, Venkatappa
et al. (2021) revealed that rainfed cropland in Thailand and Cambodia has been more vul-
nerable to drought than other countries. Despite the increase in drought studies, nearly 50%
of the corresponding authors come from outside Southeast Asia. Notably, seven drought
studies in Cambodia were not associated with Cambodian universities or institutions. This
trend could be due to the lack of internal funding opportunities and technical expertise.
Gerke and Evers (2006) reported a growing reliance on foreign institutions for science
and research. Given the increasing climate crisis, strong collaboration is expected to boost

drought research in the region.

Environmental satellites have been in orbit for nearly 50 years (Wulder et al., 2022), but
only a handful of studies have investigated long-term drought conditions (e.g., > 30 years)
in Southeast Asia (Figure 3.11). Data quality, cloud cover, and technical expertise could be
the main challenges in deriving long-term drought information in the region. Although the
Landsat program opened its data archive from the 1970s to the present, early Landsat scenes
had lower quality and less frequent observations of the land surface. In Southeast Asia,
cloud cover significantly pollutes optical remote-sensing scenes (Li et al., 2018a). This
limits the production of long-term drought products in the region. Furthermore, monitoring
drought conditions over large-scale areas using long-term time series data requires high-

performance computing platforms, which may be challenging in some countries.

Despite the growing number of drought-related publications, there has been a notable
absence of studies focused on developing new drought indices in the region. All the stud-
ies employed existing drought indices derived from satellite-based time series or multi-
temporal data to report drought conditions, such as drought severity. It is also observed that
no studies have been reported to derive drought characteristics from optical remote sensing
time series in the region. Some other studies reported drought characteristics at local and
national scales based on non-satellite and reanalysis data (Le et al., 2019; Zhao et al., 2022;
Khalil, 2020). In recent years, several studies reported flash drought, which lasts only a
few weeks but profoundly impacts agriculture. In Southeast Asia, this drought has rarely
been reported. Among various thematic applications, agriculture-related drought gained the

most attention, likely due to extensive cropland in the region. Several studies were dedicated
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to surveying vegetation-based drought, especially in Thailand, but little research has been
done to assess the response of vegetation-based drought to other drought types in consid-
eration of land cover types and elevation characteristics. Specific-crop drought impacts and
assessments have rarely been undertaken across Southeast Asian countries. A lack of de-
tailed crop type classification could be the main reason preventing the implementation of

local and transnational studies on crop drought sensitivity assessment.

Cross-validation of remote sensing products serves as critical information in the
decision-making process regarding drought mitigation and planning. Map uncertainties can
give users the confidence to make timely, more accurate decisions. However, nearly 21% of
the studies did not report drought mapping accuracy in Southeast Asia (Figure 3.9). Collect-
ing in-situ measurements for cross-validation would be the main challenge in this region. It
is observed that there has been no publicly available collection of station-based climate time
series datasets in the region. In addition, there is no standard framework for cross-validating
drought products in the region. Most studies used precipitation-based drought indices (e.g.,
SPEI and SPI) to cross-validate the derived drought products. For this reason, this study
called for establishing a regional data-sharing platform of publicly accessible station-based

climate data and a standard framework for drought cross-validation.

Agriculture is the main contributor to Southeast Asian economies, and this sector is
probably the most affected by drought. Crops (e.g., rice) in this region require regular wa-
ter, and crop fields are usually small and segmented. Hence, providing timely and detailed
drought information requires high spatial and temporal resolutions. Despite the growing
EO missions, acquiring weekly or monthly cloud-free drought time series from optical re-
mote sensing is still challenging. A more advanced approach should be implemented to
generate frequent and high spatial drought information. For example, the combined use of
multi-satellite sensors and downscaling products would potentially overcome this limitation
(Claverie et al., 2018; Hao et al., 2015; Jiao et al., 2021). Nguyen et al. (2020) integrated
the harmonization of Landsat and Sentinel-2 collections to monitor the variability of crop-
land in the drought-prone regions of Vietnam and Lebanon. In addition, recent microwave
EO missions can deliver daily and weekly climate and soil moisture measurements. Such
datasets can offer critical insights into agricultural drought monitoring and assessment. Sev-
eral studies recently explored such sensors, such as SMAP, to monitor agricultural drought
in mainland Southeast Asian countries (Li et al., 2022b; Lakshmi et al., 2023; Le et al.,
2022). The integration of multi-sensors together with a downscaling approach would pro-
vide new opportunities for monitoring and characterizing drought conditions at fine spatial

and temporal resolutions.
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3.4 Summary

This study presented a detailed analysis of 102 satellite-based drought studies in South-
east Asia available from the Web of Science and Scopus academic platforms from 2000 to
2021. The review covered various aspects of drought studies using earth observation data in
the region, including geographical studies, satellite sensors, drought indices, and thematic
drought applications. The number of satellite-based drought articles in the study region
witnessed a significant increase over the study period, and Vietnam and Thailand had the
largest drought articles, accounting for nearly 40%. Nearly half of the articles employed
optical remote sensing, while microwave remote sensing was less frequently used, and the
harmonization of Landsat and Sentinel data for drought monitoring remains unexplored.
Most studies focused on monitoring drought conditions using single vegetation-based or
precipitation-based drought indices. There have been no studies offering spatial details of
drought characteristics derived from optical sensors. Also, the application of machine learn-
ing and deep learning in drought detection to improve early warning systems and mitigation
planning has received little attention. Regarding the accuracy assessment, about 22% of ar-
ticles did not report accuracy assessment information for drought mapping. While there has
been a rise in time-series drought remote sensing, long-term measurements remain limited,
highlighting the need for multi-sensor data fusion to create longer time-series observations.
Also, there is a clear link between the spatial resolution of drought maps and the extent
of study areas. More than half of the studies focused on local-scale drought monitoring,
while nearly 64% of maps were produced at a resolution of 1 km or above. Thematic ap-
plications of drought studies also show a significant discrepancy, with agricultural and veg-
etative droughts being the most addressed (58%). Soil moisture and crop-specific drought

monitoring remain underrepresented.
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Chapter 4

A monitoring framework of drought

characteristics from vegetation data*

4.1 Input data

This chapter employed a wide array of datasets collected at different spatial resolutions
for monitoring and mapping drought characteristics across the MSEA region from 2000 to
2021. The primary datasets include temporal MODIS, CHIRPS, and ESA CCI land cover
products. The MODIS and CHIRPS data were composited in monthly time series from 2000
to 2021, while the annual land cover data were readily available from 2000 to 2020. Given
their different spatial and temporal resolutions, these datasets are harmonized to ensure
consistency. In this chapter, the MODIS 1 km spatial resolution was used as the primary
data source, and other datasets were resampled to 1 km spatial resolution and converted to a
geographic coordinate system. All of these data were accessed and partly processed through
the Google Earth Engine (GEE) cloud computing platform (Gorelick et al., 2017). This
section is organized into three parts to describe the MODIS satellites, land cover products,

and climate data.

4.1.1 MODIS NDVI time series

MODIS is a key earth-observing instrument aboard the Terra and Aqua satellite sensors,
covering 36 spectral bands (0.4 — 14.4 um) of the electromagnetic spectrum. Both satel-
lites have been designed in polar-orbiting and collected spectral information at different
temporal frequencies, ranging from daily, eight days, to 16 days. The Terra satellite was
launched by NASA in December 1999 and collected data in the morning local time at the

equator, while the Aqua sensor was launched in May 2002 and collected data in the after-

*This chapter is based in parts on Ha et al. (2023).
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noon. MODIS satellites collect the earth’s information at three spatial resolutions: 250 m,
500 m, and 1 km.

Since its launch in 1999, MODIS satellites have become an essential source of data
for monitoring and studying various aspects of environmental research, such as land cover
change, droughts, and ecosystem assessment. In recognition of this importance, the MODIS
Science Team has made great progress in producing different ready-analysis data products
derived from MODIS instruments aboard Terra and Aqua satellites. The main products
include radiation suite products (e.g., surface reflectance, surface temperature, and snow
cover), vegetation products (e.g., vegetation indices, LAI/FPAR, and NPP/GPP), and land
cover products (e.g., land cover change, forest fire, and vegetation cover conversion) (Didan
et al., 2015). These products have been widely used to survey all types of environmental

issues, from drought to global environmental change.

Among the MODIS-based derived products, the NDVI is one of the most used indices
for monitoring regional and global ecosystems. There are multiple MODIS NDVI versions
produced at spatial resolutions at 250 m, 500 m, and 1 km. This chapter used the latest
MODIS NDVI version (6.1) from Terra and Aqua sensors to derive high spatiotemporal
drought characteristics from 2000 to 2021. The NDVI version 6.1 collection is produced
from georeferenced, radiometric, and atmospheric correction MODIS red and near-infrared
reflectance at a 16-day frequency and 1 km spatial resolution. Each 16-day NDVI composite
is selected from “highest quality” observations of a 16-day period using the maximum
value composite method (Didan et al., 2015). The NDVI measures the proxy greenness
of vegetation ecosystems and can be calculated from the normalized transformation of the
near-infrared band to the red band. The specific calculation of the NDVI can be expressed

as the following equation (Eq. 1).

NIR — RED
NDV]=— —— (1)
NIR+RED

Where NDVI is the normalized difference vegetation index, the NIR represents near-

infrared, while RED indicates the red band of the electromagnetic spectrum.

4.1.2 ESA CCI land cover

This study employed ESA CCI land cover and land use products from 2000 to 2020
at 300 m spatial resolution. This dataset is produced annually on a global scale by the
ESA CCI program together with various scientific research institution partners. The MERIS

satellite spectral composites are the main input data for producing the ESA CCI land cover

46



4.1 Input data

products in addition to other sensors (e.g., SPOT and PROBA-V). The combination of the
state-of-the-art unsupervised and supervised classification (e.g., Random Forest) machine
learning algorithms is used to generate consistent and continuous observations of the ESA
CCI land surface types (Li et al., 2018b). These datasets are produced in epochs to en-
sure the stable and dynamic components of the global land cover surface (Bontemps et al.,
2012). Each epoch represents five years (e.g., 1998-2002, 2003-2007, and 2008-2012). This
approach ensures that every land cover pixel has multiple cross-verifications with several-
year observations to minimize potential classification errors. The overall accuracy of the
ESA CCI land cover products exceeded 75%, and the highest user accuracy values were
reported in some specific land cover types, such as rainfed cropland, evergreen forests, and

irrigated cropland (Bontemps et al., 2012).

The original ESA CCI land cover products were defined and classified into 37 land cover
classes. However, this chapter reclassified the original classification scheme into six land
cover types: rainfed cropland, irrigated cropland, shrubland, mixed forest, evergreen forest,
deciduous forest, and other types (e.g., water bodies, bare land, and built-up areas). This
section also resampled the original land cover data at 300m to 1 km spatial resolution based
on the nearest neighbor method. The spatial map of land cover and its corresponding area in
the MSEA region are presented in Chapter 2. Our stable land cover analysis indicated that
the MSEA region suffered from only 6% of land cover change over the past two decades
based on the ESA CCI land cover products 300 m spatial resolution. Also, recent studies
revealed significant forest loss and land use transformation over the past ten years. For
instance, Pauly et al. (2022) reported that the largest forest loss in Cambodia occurred from

2010 to 2014, while the early period witnessed stable land cover uses.

4.1.3 Precipitation and LST time series

Temperature and rainfall data were sourced from the MODIS LST and the Climate Haz-
ards Group Infrared Precipitation with Station (CHIRPS) products to assess the drought
observation results. The monthly LST data were extracted from the daytime MOD11A2
product (version 6.1) at 1 km spatial resolution spanning 2000 to 2021 using a mean value
composite approach. This product has been significantly enhanced against the previous
version in terms of calibrations, Terra infrared crosstalk adjustment, and polarization cor-
rections (Wan et al., 2021a). Cloud-contaminated LST values were excluded to retain only
clear-sky observations using the associated quality indicator band available in the MODIS
LST products. Consequently, any missing data were linearly interpolated using the nearest

neighbor measurements.
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In addition, this chapter utilized the long-term CHIRPS pentad dataset, which offers
near-global coverage at approximately 5 km spatial resolution from 1981 to the present.
This dataset is generated using infrared cold cloud duration data from multiple satellites,
such as TRMM and NOAA GridSat, and is further refined with station-based measure-
ments (Funk et al., 2015). In the MSEA region, CHIRPS has been shown to outperform
other satellite-based precipitation datasets (Dandridge et al., 2019). The CHIRPS data was
composited into monthly time series from 2000 to 2021 and upscaled to a higher spatial

resolution (1 km) using bilinear resampling.

4.2 Methodology

This section describes the detailed implementation framework of monitoring and charac-
terizing vegetation-based drought using MODIS time series from 2000 to 2021. The overall
workflow of the implementation approach is presented in Figure 4.1. The MODIS NDVI
time series was first interpolated from 16-day time series data. Subsequently, the gap-free
NDVI observations were composited into monthly measurements and reconstructed to re-
move any potential abrupt changes due to noise and outliers. This helps to maintain the re-
liable temporal curve of vegetation growth. Next, this analysis calculated the monthly VCI
time series over the study period for drought analysis. Finally, different drought character-
istics are investigated across the MSEA region, while the identification of severe drought
years was proposed. Also, drought conditions were examined across various timescales,
including monthly, seasonal, and annual periods. The final analysis cross-verified the relia-

bility of VCI-based drought conditions against precipitation and temperature.

The organization of this section begins with the reconstruction of the NDVI time series
(Section 4.2.1), followed by the computation of the VCI time series (Section 4.2.2). The
next section is dedicated to spatial and temporal analysis of drought characteristics (Section
4.2.3), while Section 4.2.4. studied the spatial trends of the time series VCI-based drought
over the past 20 years. The last section (Section 4.2.5) concerns the cross-verification to

ensure the reliability of vegetation-based droughts.

4.2.1 Reconstruction of satellite-based vegetation time series

The continuous and consistent drought observations require gap-free and clear-sky mea-
surements of remote sensing acquisitions. However, the MSEA region falls in the tropics
and often suffers from cloud coverage. In this study, both sensors are employed to densify
clear-sky time-series NDVI measurements. Figure 4.2 shows the spatial variations of cloud

cover across the MSEA region from 2000 to 2021. Overall, large areas of the MSEA region
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Figure 4.1: Overall workflow of drought monitoring and characterization from data pre-processing
to cross-verification. This figure is adapted from a study by Ha et al. (2023).
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suffered from frequent cloud contaminations. If a single sensor is used (Figure 4.2 a-b),
cloud cover is observed more frequently in the Mekong Delta (~ 50%), northern Vietnam
(~ 30%), and nearby Bangkok (~ 40%). The combination of both sensors demonstrated a
significant increase in cloud-free observations (Figure 4.2-c). For example, the percentage
of cloud cover dropped by nearly 10% in Thailand and Vietnam after the combination (Fig-
ure 4.2-d). Notably, the largest presence of cloud cover is detected from June to August,
and this means there would be more significant data gaps during this period (Figure 4.2-d).
These persistent clouds and shadows pose a major challenge to monitoring and assessing

the optical remote sensing of drought measurements.

Many existing studies have used raw time-series remote sensing measurements or se-
lected certain cloud-free images (e.g., Landsat and MODIS) to generate drought indices
(Laosuwan et al., 2016; Tran et al., 2017; Rotjanakusol and Laosuwan, 2018). Although
this method is simple and fast for delivering drought information, persistent clouds in the
optical remote sensing data across the tropics impede the continuous and consistent deriva-
tion of accurate drought information. Reconstruction of time-series measurements is there-
fore essential to minimize noise, produce gap-free pixels, and enhance drought indices. In
this study, the NDVI observations are linearly interpolated and composited in a monthly

window and subsequently reconstructed using the Savitzky—Golay (SG) filter method.
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Figure 4.2: Spatial variability of cloud cover across the MSEA region observed from Terra sensor
(a), Aqua sensor (b), and combined Terra and Aqua sensors (c). The bar plot displays
the percentage of monthly cloud pixels over the study period (d).

A simple linear interpolation is applied for the NDVI time-series observations from 2000
to 2021. This method involves producing an estimated value for a missing measurement
using the nearest preceding and succeeding NDVI observations (Chen et al., 2004). The

basic equation of the linear interpolation can be expressed as follows (Eq. 2):

(t—1)

2
(=1 2)

y=y1+2—x)
Where 7y is the interpolated NDVI value at the time t, and y; and y, are the closest
preceding and succeeding NDVI at the time 71, 1,.

The NDVI data was subsequently composited in a monthly window using the median
value composite method (MVC). It is noted that there are many temporal composite ap-
proaches with a fixed length, such as mean and maximum value composites, but the MVC
was more stable and robust to outliers (Ruefenacht, 2016). A total of 263 monthly NDVI

composite images are available over the study region from 2000 to 2021. Because of poten-
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tial persistent clouds and the interpolation effects, the time-series NDVI observations may
likely contain noise. Thus, this section further employed the SG filter for reconstructing
the monthly NDVI measurements from 2000 to 2021. The SG filter is considered the most
widely used method (Vaiphasa, 2006) because it can preserve the temporal curve of the
NDVI data and produce better drought indices (Xie and Fan, 2021). The concept of the SG
method is to fit a polynomial least-squares equation in a local moving window to reconstruct
high-quality time-series measurements (Chen et al., 2004; Cao et al., 2018). This analysis
selected two key parameters required for the SG method, including the local window size
and the degree of polynomial orders. Finally, the parameters 2 and 5 for polynomial orders

and window size were selected, respectively.

4.2.2 Vegetation drought index

The NDVI has been widely used to detect drought conditions, vegetation stress, and crop
growth, but interpretive issues may arise when these results are extrapolated over heteroge-
neous land cover areas (Kogan, 1990; Bajgiran et al., 2008). This means the amount of veg-
etation can be attributed to differences in environmental conditions. In non-homogeneous
areas, for example, the NDVI has higher values in the areas with abundant resources (e.g.,
more favorable climate and soil) compared to the areas with less productive environmen-
tal conditions (Kogan, 1990). These differences are mainly due to weather and ecosystem
components. It is observed that the NDVI behaves differently under various climatic condi-
tions, and the weather-induced NDVI variations are not easily detectable due to the weaker
weather signal in the NDVI value compared to the ecological factors. Therefore, when the
NDVlI s used for monitoring weather impacts on vegetation, the weather component should
be eliminated from the ecological component (Kogan, 1990; Bajgiran et al., 2008). Thus,
the VCI was designed to enhance the weather-related components in the NDVI value (Ko-
gan, 1990). The weather-induced NDVI envelope was linearly scaled from zero for min-
imum NDVI to 100 for maximum NDVI value for each grid cell and month. The entire

procedure of the VCI is defined by the following expression (Eq. 3):

NDVI; — NDV I y;
VCI; = 100 l o (3)
NDVImaX _NDVImln

While NDVI; is monthly NDVI, NDV I,,x and NDV I,.,;, are the maximum and minimum
NDVI values, respectively, calculated for each grid pixel across the monthly period (12
months) using the entire NDVI record (2000-2021). In this study, VCI values are expressed
as percentages, ranging from 0 to 100, to represent vegetation varying from extremely poor

(indicative of drought) to optimal (non-drought) conditions. This chapter employed the
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drought classifications proposed by Kogan (1995a) and Dutta et al. (2015), and the VCI
values are reclassified into five levels of drought severity. A VCI between 50% and 100%
indicates normal, non-drought conditions, while values between 30% and 50% signify mild
drought. Moderate drought is defined by a VCI ranging from 20% to 30%, and values
below 20% indicate severe drought, with those under 10% representing extreme drought

conditions.
4.2.3 Spatiotemporal characteristics of drought

4.2.3.1 Identification of severe drought years

In this study, severe drought years were identified using the monthly VCI observations
for a total of 21 years (2000-2021). A severe drought year is defined as the annual percent-
age of extreme value pixels (VCI < 10) exceeding the long-term (21 years) average, while
this section also considered the extreme VCI severity over the same period. The annual

percentage of extreme pixels is identified by the following expression (Eq. 4):

£ (Y5) - 100%
M;

SDY,; = C))
Where SDY; and M; are the percentage of extreme pixels and number of months at year
1, respectively. The VCI; ; is the VCI value at month j in year 1 whereas N is the total valid

pixels in the region.

In detail, this study computes the percentage of extreme VCI value pixels across years
over the study period. These annual percentages are compared to the established baseline
averages. If the percentage of extreme VCI pixels in any specific year exceeds or is equal to
the baseline, that year is considered a severe drought year. It is assumed that other factors
(e.g., human activities) can influence VCI values. However, these impacts are often more
localized or gradual. Here, this approach relies on a long-term baseline. Therefore, any
significant deviation above this baseline is a strong indicator of a climatic hazard event,

making this approach a reliable tool for drought identification.

4.2.3.2 Characteristics of drought

The spatial characteristics of drought conditions are key to identifying the region of
drought vulnerability. Several methods have been proposed to detect drought character-
istics, such as Run theory and machine learning. The Run theory, originally introduced

by Yevjevich et al. (1967), is among the most commonly used methods for characterizing
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Figure 4.3: A schematic illustration of drought events and their characteristics using the VCI time
series. Dd is the duration of a drought event, while Ds is the severity of drought con-
ditions. The E1 means the drought event (E1 — E3). The dashed green line indicates
the threshold for defining drought conditions. VCI values below 50% are considered
drought, while those above 50% are considered non-drought. The “start” and “end” in-
dicate the initiation and termination of a drought event, respectively.

drought events (Guo et al., 2018a; Raposo et al., 2023). This approach defines a drought
event as a period of VCI values that falls below the pre-defined thresholds. Figure 4.3 shows
the determination framework of drought events and their characteristics from satellite-based

vegetation time series.

This study identified four main characteristics of drought in each grid cell from 2000
to 2021: number of drought events (E), latest drought year (T), drought frequency (F),
and drought duration (D). These characteristics are frequently identified in meteorological
drought studies (Guo et al., 2018a; Le et al., 2019). The number of drought events (E)
reflects the drought conditions with a continuous consecutive VCI below a given threshold
value for at least three months, while the drought duration (D) is the simple average length
of drought months from 2000 to 2021. The drought year (T) represents the latest year with
the maximum number of consecutive drought months, and the drought frequency (F) is the
total number of drought events identified over the selected study period. In this study, a
drought episode is defined as a continuous VCI value less than 50 because a persistent low-
intensity drought condition can have a considerable effect on local agriculture, vegetation
vigor, and the environment and can be helpful for an early warning system (Venturas et al.,
2016; Guo et al., 2018a).
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4.2.4 Analysis of time series drought trends

Numerous studies have employed parametric and non-parametric methods for detect-
ing land surface trends from time-series remote sensing measurements (Mao et al., 2012;
Branco et al., 2019; Xu et al., 2020; Damberg and AghaKouchak, 2014). The paramet-
ric methods are considered more statistically significant than non-parametric tests, but the
data are assumed to be normally distributed, independent, and continuous (Liu et al., 2016;
Wessels et al., 2012). In practice, time series vegetation observations are known for auto-
correlation and non-normality (de Jong and de Bruin, 2012; Horion et al., 2014). Therefore,

non-parametric methods are preferred to overcome these limitations.

In this study, the Mann-Kendall (MK) test combined with Sen’s slope estimator is em-
ployed for detecting the significance of interannual drought trends over the two main grow-
ing seasons, summer (rainy) and winter (dry), from 2000 to 2021. This method was de-
veloped by Mann (1945) and Kendall (1948), and this approach became a widely used
non-parametric test in climatology studies due to its robustness to non-normality and miss-
ing values (Guo et al., 2018a). The MK significance test identifies the strength and direction
of a trend, whereas the magnitude of the slope is measured by means of Sen’s slope method
(Guo et al., 2018a). The detailed calculations of the MK test and Sen’s slope methods have
been well-documented in previous studies (Gajbhiye et al., 2016; Gii¢lii, 2018). In this
chapter, the drought trends are detected at a significant level of o < 0.05, where a positive

(negative) slope indicates a significant increase (decrease) in drought conditions.

4.2.5 Cross-verification of drought conditions

The reliability of drought products plays a key role in drought monitoring and manage-
ment at local and national levels. In practice, in-situ climatic factors are considered the most
reliable for cross-validating drought conditions. However, in the MSEA region, collecting
climate in-situ measurements is challenging, if not even possible. This study, therefore,
cross-verified the VCI results using the monthly CHIRPS and MODIS LST products. The
LST observations are transformed to the temperature condition index (TCI) based relative
to the maximum and minimum temperatures, which reflects different vegetation responses

to thermal canopy temperature (Kogan, 1995a).

Pearson correlation coefficient (R) and visual comparison were employed to examine the
relationship between drought conditions and climatic factors. This study computed monthly
correlation coefficients between the VCI and LST data for different land covers across the
region at a significant level of @ < 0.05. The R-value ranges from -1 to 1, with a higher

absolute R-value indicating a stronger correlation between drought and LST. The monthly
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precipitation anomalies were temporally compared with the VCI results for different land
covers from 2000 to 2021.

4.3 Results

4.3.1 Reliability of VCI-based drought conditions

Among the climatic factors, vegetation growth is highly sensitive to precipitation and
temperature. Climate change can influence vegetation ecosystems’ growth; in extreme
cases, vegetation and crops can suffer from failure. A lack of rainfall causes surface mois-
ture stress, while the high temperature generates thermal pressure for vegetation growth.
Therefore, they can be reliable for cross-verifying the sensitivity of the VCI for drought
monitoring. Figure 4.4 showed the temporal variability of correlation coefficients between
the VCI and temperature from 2000 to 2021 across the MSEA region. In contrast, the vi-
sual comparison of the VCI and precipitation anomalies was presented in Figure 4.5 over

the same period.

The monthly correlation coefficients (R) between the VCI and TCI were calculated to
determine the relationship between VClI-based drought conditions and temperature under
three main land cover types (cropland, forestland, and shrubland). Overall, a negative corre-
lation existed between the VCI and TCI in the vegetative areas (Figure 4.4), but these corre-
lation coefficients are characterized by the dry and rainy season variations in the study area.
A negative correlation between the two datasets suggests that increased temperatures (drier
conditions) are associated with the decline of the VCI (increased vegetation stress). This
finding was aligned with the observation in the study of Son et al. (2012). Notably, higher
absolute R values were mostly observed during the dry seasons, especially from January
to March, while the wet seasons witnessed lower R values, between July and September.
The temporal similarity of the R-value pattern was found across the land covers, but the

cropland had higher absolute R-values in most cases (Figure 4.4).

The VCI results were also compared to the precipitation anomalies for the three main
land cover types. Although there were discrepancies among the land cover types, the vi-
sual comparison indicated a good temporal agreement between the VCI and precipitation
anomalies over the selected period (Figure 4.5). The closest agreement was observed in
cropland, and the decline of VCI values was reflected in years of precipitation deficits (e.g.,
2005, 2010, 2016, and 2019). In forest and shrub areas, the precipitation deficits were also
followed by VCI variability, but this trend was temporally variable and not as strong as
in cropland. For example, low precipitation in 2019 and 2020 can be considered a me-

teorological drought. However, these years were classified as non-drought, although the
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Figure 4.4: Correlation coefficients of monthly VCI and TCI across three main land cover types (a)
cropland, (b) forests, and (c) shrublands over the MSEA region from 2000 to 2021.

forestland/shrubland VCI values decreased (Figure 4.5 b-c). These variations are likely at-
tributed to the distinct sensitivity of forests and shrublands to drought conditions. Recent
studies have demonstrated that in contrast to croplands and grasslands, forests and shrub-
lands likely exhibit greater resilience and resistance to drought stress and other disturbances
(Wei et al., 2022; Xu et al., 2018). Overall, the VCI values pattern is closely linked to the

precipitation anomalies over the selected study period.
4.3.2 Spatial variability of monthly and annual VCI-based droughts

4.3.2.1 Long-term monthly drought conditions

Drought conditions exhibited significant spatial and temporal variability throughout the
study period. Figure 4.6 displayed the spatial variability of the VCI-based drought con-
ditions from January to December across the MSEA region from 2000 to 2021. On aver-
age, the monthly VCI values fluctuated between 55% and 62% across the region. The dry
months witnessed lower VCI values (severe drought), while the rainy months experienced

higher VCI values, indicating greener vegetation. For example, the analysis indicated that
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Figure 4.5: Temporal variations of the VCI and precipitation anomalies across three main land cover
types (a) cropland, (b) forests, and (c) shrubland over the MSEA region from 2000 to
2021. The colors represent drought (dark red) and non-drought (green).

the lowest VCI values were found in February and March, while the largest VCI values were
observed from July to October. Laos had the highest VCI values across the months (VCI =
61%), while Thailand and Vietnam experienced lower VCI values (VCI = 56%). Despite its
temporal variability, Central Myanmar, parts of Cambodia, and Thailand experienced the
lowest VCI values. These areas are likely more vulnerable to drought as vegetation experi-
ences more stress and declines. Central Myanmar witnessed the lowest VCI values in April.
It is estimated that nearly 40% of the country had VCI values below 50% this month. In
comparison, Cambodia experienced the largest drought in February, accounting for nearly

55% of the country.

4.3.2.2 Drought conditions during the dry season

During the dry season, the VCI maps revealed distinct patterns and variability from 2000
to 2021. Lower VCI values were consistently observed across the study area (Figure 4.7).
The lowest VCI values were observed in 2004, 2005, 2007, 2010, 2016, and 2020, and
these years witnessed the VCI values below 50% across the study region. It is estimated

that nearly 40% of the study area frequently experienced lower VCI values (VCI<< 50%)
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Figure 4.6: Spatial variability of monthly VCI-based droughts from 2000 to 2021 across the MSEA
region.

during the dry season. Spatially, the lowest VCI values were observed in eastern Thailand
and central Thailand in 2005 and 2010, respectively, while nearly entire Myanmar suffered
from low VCI values in 2010. Northern Vietnam had low VCI values in 2004 and 2007
(Figure 4.7). Statistically, Thailand witnessed the lowest VCI values in 2005, with VCI =
~ 20%, while 2017 had the highest VCI values (67%). Myanmar had the lowest VCI values
in 2010, with VCI =~ 27%. Other remaining countries had the lowest VCI values in 2005,
ranging from 28% to 30%. In contrast, some years witnessed high VCI values, such as in
2017 and 2018. Thailand and Myanmar had the highest VCI values in 2018 (VCI = 67%)
and 2017 (VCI = 69%), respectively. In comparison, Cambodia had the highest VCI values
in 2000 (VCI = 67%), while this number in Laos was found in 2023 (VCI = 68%).

Regarding the temporal drought and non-drought analysis, Figure 4.8 showed the tempo-
ral percentage of VCI-based drought and non-drought conditions across the MSEA region

during the dry season from 2000 to 2021. Overall, the non-drought extent was often larger
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Figure 4.7: Spatial variability of VCI-based drought conditions during the dry season from 2000 to
2021 across the MSEA region.

than the drought extent. For example, nearly 60% of the study region experienced non-
drought conditions (non-stress vegetation) from 2000 to 2003 (Figure 4.8), and this pattern
was also seen from 2011 to 2021. More than 80% of the region was considered non-drought
in 2017 and 2018. In some years, there was a larger extent of drought. The largest drought
conditions were observed in 2005 (~ 82%) and 2010 (~ 72%), while the lowest was de-
tected in 2017 (~ 12%) and 2018 (~ 16%). Droughts occurred in 30 to 50% of the region

in other years; in some cases, drought affected less than 20%.

Apart from regional drought and non-drought analysis, Figure 4.9 displayed the pro-
portion of drought extent across the examined countries over the study period. Thailand
suffered from the largest drought extent in 2004, accounting for nearly 80% of the country.
In 2007, nearly 76% of this country also suffered from drought (Figure 4.9). Laos suffered
from the largest drought extent in 2010 and 2020, accounting for 64% and 67% of the
country. Cambodia experienced the largest drought in recent years. In 2020, nearly 82% of
the country suffered from drought conditions. The largest drought extent in Vietnam was

found in 2004, with 74% of the country affected. In recent years, Vietnam suffered the low-
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Figure 4.8: Temporal percentage of VCI-based drought and non-drought areas (in pixel unit) across
the region during the dry season from 2000 to 2021. The drought conditions are defined
as VCI values below 50%.

est drought proportion among the examined countries. By contrast, in the early 2000s, this
country had the largest drought proportions. This observation contrasts Cambodia, where
drought conditions occurred less in the early 2000s. For example, nearly 80% of the country
had non-drought conditions during this period (Figure 4.10). Notably, Laos had high pro-
portions of non-drought (healthier vegetation) across the study years. Likewise, Myanmar
also experienced high proportions of non-drought conditions based on VCI values during
the study period. In 2018, this country had the largest non-drought areas (~ 90%) among
the examined countries. By contrast, this country’s lowest proportion was observed during
the dry seasons of 2009 and 2010. Also, it was hit hard in 2005; nearly 90% of the country
was affected by drought.

4.3.2.3 Drought conditions during the rainy season

Figure 4.11 revealed spatial variability of VCI-based drought conditions from 2000 to
2021 despite the rainy season. The lowest VCI values were observed in 2004, 2005, and
2010, and these years witnessed VCI values below 50% across the study region. Spatially,
the lowest VCI values were observed in eastern Thailand and central Myanmar, while Cam-
bodia and Vietnamese Central Highlands suffered from lower VCI values in recent years.
Generally, the countries’ VCI values during the rainy season were higher than in the dry
season. Thailand witnessed the lowest VCI values in 2004, with VCI = ~ 41%, while 2021
had the highest VCI values (68%). During the rainy season, the lowest VCI values in Cam-
bodia were nearly two times higher than in the dry season, at 51% in 2020. The highest VCI
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Figure 4.9: The percentage of annual drought conditions across the countries from 2000 to 2021
during the dry season. The drought condition is defined as VCI values below 50%.
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Figure 4.10: The percentage of annual VCI-based non-drought conditions across the countries from
2000 to 2021 during the dry season. The non-drought condition is defined as VCI
values above or equal to 50%.

values were primarily found in 2017 and 2018 across the countries, but Laos and Myanmar
had the largest VCI values in 2021 and 2011, respectively. On average, the region had a
VCI value of 57%, and Laos had the highest VCI value (~ 59%) among the countries.

Figure 4.12 showed the temporal extent of VCI-based drought and non-drought condi-
tions over the study period. Overall, higher non-drought extents were primarily observed

across the region. Recent years witnessed a lower extent of drought, while there was an
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Figure 4.11: Spatial variability of VCI-based drought conditions during the rainy season from 2000
to 2021 across the MSEA region.

increase in the extent of non-drought conditions. The highest proportion of drought extent
was detected in 2004, 2005, and 2010, accounting for nearly 50% of the region affected.
Other years witnessed between 20% and 40% of the region affected by drought. The least
affected years were observed in 2008 and 2011, affecting under 20% of the region.

Figure 4.13 displayed the proportion of drought extent across the examined countries
during the rainy season. Like the dry season, Thailand suffered from the largest drought
extent in 2004, accounting for nearly 66% of the country. In 2005, nearly 58% of this
country also suffered from drought (Figure 4.13). Laos suffered from the largest drought
extent in 2019 and 2020, accounting for 48% of the country. Cambodia experienced the
largest drought in 2020, affecting 47% of the country. The largest drought extent in Vietnam
was found in 2005, with 56% of the country affected. Myanmar had the largest drought
extent during the rainy season in 2010, affecting 52% of the country. Cambodia and Laos
suffered a larger drought proportion in recent years among the examined countries. During
the rainy season in 2019 and 2020, nearly 50% of these countries suffered from drought
conditions. By contrast, in the early 2000s, Vietnam and Thailand had the largest drought
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Figure 4.12: Temporal percentage of VCl-based drought and non-drought areas (in pixel unit)
across the region during the rainy season from 2000 to 2021. The drought conditions
are defined as VCI values below 50%.
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Figure 4.13: The percentage of annual VCI-based non-drought conditions across the countries from
2000 to 2021 during the rainy season. The non-drought condition is defined as VCI
values above or equal to 50%.

proportions. For example, above 55% of these countries suffered drought in 2004 and 2005.
These countries suffered significantly from drought in 2010, affecting more than 50% of
their landmass. In 2012, Myanmar led the region, with nearly 47% of the country affected
by drought. Generally, the proportion of drought based on VCI tended to get reduced despite

its variability across the years.
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Figure 4.14: The percentage of annual VCI-based non-drought conditions across the countries from
2000 to 2021 during the rainy season. The non-drought condition is defined as VCI
values above or equal to 50%.

Regarding the extent of non-drought, Figure 4.14 illustrated the annual percentage of
non-drought during the rainy season from 2000 to 2021. Overall, larger proportions of
non-drought (healthier vegetation) were observed across years and countries. Over the past
ten years, a higher proportion of non-drought areas were detected. The highest proportion
of non-drought was detected in 2018, above 75%. Before 2010, Cambodia and Laos had
higher proportions of non-drought, indicating healthier vegetation during this period. How-
ever, this trend has reversed in recent years, when a lower non-drought extent was observed.
This observation contrasts with Thailand and Vietnam. These countries have experienced
less drought in recent years and have been covered by more than 70% of healthier vegeta-
tion (non-drought). Among the examined countries, Thailand had the largest proportion of
non-drought in 2018 and 2021. Vietnam also experienced non-drought in 2013 and 2021.
Approximately 72% of the country had VCI values above 50% these years. Similarly, in
2011, Myanmar had the largest non-drought extent, at 82%. Overall, drought conditions
were less intensive during the rainy than during the dry season. Higher proportions of non-
drought were primarily found in Thailand, Myanmar, and Vietnam over the past five years.
By contrast, higher proportions of non-drought were detected in Cambodia and Laos in the
early 2000s. Laos had the largest proportion of non-drought regardless of temporality, while
Thailand had only 63%.
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4.3.3 Temporal evolution of VCI-based drought by land cover types

Specific characteristics of different land cover types can influence the evolution and
severity of drought conditions. Different vegetation types have different root systems and
ability to access water. For example, rainfed crops may respond more to drought than ir-
rigated crops. Figure 4.15 showed the monthly evolution of VCI-based drought conditions
across six regional land cover types from 2000 to 2021. Overall, drought severity differs
across land cover types, but the lowest VCI values were observed in 2005. Among the
land cover types, rainfed cropland suffered from the most severe drought in 2005, with the
VCI value reaching below 25%. Mixed forest and deciduous forests also experienced se-
vere drought-induced stress during this period. Notably, the deciduous forests experienced
drought-induced stress in recent years, such as 2019 and 2020. Among the forest types,
evergreen forests suffered from the least drought. It can be seen that there was no indication
of drought conditions in evergreen forests after 2010. In shrubland areas, droughts were
visible in 2005 and 2010 (Figure 4.15), but other years were considered non-drought con-
ditions. Regarding the VCI-based severity variations, irrigated cropland experienced fewer
variations in drought severity across the study period, indicating stable growth and less
drought influence. In contrast, other land cover types had higher fluctuations, indicating
the stronger influence of drought. Despite the differences in severity, all land cover types
followed similar temporal patterns, suggesting that while the intensity of drought impact

varied, the timing of drought events was consistent across the landscape.

Drought conditions might vary significantly between countries due to differences in agri-
cultural practices and human activities. In some countries, advanced irrigation systems and
sustainable agricultural practices can mitigate the impacts of drought. In contrast, rainfed
agriculture and unsustainable land use practices in other countries can exacerbate drought
vulnerability. In Thailand, rainfed crops accounted for a large part of its agricultural sec-
tor and suffered from drought conditions. Generally, there was a temporal drought pattern
across land cover types over time, but with different severity levels. In 2005, all land cover
types experienced drought (Figure 4.16). Notably, deciduous forests had lower VCI val-
ues from 2004 to 2005, indicating continuous drought observations. In this regard, rainfed
cropland also suffered from long-duration drought (Figure 4.16). Concerning wetter condi-
tions, higher VCI values were observed in 2003, 2011, 2017, and 2018. These years can be
considered wet years as the VCI values above 70% indicate wet conditions. Interestingly, ir-
rigated cropland in 2016 suffered from greater drought than rainfed cropland (Figure 4.16).
In 2020, deciduous forests indicated the most severe drought conditions. Evergreen forests
have demonstrated resilience to drought over the years, and there has been no signal of

drought in this forest in recent years (Figure 4.16).

65



Chapter 4 A monitoring framework of drought characteristics from satellite-based

vegetation time series

100

(a): Rainfed crop
s 751
9}50 VM /'\—--—..VIL/‘\ o /‘—A‘\/\_n/'\_./‘\ P\M /\/"A
S \/\?/ AoV
0 T T T
100 (b): Irrigated crop
< 754
£ . NP . I fn AL AA L AN oA\ Ao
g NN T YTV VN >
g 1
0 . ‘ ‘ ‘ . ‘ . . . ‘ .
100 Ty Shrubland
@ 75 A
£ o TN AN O L
g e <N L4 vy
0
100 (d): Mixed forest
< 754
£ 5 ,,MA'\ AT AN AN M\j/‘“—"\v/\ PV
9 | J V Vi

100

75 (e): Evergreen forest
o /AN oo A o AVAMHAWA
N v VS

25 41

VCI (%)

100 (f): Deciduous forest

N ARM A AVMA A&f\f\/‘\)“-\_
vV VA

2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021

VCI (%)

Figure 4.15: The temporal evolution of monthly VCI-based drought across the MSEA region for
six main land cover types: (a) rainfed crop, (b) irrigated crop, (c) shrubland, (d) mixed
forest, (e) evergreen forest, (f) deciduous forest. Dark red indicates drier conditions,
while dark green presents wetter conditions.

In Cambodia, drought conditions were more severe than in other countries. There has
been frequent drought in rainfed and irrigated cropland (Figure 4.17). For example, the
irrigated crop VCI values were nearly below 50% from 2000 to 2010, indicating drought-
induced conditions. By contrast, shrubland VCI values witnessed wetter conditions over
the first 15 years, but in recent years, lower VCI values have been observed (Figure 4.17),
indicating drier conditions. This condition was also found in mixed forests and deciduous
forests. For example, deciduous forests had low VCI values (below 25%) in 2016, 2019,
and 2020 (Figure 4.17), indicating severe drought conditions. Evergreen forests, however,
indicated less drought. Overall, forests witnessed less drought in the first 15 years of the
21st century, but in recent years, they have experienced more severe drought conditions,
especially in mixed and deciduous forests. In contrast, this condition was the opposite in
rainfed and irrigated croplands. Despite frequent drought conditions, irrigated crops had

lower VCI value variations (30-75%) over the study period (Figure 4.17).

In Laos, vegetation suffered from less frequent drought. Overall, vegetation suffered
from drought-induced stress in 2005 and 2020 (Figure 4.18). These years witnessed contin-

uous low VCI values extended over several months. Rainfed probably indicated the most se-
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Figure 4.16: The temporal evolution of VCI-based drought in Thailand across six land cover types
from 2000 to 2021: (a) rainfed crop, (b) irrigated crop, (c) shrubland, (d) mixed forest,
(e) evergreen forest, and (f) deciduous forest. Dark red indicates drier conditions, while
dark green presents wetter conditions.

vere drought in 2005 and 2020. This observation indicated that rainfed crops are extremely
vulnerable to drought. Likewise, deciduous forests suffered from severe drought conditions
during these years. Irrigated cropland experienced severe drought conditions in 2005 but
less severe in recent years. Other land use types showed similar patterns of drought sever-
ity. Evergreen forest was the least affected by drought in recent years, indicating greater
resilience to drought. The wettest conditions could be observed in 2017 across all land use
types, where the VCI value stayed above 75%. Overall, shrubland indicated moderate and
mild drought conditions, while severe drought conditions were primarily found in cropland.

Forests generally indicated wetter conditions during the study period.

In Myanmar, drought conditions have shown a marked temporal pattern in specific years
(Figure 4.19). Notably, the years 2005 and 2010 were recorded as the period of intense
drought conditions. Both rainfed and irrigated crops experienced significantly low VCI val-
ues during these years. It is noted that all land use types witnessed severe and widespread
drought conditions in 2010, with VCI values falling below 25% (Figure 4.19). For exam-
ple, mixed and deciduous forests experienced VCI values below 25% for several months

in 2010. It is observed that drought conditions have been less severe over the past decade.
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Figure 4.17: The temporal evolution of VCI-based drought in Cambodia across six land cover types
from 2000 to 2021: (a) rainfed crop, (b) irrigated crop, (c) shrubland, (d) mixed forest,
(e) evergreen forest, and (f) deciduous forest. Dark red indicates drier conditions, while
dark green presents wetter conditions.

In contrast, drought conditions from 2000 to 2010 witnessed more severe conditions. In
rainfed agriculture, the VCI values below 50% lasted nearly two years during 2004 and
2005 (Figure 4.19), indicating severe and widespread drought. Wet conditions were ob-
served similarly in other countries but varied over time. The year 2017 witnessed very wet
years; for example, deciduous forests experienced VIC values above 75%, indicating wet
conditions. In recent years, slight drought conditions have been observed across the land
cover types despite the decline in VCI. In short, all land use types indicated severe droughts
in 2005 and 2010. Shrubland experienced the least drought conditions, possibly due to its
resilience and ability to endure drought. Forests witnessed mild drought or non-drought in

most cases in recent years (Figure 4.19).

In Vietnam, drought conditions have been less intense across the land cover types, espe-
cially over the past decade. Overall, drought conditions in Vietnam were more severe in the
first ten years of the 21st century (Figure 4.20). In 2005, the VCI value witnessed the low-
est across land cover types, while lower values were observed in 2004. Rainfed cropland
experienced lower VCI values below 50% from 2004 to 2008. Likewise, irrigated cropland
witnessed the longest drought stress over the study period, from 2000 to 2008, nearly eight
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Figure 4.18: The temporal evolution of VCI-based drought in Laos across six land cover types from
2000 to 2021: (a) rainfed crop, (b) irrigated crop, (c) shrubland, (d) mixed forest, (e)
evergreen forest, and (f) deciduous forest. Dark red indicates drier conditions, while
dark green presents wetter conditions.

years. Looking at its severity classification, irrigated crops primarily experienced moderate
or mild drought conditions during this period (Figure 4.20). These low VCI values indi-
cated that rainfed and irrigated crops were more vulnerable to drought during these years.
Forests shared similar patterns of drought conditions. Notably, deciduous forests have ex-
perienced moderate to mild drought in recent years. This forest also experienced relatively
stable VCI values despite its normal conditions from 2010 to 2015. By contrast, the re-
maining forests witnessed wetter conditions during this period. The VCI value of evergreen
and mixed forests stayed above 70% over the last seven years, indicating striving vegeta-
tion. This observation was also found in rainfed and irrigated areas. Over the past ten years,

irrigated and rainfed crops have rarely been stressed due to drought (Figure 4.20).

4.3.4 Identified drought years

Severe drought years were identified from the percentage of extreme pixels (VCI < 10)
across the study region from 2000 to 2021. Figure 4.21 presented the annual distribution of
extreme pixels and drought severity across the region throughout the study period. Overall,

extreme pixels were variant across years, but the most severe drought years were identified
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Figure 4.19: The temporal evolution of VCI-based drought in Myanmar across six land cover types
from 2000 to 2021: (a) rainfed crop, (b) irrigated crop, (c) shrubland, (d) mixed forest,
(e) evergreen forest, and (f) deciduous forest. Dark red indicates drier conditions, while
dark green presents wetter conditions.

in 2000, 2004, 2005, 2010, 2016, 2019, and 2020, with a typically higher proportion of
extreme VCI pixels. Among the drought years, 2004 and 2005 had the highest percentage
of extreme VCI pixels, nearly 20%, whereas the extreme recorded VCI values reached the
lowest point of about 2.3. Generally, the severe drought years were associated with extreme
VCI values, indicating intense vegetation stress. However, this pattern did not consistently
apply across all years. For example, extreme VCI severity was observed in 2001 and 2021,
although there was a smaller proportion of extreme pixels. By contrast, these are the oppo-
site of the drought years in 2016 and 2019. Since we considered drought conditions on an
annual basis, a severe drought can occur with short durations (3-4 months) and then return

to normal conditions. This behavior likely leads to higher VCI values overall.

The progression of severe droughts exhibited significant spatial and temporal variability,
and they are primarily detected during the dry season. Figure 4.22 displayed the monthly
maps of severe drought years and their spatiotemporal variability. The temporal analysis
of severe drought years indicated that the most severe droughts were detected in the dry
seasons of 2004 (January-April), 2005 (October 2004 - June 2005), 2010 (January-June),
2016 (March-May), and 2020 (January - May). Among these, the 2005 drought was the
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Figure 4.20: The temporal evolution of VCI-based drought in Vietnam across six land cover types
from 2000 to 2021: (a) rainfed crop, (b) irrigated crop, (c) shrubland, (d) mixed forest,
(e) evergreen forest, and (f) deciduous forest. Dark red indicates drier conditions, while
dark green presents wetter conditions.
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Figure 4.21: The annual percentage of extreme VCI pixels and its values across the MSEA region
from 2000 to 2021. The bar plot indicates the annual percentage, while the line plot
displays the mean values of the VCI below 10%.

longest, lasting nine months, with its peak from December 2004 to March 2005. Less severe
droughts were found in 2000 and 2019, whereas the drought event in 2016 was severe, but

it occurred short and returned to normal conditions by June. The wettest months during the

71



Chapter 4 A monitoring framework of drought characteristics from satellite-based

vegetation time series

2000-01 2000-02 2000-03 2000-04 2000-05 2000-06 2000-07 2000-08 2000-09 2000-10 2000-11 2000-12

2004-04 2004-05 2004-06 2004-08 2004-12

2004-11
o

2005-08 2005-09 2005-11 2005-12

2005-01 2005-02 2005-03 2005-04 2005-06

2010-01 2010-02 2010-03 2010-04 2010-06 2010-08 2010-09 2010-11 2010-12

VCI (%)

2016-01

2016-05 2016-06 2016-07 2016-08 2016-09 2016-10 2016-11 2016-12

2019-01 2019-05 2019-06 2019-08 2019-09 2019-10 2019-11 2019-12

2020-01 2020-04 2020-05 2020-06 2020-08 2020-09 2020-10 2020-12

Voo > O R > O R P> O R > ARG R PO R > O R > AOG R >GRO R DO R > QG R PO
¥ R PP PRSP P PP R PR R TP R PP R PP R PP R PP R PP R PP RS

Figure 4.22: Spatial and temporal patterns of severe drought years across the MSEA region over the
study period. The VCI values are averaged by province/districts across the region.

drought years were observed from August to December 2016, and this period experienced
very high VCI values, indicating wetting conditions. Other months in 2000 (April-July)
also experienced wet conditions, while other rainy months still suffered from moderate to
mild drought. Moderate and severe droughts were spatially scattered over the study region
but were most commonly identified in the plains of central Myanmar, Thailand, Cambodia,
and the lower Vietnamese Mekong area. Regardless of the severity of the drought, the entire
MSEA region suffered from drought during the dry season of 2004-2005. In 2010, a severe
drought occurred in the northern region (e.g., Myanmar). By contrast, in 2016, the severe
drought occurred mainly in the southern region, including Thailand and the lower Mekong
Delta. In recent years, central Thailand and Cambodia have witnessed more severe droughts

than other areas in the region.

In detail, severe drought conditions in 2000 were primarily observed in January and
February, affecting the northern region (e.g., Myanmar, northern Laos, and Vietnam). How-
ever, this condition was scattered in specific areas from July to December, primarily affect-

ing Central Myanmar, eastern Thailand, the Lower Vietnamese Mekong Delta, and north-
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eastern Vietnam. In 2004, drought was very severe in the early months in southern Myan-
mar and northern Thailand. However, in the later months, eastern Thailand and Vietnamese
Central highlands witnessed the most severe drought conditions. These areas became more
intense in the early months of 2005. Thailand witnessed the most severe drought conditions
from November 2004 to April 2005. In 2010, severe drought primarily occurred in Myan-
mar from January to March, but it was expanded to Thailand until July. In 2016, severe
drought conditions started in March and lasted until May. Other months witnessed wet con-
ditions. In January and February, drought conditions were specifically found in Cambodia
and small parts of southern Thailand and central Myanmar. In 2019, Cambodia experienced
severe drought conditions in January and February, and then it was gradually widespread to-
wards Laos, Thailand, and Myanmar before return to normal conditions in August. In 2020,
the region experienced more severe drought conditions than in 2019. Central Thailand and
Cambodia witnessed the most severe drought in this year, while Myanmar and Vietnamese
Central Highlands also got affected, but less intense during this period. Although no region-
wide studies have identified severe drought years over the past years, several local studies
reported droughts in Vietnam, Cambodia, and the Lower Mekong Delta. Vietnam, for ex-
ample, suffered from the largest droughts in 2004-2005 (Tran et al., 2023) and 2005 and
2010 (Le et al., 2019). In the Lower Mekong Basin, severe drought years were reported in
2004-2005 (Son et al., 2012; Adamson, 2005), 2010 (Zhang et al., 2014), and 2015-2016
(Son and Thanh, 2022; Guo et al., 2017). An updated statistical analysis of in-situ drought
events from the International Disaster Database revealed that the MSEA region suffered the
largest drought events in 2005, 2010, 2015, 2016, and 2019 (Ha et al., 2022). Although this
approach can identify severe drought years, it may not capture severe droughts with short
durations, especially localized severe droughts. Also, a drought event can continuously oc-
cur from one year to another without interruption, and consequently, this approach may
misidentify severe drought years. However, most of the drought events in the MSEA region
last less than six months, so this is unlikely to be an issue. Severe drought years usually
have significant impacts on agricultural production and the environment, and the identifi-
cation of severe drought years can help understand the spatiotemporal structure of drought
and its recurrence. Analysis of the drought years in the MSEA region revealed that severe
drought typically occurs in the early dry seasons (November-December) and returns to nor-
mal conditions by the end of the dry season (April-May), with the severe drought cycle
reoccurring every 4-5 years. This period corresponds to the ripening stage of rainfed rice
crops (November-December) in Thailand, Cambodia, and Myanmar, whereas Vietnamese
farmers begin the winter-spring rice cropping season. This information would be crucial
for regional and local authorities to navigate water resource distribution and develop future

drought mitigation risk plans.
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Figure 4.23: Spatial distribution of drought events and their latest occurrence across the MSEA
region from 2000 to 2021.

4.3.5 Spatiotemporal drought characteristics

The long-term characteristics of drought are critical for understanding its spatiotempo-
ral distribution. In this study, the spatial distribution of four drought characteristics dur-
ing the 2000-2021 period is shown in Figure 4.23 and Figure 4.24. The number of pro-
longed drought events varied across the region, with up to 25 events observed in the lower
Mekong Delta, central Thailand, and the Red River Delta (Figure 4.23-a). This result indi-
cated typically longer periods of drought in these areas. The most recent drought recorded
by the International Disaster Databases in the lower Vietnamese Mekong provinces lasted
eight months (https://public.emdat.be), whereas Thailand suffered from nearly 17 months
of drought in 2016. On average, the MSEA region suffered from 12-15 drought events over
the selected study period. Thailand had the highest number of prolonged droughts, with
14.5 events, followed by Vietnam (about 14 events). Most severe drought spells occurred in
2005 and 2016 (e.g., in Thailand and Vietnam), covering nearly 20% of the MSEA region.
In recent years, the lower Mekong Delta has suffered more prolonged drought events than
other areas (Figure 4.23-b). The result indicated that nearly 35% of Cambodia experienced
the longest droughts in 2020 and 2021, which is consistent with the severe decline in the
Tonle Sap Lake (Lindsay et al., 2021).

Except for differences in the latest drought years, some common features exist between
the drought duration and frequency. The mean duration was generally higher in central

Myanmar and the Mekong Delta (Figure 4.24-a). Consequently, the drought frequency was
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Figure 4.24: Spatial distribution of drought duration and frequency across the MSEA region from
2000 to 2021.

also larger than in other areas (Figure 4.24-b). Nearly 30% of the MSEA region generally
suffered from more than five months of drought (longer than the dry season), and Cambo-
dia had the highest mean drought duration with nearly six months. Vietnam ranked second
with nearly 5.2 months, while Laos had the shortest duration with 4.3 months. In addition,
the MSEA region was found to have a high drought frequency. On average, nearly 40% of
droughts occurred in most countries, except for Laos, with 34%. Noticeably, the central re-
gion of Myanmar had the highest occurrence of drought (~ 60%), but with fewer prolonged
drought events (Figure 4.23-a), implying shorter periods of drought in this area.

4.3.6 Time series trends of VCI-based drought

4.3.6.1 Spatial trends

Trend analyses were performed on the time-series VCI data from 2000 to 2021. Figure
4.25 showed the per-pixel trend analysis results during the dry and rainy growing seasons
over the MSEA region. Green and red colors indicate decreasing and increasing drought
conditions (or greening and browning vegetative trends), respectively, while gray colors
represent non-significant trends or non-vegetative areas. Overall, decreasing drought con-
ditions (increasing vegetation) predominated in northern Vietnam and eastern Thailand,
whereas increasing drought conditions (browning vegetation) are apparent in Cambodia
and southern Laos. Regionally, nearly 15% of the vegetative areas suffered from drought

conditions, and the rest remained stable and resistant to drought hazards, with roughly 30%

75



Chapter 4 A monitoring framework of drought characteristics from satellite-based

vegetation time series

(a): Dry season (b): Rainy season

25°N

20°N

15°N

10°N

Non-significant
p>0.05

Non-significant
p>0.05

93°E 97°E 101°E 105°E 109°E 93°E 97°E 101°E 105°E 109°E

VCI trend (%)

-4 -3 -2 -1 0 1 2 3 4

Figure 4.25: Spatial pattern of VCI-based drought trends during the dry season (a) and rainy season
(b) from 2000 to 2021 across the MSEA region.

of the vegetation increasing over the study period. In the dry growing season, most of the
forestland or shrubland witnessed a decreasing trend in drought (an increase in green for-
est). In comparison, cropland showed either no trend or a slight change (Fig. 4.25-a). By
contrast, cropland experienced a decrease in the drought trend (increase in greenness) dur-
ing the rainy season in eastern Thailand and the lower Mekong Delta. Laos and Myanmar
remained relatively stable over the past 21 years (Fig. 4.25-b). Interestingly, the detected

trend in northern Vietnam decreased from the dry to the rainy growing season.

Climate change and cropping practices likely explain differences in the spatial distri-
bution of drought trends (vegetation stress). The increase in annual VCI is significant over
northern Vietnam (VCI trend exceeds 4 yr~ 1), where forests and shrubland dominate. In the
past decade, forest restoration programs from the Vietnamese government have increased
forest cover in addition to the rapid expansion of farm-based forest plantations (de Jong,
2010). In Cambodia, a large decline of the VCI (e.g., rate < —3 yr~ 1) was especially found
surrounding the Tonle Sap Lake, where rainfed cropping systems are commonly practiced.
Chen et al. (2021a) analyzed the multi-decadal variability of Tonle Sap Lake, and they re-
vealed that the lake’s water level has declined because of increasing climatic crises (e.g.,
precipitation deficits) and human activities (e.g., hydropower operations). The rainfed rice
crop in eastern Thailand is primarily grown in the rainy season, whereas catastrophic flood-
ing events usually occur in northern Vietnam. These could be the possibilities of the in-

creasing (decreasing) VCI drought trends in Thailand (Vietnam).
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Figure 4.26: Temporal trends of VCI-based drought conditions in Thailand across six land cover
types during the dry and rainy seasons from 2000 to 2021. Vertical columns repre-
sent land use types, while horizontal rows refer to the seasons. Statistically significant
slopes are marked with two asterisks (**, p-value < 0.01) and one asterisk (¥, p-value
<0.05).

4.3.6.2 Analysis of VCI trends across land cover types

Drought trends can vary among countries and land cover types. These variations can
influence the increasing and decreasing vegetation over time, making it suitable to track
drought trends. This section explored trends across different land cover types to examine
the vegetation-induced drought from 2000 to 2021 during the dry and rainy seasons. In
Thailand, all land cover types experienced an increase in VCI trends, indicating a decline
in drought conditions during the dry and rainy seasons (Figure 4.26). Despite its increase,
Thailand witnessed non-statistically significant trends during the dry season, except in ev-
ergreen forests. This means that the trends of VCI-based drought conditions across the
vegetation types stayed relatively stable over the 21 years during the dry season. By con-
trast, the VCI-based drought during the rainy season experienced an increase over the study
period, except in deciduous forests (Figure 4.26). Rainfed crops during the rainy season had
the highest trend, at about 1% per year. Other vegetation types increased from 0.4 to 0.6%
per year. This upward trend could be due to increased precipitation during the rainy season.
Frequent rainfall can boost vegetation growth, leading to higher VCI values and reduced

drought stress.

In Cambodia, vegetation-based drought experienced a declining trend across land cover
types from 2000 to 2021 (Figure 4.27). Notably, irrigated crops witnessed an increase in
VClI-based drought trend over the study period. Shrubland and deciduous forests witnessed
the largest decline during the dry season. For example, shrubland had a decline rate of about
1.2% per year, indicating the upward trend of drought in the shrubland environment. Rain-

fed cropland and evergreen forests during the rainy season showed a non-statistically signif-
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Figure 4.27: Temporal trends of VCI-based drought conditions in Cambodia across six land cover
types during the dry and rainy seasons from 2000 to 2021. Vertical columns repre-
sent land use types, while horizontal rows refer to the seasons. Statistically significant
slopes are marked with two asterisks (**, p-value < 0.01) and one asterisk (¥, p-value
<0.09).

icant trend, while other vegetation types declined significantly. Only irrigated experienced
a significant increase in VClI-based drought (~ 1% per year), indicating less vulnerability.
Despite the rainy season, deciduous forests witnessed the largest rate of decline, at 1.1%
per year. Forests in Cambodia often experience disturbance, and recent studies reported that
Cambodia has been among the largest forest losers worldwide (Curtis et al., 2018; Hansen
et al., 2013). Human disturbance and drought have exacerbated the decline of forests over

the past 21 years.

In Laos, most land cover types witnessed relatively stable over the study period (Figure
4.28). During the dry season, the statistical test showed that the trend of VCI-based drought
conditions was not statistically significant despite its upward trend. Cropland experienced
a declining trend in VCI, while evergreen forests showed a significant increase trend. Rain-
fed and irrigated cropland experienced a declining VCI trend during the rainy season. This
means these crops were vulnerable to drought, even during the rainy season. Another pos-
sibility is that irrigated systems were poorly functioning, while the precipitation rate might
have declined over this country’s study period. Other vegetation types stayed relatively the

same.

In Myanmar, the VCI-based trend was relatively stable across land use types from 2000
to 2021. As can be seen from the line plot in Figure 4.29, despite its upward trend, the
trend was not statistically significant. Evergreen forests experienced the highest trend dur-
ing the dry season, while deciduous forests witnessed a slight decline. Likewise, VCI-based
drought conditions during the rainy season experienced a non-statistically significant trend,

except for evergreen forests. In this regard, evergreen forests increased by 0.52% per year.
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Figure 4.28: Temporal trends of VCI-based drought conditions in Laos across six land cover types
during the dry and rainy seasons from 2000 to 2021. Vertical columns represent land
use types, while horizontal rows refer to the seasons. Statistically significant slopes are
marked with two asterisks (**, p-value < 0.01) and one asterisk (*, p-value < 0.05).
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Figure 4.29: Temporal trends of VCI-based drought conditions in Myanmar across six land cover
types during the dry and rainy seasons from 2000 to 2021. Vertical columns repre-
sent land use types, while horizontal rows refer to the seasons. Statistically significant
slopes are marked with two asterisks (**, p-value < 0.01) and one asterisk (*, p-value
<0.05).

In Vietnam, there has been a significant increase in VCl-based drought across land cover
types over the past 21 years (Figure 4.30). Despite the dry season, vegetation experienced
upward trends. The largest increasing trend was observed in shrubland, at about 1.24% per
year. Evergreen forests ranked second with above 1% per year. Despite its upward trend,
deciduous forests indicated a non-statistically significant trend. Interestingly, the rainfed
VClI-based trend was higher than the irrigated crop. This could be due to the recently im-
proved irrigation system, which could be recorded in the ESA CCI land cover product.
During the rainy season, most vegetation types witnessed an upward trend. Rainfed crops

were less affected by drought and indicated an upward trend at 0.62% per year. Frequent
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Figure 4.30: Temporal trends of VCI-based drought conditions in Vietnam across six land cover
types during the dry and rainy seasons from 2000 to 2021. Vertical columns repre-
sent land use types, while horizontal rows refer to the seasons. Statistically significant
slopes are marked with two asterisks (**, p-value < 0.01) and one asterisk (*, p-value
<0.09).

precipitation could be the main factor driving the increase in VCI values in rainfed crops.
Irrigated crops witnessed the highest positive trend at 1.02% per year. Frequent precipita-
tion and improved irrigation systems support large areas of Vietnamese agricultural land.
Evergreen forests also experienced a high positive trend, indicating drought-reduced stress
in this forest environment. In contrast, deciduous forests showed a negative trend, which
means this forest frequently faced disturbance and drought hazards. A recent study reported
that the Vietnamese Central Highlands experienced a large area of declining vegetation due
to the expansion of industrial crops and intense drought conditions in recent years (Ha et al.,
2024).

4.4 Discussion

4.4.1 Differences in drought characteristics among the countries

This study employed the VCI from MODIS time series observations from 2000 to 2021
across the MSEA region. Generally, drought monitoring derived from satellite-based veg-
etation time series provided plausible results. The identified severe drought years from the
VClI-based drought conditions revealed a close agreement with previous studies and local
reports. Despite its drought vulnerability and major agriculture, little research has exam-
ined drought conditions and their characteristics in the MSEA region. Li et al. (2022b)
investigated meteorological and agricultural drought conditions in the MSEA region us-

ing soil moisture time series from 2015 to 2020, and they reported that the most severe
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drought year occurred in 2016. Wang et al. (2022) derived SPI-based drought information
from gridded precipitation data, and they found that the MSEA region suffered from multi-
ple severe drought events in 2005, 2010-2012, 2015-2016, and 2019. Another recent study
collected severe drought years from the International Disaster Database revealed drought
events frequently reported in 2000, 2005, 2010, 2016, and 2019 across the MSEA countries
(Ha et al., 2022). Apart from regional drought studies, several studies have monitored and
characterized national and local drought conditions over the past decades. In Vietnam, Le
et al. (2019) used in-situ climate observations to derive the Palmer drought severity index
(PDSI) from 1980 to 2014; their findings indicated the latest severe drought events in 2000,
2005, and 2010. Likewise, other studies used precipitation-based drought indicators and
revealed severe and extreme drought events in agreement with the findings of this chapter
(Le et al., 2020a; Stojanovic et al., 2020). In other countries, Khadka et al. (2021) used
in-situ precipitation-based drought indicators and identified the most intense drought con-
ditions in 2004-2005 and 2015-2016 in northeastern Thailand from 1979 to 2017. Recent
local studies also reported drought severity occurred in 2000, 2004-2005, 2010, 2016, and
2019-2020 based on both satellite-based and station-based climate time series data (Khalil,
2020,?; Lee and Dang, 2019; Sein et al., 2021).

Drought can be attributed to several factors, such as human and natural activities. In the
MSEA region, drought has been primarily associated with El Nifio events. This large-scale
oceanic and atmospheric phenomenon can disrupt normal weather patterns. Phan-Van et al.
(2022) examined the driving factors of drought in Southeast Asia, and their findings in-
dicated that El Nifio-Southern Oscillation (ENSO) strongly influenced drought conditions
in this region. In addition, drought is strongly associated with the tropical Atlantic Sea
surface temperatures and Indian Ocean dipole (Skliris et al., 2022; Risédnen et al., 2016;
Power et al., 2020). Other factors, such as wildfires, biomass burning, and climate change,
exacerbated drought conditions in this region (Wanders and Wada, 2015; Wooster et al.,
2012; Field et al., 2009). Regarding VCI-based drought conditions, land use/land cover
change and deforestation also strongly influence them. These activities can alter the vegeta-
tive cover, either positive or negative. For example, shifting agriculture can remove forests,
leading to lower NDVI values and, thus, lower VCI values. By contrast, government forest
replantation programs or large-scale agricultural activities can increase greener vegetation
cover (De Jong, 2010), resulting in higher VCI values. Lower (higher) VCI values can
misrepresent drought stress conditions in these cases. While these effects can distort the in-
terpretation of VCI at the local level, they are less likely to significantly impact assessments

at a larger scale, where the influence of such localized changes is minimized.
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vegetation time series

The temporal evolution of VCl-based drought conditions generally agreed with the
temporal precipitation-based drought patterns. For example, Wang et al. (2022) used a
precipitation-based drought system and reported that the precipitation anomalies reached
the lowest in 2005, followed by 2010 and 2019 across the MSEA region. Likewise, Phan-
Van et al. (2022) indicated the intense severity of drought conditions in 2005 and 2010
and the moderate drought conditions in 2016. Most local studies also reported the lowest
precipitation anomalies or drought index values in 2005, 2010, and 2019-2020 (Le et al.,
2019; Palanisamy et al., 2021; Khadka et al., 2024). Notably, some studies in Vietnam used
precipitation-based indices and reported severe droughts in recent years, such as in 2016
and 2020 (Le et al., 2020a; Stojanovic et al., 2020). However, the VCI-based drought con-
ditions in Vietnam (Figure 4.20) indicated nearly non-drought conditions over the past ten
years. This discrepancy can be attributed to different aspects of drought that each method
captures. A lack of rainfall can indicate drought, but this deficiency may not always trans-
late into vegetation stress. The VCI-based drought indices reflect the health and greenness
of vegetation, capturing the actual impact of drought on plant life. If resilient vegetation
or effective water management practices are in place, the VCI may not show significant
stress despite reduced rainfall. In Vietnam, the extensive irrigation systems and the gov-
ernment’s proactive forest replantation programs in recent years have likely contributed to
maintaining healthy vegetation cover (Byrareddy et al., 2021), even during periods of lower
precipitation. These factors help buffer the impact of reduced rainfall, ensuring that vege-
tation remains robust and potentially leading to discrepancies between precipitation-based

drought assessments and those derived from vegetation indices.

The spatial distribution of detected VCI-based drought characteristics (Figures 4.23 and
4.24) revealed distinct drought patterns across the MSEA region. More drought events
were detected in the Lower Vietnamese and Cambodian Mekong Deltas, Central Thailand,
Myanmar, and the Red River Delta. These areas also witnessed higher drought duration and
frequency over the past 21 years. The combination of geographic, human, and climatic fac-
tors may potentially influence the drought characteristics in the MSEA. Central Myanmar
lies in the Central Dry Zone and becomes vulnerable to drought due to its lower precipi-
tation rate. In this area, rainfed crops are widely practiced and highly sensitive to drought
conditions (Herridge et al., 2019; Tun et al., 2015). A lack of rainfall over an extended
period can cause crop failure. Lower precipitation rates are also observed in Thailand and
Cambodia (Figure 2.2), where rainfed cropland accounts for a large part of the agricultural
sector (Figure 2.3). The Lower Mekong Deltas in Vietnam and Cambodia rely heavily on
consistent river flows and seasonal flooding for agricultural activities. However, these re-
gions have undergone significant changes due to their upstream infrastructure and water

diversion projects. Recent studies reported that such interventions reduced the downstream
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water flows during the dry seasons (Pokhrel et al., 2018; Le Huy et al., 2022), exacerbating
drought conditions in these deltas. While seasonal flooding is crucial for agriculture, it can
also damage crops, leading to lower VCI values. This reduction in VCI values can misrep-
resent drought conditions and lead to the misidentification of drought events. Notably, the
longest drought events have occurred recently in Cambodia, southern Laos, and parts of
Thailand (Figure 4.23-b). In contrast, eastern Thailand, northern Vietnam, and the Lower
Mekong Basin (e.g., Cambodia and Vietnam) experienced the longest drought events in
2004 and 2005. These observations are aligned with previous studies (Li et al., 2022b; Rési-
nen et al., 2016). In Cambodia, recent studies have identified the most significant drought
events during the dry seasons in 2016 and 2019-2020 (Li et al., 2022b; Son and Thanh,
2022; Venkatappa et al., 2021). In addition, Cambodia has experienced one of the highest
rates of forest loss worldwide in recent years (Hansen et al., 2013; Zeng et al., 2018; Xiao
et al., 2023), largely driven by the expansion of agriculture. Similarly, Laos has experienced
significant forest disturbance, primarily due to deforestation and shifting agriculture prac-
tices (Chen et al., 2023; Xiao et al., 2023). The severe drought events and extensive forest
loss have contributed to lower VCI values, exacerbating the severity of drought conditions
in these countries. Consequently, these countries suffered from declining VCI trends, indi-
cating increased drought conditions. The declining trends of VCI-based drought conditions
in Cambodia and Laos have been seen in regional and global studies (Yin et al., 2024; Xu
et al., 2020; Pan et al., 2018).

4.4.2 Potential and drawbacks of satellite-based vegetation drought

monitoring and characterization

Drought is a complex and reoccurring natural hazard that can significantly impact agri-
culture, the economy, water resources, and the environment. Timely and regular monitoring
and characterization of drought conditions is crucial to developing effective drought adapta-
tion strategies and planning. Among various drought monitoring methods, deriving drought
information from vegetation-based indices has become widespread due to their ability to
reflect drought-induced vegetation conditions. Although changes in vegetation can be due
to several factors, such as human activities, diseases, or natural hazards, vegetation-based
drought can provide critical insights into drought-induced vegetation stress. For example,
the VCl is a satellite-derived vegetation index that evaluates the vegetation health by com-
paring current observations with long-term historical data. This robust approach assesses
the natural variability in vegetation, making it less susceptible to short-term fluctuations

caused by non-drought factors.
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vegetation time series

One of the primary benefits of satellite-based vegetation drought indices is their ability
to provide consistent and frequent observations of land surface over large areas. The VCI
has been widely used to monitor drought conditions (Bajgiran et al., 2008; Quiring and
Ganesh, 2010; Liu and Kogan, 1996; Kogan, 1990), but little research has investigated the
possibility of drought characterization from this dataset. This study has developed a method
to identify the severe drought years and found a threshold to characterize drought condi-
tions. The findings of severe drought years and characteristics in this analysis agreed well
with previous studies using climate data, demonstrating the effectiveness of the VCI-based
indices for monitoring and characterizing drought conditions. In the MSEA region, collect-
ing in-situ climate measurements is often challenging, if not impossible. Also, each country
in the region has its own data standards, formatting, and processing methods, making it dif-
ficult to integrate and harmonize in-situ data from multiple sources. Therefore, developing
novel approaches that leverage satellite-based vegetation indices for monitoring and char-
acterizing droughts would enhance drought mitigation efforts and water resources man-
agement. Despite its advantages, satellite-based vegetation drought monitoring has some
major limitations. Vegetation indices can be influenced by factors other than drought, such
as human activities (e.g., deforestation, agriculture) and plant diseases, leading to misinter-
pretation of the data. In the Lower Vietnamese Mekong Delta, frequent water in the rice
fields or seasonal flooding could damage crops and potentially misrepresent drought condi-
tions. Cleared fields following crop harvests may give a false impression of drought, as the
absence of vegetation could be mistaken for drought-induced stress rather than the result of
normal agricultural practices. Also, cloud cover and atmospheric conditions can interfere
with satellite readings, reducing the accuracy of the indices. Another drawback is that veg-
etation indices may not detect drought conditions until they significantly affect vegetation,
potentially delaying early intervention. In this study, the greatest challenge could be the
selection of vegetation-based drought indices and gap-free dense time series. Therefore, we
have carefully reconstructed the time series of vegetation indices to maintain continuous
and consistent land surface observations, contributing to the good performance of drought

mappings.

4.5 Summary

The MSEA region is a major agricultural producer but has been increasingly vulnerable
to drought conditions. This is the first detailed analysis of spatial and temporal drought char-
acteristics and trends over the MSEA region using the monthly MODIS-based VCI drought
indices from 2000 to 2021. An automatic approach was developed to identify the severe

drought years and their characteristics. Four key characteristics of drought conditions in the

84



4.5 Summary

region have been detected, while the trend was calculated during the dry and rainy seasons.
Spatiotemporal distribution of VCI-based drought conditions has been investigated at dif-
ferent scales and across land cover types. The key findings of this study can be summarized

as follows:

Drought conditions exhibited significant temporal and spatial variability across the
MSEA region. The dry season experienced more frequent and intense drought than the
rainy season, especially from January to April. Despite some common patterns, each veg-
etation type experienced drought differently. Rainfed crops and deciduous forests suffered

the most from drought conditions.

Among the countries, Vietnam has been less affected by drought detected by the VCI in
recent years, while Cambodia has faced more drought events. Rainfed crops in Laos suf-
fered from the longest drought conditions between 2019 and 2020. Several severe drought
years were identified over the study period, including 2000, 2004, 2005, 2010, 2016, 2019,
and 2020.

Higher drought duration and frequency were primarily detected in Central Myanmar,
Cambodia, eastern Thailand, and the Lower Mekong Delta. Central Myanmar witnessed
the highest drought occurrence rate (around 60%), while other countries experienced nearly
40%, except for Laos. Thailand and Vietnam experienced nearly 15 prolonged drought
events over the last two decades. In recent years, the longest drought events were primarily
detected in Cambodia and Laos, whereas eastern Thailand and northern Vietnam experi-

enced the most significant drought in the early 2000s.

Northern Vietnam showed a wetting trend during the dry season, while eastern Thailand
exhibited this trend predominantly during the rainy season. For example, cropland in Viet-
nam witnessed a wetting trend over the study period. In contrast, Cambodian croplands saw

a significant increase in drying conditions, indicating their vulnerability to intense drought.

A strong correlation between VCl-based drought indicators and climatic factors was
observed, with the highest correlation between temperature and VCI occurring during the

dry season.
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Chapter 5

Responses of vegetation-based drought to

climate and soil moisture*

5.1 Input data

This chapter employed several publicly available geospatial datasets, including MODIS
time series, ERAS-Land reanalysis, land cover product, digital elevation model (DEM),
soil properties, and the World Database on Protected Areas (WDPA). These datasets are
collected in different spatial and temporal resolutions and can be accessed via the Google
Earth Engine (GEE) platform. Standard preprocessing steps have been applied to enhance
the consistent spatial and temporal observations and convert them to the geographic coor-
dinates system. Each dataset is described in the following subsections and listed in Table
5.1.

5.1.1 MODIS time series

The MODIS data is widely regarded as the benchmark product for global and regional
monitoring and assessment of land surface dynamics, especially within the satellite-based
vegetation and land surface temperature (LST) time series. Over the past two decades, their
applications have expanded across various topics, reflecting their growing importance in
environmental monitoring and assessment research. Figure 5.1 showed the annual growth
of articles that used MODIS data from 2000 to 2023 collected from Scopus platform. This
study employed two common MODIS products, namely NDVI and LST datasets.

The MODIS NDVI data offer global, long-term, and continuous observations of land
vegetation and productivity at multiple spatial resolutions (e.g., 250 m, 500 m, and 1 km)
from 2000 to the present (Romén et al., 2024; Roy et al., 2006). This study made use of a

*This chapter is based in parts on Ha et al. (2024).
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Table 5.1: A list of satellite and reanalysis datasets was used in vegetation-drought responses. The
data period indicates the timeframe during which the data was generated or last updated.

Temporal Spatial

Datasets/sensors Variables . . Data period
resolution resolution

MODIS NDVI and LST 16/8-day 1 km 2000 - present
Precipitation, soil moisture, air

ERAS-Land temperature, net radiation, wind, Hourly ~ 10 km 1950 - present
humidity

Open soil data CC(:lIllr:)e(Lrisorgamc, clay, and sand - 250 m 2018

ESA CCI land cover  Land cover/land use Yearly 300 m 2000 - 2020

SRTM DEM Digital elevation model - 90 m 2000

2223 lgiib?\s;ngAO; Terrestrial protected areas - - 2023
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Figure 5.1: Annual number of studies using MODIS data from 2000 to 2023. Data were collected
from Scopus database and keywords "MODIS" contains in the title, keywords, and ab-
stract.

ready-analysis NDVI time series derived from Terra and Aqua sensors at 1 km spatial reso-
lution. The NDVI values are calculated by the difference between the read and near-infrared
light reflected by vegetation. Despite their daily observations, this study used a 16-day
NDVI product (version 6.1) derived from geometrically and atmospherically corrected re-
flectance. The 16-day composites are generated from the best available observations within
each 16-day window (Didan, 2021). This approach increased clear-sky measurements due
to frequent clouds and shadows in the tropical region. If cloud-contaminated pixels were
detected, an associated quality band (QA) was used to identify and remove cloudy pixels.

After removing cloud-related pixels, a linear interpolation technique was applied to main-
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tain the continuous presence of the NDVI data (Ha et al., 2023). Subsequently, the free-gap
16-day NDVI products were composited into monthly values using the median value com-
posite (MVC) method. This study selected the MVC as it is robust to outliers to minimize
the influence of abnormal data points. Despite the interpolation and monthly composites,
the NDVI may still contain noise due to sensor limitations and atmospheric interference.
The monthly NDVI values are then reconstructed to maintain the reliable curve of land veg-
etation growth using the Savitzky-Golay method (Ha et al., 2023). The final NDVI products
covered the MSEA region from 2000 to 2022 and were converted to a geographic coordi-

nate system.

LST data provides information about the earth’s land surface temperatures. It is derived
from the MODIS Terra and Aqua thermal infrared bands at 1 km spatial resolution. Al-
though MODIS LST offers multiple versions, this study selected the latest MODIS LST
8-day 1 km resolution (version 6.1). This dataset is an analysis-ready product, corrected
for atmospheric and geometric effects and surface emissivity (Wan et al., 2021b). Several
global and regional studies have been conducted to cross-validate the MODIS LST data,
and they found good agreements with the in-situ observations (Duan et al., 2019; Phan
et al., 2019; Wan, 2008)). Due to the effects of clouds and shadows, this study employed
the quality indicator band to mask out cloud-related pixels. Missing data were filled using
linear interpolation based on the nearest clear-sky observations. Finally, monthly compos-
ites were generated in a geographic coordinate system at 1 km spatial resolution, spanning

2000 to 2022, using mean value composite.

5.1.2 Climate and soil data

Although several climatic and soil datasets are available, this study selected the ERAS-
Land reanalysis product. This dataset is generated from the broader ERAS reanalysis at
31 km spatial resolution by the European Centre for Medium-Range Weather Forecasts.
The ERAS integrates historical observations (e.g., in-situ and satellite data) with advanced
numerical atmospheric-land simulation models to produce consistent and continuous mea-
surements of global climate data (Mufioz-Sabater et al., 2021). The ERAS5-Land is an en-
hanced version of ERAS downscaled to a spatial resolution of 9 km. This study selected
hourly ERAS-Land soil moisture and meteorological variables from 2000 to 2022. The
climate variables included air temperature, precipitation, solar radiation, wind speed, and
humidity. Several studies have demonstrated the usefulness of ERAS5-Land in monitoring
and assessing drought and climate conditions. Rahman et al. (2024) developed an inte-
grated agricultural drought index using the ERAS-Land soil and meteorological variables,

and their findings indicated that the index could effectively identify drought conditions in
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Pakistan. Yilmaz (2023) cross-validated the ERAS-Land climate variables and found a high
level of consistency with the station-based data. These applications and validation demon-
strated the reliable accuracy of the ERAS5-Land in monitoring and assessing climate and

drought hazards.

5.1.3 Land cover product

This study employed ESA CCI land cover products from 2000 to 2020 at 300 m spatial
resolution. This dataset offers an annual time series of global land cover maps using the
advanced unsupervised and supervised machine learning algorithms (Li et al., 2018b). The
main input data used to produce the ESA CCI land cover products are reflectance and veg-
etation indices derived from multiple satellites, primarily the MERIS (Medium Resolution
Imaging Spectrometer) and the recent Sentinel-3 OLCI (Ocean and Land Colour Instru-
ment) (Li et al., 2018b). These datasets are generated in epochs to ensure the stable and
dynamic components of the global land cover surface (Bontemps et al., 2012). Each epoch
represents five years (e.g., 1998-2002, 2003-2007, and 2008-2012). This approach ensures
that every land cover pixel has multiple cross-verifications with several-year observations
to minimize potential classification errors. The overall accuracy of the ESA CCI land cover
products exceeded 75%, and the highest user accuracy values were reported in some spe-
cific land cover types, such as rainfed cropland, evergreen forests, and irrigated cropland
(Bontemps et al., 2012). The original design of the ESA CCI land cover classification had
37 land cover types, but this chapter reclassified the original classification scheme into six
land cover types: rainfed cropland, irrigated cropland, shrubland, mixed forest, evergreen
forest, deciduous forest, and other types (e.g., water bodies, bare land, and built-up areas).
Before the reclassification, this study selected only stable pixels, where land cover remained
unchanged from 2000 to 2020. This approach ensured temporal consistency and enhanced

the reliability of the analysis.

5.1.4 Auxiliary data

In support of this study, other geospatial datasets included elevation, protected areas, and
soil property. The protected areas are sourced from the World Database on Protected Areas
(WDPA), a dataset jointly generated by the UN Environment Program and the International
Union for Conservation of Nature. This dataset contains a comprehensive and up-to-date
source of information on global protected areas. In this chapter, the WDPA defined the pro-
tected areas where natural environments/ecosystems stayed undisturbed or less impacted by
human activities. Although the WDPA contains different protected environments, such as

national parks and marine protected areas, this study selected only terrestrial protected ar-
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eas. There are 417 natural protected areas in the WDPA across the MSEA region at the time
of writing this chapter. The protected areas within the MSEA region have varying shapes
and sizes. The protected areas in Laos and Cambodia had the largest area, nearly 160 thou-
sand and 115 thousand hectares, respectively. In contrast, Vietnam’s protected areas had the
smallest area, about 32 thousand hectares. The data for the protected areas are defined in the
shapefile, and this vector data contains multi-part geometries with overlapping polygons.
To simplify and avoid overlapping polygons, this study converted the multi-part geometries
into single-part geometries and selected only polygons with at least 400 hectares (approxi-
mately 4 MODIS pixels).

Apart from the WDPA, this study collected Shuttle Radar Topography Mission (SRTM)
elevation and soil properties. The SRTM elevation, generated at 90 m spatial resolution,
provides detailed topographic information and covers nearly the entire global land surface
(Berry et al., 2007). Topsoil properties, including clay, sand, and carbon organic contents,
were also included to derive a soil-based drought indicator. These variables were gener-
ated from a collection of station-based soil properties using a robust ensemble random
forest regression method and remote sensing data (Hengl, 2018). Despite their high spatial
resolution, this study resampled all these datasets into 1 km spatial resolution to ensure
consistency with the MODIS data.

5.2 Methodology

This section presents the workflow of method implementation to assess the response of
vegetation to different drought indices during the dry season from 2000 to 2022 over the
MSEA region. The responses of VCI-based drought to multi-temporal drought indices were
explored in consideration of land cover types and elevation characteristics. The main steps
included data pre-processing, derivation of vegetation condition and drought indices, and
sensitivity analysis between vegetation-based drought and climate- and soil-based drought

indices. Figure 5.2 displayed the overall framework of approach implementation.

5.2.1 Data preprocessing

This study prepared precipitation, soil moisture, and potential evapotranspiration (PET)
time series data to derive climate-based drought indices. The ERAS5-Land hourly data was
first aggregated into daily observations. The PET data are essential for calculating the stan-
dardized precipitation evapotranspiration index (SPEI), but this product is unavailable in
the ERAS5-Land variables. This study used the FAO-56 Penman-Monteith method to es-

timate the PET from daily ERAS-Land variables, such as maximum temperature, mean
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Figure 5.2: The overall framework of VCI-drought relationships over the MSEA region during the
dry season from 2000 to 2022.

temperature, minimum temperature, relative humidity, wind speed, and solar radiation. The
pyet Python package was used to estimate the PET, and its detailed documentation can
be found in the study of Vremec et al. (2023). After deriving the PET time series data, we
selected three ERAS-Land variables, namely PET, precipitation, and soil moisture, to aggre-
gate them into a monthly time series from 2000 to 2022. The monthly data were resampled

to a higher spatial resolution of 1 km to match the resolution of MODIS data.
5.2.2 Vegetation and drought indices

5.2.2.1 Vegetation condition index

The NDVI is among the most used indices for monitoring vegetation ecosystems and
their sensitivity to climate and human activities (Fensholt et al., 2009; Li et al., 2013;
Knauer et al., 2014). One of the major limitations of this indicator is that it mainly reflects
vegetation greenness and may fail to detect subtle variations or signs of water stress, such
as drought (Goward et al., 1991). Another limitation of the NDVI can be attributed to its
seasonal and regional variability due to atmospheric and soil reflection effects. If the NDVI

is transformed into the Vegetation Condition Index (VCI) by considering the long-term av-
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erage and historical minimum and maximum values, the VCI can provide a more stable
indicator of vegetation conditions (Kogan, 1990). The VCI is highly effective in detecting
subtle changes in vegetation due to its strong sensitivity to both short- and long-term varia-
tions. The VCI normalizes the variations by comparing the current vegetation conditions to
historical extremes, and this approach enables the detection of vegetation stress, a signal of
drought conditions. Also, the VCI is presented as a percentage, with values ranging from
0% (indicating extremely poor vegetation) to 100% (representing healthy vegetation), mak-
ing it easier to interpret (Kogan, 1995b; Liu and Kogan, 1996). The time-series VCI data is
calculated per pixel using the following equation (Eq. 5):

. _NDVI; = NDV i
NDVIax — NDVIpin

VCI; = 100 (5)

While NDVI; is monthly NDVI, NDV I,,x and NDV I.,;, are the maximum and minimum
NDVI values, respectively, calculated for each grid pixel across the monthly period (12
months) using the entire NDVI record (2000-2022).

5.2.2.2 Drought indices

Drought is among the most devastating natural disasters, manifesting in different forms
and leading to different consequences (Ha et al., 2022; Venkatappa et al., 2021; Mishra
and Singh, 2010). A wide range of drought indices has been developed to capture differ-
ent drought conditions, such as meteorological, hydrological, and agricultural droughts.
This section selected four key drought indices, namely the Standardized Precipitation In-
dex (SPI), the Standardized Precipitation Evapotranspiration Index (SPEI), the Soil Water
Deficit Index (SWDI), and the Temperature Condition Index (TCI). Each indicator rep-
resents short- and long-term drought conditions based on its selected temporal timescales
(Mishra and Singh, 2010). For example, when the SPI and SPEI are calculated using the ac-
cumulation period of less than three months, it can be considered a meteorological drought
(short-term drought). In contrast, longer timescales indicate hydrological drought, captur-
ing more prolonged and persistent water deficits. On the other hand, the SWDI and TCI are
widely used to detect short-term agricultural drought related to soil moisture and thermal

temperatures. Drought indices in this section were calculated monthly from 2000 to 2022.

Among the drought indices, the SPI was probably the most widely used index for moni-
toring and assessing drought conditions, as proposed by McKee et al. (1993). This index is
solely based on historical precipitation and can be calculated across multiple timescales to
capture different types of drought conditions. The calculation process involved selecting a

specific period and fitting a gamma distribution to the historical rainfall data (McKee et al.,
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1993; Fang et al., 2019). The accumulative precipitation values are then transformed into
a standard normal distribution with a mean of zero and a standard deviation of one. This
study reviewed SPI literature and selected specific SPI timescales to assess their responses
to vegetation-based drought. For example, short-term drought conditions can be effectively
monitored by the SPI-1 (1 month) and SPI-3 (3 months), while median-term drought can
be monitored by the SPI-6 (6 months) and SPI-9 (9 months). The longer-term drought can
be detected by the SPI-12 (12 months). The SPI values typically range from negative to

positive, whereas lower negative (positive) values indicate drier (wetter) conditions.

Despite its simplicity and widespread use, the SPI has certain limitations. It is solely
based on historical rainfall data and does not account for other factors influencing droughts,
such as temperature. To overcome this limitation, Vicente-Serrano et al. (2010) proposed an
alternative drought index, the SPEI, which builds upon the SPI by integrating both historical
precipitation and temperature data. This modification offers a more holistic approach to as-
sessing drought conditions. Like the SPI, the SPEI can be calculated at multiple timescales,
each representing different aspects of drought conditions. The calculation of SPEI involves
determining the water balance (D) by calculating the difference between historical precipi-
tation and the PET. As recommended by Vicente-Serrano et al. (2010), the water balance is

calculated as the following equation (Eq. 6).

D; =P, — PET; (6)

Where D; represents monthly water balance, and P, and PET; denote the precipitation
and PET at month 1, respectively. This study fitted a log-logistic probability distribution to
the water balance data because it can handle both positive and negative values (Vicente-
Serrano et al., 2010). Here the SPEI timescales are selected the same as observed in the

SPI, representing different drought conditions.

In tropical and subtropical regions, thermal temperatures can significantly influence veg-
etation conditions. Higher temperatures can increase plant water demand and, in extreme
cases, cause crop failure. This study considered the response of VCI-based drought to
thermal temperatures. Here, the temperature condition index (TCI), a temperature-based
drought index, is calculated from the LST time series (Kogan, 1995a). The MODIS LST
data from 2000 to 2022 are linearly transformed into TCI and expressed in the following
equation (Eq. 7).

LSTmax — LST;
TCI; =100 7
l * LSThax — LSTin @
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Where TCI and LST are the temperature condition index and land surface temperature at
i month, respectively. The LSTnax and LST i, are the maximum and minimum temperature
values observed in a specific month (from January to December) during the selected study
period (2000-2022). Higher TCI values indicate wetter conditions, whereas lower values

denote drier conditions.

While the SPI, SPEI, and TCI offer essential insights into meteorological and hydro-
logical aspects of drought, they may not directly reflect soil moisture agriculture. Recently,
Mishra et al. (2017) has developed the SWDI using soil moisture time series data. Several
studies have demonstrated the reliability of this index to monitor and characterize agri-
cultural drought conditions. For example, Fang et al. (2021) used the SWDI based on a
downscaled 1 km Soil Moisture Active Passive (SMAP) data from 2015 to 2019 to mon-
itor drought conditions in Australia. Their findings indicated that the SMAP-based SWDI
provided reliable accuracy with the in-situ drought observations. This study calculated the
SWDI based on topsoil moisture and soil water properties using the following equation (Eq.
8).

(® — Okc)

SWDI; = -

(8)
Where ©, Opc, and ®apc are soi moisture estimates, soil moisture at field capacity, and
available water capacity, respectively. The ®arc can be estimated from the soil moisture at

field capacity ®Opc and wilting point @wp in the following equation (Eq. 9).

Oarc = Opc — Owp )

The higher positive SWDI values indicate wetter conditions, while its negative val-
ues represent drought conditions. It is found that there has been a strong relationship be-
tween soil moisture (at field capacity and wilting point) and soil physical characteristics
(e.g., clay, sand, and organic matter contents). This relationship can be expressed using
the pedo-transfer functions (PTFs). Following the recommendation from previous studies
(Fang et al., 2021; Mishra et al., 2017), this study used the modified PTFs version and
expressed in the following equations (Eq. 10) and (Eq. 11).
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Owp = Ofyp + (Ofp+0.14 — 0.02)
Olyp = 0.006 % OM +0.487 % C — 0.024 xS +0.005(S * OM) — 0.013 % (C x OM)
40.068(S *C) +0.031 (10

Orc = O + (1.283(O) )% — 0.374@ — 0.015)
fe=0.011OM+0.195+C —0.251 xS +0.006(S + OM) — 0.027(C x OM)
+0.452(S % C) +0.299 (11)

While S, C, and OM represent the sand, carbon, and organic matter contents in percent-

age, O and Oy indicates the first solutions of Orc and Owp.
5.2.3 Analysis of vegetation-drought responses

5.2.3.1 Response of vegetation drought to climate and soil indices

The previous chapter primarily identified drought conditions during the dry seasons be-
cause the rainy season received higher precipitation and suffered from little drought. Hence,
this chapter focused on the response of vegetation-based drought to climate-soil-based
drought conditions from 2000 to 2022 during the dry season. The response of vegetation-
based drought to climate and soil variables was explored using Spearman’s rank statistical
correlation analysis. This method was chosen due to its robustness in handling non-linear
relationships and non-normally distributed data (Bisquert et al., 2017; Cao et al., 2022).
The Spearman analysis evaluates the direction and strength of the monotonic relationships
between the two variables (Tran et al., 2023), indicating how consistently one variable
increases or decreases as the other changes. In this study, Spearman’s correlation coeffi-
cients were identified per pixel at p < 0.05 significance level. Higher coefficients indicate
a stronger relationship between the two variables. In this case, higher coefficients suggest

that vegetation-based drought and climate-soil-based drought indices were closely related.

Before the calculation of the correlation, each drought indicator was converted into
anomalies to mitigate the risk of spurious correlations (Udelhoven et al., 2009). For the
multi-temporal drought indices such as SPI and SPEI, this study identified the maximum
correlation coefficients across the selected timescales. By selecting the largest correlation
coefficients, the study aimed to capture the most relevant timescale at which vegetation

condition (VCI) is affected by drought. These maximum coefficients highlight the temporal
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lag between precipitation deficits and vegetation response, as well as the degree to which
VClI-based drought indicators are related to both climatic and soil moisture-driven drought

conditions.

5.2.3.2 Drivers of vegetation drought in undisturbed environments

Natural and undisturbed environments play a key role in understanding how ecosystems
respond to drought conditions. This study aimed to estimate the relative contributions of
each drought index to the VCI variability during the dry season from 2000 to 2022. Our
analysis selected protected areas where human activities are either absent or neglectable.

Here, the protected areas primarily cover forest areas across the MSEA region.

While numerous studies have highlighted the influence of precipitation on vegetation
variability (Fang et al., 2005; Guo et al., 2021; Zhang et al., 2013), raw climate data
presents certain limitations. For example, precipitation may not provide short- and long-
term information on drought conditions and fail to capture drought impacts on ecosystems.
In contrast, drought indices offer more insights into multi-temporal drought information,
such as meteorological and hydrological droughts. For instance, the SPEI is calculated
at multiple timescales, and therefore, it can provide different aspects of drought condi-
tions. Drought indices offer a more integrated assessment of drought impacts on vegetation
ecosystems, as they consolidate several climatic factors into a single metric. In the case
of the SPEI, this integration includes both temperature and precipitation, providing a more
comprehensive tool for evaluating ecosystem responses to drought. This study employed
all selected drought indices (SPI-1, SPI-3, SPI-6, SPI-9, SPI-12, SPEI-1, SPEI-3, SPEI-6,
SPEI-9, SPEI-12, SWDI, TCI) for assessing the relative contributions of drought indices on

VCI-based drought in natural and undisturbed protected areas.

Each drought type and indicator may have different levels of impact on vegetation-
based drought. This study identified the relative contribution of climate and soil drought
indices to vegetation-based drought using the explainable machine learning algorithm. We
selected the Random Forest (RF) regression combined with the SHapley Additive exPla-
nations (SHAP) method to determine the overall and individual contributions of climate-
and soil-based drought indices. The RF is a non-parametric ensemble learning regression
that proved robust to non-linear patterns, outliers, and autocorrelation in time series data
(Breiman, 2001; Gessner et al., 2015). Despite its outperformance, RF regression lacks the
capability to estimate the individual contributions of specific observation data. This means
that the RF can offer relative contributions, but it is difficult to determine the magnitude and
direction of specific variables and data points. To address this issue, SHAP, a cooperative

game theory, offers a more robust and interpretable method of feature contribution analysis.
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Figure 5.3: Temporal variability of VCI-based drought areas across land cover types and countries
from 2000 to 2022.

The SHAP method computes Shapley values for each feature, reflecting their marginal con-
tributions to individual predictions (Scott et al., 2017). The combination of RF regression
and SHAP enhances model interpretability better to understand the influence of drought
indices on VCI variability. This study trained the RF regression using time series drought
indices to estimate the VCI variability during the dry season with 500 decision trees. Subse-
quently, the SHAP method was applied to the trained model, and the detailed contributions
of drought indices were estimated. The SHAP values can be negative and positive, indicat-

ing directional impacts on the target variable.

5.3 Results

5.3.1 Vegetation drought by land cover types and elevations

Figure 5.3 showed the temporal evolution of VCI-based drought-affected areas across
different land cover types in five MSEA countries from 2000 to 2022. Overall, the pro-
portion of drought-affected areas in each country varied across land cover types and years.
Rainfed cropland witnessed higher proportions of drought-affected areas across the coun-

tries.

The analysis revealed that rainfed cropland in Thailand and Cambodia has consis-
tently experienced higher proportions of drought-affected areas (Figure 5.3). In Cambodia,
drought conditions were especially severe. For example, nearly 35% of rainfed crops were
impacted by drought in 2005 (Figure 5.3). Thailand also experienced significant droughts in
its rainfed cropland, with approximately 25% affected in 2005 and 17% in 2020. In contrast,
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rainfed cropland in Vietnam, Myanmar, and Laos displayed much lower drought-affected
areas. For instance, Vietnam’s rainfed cropland suffered from less than 5% of drought-
affected areas across the studied years. Other countries had less than 10% of stressed rain-
fed crops due to drought. These findings were aligned with recent studies. Venkatappa et al.
(2021) examined the drought impacts on cropland across the MSEA region, and they re-
ported that Cambodia had the largest proportion of damaged rainfed cropland (~ 40%).
Thailand was ranked second with nearly 30% of damaged rainfed cropland from 1980 to
2019, but Vietnam had less than 10% of damaged rainfed cropland during the same period
(Venkatappa et al., 2021). These discrepancies in drought-affected areas across the MSEA
countries can be attributed to a combination of climatic factors, resource availability, and
farming practices. For instance, variations in precipitation and temperature significantly in-
fluence drought susceptibility in rainfed croplands. Vietnam typically receives higher pre-
cipitation and has lower temperatures during the dry seasons compared to Thailand and
Cambodia. These favorable climatic conditions likely help mitigate the extent and severity
of drought in Vietnam’s rainfed croplands. In addition, Vietnam has substantially expanded
its irrigation infrastructure into rainfed croplands over the past decade. However, the ESA
CCI land cover product may not accurately detect rainfed croplands in Vietnam. For ex-
ample, Kuenzer et al. (2018) assessed the accuracy of multiple global land cover products,
and they reported that there has been a lack of agreement among the land cover products.
As shown in the ESA CCI land cover product in Figure 2.3 (Chapter 2), nearly all crop-
lands in the upper areas were defined as rainfed crops, while irrigated crops were primarily
observed in rice-growing areas. These misclassification errors can influence the rainfed

drought-affected areas.

Among the remaining vegetation types, evergreen and mixed forests suffered from larger
proportions of drought-affected areas (Figure 5.3). In Cambodia, all forest types have fre-
quently witnessed the largest proportions of drought-affected areas. For example, the largest
proportion of drought-affected areas (10-15%) in Cambodian forests was primarily ob-
served in 2005, 2010, 2016, and 2020. In other countries, evergreen forests had a higher
proportion of drought-affected areas. Notably, Thailand and Vietnam had the lowest pro-
portion of forest drought-affected areas in recent years. In Vietnam, the proportion of forest
drought-affected areas has been less than 3% over the past seven years. Recent studies
reported that Cambodian forests experienced declining trends due to forest disturbance,
such as deforestation and drought (Hansen et al., 2013; Grogan et al., 2015). Likewise,
Myanmar and Laos suffered from forest disturbance due to drought and shifting agriculture
(Chen et al., 2023). It is also noted that deciduous forests had a lower proportion of drought-
affected areas. This could be due to the forest’s resilience and limited area proportion. In

the MSEA region, deciduous forests accounted for the smallest proportion of forest types.
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Figure 5.4: The trends of VCI-based condition across land cover and elevation characteristics in the
MSEA region.

As shown in Figure 2.3 (Chapter 2), Cambodia and Myanmar had the largest area of decid-
uous forests, accounting for nearly 15% and 7%, respectively. Other remaining countries

had less than 2% of deciduous forests.

Apart from the drought-affected areas, this analysis also investigated the VCI-based
drought conditions across the elevation characteristics. Figure 5.4 displayed the VCI trends
across land cover types and elevation zones. Overall, higher VCI trends were observed in
higher elevation zones. Despite the positive trends, VCI trends for rainfed and irrigated
crops stayed relatively stable across elevation zones. For example, the VCI of rainfed and
irrigated crop trends experienced about 1.5% yearly. Similarly, shrubland witnessed posi-
tive VCI trends; the highest trend was above 1000 m elevation. Regardless of forest types,
the VCI witnessed an increasing trend in higher elevations. The VCI trend of evergreen
forests increased from 0.3% in 100 m to nearly 2% above 1000 m elevation. Notably, de-
ciduous forests witnessed the largest increase in the VCI trends, from -2% (in 100 m) to
approximately 2% (above 1000 m), respectively (Figure 5.4). The observed increasing VCI
trends at higher elevations likely reflect the lower temperatures and higher moisture avail-
ability in these areas, and such conditions can facilitate vegetation growth during dry peri-
ods. At higher altitudes, forests can benefit from reduced evapotranspiration rates and en-
hanced water retention in the soil, enabling vegetation to maintain healthier conditions even
in fluctuating environmental conditions. Cislaghi et al. (2019) examined the soil nutrients
across elevation characteristics, and they reported that higher elevations are less vulnerable

to soil erosion and land use intensity. These trends suggest that higher-elevation ecosystems
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are becoming more resilient to drought stressors. Despite the largest trend, the deciduous
forests experienced a negative trend across elevation zones, except for areas above 1000
m. Further analysis indicated that nearly 85% of deciduous forests in Cambodia below 100
m zone, experienced declining trends. In contrast, deciduous forests at higher elevations,
above 500 m, were predominantly found in Myanmar (~ 73%) and Thailand (~ 17%) with
positive trends. These trends align with the spatial distribution of the VCI trends, as shown
in Figure 3.10 (Chapter 3). In lower elevations, forests may experience more human and
natural disturbances, such as shifting agriculture, urbanization, and higher sensitivity to cli-
matic stressors (e.g., extreme heat and drought). Recent studies also reported that tropical
deciduous forests had a greater vulnerability to disturbances at lower elevations (Zoungrana
et al., 2018; Jeganathan et al., 2014). Vegetation in these areas may be more susceptible to
water deficits and higher temperatures, leading to poorer vegetation health than higher ele-
vations. These results highlight the importance of considering both land cover and elevation

when assessing vegetation resilience and drought impacts.

5.3.2 Spatial variability of climate and soil drought indices

In the MSEA region, there has been considerable variability in the extent and sever-
ity of drought across different drought indices from 2000 to 2022. Overall, climate-based
drought indices provide clearer insights into temporal drought conditions, offering a more
detailed understanding of drought fluctuations over time. In contrast, soil-based drought
indices show similar patterns throughout the study period, indicating a more consistent re-
sponse to drought across the region. Figure 5.5 showed the spatial and temporal patterns
of drought conditions using the SPI-3 during the dry season from 2000 to 2022. It is noted
that the most severe drought conditions were observed across multiple years due to pre-
cipitation deficits, such as in 2005, 2010, and 2020. For example, the SPI-3-based drought
indicator revealed that nearly 85% of the study region suffered from drought. As shown
in Figure 5.5, the Lower Mekong Basin experienced the most severe drought conditions
in 2005. This area also frequently suffered from drought due to lack of precipitation. No-
tably, drought events in 2010 occurred mainly in Central and southern Myanmar. The recent
drought event in 2020 covered a large extent, accounting for nearly 75% of the study area.
Notably, the dry seasons in 2007 and 2013 also experienced severe drought conditions, and
these patterns were primarily detected in Central Myanmar and northern Thailand. In com-
parison, the MSEA region experienced wetting conditions across multiple years, indicating
the precipitation above the long-term average. For example, most of the countries in the

region witnessed wetting conditions in 2022 (Figure 5.5).
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Figure 5.5: Spatial variability of short-term drought conditions based on the SPI-3 during the dry
season from 2000 to 2022 over the MSEA region. Lower values (dark red) indicate drier
conditions, while higher values (dark green) represent wetter conditions.

Figure 5.6 indicated the spatiotemporal dynamics of drought conditions using the SPEI-
3 index from 2000 to 2022. Despite the similar spatial patterns observed with SPI-3, the
study region experienced less severe drought overall (Figure 5.6). It is observed that drought
conditions from SPEI-3 were closely aligned with the SPI-3 during both dry and wet years
from 2000 to 2022. Slight disparities in the drought severity levels between the two in-
dices can be attributed to the calculation method and input data. While the SPI is based
solely on precipitation, the SPEI is calculated using precipitation and PET data. The lower
SPEI-3 values suggest that while rainfall deficits (as measured by SPI-3) are similar, evap-
otranspiration may have mitigated the drought severity (Laimighofer and Laaha, 2022).
This could indicate that lower temperatures or higher humidity levels could lead to reduced
atmospheric water demand, thus reducing the impact of precipitation shortfalls. In some
regions, the SPEI demonstrated its robustness in capturing drought conditions (Berhail and
Katipoglu, 2023; Vicente-Serrano et al., 2010), reflecting the balance between moisture

inputs (precipitation) and losses (evapotranspiration).
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Figure 5.6: Spatial variability of short-term drought conditions based on the SPEI-3 during the dry
season from 2000 to 2022 over the MSEA region. Lower values (dark red) indicate drier
conditions, while higher values (dark green) represent wetter conditions.

Apart from the SPEI-3 and SPI-3 drought indices, Figure 5.7 presented the spatiotempo-
ral patterns of temperature-based drought from 2000 to 2022. Generally, lower SPEI-3 and
SPI-3 values correspond to lower TCI values, indicating drought conditions. Despite the
severe drought conditions of the SPEI-3 and SPI-3 in 2005, the TCI this year revealed less
intense drought conditions than in other years. The lowest TCI values (extreme droughts)
were dominantly observed in 2010, 2013, 2016, 2019, and 2020. Although the SPEI-3 and
SPI-3 revealed moderate drought conditions in 2013 and 2016, the study region experienced
significantly low TCI values during these years, indicating extreme drought conditions. The
year 2019 probably witnessed the hottest dry season, this pattern was largely observed in the
Lower Mekong Delta, except for Myanmar. Lower TCI values in 2020 mainly occurred in
Thailand and Laos, and other countries experienced less extreme heat. Interestingly, SPEI-3
and SPI-3 revealed relatively wet conditions in 2017, but the TCI revealed moderate drought
by TCI. Lower TCI values suggest that even though the region experienced favorable pre-

cipitation, surface temperatures were elevated.
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Figure 5.7: Spatial variability of short-term drought conditions based on the TCI during the dry
season from 2000 to 2022 over the MSEA region. Lower values (dark green) indicate
wetter conditions, while higher values (dark red) represent drier conditions.

In contrast to other drought indices, the SWDI revealed similar spatial patterns across
the dry seasons from 2000 to 2022. Figure 5.8 illustrated the spatiotemporal variability of
SWDI-based drought conditions. Clearly, lower SWDI values were primarily detected in the
Lower Vietnamese Mekong Delta, southern Thailand, and southern Myanmar. Despite their
spatial variability, the SWDI values maintained relatively similar temporal patterns across
the study period (Figure 5.8). More severe soil moisture drought conditions were observed
in 2004-2005, 2007, 2010, and 2020. Some specific areas witnessed soil moisture drought
conditions across the study period. In the MSEA region, there have been no drought studies
using the SWDI. However, a recent study reported that the SWDI usually agreed well with
the SPEI and SPI (Guo et al., 2018b).
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Figure 5.8: Spatial variability of short-term drought conditions based on the SWDI during the dry
season from 2000 to 2022 over the MSEA region. Lower values (dark red) indicate drier
conditions, while higher values (dark green) represent wetter conditions.

5.3.3 Responses of vegetation to drought indices

5.3.3.1 Spatial patterns of vegetation-drought responses

The VCl is a useful indicator for assessing drought and vegetation conditions. Thus, this
section focused on the spatial distribution of VCI-drought relationships over the past two
decades in the MSEA region. This study calculated per-pixel Spearman correlation coef-
ficients between the VCI-SPEI and VCI-SPI at multiple time scales. In the case of multi-
timescale SPEI and SPI indices, only maximum coefficients were presented in Figure 5.9.
Generally, short-term drought indices (e.g., SPI-1, SPI-3, and SPI-6) had stronger relation-
ships with the VCI. In the first three timescales, SPEI and SPI accounted for nearly 90% of
the maximum coefficients. Notably, nearly 40% of the study area had the highest correlation
coefficients between the SPI-3 and VCI. Likewise, this figure was similar for the SPEI-3.
Long-term drought indices (SPI-9/SPEI-9 and SPI-12/SPEI-12) witnessed weaker relation-
ships with the VCI, indicating a neglectable influence on vegetation. The TCI generally

experienced the largest relationships with the VCI during the dry season among the climate

105



Chapter 5 Responses of vegetation-based drought to climate and soil indices

25°N

20°N

15°N

% of area

fo

&P

o 204 -

10°N -
. 104

g ALALACIEARAN

ég:m—
o 20—H H N
. [j[;

l:‘ Non-significant o S

|:| Non-significant

D 136912 p>0.05 % 136912 p>0.05
SPE] (months) SPL(months)
93°E 97°E 101°E 105°E 109°E 93°E 97°E 101°E 105°E 109°E

T T
-0.5 0.0 0.5 1.0
Spearman correlation (R)

Figure 5.9: Spatial responses of VCI-SPEI (a) and VCI-SPI (b) across the MSEA region during the
dry season from 2000 to 2022. The inset plot represents the percentage of maximum
coefficients across selected timescales (1, 3, 6, 9, and 12 months). The dark blue repre-
sents negative coefficients, while the dark red indicates positive correlations at p < 0.05.
The gray area indicated non-significant pixels or no data available.

and soil-based drought indices. The VCI responses to both SPEI and SPI exhibited similar
spatial patterns regarding correlation coefficients (Figure 5.9). Negative correlation values
were predominantly concentrated in high mountains in northern Myanmar, while the central
coast of Vietnam and parts of central Laos showed non-statistically significant correlations.
In contrast, other regions displayed strong positive correlation coefficients, indicating a ro-
bust relationship between VCI and the SPEI/SPI in those areas. Statistically, nearly 66% of
the study area witnessed positively significant coefficients between the VCI and SPEI/SPI,
while the proportion of non-significant coefficients accounted for about 32%. It is observed
that northern Thailand and southern Myanmar witnessed the strongest positive correlations
between the VCI and SPEI/SPI during the dry seasons, indicating the stronger sensitiv-
ity of the VCI to precipitation-based drought in these areas. On average, Thailand had the
strongest VCI-SPEI responses, with R-value = 0.64, while Myanmar witnessed the smallest
R-value = 0.54. The VCI-SPEI/SPI responses in other countries ranged from 0.54 to 0.59.

Apart from precipitation-based drought indices, the VCI also experienced strong re-
sponses to the soil and temperatures. Figure 5.10 showed the spatial responses between
the VCI and SWDI/TCI during the dry seasons. Despite stronger overall responses, the
VCI-TCI/SWDI data exhibited similar spatial patterns. For instance, approximately 56%

of the study area showed positive correlations between the VCI and SWDI, with R-values
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Figure 5.10: Spatial responses of VCI-SWDI (a) and VCI-TCI (b) across the MSEA region during
the dry season from 2000 to 2022. The dark blue represents negative coefficients, while
the dark red indicates positive correlations at p < 0.05.

around 0.6. Notably, large regions along the central coast of Vietnam and northern Myan-
mar displayed non-significant relationships, aligning with the patterns observed for the
SPEI and SPI indices. Among the drought indices, the VCI had the highest correlation
with the TCI, indicating a strong influence of temperatures on the VCI. The highest cor-
relation coefficients were primarily observed in Cambodia, while non-significant R values
were detected in central and northern Vietnam (Figure 5.10). Some areas of the Lower
Vietnamese Mekong Delta and northern Laos also experienced non-significant responses.
Notably, Cambodia had the largest area of the VCI-TCI positive response (~ 80%), and
Thailand ranked second with nearly 70%. Myanmar ranked third with 60%. Vietnam had
a modest proportion of the country with positive coefficients (R-value = 0.35), accounting
for 35%.

Despite certain spatial variations, there was a strong positive correlation between the
VCI and drought indices. This suggests that changes in VCI values, whether increasing or
decreasing, are closely linked to the drought indices, highlighting the significant influence
of drought conditions on VCI. These results were aligned with previous studies regarding
the responses of vegetation to drought indices (Zhao et al., 2018; Ji and Peters, 2003) .
Also, the VCI had a stronger relationship with shorter-term drought indices (e.g., SPEI-1,
SPEI-3), which could be due to the higher rate of evapotranspiration and rapid soil moisture
deficits. Vicente-Serrano et al. (2013) assessed vegetation responses to multiscale drought

indices and their findings indicated that vegetation conditions responded stronger to drought
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indices at shorter time scales, such as SPEI-1 and SPEI-3. Notably, large areas along Viet-
nam’s central coast and northern Myanmar exhibited non-significant or weaker correlations.
Some studies suggest that local climate and geographical factors may influence these re-
sponses. For instance, in the highlands of Myanmar, the presence of fog and dew can help
maintain soil moisture levels even during dry seasons or periods of low rainfall, potentially
mitigating the impact of drought on vegetation ecosystems. Likewise, the central coast of
Vietnam experiences high humidity and microclimate ocean variability that can influence
vegetation growth. The relatively stable temperatures and precipitation in these areas can
also maintain vegetation growth. Also, Fan et al. (2023) noted that agricultural practices

and land use changes could enhance the resilience of vegetation to drought conditions.

5.3.3.2 Vegetation-drought response by land cover types and elevations

The influence of drought conditions on vegetation ecosystems can depend on other fac-
tors, such as land cover types and elevation characteristics. This section provides a detailed
analysis of how VCI-drought relationships vary in response to different land cover types
and elevation characteristics across the MSEA region. Figure 5.11 showed the responses
of VCI to multifaceted drought indices across land cover types and elevation zones over
the MSEA region. Overall, higher responses between the VCI and drought indices were
observed in rainfed cropland, mixed forests, and deciduous forests at 100-1000 m above

sea level.

Regarding the VCI-drought responses with elevations, Figure 5.11 highlighted the var-
ied VCI-drought responses across five different elevation zones. At elevations below 1000
m, the responses of the VCI to drought indices exhibited similar patterns. However, the
responses were notably lower at higher elevations (above 1000 m), particularly in irrigated
cropland and mixed forest areas. For instance, the correlation coefficient between VCI and
SPEI in irrigated cropland was 0.47, whereas, for the TCI, this coefficient dropped to 0.41
- the lowest observed. In mixed forest areas, the lowest correlation between VCI and TCI
was only 0.33, further illustrating a weaker response of this forest type to temperature fluc-
tuations. Notably, the TCI generally had the highest correlation with the VCI across the
elevation zones. In deciduous forests, the highest correlation between the VCI and TCI was
observed under 100 m elevation, while this figure was 0.56 above the 1000 m elevation
zone. In comparison, higher responses of VCI to other drought indices (SPEI, SPI, and
SWDI) were found in elevations from 100 to 1000 m. For instance, the highest R-values
were observed at 300-500 m zones across rainfed cropland (R-value = [0.63—0.7]), mixed
forest (R-value = [0.63—0.69]), and deciduous forest (R-values = [0.62—0.73). Higher re-

sponses of VCI to drought indices at lower elevations indicated that these areas are more
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Figure 5.11: Responses of VCI to different drought indices across land cover types and elevation
characteristics in the MSEA region. Dark red indicates stronger responses, while dark
green represents less responsive.

vulnerable and sensitive to drought conditions. These findings are aligned with the VCI
trends presented in Figure 5.4, where lower VCI trends were observed in lower elevations.
Although several studies have investigated the relationship between vegetation and drought,
limited research has examined this topic in tropical regions, considering elevation character-
istics. Wang et al. (2021) examined the vegetation-drought responses in China and reported

that higher elevations tended to have lower responses to vegetation productivity.

Regarding the VCI-drought responses concerning land cover types, the highest VCI-
drought responses were observed in rainfed cropland, mixed, and deciduous forest areas.
For example, the R-value between the TCI and deciduous forest VCI was around 0.73, while
this number for rainfed crops was 0.67. Other vegetation types have lower responses to
drought indices. In shrubland, lower responses were found with the SPEI and SPI, whereas
in irrigated croplands, the lowest responses were found above 1000 m. In these elevated ar-
eas, there would be fewer irrigated croplands, and drought conditions may not significantly
regulate crop growth due to the active water from mountains. Notably, the evergreen forests
had the lowest responses to drought indices, especially with the SPEI and SPI. Mixed and
deciduous forests are primarily found in lower elevations, where human activities have sig-
nificant impacts. In comparison, evergreen forests are primarily found in higher elevations
(e.g., Myanmar), where climate conditions stay relatively stable and experience less ex-

treme heat during the dry seasons (Fan et al., 2023; Feng et al., 2020).
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5.3.3.3 Impacts of drought on natural and undisturbed vegetation

This section examined the impacts of multi-temporal drought indices on the natural and
undisturbed vegetation. The selection of natural vegetation in protected areas aimed to min-
imize human disturbance, focusing only on the impact of drought on the vegetation. We
trained an RF regression using the VCI values and drought indices time series data from
2000 to 2022. The SHAP method was then applied to quantify the relative and individual
contributions of each drought index to the VCI. Although the model optimization was not
the primary focus of this study, the trained RF model achieved an accuracy of 94% on the
training data. This performance indicated that the model is effective and reliable in generat-
ing the overall and individual contribution statistics. Here, the VCI can indicate vegetation

conditions and drought conditions so that they can be used interchangeably.

Vegetation ecosystems are vulnerable to different drought conditions, including short-
term and long-term droughts driven by climate and soil moisture variability. Each drought
may have unique impacts on vegetation conditions with different scales. This study em-
ployed 12 different drought indices calculated at multiple timescales and grouped them into
three primary drought conditions: short-term, median-term, and long-term drought. The
short-term drought included six drought indices (SPI-1, SPI-3, SPEI-1, SPEI-3, SWDI, and
TCI), while the median-term drought covered four drought indices (SPI-6, SPEI-6, SPI-9,
and SPEI-9), and the long-term drought included two drought indices (SPI-12 and SPEI-
12).

In tropical MSEA regions, short-term drought conditions have primarily driven undis-
turbed vegetation conditions (Figure 5.12). The SPEI-3 exhibited the highest influence on
vegetation change among the examined drought indices, accounting for nearly 35% of
the overall importance. The TCI ranked second, explaining nearly 20% of the observed
variations, while the SWDI ranked third with 14%. SPEI-1 and SPI-1 explained about
15%, while the SWDI contributed nearly 9%. Short-term drought indices collectively ex-
plained nearly 93% of the undisturbed vegetation variations in the study region. By contrast,
median-term and long-term drought indices explained only 7% of the observed variations
in undisturbed vegetation conditions. For example, the SPI-9 explained less than 2% of
the observed variations in the undisturbed natural vegetation, and this figure remained like

other drought indices.

Figure 5.12 (b) exhibited the detailed contributions of individual observations from each
drought indicator to undisturbed vegetation. Despite its smaller overall importance, the TCI
has more individual variations of impact on undisturbed vegetation than the SPEI-3. For

example, the wettest condition based on the TCI can increase the VCI up to 25% in some
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Figure 5.12: Overall and individual measures of the contribution of drought impacts on undisturbed
and natural VCI across the MSEA region using the RF regression and SHAP method.
The bar plot (a) indicated the relative contribution of drought indices using the SHAP
method, while the bee swarm plot (b) presented the detailed contribution of individ-
ual observations to the VCI variability. Higher values in the bar plot indicated larger
importance, while positive (negative) SHAP values in the bee swarm plot indicated
positive (negative) contributions to increasing (declining) VCI values. The color bar
represents feature observation values from low (drier conditions in red) to high (wetter
conditions in blue). The combination of red and blue dots signifies a mixture of their
impact on natural vegetation. Drought indices include the SWDI, SPI, TCI, and SPEI
during the dry seasons from 2000 to 2022. This analysis is limited to protected areas
to minimize human activities’ impact on vegetation.

instances, while the driest condition can decline the VCI by 15%. The SPEI-3 can increase
(decline) the VCI by 20% (15%) during the wettest (driest) conditions respectively. Soil
moisture drought can increase or decrease the VCI within 10%, while this number for

other short-term drought indices falls within 5-10%. The remaining drought indices did

111



Chapter 5 Responses of vegetation-based drought to climate and soil indices

not clearly show the influence on undisturbed VCI. These findings revealed the significant
role of temperature and precipitation over the three months on undisturbed VCI. In Eu-
rope, vegetation ecosystems are more vulnerable to extreme climate conditions during the
summer and spring seasons (Baumbach et al., 2017; Li et al., 2022a). In tropical regions,
vegetation variability was primarily driven by extreme climate conditions (Ciemer et al.,
2019; Fan et al., 2023).

Several factors may explain the different responses of undisturbed VCI to different
drought indices in the tropical region. Vegetation ecosystems are typically susceptible to
immediate water stress due to short-term droughts. These can cause rapid declines in soil
moisture and water availability, especially during the dry seasons, making ecosystems more
vulnerable to abrupt changes. For example, SPEI-3 and TCI are designed to capture short-
term climate and soil moisture variability. Vicente-Serrano et al. (2010) developed the SPEI
and revealed that tropical vegetation ecosystems were more sensitive to the short-term SPEI
indicators. In arid and semi-arid environments, longer SPEI indices played a stronger role
in vegetation variability (Zhan et al., 2022; Xu et al., 2018). These findings offer critical
insights into how tropical undisturbed vegetation responds to different drought conditions
across the study region. Given the ongoing climate crisis, short-term drought conditions
are expected to rise and have far-reaching impacts on the natural protected ecosystems.
These findings can support local authorities and conservationists in anticipating potential
vegetation-induced drought areas so that proper planning and mitigation measures can be

implemented to prevent potential losses or damage.

5.4 Summary

This study presented a detailed analysis of vegetation conditions’ responses to climate
and soil moisture drought indices across the MSEA region during the dry season. The
VCI was calculated to represent vegetation conditions or vegetation-based drought, while
the SPEI, SPI, SWDI, and TCI depicted the climate and soil-related drought conditions.
Specifically, this study presented the spatiotemporal distribution of vegetation and climate-
soil-based drought indices from 2000 to 2022. Subsequently, the response of VCI to multi-
temporal and multi-type drought indices was assessed using different land use types and ele-
vation characteristics. Lastly, this analysis investigated the influence of climate-soil drought
indices on undisturbed vegetation conditions using explainable machine learning RF regres-

sion and SHAP methods. The main findings of this study are summarized as follows:

Rainfed cropland in Thailand and Cambodia frequently suffered from drought-induced

stress. Higher VCI trends tended to occur in higher elevation zones. Among the vegetation
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types, deciduous forests witnessed a large negative trend across elevation zones. Notable,
nearly 85% of Cambodian deciduous forests suffered from decline trends under the 100 m

elevation zone.

The SPEI-3 and SPI-3 shared common patterns of drought conditions but varied in sever-
ity. Higher severity was observed in the SPI-3, especially in 2005 and 2020. The SWDI
revealed a relatively similar pattern across the study period, while the TCI agreed well
with the SPEI-3 and SPI-3 in capturing drought variability. High positive VCI-drought re-
sponses were spatially observed across the MSEA region, primarily in Myanmar, Thailand,
and Cambodia. Among the climate-soil-based drought indices, the TCI had the highest cor-
relation with the VCI across vegetation types and elevations. Higher VCI-drought responses
were observed in lower elevation zones in rainfed cropland, mixed forests, and deciduous
forests. Evergreen forest and irrigated crop vegetation responded less to drought indices,

especially in high-elevation zones.

Short-term drought disturbances accounted for nearly 93% of the natural and undis-
turbed VCI variation in the MSEA-protected areas. SPEI-3 revealed the largest influence
among the examined drought indices, explaining approximately 35% of the observed veg-
etation dynamics, followed by the TCI (~ 20%). Based on the TCI and SPEI-3, the wettest
condition can positively influence 20-25% of VCI values, while the driest conditions can
decline the VCI by 15% (VCI units).

113






Chapter 6

Agricultural drought vulnerability in the
Central Highlands of Vietnam

6.1 Research background

Drought is among the most devastating and costly natural disasters that largely impact
agriculture, ecosystems, the economy, and human health. A lack of precipitation is the
primary cause of drought. There are four drought types, including meteorological, hydro-
logical, agricultural, and socioeconomic droughts. Meteorological drought originates from
a precipitation deficit against the average over an extended period. Other droughts primarily
stem from meteorological droughts. Agriculture is probably the most directly affected by
drought among the affected sectors. Drought can cause crop failures, soil degradation, and
livestock loss. Given the ongoing global warming phenomenon, droughts are projected to
increase worldwide in both frequency and severity. According to the United Nations Of-
fice for Disaster Risk Reduction (UN-ODRD, 2022), drought events are projected to rise
by 30% in the coming decade. This alarming trend underscores the urgent need to address

drought vulnerability.

Drought vulnerability refers to the susceptibility of individuals, communities, ecosys-
tems, or regions to drought impacts. It is a complex and multifaceted concept that arises
from the interaction of various factors, such as biophysical (e.g., soil quality, climatic con-
ditions, and water availability) and socioeconomic variables (e.g., economic resilience, in-
frastructure, and population density) (Serkendiz et al., 2023). These characteristics vary
among regions, each with its own socioeconomic and biophysical background. Hence, un-
derstanding drought vulnerability and associated factors is key to drought mitigation and
planning. A detailed drought vulnerability assessment provides local and national author-

ities with vital information necessary to formulate targeted plans and mitigation strategies

115



Chapter 6 Agricultural drought vulnerability in the Central Highlands of Vietnam

aimed at minimizing the potential impacts of drought (Serkendiz et al., 2023). In prac-
tice, the successful implementation of these strategies requires coordinated efforts among
various organizations, stakeholders, and affected communities. Such collaboration is essen-
tial not only for addressing immediate impacts but also for developing long-term recovery

strategies that enhance resilience to future droughts.

Over the past decades, several frameworks have been proposed to assess drought vulner-
ability across different parts of the world. Despite variations in spatiotemporal scales and
input data, the vulnerability concept proposed by the Intergovernmental Panel on Climate
Change (IPCC) was probably the most widely used framework for assessing geospatial
drought vulnerability (Serkendiz et al., 2023; Upadhyay and Sherly, 2023; Sahana et al.,
2021). For example, Serkendiz et al. (2023) assessed agricultural drought vulnerability
in Turkey using the IPCC’s vulnerability concept, considering vulnerability components:
exposure, sensitivity, and adaptive capacity using multi-dimensional variables. Likewise,
several other studies have assessed drought vulnerability using this concept (Sahana et al.,
2021; Vyas et al., 2024; Swami and Parthasarathy, 2021; Upadhyay and Sherly, 2023).
Other studies used satellite-based vegetation indices and machine-learning methods to as-
sess agricultural drought vulnerability (Kafy et al., 2023; Roy et al., 2022; Kundu et al.,
2024).

The Central Highlands is a key crop-producing region in Vietnam, especially coffee,
pepper, and cashew. However, due to the growing population, overuse of water for agricul-
ture, and climate crisis, this region has been increasingly vulnerable to drought and listed
among the most drought-prone areas in Vietnam (Vu et al., 2015). This region also suffers
from an underdeveloped irrigation system despite being the main coffee producer in Viet-
nam. A recent study reported that the 2015-2016 drought event in the study region caused
an economic loss of nearly US$ 270 million (Byrareddy et al., 2021). This drought event
damaged nearly 11 thousand hectares of industrial crops, particularly coffee and pepper
(Van Quang and Thanh, 2023). Despite being one of the most drought-prone regions in
Vietnam, little research has been conducted in the Central Highlands to assess the agri-
cultural drought vulnerability. Previous studies in the region mainly focused on physical
drought monitoring and characteristics (Vu et al., 2015; Phuong et al., 2022; Tran et al.,
2023). As one of the first drought risk assessment studies in the region, Le et al. (2021)
used vegetation, precipitation, and soil moisture to derive drought indices and assessed their
risk during the drought event in 2020 across the central and southern provinces of Vietnam.
They found that Vietnamese Mekong provinces suffered from the highest risk of drought.
However, a significant limitation of this study was its focus solely on the year 2020, which

neglected the importance of temporal information in understanding drought patterns. Also,
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they considered only a limited number of socioeconomic variables and overlooked drought

characteristics in their analysis.

This study conducted a detailed assessment of agricultural drought vulnerability in the
Central Highlands of Vietnam, using three different drought indices and 17 socioeconomic
and environmental factors considered relevant to this region. Each variable was assigned to
one of the three vulnerability components: exposure, sensitivity, and adaptive capacity using
the IPCC’s vulnerability concept framework. The principal component analysis (PCA) was
used to harmonize temporal vulnerability components, while the Shannon entropy method
was used to identify weights for each vulnerability component in calculating agricultural
drought vulnerability. Detailed descriptions of this study are organized into six major sec-
tions, including research background (Section 6.1), study area and materials (Section 6.2),
methods (Section 6.3), results (Section 6.4), discussion (Section 6.5), and conclusion (Sec-
tion 6.6). The Study area and materials provides an overview of the study area and data
used in this study. The method offers a detailed framework and how data were selected and
analysed to produce agricultural drought vulnerability. Next, this study presented results in
the Results section before discussing these findings in the subsequent section. Finally, the

conclusion summarizes the key findings of this study.

6.2 Study area and materials

6.2.1 Study area

The Central Highlands (Tay Nguyén in Vietnamese) lies in the south-central part of
Vietnam, covering an area of nearly 55 thousand km? (Figure 6.1-a). It shares borders with
Cambodia and Laos and covers five provinces: Kon Tum, Gia Lai, Dak Lak, Dak Nong,
and Lam Dong. This region is primarily characterized by the inland plateau of Vietnam
(elevations from 500 to above 1000 m) with the Truong Son (Annamite) Mountain range. Its
central location, between the North and South, creates a transitional zone between different

ecological and climatic regions.

In the Central Highlands, forests are dominated among the land cover types. Historically,
this area comprised vast amounts of primary forests. While significant forest cover remains
today, much of the land has been converted to agricultural use. For example, forests cover
the largest proportion, accounting for nearly 76% (Li et al., 2018b). In comparison, agricul-
tural land accounted for about 26% of the land surface, primarily observed in the Dak Lak,
Kon Tum, and Gia Lai provinces (Figure 6.1-b). Notably, this region is primarily covered

by fertile basaltic soils, making it highly suitable for coffee, rubber, and pepper crops. The
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Figure 6.1: Map of the Central Highlands region (a) in Vietnam with elevations (c) and land cover
(d). The bar and line plots (b) represent the station-based precipitation and temperature
from 2000 to 2020. The dark red dots indicated the weather stations across the Central
Highlands, while the dark gray color in the first plot (a) depicted the study area bound-
ary.

Central Highlands produces nearly 93% of the national coffee, lifting Vietnam as the top
coffee exporters worldwide (Byrareddy et al., 2021).

The climate of the Central Highlands is primarily driven by a tropical monsoonal pattern,
with two distinct seasons: a wet season from May to October and a dry season from Novem-
ber to April. Annual temperatures in the region typically range from 21°C to 26°C, while
annual precipitation rates vary between 1200 mm and 2000 mm (Quoc Lap, 2024). Rain-
fall is abundant during the wet season, accounting for 80% of annual precipitation (Tran,
2024), especially from August to September. In contrast, the dry season is marked by pro-
longed drought, making the study area particularly prone to drought hazards. Despite its
agricultural importance, this area faces significant water management challenges. Irrigation
systems remain underdeveloped and insufficient to meet the water demands of perennial

crop farms (Quoc Lap, 2024), exacerbating the vulnerability to drought conditions.

6.2.2 Data and pre-processing

This section harnessed temporal geospatial and socio-economic data to assess the agri-
cultural drought vulnerability in the Central Highlands of Vietnam. The geospatial data
included satellite-based and reanalysis data products from 2000 to 2022, while provincial
socio-economic data was collected from the Vietnam Department of Statistics. The geospa-

tial data were collected from various sources and aggregated into annual datasets during
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the dry season from 2000 to 2022. However, the socio-economic data was not consistently
available over the same period due to the data availability. Socio-economic data were raster-
ized from provincial data using the inverse distance weighting (IDW) method (Hoque et al.,
2020; Heydari Alamdarloo et al., 2020). Subsequently, geospatial and socio-economic time
series were resampled at 1 km spatial resolution. The selection of data variables and how
their connections to drought vulnerability are presented in Table 6.1. The following subsec-

tions describe the used data in detail.

6.2.2.1 Climate and vegetation data

This study selected the ERA5-Land reanalysis product and MODIS NDVI time series
from 2000 to 2022. The ERAS5-Land integrates historical observations with advanced Euro-
pean Centre for Medium-Range Weather Forecast simulation models (Mufioz-Sabater et al.,
2021; Hersbach et al., 2020). This dataset covers global at a multi-temporal frequency (e.g.,
hourly, daily, and monthly) at 9 km spatial resolution. This chapter selected three main
variables: daily precipitation, soil moisture, and PET (derived from air temperatures, pre-
cipitation, solar radiation, wind speed, and humidity). These variables are aggregated into
monthly composites to compute drought indices. Subsequently, the PET and precipitation
were used to derive the 3-month standardized precipitation evapotranspiration index (SPEI-
3) and soil water deficit index (SWDI). The detailed calculation of PET and drought in-
dices (e.g., SPEI-3 and SWDI) has been presented in Chapter 5 (Section 5.2.1 and Section
5.2.2.2).

The NDVI time series were obtained from MODIS satellites aboard Terra and Aqua sen-
sors at 1 km spatial resolution and 16-day intervals. This dataset is an analysis-ready prod-
uct derived from reflectance data that has been geometrically and atmospherically corrected
to ensure high accuracy and consistency (Didan, 2021). If the MODIS 16-day composites
contain cloud-related contamination, their quality band was used to identify and remove
cloud and shadow pixels. Despite its high temporal resolution, the MODIS NDVI data in
the MSEA region still suffers from heavy cloud and shadow contamination. The linear in-
terpolation was applied to fill the data gap and subsequently composited into a monthly
window using the median composite value method. Although the interpolation technique
can fill in missing values, the monthly NDVI data may still contain noise due to sensor
limitations and atmospheric interference. Hence, the monthly NDVI values are then recon-
structed to maintain the reliable curve of land vegetation growth using the Savitzky-Golay
method (Ha et al., 2023; Chen et al., 2021b). The NDVI was then used to calculate VCI,

representing agricultural and vegetation drought conditions. The detailed calculation of this
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Table 6.1: Detailed description of used variables and their rationale in assessing agricultural drought

vulnerability.

Components Variables Rationale f&?)tlllilt]ion Data period

The soil moisture deficit is in-

i dicative of agricultural drought.
Csll\I)ZIIl)CIy ;r?c(lievléitsfre_ Lower soil moisture makes crops 1 km 2000 - 2022

more sensitive to drought, im-

;S)acting their growth and yield.

hort-term SPEI drought in-

dicates agricultural drought.

SPEI-3 and its fre- Higher temperatures and re-

Exposure quency and events duged precip]i:)tation increase soil 10 km 2000 - 2022
moisture deficits, intensifying
drought vulnerability.
V(I indicates vegetation
drought. Higher soil moisture

VClandits frequency  signals  healthier ~vegetation, |}, 2000 - 2022

and events while lower soil moisture can

cause vegetation stress, resulting
Edﬁought—inducedfstress. Troed

Surface water area 1gher water surface reduce

(%) drought sensitivity. . 30 m 2000 - 2022

Rainfed cropland (%) Tigher rainfed crops increase 300, 9000 - 2022

rought sensitivity.

Poverty households Higher poverty rates increase _ 2010 - 2022

(%) drought vulnerability

Drinking water use Higher drinking water use re- _ 2010 - 2022

(%) duces drought sensitivity ]

Sensitivity Rural population (%) ** higher rural population canin- —_ 2000 - 2022
crease drought sensitivity

Employed population A higher employed population _ 2005 - 2022

(%) can be more sensitive to drought.

Skilled employment Higher skilled worker rates can _ 2008 - 2022

(%) reduce drought vulnerability.

Higher slopes can be more sensi-

Slope (%) tive to drought due to less water 90 m -

retention.
Higher elevation can increase

Elevation (m) drought sensitivity as it cannot 90 m -

keep water.

Road accessibility is important

in drought events. Faster road
Road  accessibility accessibility can better access _ _
(m) food, water, and other resources,

hence increasing adaptive capac-

1ty.

Water  accessibility ngter water accessibility to wa-

(m) ter can increase adaptive capac- 30 m 2000 - 2022

1ty.

Average income Higher incomes can better adapt _

(VND) to drought. 2010 - 2022
Adaptive High school gradu- Higher school graduates can bet- 2002 - 2017
capacity ates (%) ter adapt to drought.

Social insurance (%) Higher social insurance rates can 2015 - 2022

increase drought adaptation.

Unemplovment  in- Higher unemployment insurance

ploy rates can reduce drought adapta- - 2015-2022
surance (%) tion
Higher provincial GPD can in-
Provincial GDP crease drought adaptation as _
(VND) they have available resources to 2018 - 2022
respond to drought damage.
A higher laptop use rate can in-
crease drought adaptation. Peo-
Laptop use (%) ple use laptops to search for in- - 2019 - 2022

formation online and better in-
form themselves.
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index is referred to in the previous chapter (Section 5.2.2.1). Further information on this

data is presented in Table 6.1.

6.2.2.2 Socio-economic data

Drought vulnerability is closely associated with socio-economic factors. In this
study, annual socio-economic data from the Vietnam Department of Statistics
(https://www.gso.gov.vn/) were collected at the provincial level. A detailed analysis of rele-
vant literature on drought vulnerability informed the selection of eight key socio-economic
variables (Serkendiz et al., 2023; Upadhyay and Sherly, 2023; Fathi-Taperasht et al., 2023;
Murthy et al., 2015). These variables included skilled employment (%), rural population
(%), poverty households (%), clean water use (%), employment populations (%), average
income (VND), unemployment rate (%), social insurance (%), high school graduates (%),
laptop use (%), unemployment insurance (%), and provincial GPD (%). Due to the avail-
ability of data, socio-economic variables can have various durations. The provincial vari-
ables were annually interpolated using the IDW method across the Central Highlands at 1
km spatial resolution with a geographic coordinate system. A detailed description of the

used data and its characteristics are provided in Table 6.1.

6.2.2.3 Land cover, elevation, and water surface

Other factors, besides climate and socio-economic conditions, can influence drought vul-
nerability, such as land use, elevation, water surface, and road accessibility. In this analysis,
the ESA CCI land cover product was used to derive agricultural land use (%) from 2000
to 2020 (Li et al., 2018b). High-resolution water surfaces were downloaded from global
water surface datasets (30 m spatial resolution) from 2000 to 2022 (Pekel et al., 2016),
while elevation and slope were obtained from the STRM digital elevation at 90 m (Berry
et al., 2007). Road accessibility data was obtained from OpenStreetMap, which provides
essential insights into the local infrastructure and its influence on drought vulnerability and
adaptation. Despite their different spatial and temporal resolutions, the data were converted

to a geographic coordinate system and resampled to 1 km spatial resolution.

6.3 Methodology

This section provided a detailed description of agricultural drought vulnerability assess-
ment in the Central Highlands of Vietnam. This analysis assessed drought vulnerability
based on the vulnerability framework proposed by the IPCC. A large number of relevant

variables were identified for assessing drought vulnerability from exposure, sensitivity, and
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Figure 6.2: The implementation framework used in mapping and assessing agricultural drought
vulnerability in the Central Highlands of Vietnam. Drought indices were calculated
monthly from 2000 to 2022, while socioeconomic variables were available on an an-
nual scale, though their availability varied over the study period.

adaptive capacity perspectives. Collected data was then normalized and transformed using
principal component analysis (PCA) to derive meaningful representations of spatiotempo-
ral framework components. Finally, a statistical method was used to derive the weightings
for each component and calculate the agricultural drought vulnerability index. Figure 6.2
described the overall framework of agricultural drought vulnerability in the Central High-

lands.

6.3.1 Assessment framework of drought vulnerability

Over the past decades, numerous frameworks have been proposed to assess drought
vulnerability (Dhawale et al., 2024; Shah et al., 2020). These frameworks often use mul-
tidimensional analysis approaches. This means they combine different data variables (e.g.,
environmental, social, and economic factors) to provide a holistic view of vulnerability.
Here, this study adopted the definition of vulnerability outlined by the Intergovernmental
Panel on Climate Change (IPCC) to guide the development of drought vulnerability assess-

ment frameworks. According to the IPCC, vulnerability comprises three components: ex-
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posure, sensitivity, and adaptive capacity (Hinkel, 2011). Exposure identifies the locations
and frequency/severity of drought, capturing the physical characteristics and recurrence of
drought conditions (o’Brien et al., 2004). Sensitivity refers to the degree to which a system
or population suffers once drought occurs (Serkendiz et al., 2023). Adaptive capacity indi-
cates the ability of a system, community, or society to adjust, cope with, and recover from

the impacts of drought (Fiissel and Klein, 2006).

Although the IPCC’s framework has been widely used in vulnerability assessment, a
standardized operational method for assessing drought vulnerability has yet to be fully de-
veloped. The selection of variables for each component (exposure, sensitivity, adaptive ca-
pacity) can be complex and lack uniform guidelines. A common approach involves the use
of indicator-based variables (Ionescu et al., 2009; Ahsan and Warner, 2014; Blauhut et al.,
2016; Wilhelmi and Wilhite, 2002; Carrao et al., 2016; Serkendiz et al., 2023), which are
classified into one of the three components. Subsequently, these indicators are aggregated
through a mathematical formula to derive a drought vulnerability index. Here, the agricul-
tural drought vulnerability is calculated using the following equation (Eq. 12) (Serkendiz
et al., 2023).

ADVI = (E +S) —AC (12)

Where ADVI is the agricultural drought vulnerability index, E is the exposure compo-

nent, S is the sensitivity component, and AC is the adaptive capacity component.

The first part of the equation (E+S) refers to the potential impact of drought, while
the second part subtracts the adaptive capacity. This means that a region with high expo-
sure, sensitivity, and adaptive capacity will have lower vulnerability because its adaptive
resources can counteract potential impacts. In contrast, a region with low adaptive capacity
but high exposure and sensitivity will suffer from greater vulnerability as it lacks the means

to cope effectively.

6.3.2 Identification of potential variables

Understanding and selecting appropriate variables are the first essential steps in assess-
ing drought vulnerability. The choice of variables can directly influence the accuracy and
relevance of the analysis. Thus, the selected variables ensure the analysis captures the multi-
dimensional nature of drought vulnerability. The selection of variables should consider the
geographic, environmental, and socio-economic context of the location, as well as data

availability (Table 6.1). These variables should align with the conceptual ICPP framework,
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representing the three core components: exposure, sensitivity, and adaptive capacity. A lit-
erature survey revealed that recent agricultural drought vulnerability studies primarily se-
lected variables related to climatic conditions, soil quality, water resources, economic char-
acteristics, and population indicators (Serkendiz et al., 2023; Upadhyay and Sherly, 2023;

Dhawale et al., 2024). Description of each variable and its rationale are presented in

In the Central Highlands, for example, drought conditions are largely influenced by soil
moisture and climate variability. In this context, drought severity and their characteristics
(frequency and drought events), derived from the SPEI-3, SWDI, and VCI time series, were
used to assess the potential extent and level of drought exposure. The SPEI-3 measures
meteorological drought relevant to agriculture by considering both precipitation and evap-
otranspiration over three months (Unganai and Kogan, 1998; Vicente-Serrano et al., 2010),
while the SWDI represents agricultural drought by assessing soil moisture levels (Mishra
etal., 2017). The VCI reflects ecological drought by measuring the health of vegetation and
crops (Kogan, 1990). In terms of the sensitivity component, this study considered nine envi-
ronmental and socio-economic variables, namely surface water area (%), rainfed cropland
(%), poverty households (%), drinking water use (%), rural population (%), employed pop-
ulation (%), skilled employment (%), slope (%), and elevation (m). For adaptive capacity,
this analysis selected seven variables, including road accessibility (%), water accessibility
(%), average income (VND), provincial GDP (%), high school graduates (%), laptop use

(%), social insurance (%), and unemployment insurance (%).

These variables are relevant to agricultural drought vulnerability in the Central High-
lands of Vietnam. For example, higher water surface areas and drinking water use can
reduce drought vulnerability because these resources provide water access to people and
agriculture. A lack of water resources can cause crops to fail during drought events. In rural
areas, farmers are sensitive and vulnerable to drought if they lack skills and financial re-
sources. Thus, a higher rural population and poverty rates can be more sensitive to drought.
However, higher-skilled employment rates can reduce drought vulnerability by faster adapt-
ing and mitigating drought hazards. Drought vulnerability may be higher in higher slopes
and elevation areas due to erosion and poor water retention. Drought vulnerability also de-
pends on adaptive capacity or responses. For example, improved access to roads and water
resources can reduce vulnerability even during drought. Higher income levels, social in-
surance coverage, and strong provincial GDP also contribute to better drought adaptation
by ensuring that resources are available for faster recovery. Higher laptop use and high
school graduate rates can enhance drought adaptation by adopting new technologies to ac-
cess weather forecasts, mitigation strategies, and faster communication. Other factors, such

as unemployment, can lower adaptive capacity due to a lack of economic resources.
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6.3.3 Data normalization and temporal harmonization

Drought indices and socioeconomic data were collected in various units, and to ensure
meaningful analysis, these data have been aggregated and normalized. A consistent method
has been applied to convert the data from different units into a common scale, enabling
seamless comparison and integration across datasets. Specifically, the min-max normaliza-
tion method transformed each data variable into the same value range between zero and

one. The following equation was applied to all data variables (Eq. 13).

Zit — 1) 1,t, min (13)

,
Xit,max — Xi,t,min

Where Z;; and x;; are normalized and raw data for the i variable at year t. The x; ¢ min
and x; ¢ max present the minimum and maximum values, respectively, for the i" variable at

year t.

Despite the uniform value range, each indicator can have positively proportional or in-
versely proportional impacts on drought vulnerability. For example, higher proportions of
rainfed cropland typically correspond to greater vulnerability, while larger drought index
values (e.g., SPEI-3) represent wetter conditions or less vulnerability. In this study, higher
normalized values represented higher resilience and lower vulnerability to drought, and vice
versa. For variables (e.g., SWDI and employment insurance rate) where lower values indi-
cate greater vulnerability, they were normalized directly. However, for other indices (e.g.,
unemployment insurance rate, drought frequency, and road accessibility) with an inverse
relationship (where higher values indicate higher vulnerability), the value was inverted by
subtracting the normalized score from 1 to ensure consistency across the dataset. This ap-

proach ensures that all variables align on a common scale, facilitating accurate comparison.

Normalized drought indices and socioeconomic variables were then temporally harmo-
nized using the PCA method into exposure, sensitivity, and adaptive capacity components.
PCA is a widely used statistical technique for reducing the complexity of multi-dimensional
data into more manageable components with minimum information loss (Greenacre et al.,
2022). This method identifies the directions (principal components) along which the data
exhibits the greatest variance and then expresses the original variables in terms of these
components. Each component is a linear combination of the original variables and is ranked
by its ability to explain the variance within the dataset. The first component explains the
largest variance, followed by subsequent components. Generally, the first three components
were found to explain nearly 98% of the total variance, meaning that most of the informa-

tion from the original variables is retained within these three components. The mathematics
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of PCA can be found in previous studies (Tadi¢ et al., 2019; Uddin et al., 2019). In this
study, variables within each framework component (Table 6.1) were temporally reduced
into the first three PCA components, and a scikit-learn Python package was used for this
task. Subsequently, we derived the exposure, sensitivity, and adaptive capacity using the

first three components and their corresponding weights (Eq. 14).

C=

3
Wi Dk (14)

k=1
Where C represents one of the three drought vulnerability components (exposure, sen-

sitivity, adaptive capacity), while py indicates the first kK PCA components and their corre-

sponding weights wy.

6.3.4 Agricultural drought vulnerability index

The agricultural drought vulnerability index was built based on three components: expo-
sure, sensitivity, and adaptive capacity, as presented in Section 6.3.1. Instead of arbitrarily
assigning equal weights to each component, this study used Shannon entropy to derive
more objective and data-driven weights for these components. This approach allows for a
more accurate representation of the relative importance of each component in contributing

to overall drought vulnerability.

Shannon entropy, originally introduced in information theory, measures uncertainty or
disorder in a dataset. It provides a way to quantify the amount of information contained
in a variable by assessing the variability or randomness present. The principle of Shannon
entropy is that variables with higher variability contain less reliable information. Hence,
they contribute less to overall importance, and vice versa. Here, we used Shannon entropy
to identify weights that reflect the influence of each component on the drought vulnerability
in the Central Highlands. After retrieving the component weights, the agricultural drought

vulnerability index was revised Eq. 12 as follows (Eq. 15).

ADVI = (e E +wgx8) —wgx AC (15)

The ADVI is the agricultural drought vulnerability index, E is the exposure component,
S is the sensitivity component, and AC is the adaptive capacity component. The weights for
each component derived from Shannon entropy corresponded to w, (exposure weight), wy

(sensitivity weight), and w, (adaptive capacity weight).
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6.4 Results

6.4.1 Spatiotemporal variability of drought conditions

The Central Highlands experienced varying drought conditions according to different
drought indices from 2000 to 2022. While distinct drought patterns were observed during
specific years in the dry seasons, the severity and spatial extent of drought varied across the
indices, reflecting differences in how each index captures drought intensity and impact. Fig-
ure 6.3 exhibited the spatiotemporal distribution of VCI-based drought conditions over the
study period. According to this index, the Central Highlands experienced frequent drought
conditions almost annually. The most severe drought occurred in 2005, when nearly 84% of
the region faced severe drought conditions. Other significant drought events were observed
in 2010, 2015, 2019, and 2020, though these impacted smaller areas, primarily concentrated
in the central region. Notably, the southern Gia Lai and northern Dak Lak provinces experi-
enced severe drought conditions in 2016 and 2019. In contrast, wetter conditions prevailed
in 2017-2018 and 2022, with vegetation showing healthy or green states during these peri-
ods. For example, in 2022, nearly 87% of the region exhibited green vegetation. Notably,
drier conditions were observed in the early 2000s in Lam Dong province, while this pat-
tern was the opposite in recent years, reflecting greener vegetation. Notably, nearly 40% of
the dry seasons across the study period experienced extensive drought, affecting more than

50% of the region, underscoring the recurrent nature of large-scale drought events.

Figure 6.4 displayed the spatiotemporal pattern of SPEI-3-based drought conditions
from 2000 to 2022 during the dry seasons. SPEI-3 represents the drought conditions
based on precipitation and temperature over short periods (3 months), reflecting precipi-
tation deficits across the study region. Overall, the Central Highlands experienced frequent
climate-based drought conditions with moderate and severe intensity. According to this in-
dex, the study area witnessed the most severe drought conditions in 2005. Notably, nearly
54% of the dry seasons experienced drought conditions (from light to severe drought) from
2000 to 2022. Interestingly, the drought event that occurred in 2010 was primarily detected
in Lam Dong, while the VCI-based drought conditions were observed across the study re-

gion.

Figure 6.5 showed the spatiotemporal variability of SWDI-based drought conditions,
reflecting soil moisture across the study area. Overall, the region experienced localized
soil moisture droughts in certain areas. It is observed that soil moisture drought events
were primarily detected in the central provinces of Dak Lak, Lam Dong, and Gia Lai. The
largest drought event was recorded in 2005, affecting nearly 75% of the region. Notably, the

study region experienced soil moisture drought almost annually throughout the study period
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Figure 6.3: Spatiotemporal variability of VCI derived from satellite-based vegetation time series
between 2000 and 2022. The dark red color represents drier (stressed vegetation) con-
ditions, whereas the dark green color indicates wetter (greener vegetation) conditions.

(Figure 6.5). Despite drought signals in some provinces, most dry seasons experienced
large-area wet conditions. For example, in 2022, nearly 97% of the region witnessed high

SWDI values, reflecting non-drought soil moisture conditions.

Although drought conditions across the study region shared some temporal patterns,
each indicator exhibited varying severity and spatial extents. Regardless of drought indices,
the region experienced the worst drought conditions in 2005. Among the drought indices,
the SPEI-3 and VCI revealed the largest drought-affected areas. According to SPEI-3, the
region suffered from widespread drought during several periods (e.g., 2002-2005, 2015-
2016, and 2019-2020). In comparison, the VCI ranked second in terms of detected drought
areas. In contrast, the SWDI revealed consistently smaller detected drought areas over the
study period. Overall, larger areas of wetting areas were detected by the SWDI, while this
figure was the opposite of the VCI and SPEI-3 indices.
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Figure 6.4: Spatiotemporal variability of SPEI-3 derived from precipitation and PET between 2000
and 2022. The dark red color represents drier conditions, whereas the dark green color
indicates wetter conditions.

SPEI-3

6.4.2 Exposure, sensitivity, and adaptive capacity

Drought vulnerability in this study consists of three components: exposure, sensitivity,
and adaptive capacity. Using the PCA method, the vulnerability components were derived
from climatic, environmental, and socioeconomic variables. Specifically, exposure was de-
rived from three different drought indices and their characteristics over the study period.
Sensitivity was obtained from 9 different environmental and socioeconomic factors, while
the adaptive capacity component was derived from six socioeconomic factors. Figure 6.6
exhibited the spatial distribution of exposure, sensitivity, and adaptive capacity in the study
area. Overall, there was a clear spatial pattern of drought exposure, sensitivity, and adaptive

capacity among the provinces.

Regarding drought exposure, the Central Highlands of Vietnam experienced high ex-
posure to drought (Figure 6.6-a). This observation was also detected in individual drought
indices. Among the provinces, Kon Tum was less exposed to drought, while others were

more prone to drought exposure (Figure 6.6-a). The most drought-prone regions were pri-
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Figure 6.5: Spatiotemporal variability of soil-based SWDI drought conditions from 2000 to 2022.
The dark red color represents drier conditions, whereas the dark green color indicates
wetter conditions.

marily observed in the central areas of Gia Lai, Dak Lak, and Lam Dong provinces. For
example, Lam Dong province suffered from the largest exposure, accounting for 51% of the
province. Dak Nong was ranked second (42%), followed by Dak Lak (33%). In contrast,
nearly 91% of Kon Tum province experienced non-drought exposure. Gia Lai witnessed
72% of the province without drought exposure. Notably, Dak Nong province experienced

less intensive exposure despite its large exposure area.

Sensitivity is another important component of drought vulnerability. Figure 6.6-b
showed that the Kon Tum and Gia Lai provinces suffered from a higher sensitivity to
drought. Nearly 94% of Kon Tum province was sensitive to drought conditions, while this
figure for Gia Lai province was about 80%. In contrast, other provinces demonstrated lower
levels of drought sensitivity (Figure 6.6-b). For example, Lam Dong province exhibited
non-sensitivity to drought events. Regarding the adaptive capacity, Figure 6.6-c revealed a
distinct spatial pattern of adaptive capacity in the study region. Lam Dong and Kon Tum
had higher adaptive capacity to drought vulnerability, while Gia Lai and Dak Lak experi-

enced lower adaptive capacity. Among the provinces, Lam Dong had the highest adaptive
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Figure 6.6: Spatial representation of three vulnerability components: (a) exposure, (b) sensitivity,
and (c) adaptive capacity derived from time series variables. Dark red represents larger
exposure and sensitivity or lower adaptive capacity, while dark green indicates less
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capacity to drought impacts. By contrast, Gia Lai suffered from the lowest adaptive capacity

to drought vulnerability over the study period.

6.4.3 Spatial distribution of agricultural drought vulnerability

The agricultural drought vulnerability was obtained by combining the three vulnerabil-
ity components of exposure, sensitivity, and adaptive capacity factors using the Shannon
entropy weighting method. The vulnerability index was then reclassified into four levels
of vulnerability: very high, high, moderate, low, and very low classes using z-score classi-
fication methods. Figure 6.7 exhibited the spatial distribution of agricultural drought vul-
nerability and its corresponding vulnerability classification. In this analysis, the weightings
assigned to each component were 0.65 for exposure, 0.27 for sensitivity, and 0.08 for adap-

tive capacity, reflecting the dominant influence of exposure on overall vulnerability.
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Figure 6.7: Spatial distribution of agricultural drought vulnerability (a) and corresponding vulnera-
bility classification (b) over the Central Highlands of Vietnam based on exposure, sensi-
tivity, and adaptive capacity components. The red in the left bar indicates more drought
vulnerability, while the blue represents less vulnerability.

The study region exhibited significant variability in agricultural drought vulnerability,
as indicated by +3 ADVI values (Figure 6.7-a). Lower ADVI values indicate greater vul-
nerability to drought, while higher values represent lower vulnerability. Notably, the cen-
tral areas of Dak Lak and Gia Lai provinces exhibited the lowest ADVI values, signaling
higher drought vulnerability. Interestingly, Dak Nong province had the lowest ADVI values
(-0.41) among the provinces despite its overall lower vulnerability (Figure 6.7-a). Gia Lai
was ranked second (-0.28). Regarding vulnerability classification, Figure 6.7-b revealed a
distinct spatial pattern of high and low vulnerability. Overall, the region experienced nearly
9% of “high to very high” vulnerability areas, while nearly 20% experienced “moderate”
vulnerability. Notably, the “high and very high” drought vulnerability areas were detected
in the central areas of Dak Lak and Gia Lai provinces. Nearly 17% of Gia Lai province
suffered from “high and very high” vulnerability, while this number in Dak Lak was about
13%. Dak Nong province suffered from 37% of “moderate” drought vulnerability areas.
Other provinces revealed a small proportion of “high” vulnerability. For example, Lam
Dong province experienced nearly 3% and 18% of “high” and “moderate” drought vulner-

ability areas, respectively.
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6.4.4 Cross-verification of drought vulnerability

Cross-verification of agricultural drought vulnerability products is crucial for effective
risk management and informed agricultural planning. However, collecting on-the-ground
drought vulnerability data in the study region is challenging, as such information is neither
readily available nor publicly accessible. In this analysis, exposure is the major contributor
to drought vulnerability, making it a key component for cross-validation. Here, exposure
indicates physical drought conditions and was synthesized from the SPEI-3, SPI-3, and
SWDI. Among these indices, the SWDI accounted for the largest variations in exposure.
Given these insights, this analysis selected SWDI and cross-validated it with ground-based
data. In the Central Highlands of Vietnam, direct soil moisture data collection remains
difficult; however, because soil moisture is strongly correlated with precipitation patterns,
precipitation data can serve as an effective proxy for validating drought vulnerability as-
sessments. Thus, this analysis cross-validated SWDI using ground-based precipitation time
series from 2000 to 2020.

This study calculated the ground-based SPI-3 within each province, and then the ground-
based SPI-3 and SWDI were standardized before the cross-validation. Figure 6.8 exhib-
ited the relationship between the ground-based precipitation and the SWDI. Overall, a
high agreement existed between the two datasets. The temporal patterns of both datasets
were closely aligned, as seen in Figure 6.8 (al-a5). Statistical analysis revealed that most
provinces had a high correlation between ground-based precipitation and SWDI. Notably,
Dak Lak province showed the highest correlation, with an R-value of approximately 0.93,
while Lam Dong province had the lowest R-value (R-value = 0.43). Kon Tum also displayed
a strong correlation between SWDI and ground-based precipitation (R-value = 0.83). In
other provinces, the correlation ranged between 0.7 and 0.8. These high R-values indicated

that exposure derived from drought indices is a reliable component of drought vulnerability.

6.5 Discussion

6.5.1 Spatial discrepancies of agricultural drought vulnerability

The analysis of multiple drought indices (SWDI, SPEI-3, and VCI) in the Central High-
lands of Vietnam from 2000 to 2022 revealed some temporal drought patterns across the
three indices. For example, all drought indices exhibited severe drought conditions in 2005,
and this finding aligned with previous findings (Vu et al., 2015; Tran et al., 2023). However,
notable differences were observed in drought severity and spatial extent among the drought

indices. The SPEI-3 generally showed a larger spatial extent of drought during drought
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Figure 6.8: Cross-validation of SWDI and ground-based precipitation across five provinces in the
Central Highlands of Vietnam from 2000 to 2020.

years over the study period. The possibility could be that the SPEI-3 captures broader cli-
matic drought conditions over large areas during rainfall deficits and increased evaporation
rates. In contrast, the SWDI detected smaller areas of drought during the same years. The
soil-based indicator tended to highlight specific areas with persistent soil water deficits, re-
flecting local agricultural drought. The spatial consistency of the SWDI suggests that some
areas are more prone to soil moisture deficits regardless of broader atmospheric conditions,
possibly due to inherent soil and land cover characteristics. For example, the spatial obser-
vations of repeated drought in the central areas of Dak Lak province are closely aligned
with coffee plantations (Maskell et al., 2021).

Drought vulnerability revealed significant patterns of exposure, sensitivity, and adap-

tive capacity across the study region. Among these factors, exposure is the main driver of
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drought vulnerability, accounting for nearly 65%. Sensitivity is ranked second with 27%,
followed by adaptive capacity with 8%. The Central Highlands is a drought hotspot, and
several studies reported that this region has suffered from more frequent droughts than
other parts of Vietnam (Nguyen-Ngoc-Bich et al., 2021; Vu et al., 2015; Tran et al., 2023).
Among the three drought indices, it is observed that the SWDI contributed nearly 72% to
the exposure component, indicating the dominant role of soil moisture in assessing drought
vulnerability in the study region. One of the possibilities could be that industrial and rain-
fed crops (e.g., coffee and pepper) in this region are highly dependent on soil moisture,
and climate-based indices alone are likely insufficient to explain drought variability. For
the sensitivity component, it is observed that rural populations and rainfed crop areas were
the main contributing factors to the sensitivity component among nine different variables.
Together, these two variables accounted for nearly 60% of the observed variations in sensi-
tivity components. Also, the poverty rate and workforce above 15 years explained 12% and
16%, respectively, the observed variations in sensitivity components. Higher rural popula-
tions and rainfed crops are more sensitive to drought, as rainfall deficits can directly affect
crop production and income (Miyan, 2015; Venkatappa et al., 2021). Kon Tom and Gia Lai
provinces exhibited higher sensitivity to drought because these provinces had larger rainfed
areas and higher rural workforce. Notably, Gia Lai, together with Dak Lak provinces, had a
lower level of adaptive capacity to drought response. Several factors could be attributed to
this issue, but social insurance, unemployment insurance rates, and high school graduates
mainly drive them. These three variables explained nearly 80% of the observed variations
in adaptive capacity components among the six selected variables. Lower social and un-
employment insurance rates in these provinces could put farmers and communities at risk

when drought-induced agricultural loss occurs.

Drought vulnerability is mainly driven by exposure, accounting for nearly 65% of over-
all vulnerability. Large areas of agricultural drought vulnerability were detected in central
areas of Dak Lak, Gia Lai, and Lam Dong provinces. These areas suffered from higher
sensitivities and lower adaptive capacity, except for Lam Dong. Despite its high exposure,
Lam Dong province was observed to have lower vulnerability due to lower sensitivities and
higher adaptive capacity (Figure 6.6). Higher vulnerability areas were primarily detected in
crop-growing areas and industrial plantations. In Dak Lak province, for example, the cen-
tral area of high drought vulnerability was largely aligned with coffee plantations (Maskell
et al., 2021). Although no in-situ drought vulnerability products have been reported in the
study region, the detected areas of high drought vulnerability closely corresponded with the
districts where the agricultural economic loss was reported (Van Quang and Thanh, 2023).
This alignment demonstrated the reliability of the agricultural drought map produced in this

study using multidimensional methods. Thus, the map of agricultural drought vulnerabil-
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ity can support local authorities in developing drought mitigation, allocating resources to

specific target interventions, and enhancing community resilience to drought.

6.5.2 Novelty and limitations

The novelty and originality of this study lie in its innovative application of the IPCC’s
vulnerability framework that integrates temporal climatic, environmental, and socioeco-
nomic variables using the PCA and Shannon entropy methods. Previous research usually
focused on agricultural drought vulnerability using static variables (Serkendiz et al., 2023),
but this analysis proposed a novel method to harmonize temporal information from long-
term drought and socioeconomic conditions. This temporal dimension enables the detection
of shifts in vulnerability patterns, offering valuable insights into how drought resilience
evolves in response to changing environmental and economic conditions. Also, this study
used an objective weighting method to assign weights to each vulnerability component in-
stead of equal weights. Given the specific vulnerability components and data characteristics,
equal weight may not be sufficient to retrieve meaningful vulnerability assessments. This
is the first detailed and multidimensional analysis of agricultural drought vulnerability in
the Central Highlands of Vietnam, considering various drought indices and socioeconomic
factors. The findings of this study highlighted the dominant influence of drought exposure
on overall vulnerability in the region. Also, a higher adaptive capacity reduced drought vul-
nerability. For example, Lam Dong province had lower drought vulnerability despite higher

exposure levels.

While this analysis provides valuable insights into the spatial distribution of agricul-
tural drought vulnerability in the study region, several limitations should be acknowledged.
One of the first limitations is the temporal discrepancy between the datasets. For example,
drought indices in this study were monthly data from 2000 to 2022, whereas the socioeco-
nomic data varied in duration over the study period. This mismatch may influence the over-
all accuracy of the drought vulnerability assessment. A more consistent time-series dataset
across both dimensions would likely enhance the robustness of the findings. Another lim-
itation is the incomplete availability of crucial variables. For example, data on irrigation
practices and groundwater, a vital factor in mitigating agricultural drought impacts, was
unavailable. The absence of this information restricts the comprehensiveness of the anal-
ysis. Also, there are some uncertainties in satellite-based products. For example, the land
cover used in the study contains misclassification regarding its accuracy and detailed land
cover types. Kuenzer et al. (2018) revealed significant differences among the global land
cover products regarding their overall accuracy in the MSEA region. Given the importance

of land cover in agricultural drought vulnerability assessments, any inaccuracies in rainfed
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cropland can introduce errors in evaluating vulnerability. These uncertainties could, there-
fore, affect the accuracy of the drought vulnerability estimations in the region. A related
issue is the reliability of annual water surface area in the Central Highlands. This data may
represent certain periods of water surface during the year upon the availability of clear-sky
collected data. The socioeconomic datasets also present challenges. These variables were
spatially interpolated to ensure the spatial coverage. However, this approach may introduce
variations within and between each province that do not necessarily align with ground reali-
ties. For example, it is observed that adaptive capacity component (Figure 6.6-c) exhibited a
clear pattern of lower and higher ability to cope with drought along the border between Kon
Tum and Gia Lai provinces. In practice, this situation may not be realistic due to their shared
economic and social background. From a methodological perspective, while the PCA can
effectively reduce the dimensionality of large datasets, its linear relationships between vari-
ables potentially overlook the complexity of vulnerability components. Furthermore, this
study employed a data-driven approach without the participation of local stakeholders and
farmers. A lack of on-the-ground surveys and localized knowledge could influence the re-
liability of drought vulnerability maps. Thus, future research should incorporate the local
surveys and stakeholder inputs into this framework to enhance the depth of analysis and

cross-validate drought vulnerability products with on-ground reports.

Last but not least, it is important to reflect on the conceptual challenges of vulnerability
assessment. Vulnerability is a complex and multidimensional concept, and the choice of
conceptual framework can significantly influence the outcomes. This analysis adopted the
widely used IPCC concept, which defines vulnerability through three main components: ex-
posure, sensitivity, and adaptive capacity. However, if other concepts are used, the obtained
results could be slightly or substantially different. Disciplinary background could also influ-
ence the outcomes of vulnerability analysis. For instance, social scientists and hydrologists
may prioritize distinct aspects of vulnerability given their experience and expertise, while
economists may emphasize financial and available resources as top determinants. In our
case, if a vulnerability map is undertaken by experts from other disciplinary backgrounds,

they might differ from our vulnerability assessment.

6.6 Summary

This study developed a conceptual framework for agricultural drought vulnerability in
the Central Highlands of Vietnam using the ICPP’s vulnerability components. The PCA
was used to harmonize the three components: exposure, sensitivity, and adaptive capacity

from temporal drought indices and socioeconomic factors between 2000 and 2022. Agri-
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cultural drought vulnerability was subsequently assessed through the proposed framework.

The main findings of this study are summarized as follows:

Drought indices revealed relatively consistent temporal drought conditions but varied in
severity and spatial extent. Severe droughts were detected in 2005, 2010, 2016, and 2019-
2020.

The SWDI contributed nearly 72% to the exposure component among the three exam-
ined drought indices. In comparison, rural populations and rainfed crop areas were the main
contributing factors to the sensitivity component among nine considered environmental and
socioeconomic variables. These two variables accounted for nearly 60% of the observed
variations in sensitivity components, whereas the poverty rate and workforce above 15 years
explained 12% and 16%, respectively. Regarding the adaptive capacity component, social
insurance, unemployment insurance rates, and high school graduates explained nearly 80%

of the observed variations among the six selected variables.

Drought vulnerability in the Central Highlands of Vietnam was primarily driven by the
exposure component, accounting for 65% of overall vulnerability. Higher drought exposure
was found in the central areas of Dak Lak, Gia Lai, and Lam Dong provinces. Higher sen-
sitivity was observed in Gia Lai and Kon Tum provinces, whereas higher adaptive capacity

was detected in Lam Dong and Kon Tum.

The central areas of Gia Lai and Dak Nong provinces suffered from high drought vulner-
ability, while Lam Dong experienced primarily moderate and very low vulnerability. Other

provinces witnessed low and very low vulnerability.

This study provides valuable insights into how drought vulnerability is distributed across
the Central Highlands of Vietnam. This information can assist local authorities and stake-

holders in mitigating potential drought impacts and planning agricultural production.
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Chapter 7

Synthesis and outlook

7.1 Summary and conclusive findings

The MSEA is a major global region for agriculture and biodiversity, yet it has been
increasingly vulnerable to droughts over the past decades. Drought-related hazards in the
MSEA cause nearly USD 410 million in annual losses in agriculture and other economic
activities (UNESCAP, 2010). These losses could threaten food security, livelihoods, and
economic stability across the MSEA countries. Despite the devastating impacts of drought,
there is still a lack of region-wide drought studies. Most of the drought studies in the region
focus on local monitoring using limited ground-based climate data. Given the limited in-
situ data and drought impacts, this dissertation aims to develop a monitoring framework for
mapping drought characteristics over large areas at high spatiotemporal resolutions. Such a
method enables continuous and consistent observations of drought conditions, overcoming
the limitations of traditional ground-based methods. Effective drought monitoring can help
optimize water resource management and reduce the negative impacts on food production,
ecosystems, and regional economies. Based on satellite-based vegetation time series this
dissertation presented a detailed and comprehensive analysis of drought conditions using
satellite-based vegetation time series data, from a literature review to method development
and drought vulnerability assessment. This section summarizes the main findings of the

research, aligned with the objectives and research questions outlined in the Introduction.
Research questions 1:
* What progress has been made in monitoring drought within the study region?

* How many satellite-based drought studies have been conducted, and what are their

spatiotemporal patterns?
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* What types of sensors, data sources, methods, indices, and thematic applications have
been employed to monitor and detect drought conditions, and how have these studies

cross-validated their output drought products to ensure accuracy and reliability?

* Which research gaps exist, and how can potential remote sensing and methods ad-

dress these gaps?

The first objective of this dissertation is to provide a detailed and extensive review of ex-
isting satellite-based drought literature in the Southeast Asia region, including the MSEA
countries. As outlined in Chapter 3, a total of 102 satellite-based drought studies have been
extracted from the Scopus and Web of Science databases over the past two decades (2000-
2021). These studies were systematically analyzed to explore different dimensions, includ-
ing their spatial and temporal distributions, the sensors and data used, drought indices and

validation methods, thematic applications, and identifying research gaps.

The number of satellite-based drought articles in the study region significantly increased
over the examined period (2000-2021), especially over the past eight years from 2 papers
in 2015 to 21 papers in 2021. Vietnam and Thailand had the largest drought articles, ac-
counting for nearly 40%. Nearly half of the articles employed optical remote sensing, while
microwave remote sensing was less frequently used. Most studies focused on monitoring
drought conditions using single vegetation-based or precipitation-based drought indices
(~ 53%). Notably, no studies have offered spatial details of drought characteristics de-
rived from optical sensors. Also, the application of machine learning and deep learning in
drought detection to improve early warning systems and mitigation planning has received
little attention. Regarding the accuracy assessment, about 22% of articles did not report
cross-validation information for their drought products. While there has been a rise in time-
series drought remote sensing, long-term drought measurements (e.g., > 30 years) remain
limited, highlighting the need for multi-sensor data fusion to create longer time-series ob-
servations. Also, there is a clear link between the spatial resolution of drought maps and
the extent of study areas. More than half of the studies focused on local-scale drought
monitoring, while nearly 64% of maps were produced at a resolution of 1 km or above.
Among the drought-specific applications, agricultural and vegetative droughts received the
most attention, accounting for 58% of the examined applications, whereas soil moisture and
crop-specific drought monitoring remain underrepresented. Last but not least, little research
has been conducted to investigate the responses of vegetation to multitemporal climate-soil

drought conditions and assess drought vulnerability in the study region.

After an extensive review of existing literature, the second objective of this thesis is to

develop a monitoring framework for mapping drought characteristics at a regional scale
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using vegetation-based time series. Chapter 4 explored this objective in detail, and the fol-

lowing research questions were formulated to guide the investigation.
Research questions 2:

» What are the potentials and challenges of using satellite-based vegetation time series

for monitoring and characterizing drought conditions?

* How can a drought event based on satellite-based vegetation be described using Run

theory?

e What are spatiotemporal patterns of drought and their characteristics across the
MSEA region from 2000 to 20227

* Which specific years experienced severe drought, and how did drought conditions

impact different land cover types during the dry and rainy seasons?

* How accurately do vegetation-based drought indicators perform compared to tradi-

tional climate-based indices?

This analysis generated a gap-free monthly VCI time series derived from MODIS-
based vegetation, enabling the development of an automatic approach to identify the se-
vere drought years and their characteristics from 2000 to 2021. Four key characteristics of
drought conditions in the region have been detected, while the trend was calculated during
the dry and rainy seasons. Spatiotemporal distribution of VCI-based drought conditions has
been investigated at different scales and across land cover types. The key findings of this

objective are summarized as follows:

Drought conditions across the MSEA region exhibited significant temporal and spatial
variability. The dry season experienced more frequent and intense drought than the rainy
season, especially from January to April. Rainfed crops and deciduous forests suffered the
most from drought conditions. Among the MSEA countries, Vietnam has been less affected
by the drought detected by the VCI in recent years, while Cambodia has faced more drought
events. Rainfed crops in Laos suffered from the longest drought conditions between 2019
and 2020. Several severe drought years were identified over the study period, including
2000, 2004, 2005, 2010, 2016, 2019, and 2020.

Higher drought duration and frequency were primarily detected in Central Myanmar,
Cambodia, eastern Thailand, and the Lower Mekong Delta. Central Myanmar witnessed
the highest drought occurrence rate (~ 60%) from 2000 to 2021, while other countries
experienced nearly 40% over the same period, except for Laos. Thailand and Vietnam ex-

perienced nearly 15 prolonged drought events over the last two decades. In recent years,
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the longest drought events were primarily detected in Cambodia and Laos, whereas east-
ern Thailand and northern Vietnam experienced the most significant drought in the early
2000s. For example, nearly 19% of the study region suffered from long and severe drought
conditions between 2019 and 2021.

Regarding the drought trends, there has been a significant increase in vegetation-based
drought conditions (declining VCI) in Cambodia, parts of southern Laos, northern Myan-
mar, and the Vietnamese Central Highlands from 2000 to 2021. Notably, northern Vietnam
and eastern Thailand experienced a wetter trend during both seasons. In contrast, Cam-
bodia saw a significant decline in vegetation conditions, indicating its vulnerability to in-
tense drought. Statistically, nearly 60% of Cambodia experienced a significant increase in
vegetation-based drought trend over the study period. Cross-verification revealed that VCI-
based drought assessments generally aligned with precipitation and temperature patterns.
Stronger correlations between VCI and temperature were observed during the dry season,

while precipitation deficits closely mirrored the onset of vegetation stress.

The next objective of this thesis is to assess the responses of VCI-based drought to mul-
titemporal climate-soil drought conditions during the dry season from 2000 to 2022. This
analysis also investigated the influence of climate-soil drought indices on undisturbed veg-
etation conditions using explainable machine learning methods. Chapter 5 was dedicated
to exploring the responses of VCI to multitemporal climate-soil drought indices. The fol-
lowing research questions have been formulated to guide the investigation and address this

objective.
Research questions 3:

* To what extent do climate and soil-based drought indicators influence vegetation-
based conditions in the MSEA region, and how do these relationships vary across

different land cover types and elevations?

* What are the main drivers of vegetation-based drought conditions in natural and

undisturbed ecosystems in the MSEA region?

To address these research questions, this analysis calculated twelve different drought in-
dices derived from climate-soil data between 2000 and 2022, including SPI-1, SPI-3, SPI-6,
SPI-9, SPI-12, SPEI-1, SPEI-3, SPEI-6, SPEI-9, SPEI-12, SWDI, and TCI. These indices
represent different drought types, including short (SPEI-1, SPI-3, SWDI, TCI), median
(SPI-6, SPI-9, SPEI-6, SPEI-9), and long-term (SPI-12 and SPEI-12) drought conditions.
The responses of VCI were subsequently examined using the climate-soil drought indices.
Significant positive VCI-drought responses were observed across the MSEA region, primar-

ily in Myanmar, Thailand, and Cambodia. Among the climate-soil-based drought indices,
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the TCI had the highest correlation with the VCI across vegetation types and elevations (R-
values = [0.56-0.85]). Considering land cover and elevations, higher VCI-drought responses
were observed in lower elevation zones in rainfed cropland (R-values = [0.58-0.70]), mixed
forests (R-values = [0.57-0.69]), and deciduous forests (R-values = [0.59-0.85]). Evergreen
forest and irrigated crop vegetation responded less to drought indices, especially in high-
elevation zones. Short-term drought disturbances accounted for nearly 93% of the observed
variations in the natural and undisturbed vegetation ecosystems over the study period. SPEI-
3 revealed the largest influence among the examined climate-soil drought indices, explain-
ing approximately 35% of the observed vegetation dynamics, followed by the TCI (~ 20%).
In this regard, the analysis indicated that TCI and SPEI-3 can positively impact 20-25% of
VCI values under the wettest conditions. Conversely, a decline of approximately 15% in

VCI units was observed during the driest conditions between 2000 and 2022.

The final objective of this dissertation is to integrate the data generated from previous
chapters with socioeconomic data to assess agricultural drought vulnerability in a drought-
prone region of Vietnam. This assessment used the IPCC vulnerability framework, focusing
on three key components: exposure, sensitivity, and adaptive capacity. The exposure com-
ponent concerns the physical conditions of drought (three drought indices and their charac-
teristics), while sensitivity and adaptive capacity consider 16 environmental and socioeco-
nomic factors (nine variables for sensitivity and seven for adaptive capacity). Exposure data
spans from 2000 to 2022, while environmental and socioeconomic data exhibit temporal
variability. The PCA was used to harmonize temporal data corresponding to each compo-
nent. Subsequently, the weightings of each component were calculated using the Shannon
entropy method before deriving agricultural drought vulnerability. Chapter 6 was dedicated
to assessing agricultural drought vulnerability, and the following research questions have

been formulated to address this objective.
Research questions 4:

* What is the vulnerability framework outlined by the Intergovernmental Panel on Cli-

mate Change (IPCC), and how is it applied in the context of agricultural drought?

* Which variables are most appropriate for assessing agricultural drought vulnerability,
and how should they be assigned to each vulnerability component (exposure, sensi-

tivity, and adaptive capacity)?

* What methods are used to harmonize temporal remote sensing data with socioeco-

nomic time series for a detailed drought vulnerability assessment?

» To what extent does each variable contribute to the respective components of agricul-

tural drought vulnerability?
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* What are the spatial patterns of agricultural drought vulnerability, and where are the

identified drought hotspots in the region?

According to the [IPCC’s vulnerability framework, agricultural drought vulnerability is
designed to comprise exposure, sensitivity, and adaptive capacity components. In the Cen-
tral Highlands of Vietnam, the SWDI contributed nearly 72% to the exposure component
among the three examined drought indices (VCI, SPEI, and SWDI) from 2000 to 2022,
indicating the dominant role of soil moisture in assessing drought vulnerability in the study
region. In comparison, rural populations and rainfed crop areas were the main contributing
factors to the sensitivity component among nine considered environmental and socioeco-
nomic variables. These two variables accounted for nearly 60% of the observed variations
in sensitivity components, whereas the poverty rate and workforce above 15 years explained
12% and 16%, respectively. Regarding the adaptive capacity component, social insurance,
unemployment insurance rates, and high school graduates explained nearly 80% of the ob-

served variations among the six selected variables.

The exposure component largely drove agricultural drought vulnerability in the Cen-
tral Highlands of Vietnam, accounting for 65% of the overall vulnerability. Overall, nearly
9% of the Central Highlands suffered from high to very high drought vulnerability, while
moderate vulnerability covered about 18% of the study region. Higher drought vulnerabil-
ity was concentrated in the central areas of Dak Lak and Gia Lai provinces. These areas
also corresponded to higher drought exposure and sensitivity. Lam Dong province expe-
rienced less drought vulnerability despite its higher exposure due to lower sensitivity and
higher adaptive capacity. Other provinces in the region displayed low to very low drought

vulnerability.

7.2 Outlook for future research

As global warming intensifies and human activities continue to accelerate, the frequency
and severity of droughts and other extreme climate events are projected to rise across many
regions worldwide, including the MSEA countries. Since agriculture is the cornerstone of
the MSEA economies, drought poses significant risks to this sector. Drought usually spans
vast areas and transcends political and geographical boundaries. Therefore, robust, consis-
tent, and continuous drought monitoring and characterization are essential to inform re-
gional drought risk management, strengthen early warning systems, and ensure agricultural

resilience and food security.

Given the current monitoring framework and analysis, several aspects of future research

can be further performed. The current analysis derived drought characteristics from VCI-
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based indicators, but other vegetation-based indices can hold potential and accurately cap-
ture drought dynamics. Further studies are required to evaluate these indices and enhance
the transferability of this framework. In addition, the responses of VCI-based conditions to
multitemporal climate-soil drought indices have not yet considered other hydrological and
teleconnections, such as streamflow and sea surface temperature. The inclusion of such data
could enable the analysis of the influence of large-scale teleconnections and streamflow on
vegetation-based drought conditions. Furthermore, human activities play a dominant role in
vegetation and agricultural growth in addition to droughts. A lack of a time series of anthro-
pogenic factors in the MSEA region makes it challenging to conduct vegetation-drought-
anthropogenic analysis. This could be a potential area of future research. Another potential
aspect that requires further studies is assessing the vulnerability of agricultural droughts.
For example, groundwater and irrigated data should be included in the analysis to enhance
reliability further. Although this assessment provides practical and more immediate im-
pacts on agricultural planning and policies, they are often overlooked in the region. This

framework could be upscaled to other drought-prone regions across the MSEA countries.

Although producing high-spatial-resolution drought data on a daily, weekly, or sub-
monthly basis may not be achievable using a single sensor alone, integrating multiple sensor
platforms offers a promising solution. This dissertation primarily used MODIS time series
data from 2000 to 2022. However, drought monitoring and characterization often require a
longer time series of data (e.g., > 30 years). Integrating the MODIS data with other mis-
sions, such as AVHRR, would provide long-term historical data for robust drought under-
standing. Despite their less frequent data acquisition, the growing availability of Landsat
and Sentinel-2 data provides high-resolution spatial observations of drought conditions.
Harmonizing these products creates an excellent opportunity for high spatial and temporal
resolution. Recent satellite missions, such as SMAP, also offer the potential to monitor soil
moisture drought daily and weekly. Integrating these datasets will provide critical, compre-

hensive insights for effectively monitoring and characterizing drought.

Another aspect of further research is developing a tailored drought indicator in the
MSEA region. Drought is a multifaceted phenomenon influenced by different factors, in-
cluding climatic variability, soil moisture, vegetation health, water resources, and human
activities. It is essential to develop a composite drought index that integrates these elements.
Such an indicator also accounts for monsoonal patterns, land use practices, and topograph-
ical variations. Deep learning and machine learning has been rarely applied to monitor and
forecast drought in the MSEA region, despite their potential and popularity in other fields
of study. Future studies should explore this topic to better understand and forecast real-time

droughts for early warning systems in the region. Last but not least, flash droughts are de-
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veloping fast and causing devastating threats to agriculture and vegetation ecosystems. Due
to their sudden onset and intensity, flash droughts can cause significant damage before tra-
ditional monitoring systems detect them. Therefore, future research should develop more
responsive methods for real-time monitoring of flash droughts and assessing their short-

and long-term impacts.
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