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Zusammenfassung

Diese Arbeit beschreibt die Entwicklung und Verifikation eines online Algorithmus zur
Erkennung von Blickbewegungen, speziell fir Hubschrauberpiloten. Vier Algorithmen
wurden dabei mithilfe eines synthetischen Datensatzes optimiert, der aus einer Studie,
die die Verfolgung eines Stimulus Punktes beinhaltete, generiert wurde. Fir die Parame-
teroptimierung wurde eine neue Methodik genutzt, bei der die Algorithmusparameter
durch den Abgleich von detektierten Blickbewegungen mit tatsachlichen Fixationen bew-
ertet wurden. Zwei Algorithmen erwiesen sich als besonders effektiv und tbertrafen den
Tobii VT-Filter, sodass sie in die Online-Anwendung tberfihrt wurden. Die Verifikation
im AVES-Flugsimulator unter variierenden Sicht- und Arbeitsbelastungsbedingungen
bestatigte eine zuverlassige, interpretierbare Blickbewegungsklassifikation bei tolerabler
Latenz. Potenzial zur weiteren Optimierung wurde bezlglich der Generalisierbarkeit und
Konfigurierbarkeit identifiziert.
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Abstract

This thesis demonstrates the feasibility of online eye movement event detection tailored
for helicopter pilots. Four algorithms (I-VT, I-DT, I-KF, and I-HMM) were optimized
using a synthetic dataset from a fixation-saccade invocation task study, employing
a novel pipeline combining event matching with a penalization strategy to optimize
algorithm parameters. The I-VT and I-KF proved most effective, outperforming Tobii's VT
filter, and were adapted for online use. Verification in the AVES flight simulator under
varied visual and workload conditions confirmed reliable, interpretable classification with
tolerable latency. Limitations in generalizability and configurability indicate areas for
future refinement, including head-movement correction and improved usability.
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1. Introduction

Helicopter operations occur in diverse environments, where pilots may face high

cognitive demands and time-critical decision-making tasks. Additional challenges
may arise by factors such as adverse weather conditions, low visibility, and unexpected
changes in terrain, making situational awareness (SA) and workload management critical
for safe operations.[ziv2020]

The 2024 Annual Safety Review by EASA reports that over a five year period, around 6 %
of all helicopter occurrences were linked to Human Factors (HF) and Human Performance
(HP) issues, with 33 % of these related specifically to deficiencies in SA and sensory
events.[easa2024a] While such figures underline the relevance of SA and workload to
aviation safety, real world accidents demonstrate how insufficient SA and high workload
can escalate into critical safety threats. For instance, a recently published final report on
a Bell 206L-3 accident in South Africa mentions how the helicopter’s main rotor blades
struck tree branches while transitioning backward, which was a maneuver in the pilot’s
blind spot. The report attributed the accident to the pilot’s attention being diverted to
traffic before takeoff.[sacaa2024] Similarly, the Aerospatiale SA365N accident near a
gas platform in the UK highlights how inadequate visual scanning and a lack of situational
awareness can lead to spatial disorientation. In this case, challenging poor visibility
contributed to the co-pilot’s disorientation during the approach while the commander did
not assist the co-pilot in managing the approach profile due to lack of cross-checking
instruments, leading to the helicopter descending into the sea and resulting in multiple
fatalities [aaib2008].

A promising approach to tackle these safety risks is by enhancing the analysis of
pilot gaze behavior using eye-tracking technology [galanda2024]. Numerous studies
on fixed-wing pilots have already demonstrated the potential benefits of eye-tracking
technology [lyu2023]. These studies underline its potential benefits in the application of
monitoring pilot attention and cognitive load [schwerd2022, mohan2019], detecting pilot
fatigue [naeeri2021],and optimizing cockpit design as well as improving pilot-machine
interfaces to enhance overall safety and efficiency [li2018]. Eye-tracking can contribute
to further improvements in SA and workload management by refining pilots’ eye-scanning
techniques and increasing their awareness of gaze behavior [rainieri2021].

4% DLR - IB-2025-198 1



2 1. Introduction

Although studies particularly targeting helicopter pilots are less extensive, interest in this
research field has increased. The complex and dynamic nature of the helicopter cockpit
presents unique challenges in both integrating eye-tracking systems and evaluating the
collected data. Notable advancements in this area have been made by the German
Aerospace Center (DLR), which successfully applied the Tobii Pro Glasses 3 eye-
tracking system into the ACT/FHS helicopter and the AVES simulator. Simirlaly to
fixed-wing aircrafts, these studies demonstrated that gaze behavior analysis through
eye tracking can enable improvements in both pilot training and novel flight assistance
systems.[greiwe2023a, maibach2023]

1.1. Problem Statement and Research Questions

To detect eye movements and thereby determine gaze behavior, eye-tracking algorithms
are employed. The eye-tracking algorithm currently applied in helicopter pilot analysis is
not specifically set up for helicopter environments [greiwe2023a], which can compromise
the reliability of the algorithm’s eye movement classifications. Moreover, the algorithm is
limited to offline gaze data processing, lacking the capability for real-time or near-real-
time eye movement classification.[greiwe2023a].

In addition, compared to fixed-wing aircraft, gaze data of helicopter pilots is scarce,
making the gaze behavior analysis particularly challenging. This scarcity is further
exacerbated by the versatility of helicopter flight missions and operational environments,
where gaze pattern can differ. Consequently, a robust eye-tracking algorithm is crucial
for effectively identifying eye movements of helicopter pilots to enable the accumulation
of meaningful data on gaze behavior [ziv2020].

This thesis seeks to address this gap by developing an online eye movement event
detection algorithm optimized for helicopter pilots. By tailoring the algorithm to this unique
use case, the goal is to lay the groundwork for future applications, such as providing
instant feedback on pilot workload and situational awareness or enabling adaptive pilot
interfaces during flight and training.

This goal is guided by two research guestions:

1. How can online eye-tracking algorithms be developed to effectively classify eye
movement events of helicopter pilots?

2. To what degree can the feasibility of such algorithms be demonstrated in a preliminary

4 DLR - IB-2025-198



1.2. Thesis Overview 3

study in a full-flight simulator?

By answering these questions, the thesis provides both methodological contributions to
the design of online event detection algorithms and deployable implementations inside
helicopter flight simulators.

1.2. Thesis Overview

The procedure of this thesis consists of several key phases aimed at developing and
verifying an eye-tracking algorithm tailored for helicopter pilots. The overall thesis
structure is illustrated in Figure 1.1.

[ I
1. Intreduction
/—\\\l
\_/
2. Groundwork for Developing Online Eye Movement Event Detection
E Literature Review

1
3. Design of an Offline Eye Movement Event Detector for Helicopter Use

Dataset for Optimization

|g° Optimization Pipeline |
Offline Algorithm
4. Online Adaptation of an Eye Movement Eyent Detector in a Helicopter Simulator Study
B AVEs verification Study |

lih. Evaluation of Eye-Tracking Setup and Verification

Figure 1.1.: Thesis Overview.
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4 1. Introduction

First, a comprehensive literature review establishes the foundation for algorithm develop-
ment,

Based on this groundwork, viable event detection methods are selected and their
parameters are optimized using a newly proposed optimization pipeline. After parameter
optimization and validation on a test dataset, the most suitable methods for online
deployment are identified through a comparative analysis with Tobii’s VT filter, which is a
well-established and widely used offline eye movement event detector [olsen2012].

The selected algorithms are subsequently adapted for online application and verified in
the AVES flight simulator. The verification will evaluate the algorithm’s performance in
predefined flight phases through a dedicated preliminary study.

Algorithm performance is then evaluated using metrics such as detection accuracy, ro-
bustness to noise and missing gaze samples and real-time processing capability. Based
on these results, the feasibility of the developed approach is discussed, addressing both
methodological contributions and limitations of the eye-tracking setup and verification
study.

Finally, the thesis concludes with a summary, obtained key findings and an outlook for
future research and potential improvements of the online algorithms.

4 DLR - IB-2025-198



2. Groundwork for Developing
Online Eye Movement Event
Detection

Developing online algorithms for eye movement classification of helicopter pilots
requires foundational knowledge ranging various subjects, from eye physiology
to algorithm performance metrics. This chapter lays the groundwork by providing the
necessary theoretical background on eye-tracking systems and eye movement event
detection methodologies.

To build this foundation, the chapter first introduces an overview of commonly used
eye tracker types, with a focus on the pupil center corneal reflection (PCCR) method
and video based eye-tracking setups. Following this, key eye movement typologies
are described. The next section explores how real-time event detectors are leveraged,
especially to assess situational awareness and workload, in order to derive design
requirements for the online algorithms. Next, key eye movement event detection ap-
proaches are presented and categorized into threshold-based, probability-based, and
deep learning models. Finally, to assess the performance of the developed classification
algorithms, suitable evaluation metrics are identified. These include event statistics eval-
uation, sample-level evaluation, and event-level evaluation, which provide performance
measures to determine algorithm accuracy and reliability.

2.1. Overview of Common Eye Trackers

This section provides an overview of the primary eye-tracking techniques, with particular
emphasis on the PCCR method and video-based setups, as the eye tracker used in this
thesis is a video-based system employing the PCCR method.

4% DLR - IB-2025-198 5



6 2. Groundwork for Developing Online Eye Movement Event Detection

Several underlying technigues in eye-tracking exist. One of the earliest methods is
Electro-OculoGraphy (EOG), which capitalizes on the electrical potential differences
of the skin surrounding the ocular cavity. By placing electrodes around the eye, EOG
measures voltage changes as the eye moves, providing a relative indication of gaze
direction. While this technique is non-invasive and allows for free head movement, its
has lower spatial resolution than the other methods.[duchowski2017]

Contrary to EOG, the scleral contact lens/search coil method offers one of the most accu-
rate techniques for measuring eye movements. This approach utilizes a special contact
lens containing an embedded wire coil, wich is placed on the eye’s cornea and sclera.
When the eye moves within a surrounding electromagnetic field, the coil generates an
electrical current proportional to its movement, which can be measured with high spatial
and temporal resolution. However, this method is highly invasive, and requires a station-
ary head, which restricts its use to specialized research settings.[duchowski2017]

More common in modern research and commercial applications are optical methods,
which are often categorized under Photo-OculoGraphy (POG) or Video-OculoGraphy
(VOG). POG refers to optical tracking methods that use reflected light to measure eye
position, while VOG specifically involves video based systems that capture images of the
eye using camera combined with infrared illumination. These systems apply computer
vision algorithms to track features like the pupil center or corneal reflections. VOG, in
particular, offers a non-invasive, relatively easy to setup solution with good resolution
and flexibility, but its performance can be affected by head movements or challenging
lighting conditions.[duchowski2017]

2.1.1. Pupil Centre Corneal Reflection Eye-Tracking Method

Among video-based eye trackers, the PCCR method ist the most widely adopted tech-
nique today and forms the technological basis for the eye-tracking setup employed in
this thesis.[duchowski2017, martinezmarquez2021]

The PCCR method uses an infrared (IR) light source to illuminate the eye, creating
reflections, known as glints, on the cornea. Because infrared light is invisible to the
human eye, these reflections do not distract the user. A high-speed infrared camera
captures the pupil and glints, which serve as reference points for tracking eye movements,
Gaze direction is then determined by analyzing the vector from the dark pupil center to
the bright corneal reflections, as illustrated in Figure 2.1.[duchowski2017]

Since the cornea remains relatively stable while the eye rotates, any changes in this
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2.1. Overview of Common Eye Trackers 7

D

Corneal Reflection

IR Camera IR lluminator Pupll

|

Figure 2.1.: Schematic of the Pupil Center Corneal Reflection (PCCR) Technique,
Including an lllustration of the Iris Center and Corneal Reflection based
on srresearch2025.

vector correspond to shifts in gaze direction. To improve accuracy, modern PCCR-based
eye trackers, such as the Tobii system used in this thesis, construct a 3D model of
the eye by analyzing multiple detected glints in combination with the known camera
positions. This enables compensation for minor head movements and allows for more
precise gaze direction estimation. Finally, the computed pupil—glint vector is mapped
to gaze coordinates on a screen or within a 3D space, enabling real-time retrieval of
gaze data. In the case of 3D gaze coordinates, these are determined by the position of
the vergence point of the left and right gaze vectors relative to the eye tracker’'s scene
camera.[tobii2023, tobii2023a]

Due to individual differences in corneal curvature and eye anatomy, the PCCR method
requires a calibration process. During calibration, the system determines how the pupil-
glint vector corresponds to specific gaze points by having the user fixate on predefined
targets [hansen2010]. Although calibration ensures reliable gaze estimation, several
adverse factors remain. One such factor is changes in pupil size, which may occur due
to lighting conditions, fatigue, or cognitive load. These changes can slightly alter the
detected pupil center position and potentially reduce measurement precision. Modern
eye-tracking systems attempt to mitigate this issue by continuously adjusting their
algorithms or by requiring recalibration.[tobii2023b, hooge2024]

Head movement is another important factor that can affect accuracy, particularly in
single-camera systems. While modern PCCR-based eye trackers often employ multiple
IR light sources and stereo cameras to compensate for motion, excessive head move-
ment can still introduce errors. Furthermore, transparent surfaces such as glasses or
contact lenses may cause unwanted reflections or distort the corneal reflection, thereby
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8 2. Groundwork for Developing Online Eye Movement Event Detection

interfering with gaze estimation.[hansen2010]

2.1.2. Video based Eye-Tracking Setups

Video based eye-tracking setups are typically categorized into remote eye trackers
with a fixed chin rest, remote eye trackers with free viewing, and head-mounted eye
trackers.[valtakari2021]

The eye-tracking setup that includes a remote eye tracker with a fixed chin rest while
viewing a display is depicted in figure 2.2 a. In this configuration, the participant’s head
is stabilized using a chin rest while they view a display, such as a computer monitor or
tablet. A remote eye tracker positioned above or below the display records their eye
movements. This setup offers high accuracy, as the chin rest minimizes head movement,
leading to more precise gaze measurements. The setup also ensures that visual stimuli
are presented consistently across participants, making this method particularly useful
for studies that require standardized conditions as well for matching gaze points to
Areas of Interests (AOls) [holleman2020]. The controlled environment, while beneficial
for experimental consistency, may not accurately reflect real-world viewing conditions
and the prolonged use of a chin rest can cause discomfort, which makes long-duration
studies challenging for participants [valtakari2021].

Another commonly used eye-tracking setup depicted in figure 2.2 b is the remote eye
tracker with limited allowable head movement within a “head box”. The remote eye
tracker continuously records their gaze movements without physical head restraints
[klein2019]. Unlike the chin rest setup, this approach provides a more natural experience
for participants, so that it is better suited for viewing tasks that aim to capture natural
viewing behaviors. However, the improvement in ecological validity, which refers to the
extent to which recorded gaze behavior represents real-world behavior, is only moderate,
as gaze patterns tend to remain similar across both setups.[backhaus2024] Additionally,
head movements introduce variability in the data, leading to slightly reduced accuracy
compared to a fixed-head setup [duchowski2017].

The least restriction on head movement is set for the head-mounted eye tracker as
illustrated in 2.2 ¢, also known as mobile eye tracking. In this setup, the eye tracker
is embedded in a wearable device, wich are either glasses or a headset, allowing
the participant to move freely while their eye movements are recorded. The head
mounted eye tracker is particularly valuable for studying real-world behaviors, as it
captures gaze patterns in dynamic and natural environments. The ability to track gaze
while participants move through different settings enhances the ecological validity of
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2.1. Overview of Common Eye Trackers 9

experiments. The disadvantages of the head-mounted eye trackers are that they tend
to have less temporal accuracy and lower spatial accuracy compared to fixed remote
setups, as head and body movements and even minor eye tracker slippage can introduce
noise into the data [nierhorster2020]. Additionally, some participants may find head-
mounted trackers less comfortable, especially during extended sessions and the data
collected from mobile setups can be more complex to process due to varying distances
and viewing angles.[franchak2020]. Furthermore, in head-mounted eye tracking the
gaze coordinates are defined relative to the head rather than to a fixed point in the
surrounding environment, This makes it difficult to distinguish between eye and head
movements solely by examining the gaze data [franchak2020]. Additionally, unlike a
fixed coordinate system, coordinates for areas of interest (AQOls) shift whenever the head
moves. This complicates automatic AOI assignment, which is why AOIs are mostly
labeled manually in head-mounted eye-tracking setups [benjamins2018].

Another emerging approach for using head-mounted eye tracker is the integration into
virtual reality (VR). In this setup, the eye-tracking system is embedded within a VR
headset, allowing researchers to monitor gaze patterns within an immersive digital
environment. This method enables precise control over visual stimuli while maintaining
a high level of interactivity. The immersive nature of VR provides a unique setup
to study eye movements during simulated real-world tasks and therefore enhances
the realism of experiments. However, the integration of eye tracking into VR comes
with the same technical challenges mentioned before. Besides, the VR headsets
can also lead to discomfort for some users, particularly if they experience motion
sickness.[adhanom2023]

ChinRest b c E Eye Tracker |

Figure 2.2.: Video-Based Eye-Tracking Setups: (a) Head-Restricted with Chin
Rest, (b) Head-Boxed, and (c) Head-Free adapted from Valtakari et
al. [valtakari2021].
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10 2. Groundwork for Developing Online Eye Movement Event Detection

2.2. Eye Movement Typologies in Eye Tracking

Eye-tracking technologies rely on understanding the anatomy and movement behavior
of the eye. Key anatomical aspects are depicted in Figure 2.3 and include the cornea,
iris, pupil, retina. Furthermore, the shape of the eye ball is maintained and primarily
protected by the sclera, which is the tough, white outer layer of the eye that provides
structure and protection, while the optic nerve is responsible for the transmittance of
visual information from the retina to the brain.[holmqvist2017]

When light enters the eye, it first passes through the cornea, a transparent, strongly
curved outer layer situated in front of the pupil. It can reflect infrared light, which is used
in the PCCR method to determine the position of the eye and the gaze direction. After
passing through the cornea, light enters the pupil, a circular aperture controlled by the
iris, which is a colored, muscular ring that adjusts the amount of light entering the eye.
The light then reaches the light-sensitive layer at the back of the eye called retina. The
retina contains photoreceptors called rods and cones that convert light into electrical
signals. Rods are specialized for low-light and grayscale vision, while cones detect color
and fine details in bright conditions. The central region of the retina is defined as the
fovea. It is densely packed with cones and is responsible for sharp, detailed vision. Eye-
tracking focuses on identifying the fovea’s direction, as it aligns with the point of highest
visual interest. Finally, the retina’s electrical signals are transmitted via the optic nerve to
the visual cortex, where images are processed and perceived.[holmqvist2017]

Eye-trackers often detect the pupil's center to track eye movements, and changes in pupil
size can reveal information about attention, cognitive load, or emotional states.[holmqvist2017]

For eye-tracking purposes, the visual angle is defined and describes how large an
object appears to the eye, based on its size and viewing distance. Consequently, rather
than representing the object’s actual physical size, it reflects its apparent size from the
observer’s perspective and is typically measured in degrees.[duchowski2017]

The visual angle also helps quantify how visual resolution decreases with increasing
distance from the fovea. To delineate the visual field, a differentiation between foveal
vision, which offers high-resolution central vision, and peripheral vision, which is char-
acterized by lower resolution, is made. In visual-cognition research, central vision is
typically defined as spanning 0°to 5° of eccentricity, with regions beyond 5° classified as
peripheral vision. While the fovea is specialized for perceiving fine detail and stationary
objects, peripheral vision is more sensitive to motion and changes in the environment.
Consequently, peripheral vision helps in detecting and locating potential targets, whereas
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I |
Figure 2.3.: Eye Anatomy based on duchowski2017.

foveal vision is responsible for identifying and verifying them.[klein2019]

Another important measurement in eye-tracking is the angular velocity, which describes
the speed of eye movements and is typically measured in degrees per second (s). The
angular velocity is derived from the amplitude and frequency. Here, amplitude refers
to the angular distance the eye moves across the visual field, measured in degrees
of visual angle, while frequency corresponds to the inverse of the movement duration
and is often defined by the eye tracker's sampling rate. Frequency is used instead
of time duration because manufacturers typically specify the sampling rate of their
devices, making it straightforward to calculate the velocity of eye movements between
samples.[duchowski2017]

Eye tracking focuses on two primary types of eye movements: fixations and saccades.
In eye movement analysis, these movements provide evidence of voluntary, overt visual
attention and are explored in greater detail in the following sections.[duchowski2017]

2.2.1. Fixations

Fixations are stable gaze positions where visual attention is primarily directed, during
which visual information from the point of focus is extracted and processed [klein2019].
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12 2. Groundwork for Developing Online Eye Movement Event Detection

Although visual attention is primarily directed at fixations, it does not always align with
it. In cases of covert attentional shifts, attention can shift toward a peripheral stimulus
before the fixation point changes, which is in contrast to overt attentional shifts where
gaze and attention move together. [zhaoping2023].

The average duration of a fixation is around 200 to 300 ms, though this can vary
widely and can be much shorter or longer depending on the context [mahanama2022].
Although the term "fixation" might implicate a stationary eye focus on a object of interest,
it consists of three fixational movements called tremor, drift, and microsaccades. These
movements are crucial for maintaining visual perception, as vision would otherwise fade
in the absence of continuous retinal stimulation.[klein2019]

2.2.2. Saccades

Saccades are rapid and ballistic eye movements whose trajectory cannot be altered
once initiated and are typically performed 3-5 times per second. They are triggered
by the desire to focus on a specific target and function to reposition the eyes from one
fixation point to another, aligning the high-resolution fovea with objects of interest for
detailed visual inspection.[duchowski2017, mahanama2022]

Saccades occur frequently, with an average rate of two to three per second and are
typically short, covering typically a visual angle of 3 to 80 degrees of visual angle
[collewijn1988]. To prevent visual blurring caused by their high-speed motion, vision is
briefly suppressed during saccades in a phenomenon known as saccadic suppression.
This suppression ensures that rapid eye movements do not interfere with the perception
of a stable visual environment [thiele2002].

An example of a saccadic eye movement is illustrated in Figure 2.4. Initially, gaze is
focused on a central point, represented by a dot in the top square. At a specific time a
peripheral stimulus indicated by a dot appears, which prompts a shift of gaze toward
it. The temporal dynamics of this saccadic eye movement are displayed and shows
changes in position and velocity over time. From the figure, it is evident that the gaze
remains steady until approximately 250 ms. At this point, the gaze shifts toward the
peripheral stimulus, marked by a steep change in position. The total change in position
is the distance between the central fixation and the peripheral target and is defined as
the saccade amplitude. After the saccade, the position stabilizes into a fixation on the
peripheral target. The lower plot in the figure shows the velocity of eye movements.
During the initial latency period, before the saccade begins, the velocity remains close to
zero. The same latency of approximately 250 ms of the saccade is observed between
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2.2. Eye Movement Typologies in Eye Tracking 13

the onset of the peripheral stimulus and the initiation of the saccade. The latency occurs
due to the time required for saccade programming and typically ranges from 100 to 300
ms [fischer1993]. Once the saccade begins, the eye movement rapidly accelerates,
reaching its peak velocity shortly afterward. This peak velocity corresponds to the rapid
gaze shift toward the target and is typically around 125 to 500 degrees per second
[collewijn1988]. Following the peak, the velocity decreases to zero as the gaze reaches
and fixates on the peripheral target. For the remainder of the trial, the gaze remains
steady on the target, as indicated by the flat velocity curve and stabilized position.
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Figure 2.4.: Saccade Behavioral Response Metrics based on klein2019.

Furthermore, saccades are not only performed under volitional control, as in the de-
scribed example, but can also be triggered reflexively by visual cues [fischer1993].
Reflexive saccades are driven by salient inputs such as brightness, motion, contrast, or
novelty that automatically capture attention, whereas volitional saccades are guided by
cognitive processes, including task demands, instructions, or specific goals that shape
saccadic responses [pomplun2006]. In real-world scenarios, these two mechanisms
often interact. For instance, in visual search tasks, saccade patterns are influenced both
by the saliency of the stimulus and by its task relevance, reflecting the interplay between
reflexive and volitional saccades [mcpeek2000].

2.2.3. Limitations and Challenges in Eye Movement Tracking

While fixations and saccades are primary eye movement types classified in most iden-
tification algorithms, additional factors must be considered to enhance analysis of
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14 2. Groundwork for Developing Online Eye Movement Event Detection

the gaze data produced by the algorithms. These include not only other eye move-
ment types, but also the presence of noise in gaze data, which can impact algorithm
performance.[klein2019]

Noise in eye-tracking data originates from multiple sources, including blinks, drifts, data
loss, physiological artifacts and measurement inaccuracies inherent to eye-tracking
devices.[agtzidis2019] Environmental factors, such as vibrations affecting the eye-
tracking camera or infrared interference from sunlight, can introduce distortions. Sim-
ilarly, hardware limitations, including inaccuracies in gaze measurement, obscurity
due to head movements and slippage of head-mounted trackers caused by facial mo-
tion, further contribute to data inconsistencies. [klein2019] Ensuring high-quality gaze
data is crucial, as poor or inconsistent measurements can lead to misinterpretation of
gaze behavior. Unequal data quality between participants can further impact research
validity.[wass2014]

In addition to noise-related challenges, other eye movement types, such as smooth
pursuits and physiological nystagmus, are present in the gaze data but are not classified
by the event detection algorithms considered in this thesis. The presence of these
unclassified movements can adversely affect the detection accuracy of the algorithms.
Understanding these eye movements is therefore crucial for recognizing instances of
low detection quality.[andersson2016]

Smooth pursuit refers to the eye’s ability to visually track a moving target. While it
shares similarities with fixation, in which both cases the visual attention is directed at a
stimulus, the key difference is that in smooth pursuit the stimulus is moving. Similarly,
unlike saccades, which involve abrupt shifts in visual focus, smooth pursuit maintains
continuous fixation on the moving target. As illustrated in Figure 2.5, smooth pursuit is
triggered by the movement of a target stimulus. In both the upper and lower diagrams,
the dashed line represents the target’s path and velocity, respectively, showing a fixed
initial position followed by a constant-velocity motion after target motion onset. The
solid line represents the eye’s corresponding position and velocity. Initially, the eyes
remain stationary. Once the target begins to move, the eyes first follow its direction. After
matching the target’s velocity, the eye then executes a saccadic movement to correct
any residual difference between its position and the target’s position. In addition to
this smooth pursuit performed solely with eye movement, a smooth pursuit can also be
performed by a coordinated movement of the head.[lisberger2010, duchowski2017]

Physiological nystagmus is divided into vestibular- and optokinetic nystagmus. Vestibular
nystagmus occurs when the vestibular system, which plays a key role in maintaining
balance and spatial orientation, is disrupted. Located in the inner ear, this system helps
stabilize gaze during head movements. In contrast, optokinetic nystagmus is a reflexive
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Figure 2.5.: Smooth Pursuit Behavioral Response Metrics based on lisberger2010.
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eye movement that helps stabilize retinal images when the eyes track a moving visual
scene. It alternates between smooth pursuit and rapid saccades that reset the gaze to
its original position.[klein2019]

2.3. Applicability of Real-Time Eye Movement Event
Detectors

To design and implement an online algorithm capable of classifying eye movement
events, it is crucial to first understand the design requirements for such a filter in (near)
real-time applications. These requirements include factors such as acceptable latency,
relevant input metrics and the type of eye-tracking data necessary to support downstream
use cases, such as situational awareness- and workload monitoring and pilot-machine
interaction.

This chapter investigates the application of real-time eye movement event detectors
focusing first on their role in human-machine interfaces and subsequently on their utility
for assessing situational awareness and workload. While eye movement related metrics
such as blink rate and pupil dilation can also be tracked in real time [zagermann2016],
this chapter focuses exclusively on fixation and saccade eye movements as these are
most relevant for the development of an online eye movement classification algorithm,
which is the ultimate goal of this thesis.
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16 2. Groundwork for Developing Online Eye Movement Event Detection

2.3.1. Human-Computer-Interface

Real-time eye movement event detectors are employed in human-computer interface
(HCI) applications that require rapid gaze-based input. As illustrated in Figure 2.6, these
applications can be mainly categorized into two types: (a) gaze-driven input interfaces
and (b) feedback interfaces that respond to user gaze behavior.
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Figure 2.6.: Types of Gaze-Based Human-Computer Interfaces: (a) Gaze-Driven
Input Interfaces and (b) Feedback Interfaces Responding to User Gaze
Behavior.

Recording of Gaze Computer Interface Feedback

The gaze-driven input control shown in Figure 2.6 (a) refers to interfaces where real-
time eye movement event detectors allow users to issue commands directly with their
gaze. A common application is controlling a computer cursor solely via eye movements,
with target selection based on gaze pointing or blinks [biswas2016]. For instance,
hariharan2024 developed such a human-computer interface as an assistive technology
for individuals who cannot operate a mouse, achieving a total target selection latency
of less than 100 ms. In an aviation context, murthy2020 designed a real-time gaze-
based pointing system for cockpit environments to reduce cognitive load. They reported
average pointing and selection times of under 2 seconds, noting that the system required
a minimum latency of 200 ms due to the need for raw gaze data smoothing.

The next class of interfaces are real-time feedback systems (see Figure 2.6 (b)), where
eye movement events dynamically trigger context-sensitive responses. For example,
schwerd2024 developed a system that continuously tracks pilot gaze behavior, specif-
ically fixation counts and durations on defined AOls, to assess situational awareness.
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2.3. Applicability of Real-Time Eye Movement Event Detectors 17

If a pilot fails to attend to critical information, the system automatically issues visual
or auditory alerts to redirect attention to unnoticed system state changes. In a flight
simulator study, these adaptive alerts significantly reduced detection times of critical
changes and pilot task performance, although some participants expressed concerns
about the transparency of the alert logic.

These real-time applications leverage fast classification of eye movement events, pri-
marily fixations, to dynamically adjust system behavior or user interface states. As
these systems aim to enhance situational awareness and reduce cognitive workload,
the following subsection explores these two concepts in greater detalil.

2.3.2. Situational Awareness and Workload Monitoring

Real-time eye movement event detection can be leveraged to improve SA in safety-
critical scenarios, such as in hazard identification, error detection, and activity monitoring
[martinezmarquez2021]. Situational awareness it self is defined by endsley1988 refers
to "the perception of the elements in the environmentwithin a volume of time and space,
the comprehension of their meaning and the projectionof their status in the near future”.

In aviation, a pilot’s SA and level of expertise can be inferred from the distribution and
duration of fixations on relevant AOIs [1i2019]. Research has shown that experienced
pilots more frequently perform express (short) fixations compared to novices [ziv2016,
greiwe2022]. For example, during cockpit scanning, expert pilots tend to fixate more
efficiently on instruments without excessive dwell time, reflecting greater SA and opera-
tional skill [ziv2016]. Conversely, novice pilots rely more heavily on Outside The Window
(OTW) cues and exhibit less effective scanning behavior [greiwe2023a]. Real-time
detection of such fixation patterns can support the assessment of SA during flight or be
applied in pilot training [greiwe2022].

Real-time fixation analysis is also used to estimate and mitigate cognitive workload. In
aviation, workload is defined as "the integrated mental and physical effort required to
satisfy the perceived demands of a specified flight task" [roscoe1987]. Researchers
have found that fixation durations increase under high workload conditions and during
immediate hazard detection, reflecting heightened visual demands [velichkovsky2002,
marquart2015]. Conversely, a higher cognitive load results in lower fixation rates
[zagermann2016], highlighting a clear correlation between fixation metrics and cognitive
workload.

In a recent study, liu2024 employed real-time eye-tracking data to estimate workload
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18 2. Groundwork for Developing Online Eye Movement Event Detection

within a 10 second time window. Their system demonstrated the capability to detect
periods of high workload in near real-time, with a processing latency of less than
0.1 s, making it applicable for adaptive cockpit designs. For instance, such systems
might automatically dim non-essential displays or recommend breaks during overload
conditions.

In addition to eye movement metrics, other measures can be incorporated to comple-
ment them and further enhance workload assessment, as recently demonstrated by
walocha2025. Their tool integrated a range of physiological and behavioral measures,
including pupil diameter with electrodermal activity (EDA) and electrocardiogram (ECG)
signals, capturing skin conductance and cardiovascular responses, respectively. These
measurements were also analyzed within a 10 second time window, highlighting their
potential for future online applications in adaptive user interfaces.

Finally, although temporal windows around 10 s are common, no universally accepted
standard exists, and longer windows generally tend to improve classification accuracy
[tervonen2021].

2.4. Exploration of State-of-the-Art Eye Movement
Event Detectors

Eye movement identification involves a variety of approaches, including threshold-based
algorithms, probability-based models, and advanced deep learning techniques. Each
approach has its own strengths and challenges, making their examination essential for
selecting suitable event detection techniques in a helicopter use case. As the previous
section showed, human—computer interfaces can be effectively implemented using only
fixation metrics. Accordingly, the detection methods examined in this thesis solely
identify fixations and saccades, consistent with common event detection approaches
[salvucci2000].

2.4.1. Threshold-Based Algorithms

Threshold-based algorithms utilize predefined thresholds based on velocity or dispersion
to classify eye movements from gaze data. Two widely recognized algorithms in this
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domain are the Velocity-Threshold Identification (I-VT) algorithm and the Dispersion-
Threshold Identification (I-DT) algorithm.[salvucci2000]

The I-VT algorithm classifies gaze points as fixations or saccades by comparing their
angular velocity to a predefined threshold. Gaze points with velocity below the threshold
are labeled as fixations, while higher velocities indicate saccades [salvucci2000]. The
underlying assumption of this filter is that during fixations, eye movements are slow, while
during saccades, eye velocity is high [duchowski2017]. A critical aspect of the I-VT
algorithm is the selection of an appropriate velocity threshold. Figure 2.7 illustrates this
relationship, which shows the angular eye movement velocity over time in the top plot,
while the lower plot displays the resulting classifications. If the threshold is set too low,
noise may be misclassified as saccades, whereas too high it suppresses noise but risks
missing genuine saccades. As the figure demonstrates, the threshold directly influences
the accuracy of the event detections derived from raw gaze data [kosel2023].
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Figure 2.7.: Eye Movement Classifications of an I-VT Algorithm Showing Angular
Eye Movement Velocity Over Time in the Top Plot an the Resulting
Classifications in the Lower Plot.

In contrast to the I-VT algorithm, the I-DT algorithm identifies fixations by evaluating the
spatial dispersion of consecutive gaze points. The I-DT approach assumes that fixation
points are spatially clustered, as illustrated in Figure 2.8. Hereby raw gaze samples
are shown as black dots, while detected fixations appear as red dots and the instructed
target fixation locations as gray squares. The algorithm groups consecutive gaze points
that fall within a predefined dispersion threshold as a single fixation. In addition to this
spatial criterion, a minimum fixation duration threshold is applied to filter out noise and
measurement variability. As seen in Figure 2.8, both the dispersion threshold and the

4 DLR - IB-2025-198



20 2. Groundwork for Developing Online Eye Movement Event Detection

fixation duration threshold strongly influence which gaze samples are ultimately classified
as fixations [salvucci2000].
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Figure 2.8.: Influence of Dispersion and Duration Thresholds in the I-DT Algorithm
based on yo02021,

2.4.2. Probability-Based Algorithms

Probability-based algorithms use statistical models to classify eye movements by esti-
mating the likelihood that a given movement belongs to a particular class, rather than
applying strict thresholds. Two widely used approaches are Hidden Markov Models
(I-HMMs) and the Kalman Filter (I-KF).

Figure 2.9 illustrates a two-state I-HMM for eye movement detection. The model
consists of four key components called hidden states, observations, transition prob-
abilities, and observation probabilities. The hidden states represent the system’s un-
observable conditions, which are fixation and saccade, while the observations are
measurable variables, such as angular velocity and visual angle, that describe eye
movements.[salvucci2000]

The model links states and observations through probabilities. Transition probabilities
determine the chance of moving from one hidden state to another, such as shifting
from a fixation to a saccade, which is depicted in the figure by the arrows connecting
the two states. On the other hand, emission probabilities define the likelihood of a
specific measurement occurring within a certain hidden state. For example, a low
angular velocity is highly probable during a fixation state. This relationship is depicted
in the figure by a probability density function (PDF) over velocity. These probabilities
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are typically estimated through training, which adjusts model parameters to best fit the
observed data. Once trained, the HMM infers the most likely sequence of hidden states
from the observed data.[salvucci2000]
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Figure 2.9.: Schematic Depiction of a Two-State Hidden Markov Model based on
salvucci2000.

The |-KF operates similarly, maintaining a system state that includes position and velocity,
which is both predicted and corrected over time.

At each time step, the filter predicts the next state from the previous one using the motion
model, then corrects this prediction based on the actual measurement as depicted in
Figure 2.10. This recursive process produces smoothed state estimates. Following
correction, the discrepancy between the corrected prediction and the actual measure-
ment is quantified as a chi-squared error and compared to a predefined threshold. If
the error falls below this threshold, the sample is classified as a fixation and otherwise
it is labeled as a saccade. The chi-square threshold is therefore critical as lower val-
ues result in stricter fixation detection, while higher values allow more variability within
fixations.[sauter1991, komogortsev2007].

2.4.3. Deep Learning Models

Several types of deep learning models are commonly used for eye movement identifica-
tion. Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs) are
particularly well-suited for sequential data like eye-tracking signals, as they can consider
temporal dependencies when classifying each sample [seth2025]. In terms of real-time
applicability, CNNs have shown promising results, especially Temporal Convolutional
Networks (TCNs) elmadjian2021.

Hereby, TCNs require structured input, so that instead of treating each gaze point in-
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Figure 2.10.: Time- and Measurement Update Process in a Kalman Filter based on
welch2006.

dependently, a sliding window is applied to group gaze points over a short duration,
capturing temporal dependencies. Thereby, a TCN consists of stacked 1D convolu-
tional layers applied along the temporal dimension, as illustrated in Figure 2.11. Each
convolutional layer applies a set of learnable kernels across the input sequence that
contain gaze position and velocity to extract local temporal patterns. The kernel size
determines how many consecutive points are processed at each step. In the figure, it
is represented by the number of connections from the previous layer that feed into a
single node in the current layer. Besides, the stride specifies the step size for moving
the kernel, while dilated convolutions introduce gaps between the kernel’s elements. By
using stride, dilations D, and stacking multiple hidden convolutional layers, the network
efficiently captures both short- and long-range temporal dependencies, as demonstrated
in the figure. After feature extraction by the convolutional layers, the output is converted
into probabilities for multi-class classification, where the predicted eye movement class
corresponds to the highest probability.[elmadjian2021, bai2018]

2.5. Suitable Metrics for Eye Movement Event
Detection

Evaluating the performance of eye movement identification algorithms requires the use
of appropriate evaluation metrics. Several evaluation methods already exist, with some
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Figure 2.11.: Schematic of a Dilated Causal Convolution (Dilation Factors 1, 2, and
4; Kernel Size 3), based on bai2018.

serving as key metrics in the field of eye tracking. This chapter introduces these metrics
to assess both the effectiveness and applicability of the algorithms.

The presented metrics are categorized based on the depth of analysis they provide. The
evaluation begins with general event statistics, followed by a sample-level evaluation,
which examines time-aligned data points for a more detailed comparison, and an event-
level evaluation, enabling a precise assessment of the algorithm’s accuracy and reliability
in classifying eye movements.[startsev2022]

2.5.1. Event Statistics Evaluation

Evaluating the performance of algorithms with event statistical values fundamentally
relies on a comprehensive understanding of the various eye movement types, as detailed
in Chapter 2.2. By leveraging this knowledge, general statements can be formulated and
compared to the labeled data produced by the algorithm.

For instance, measurable parameters include mean fixation duration and saccade rate
typically ranging from 200—300 ms and 3-5 per second, respectively (see 2.2.1 and
2.2.2). Distributions that deviate significantly from established norms may indicate
inaccuracies in event detection [startsev2022].

As noted by startsev2022, while such methods can indicate whether an algorithm
yields reasonable results, they do not assess the precision and accuracy of event
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detection. Nonetheless, this approach offers a straightforward preliminary evaluation
without necessitating a separate dataset for comparison.

2.5.2. Sample-Level Evaluation

The sample-level evaluation involves comparing the detected eye movements gener-
ated by the algorithm with a ground truth. A ground truth refers to a dataset, which
time samples are annotated with an corresponding eye movement event. The primary
requirement for this method is the trustworthiness of the labeled data. Commonly,
ground truth datasets are hand-labeled by multiple human coders and reviewed by
experts to ensure robustness and reliability.[agtzidis2016intp] However, human biases
and varying interpretations of eye movement categories mean that these datasets
are not infallible, though they are still considered to be the gold standard for validat-
ing algorithms.[andersson2016, hooge2017]. Thus, ground truths that are accurately
labeled can serve as a benchmark, against which the algorithm’s output can be com-
pared.

In this comparison, time-aligned gaze points are directly assessed to determine whether
the labeled gaze point matches the corresponding ground truth gaze point [startsev2022].
The comparative results can be summarized in a confusion matrix to provide a struc-
tured view of the classifier's performance. A typical confusion matrix for a binary eye
movement classification problem distinguishing between fixations and saccades, based
on goutte2005, is shown below:

Actual\Predicted | Fixation Saccade
Fixation i FN
Saccade EP TN

This matrix distinguishes four possible outcomes when evaluating classification perfor-
mance. True Positives (TP) refer to fixation instances that are correctly classified as
fixations. False Negatives (FN) arise when fixation instances are incorrectly classified as
saccades. Conversely, False Positives (FP) denote saccade instances that are mistak-
enly classified as fixations. Finally, True Negatives (TN) correspond to saccade instances
that are correctly identified as saccades.

By categorizing the outcomes of classification into TP, TN, FP, and FN, several per-
formance metrics can be derived. One of them is the F1-score, which balances both
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precision and sensitivity:[manning2008]

2TP

FYscore = s FP 7 BN

In addition, the most widely used metric for evaluating event detection algorithms is the
Cohen’s kappa [startsev2022]. Its computation relies on two quantities. The observed
agreement p, measures the proportion of correctly classified instances:[cohen1960]

B TP+ TN
~ TP+TN+ FP+ FN

Po

The expected agreement p. is derived from the marginal distributions of predicted and
actual classes. With the total number of instances definedas N = TP+TN+ FP+ F'N,
it is calculated as:[cohen1960]

(TP + FN)(TP + FP) (FP +TN)(FN +TN)
Pe = ( N2 ) * ( N2 )

Finally, Cohen'’s kappa is computed as:[cohen1960]

Po — Pe

Cohen’s kappa = [

While the F1-score is a popular metric that offers a single metric that balances precision
and recall, it can overestimate performance in imbalanced datasets. This is known as
the accuracy paradox. For example, in an eye-tracking dataset dominated by fixations,
an algorithm that mostly predicts fixations could still achieve a high F1-score even if it
performs poorly at detecting the less frequent saccades.[startsev2022] The Cohen’s
kappa addresses this, as it adjusts for the agreement that would be expected by chance,
providing a more reliable measure of true classification performance. Kappa values
range from -1 (systematic disagreement) to 1 (perfect agreement), with 0 indicating
chance-level performance [cohen1960].

Although a sample-level evaluation is a straightforward way to compare individual data
points, it can significantly overestimate performance. This is demonstrated in the Figure
2.12, where a ground truth dataset of only fixation samples (green) are compared to
the output samples of two different algorithm predictions. Even though one algorithm
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makes more classification errors by breaking a single fixation event (blue) into multiple
segments with three incorrectly detected one sample long saccade events (red) on
the right, versus just one three sample long saccade event on the left, both algorithms
appear to have the same accuracy under a sample-level evaluation.[startsev2022]

This misleading assessment is problematic, because it fails to capture the adverse
impact on eye movement metrics like mean fixation duration, which form the basis for
most analyses in gaze behavior research. To avoid this, an event-level evaluation is
necessary.[zemblys2017]

GroundTruth

Predictions

| Algorithm 1 Algorithm 2 |
Figure 2.12.: Limitations of Sample-Level Performance Evaluation based on
startsev2022.

2.5.3. Event-Level Evaluation

For event-level matching, an event matching method is required. startsev2022 com-
pares and evaluates various event matching techniques and ultimately recommends
the maximum intersection over union (loU) matching method. Compared to other ap-
proaches, maximum loU is more robust in detecting events that align closely with ground
truth events in time, while allowing for slight variations in event duration and minor
temporal shifts.

The maximum loU method compares detected events such as fixations and saccades
with ground truth events by quantifying their overlap. It measures the degree of overlap
between a ground truth event and a predicted event relative to the total time span covered
by both events.[everingham2014] Thereby, the loU value ranges from 0, indicating no
overlap, to 1, representing a perfect match.[startsev2022]

If multiple predicted events overlap with the same ground truth event, the one with the
highest loU is selected as the best match. Any remaining overlapping events are either
assigned to another ground truth event or treated as errors or mismatches, ensuring
that each event is matched only once. As a result, the same classification categories
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TP, TN, FP, FN used in sample-level evaluation can also be applied to event-level
evaluation.[startsev2018]

Consequently, an event-level confusion matrix can be constructed, alongside perfor-
mance metrics such as the F1-score and Cohen’s kappa. Once the events in the pre-
dicted dataset are matched to those in the ground truth dataset and categorized as TP,
TN, FP, or FN, these metrics can be calculated in the same way as in sample-level evalu-
ation, allowing for a consistent assessment of classifier performance.[startsev2018]
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3. Design of an Offline Eye
Movement Event Detector for
Helicopter Use

The primary objective of this chapter is to identify algorithms capable of reliably detecting
fixations and saccades under the specific conditions of a helicopter simulator, and to
determine at least one algorithm suitable for online deployment. The actual online
deployment and its verification will be presented in the following chapter.

To this end, candidate algorithms and a suitable ground truth are first selected. The
algorithms are then optimized using a fixation—saccade invocation task study in a heli-
copter simulator, followed by a presentation of the resulting performance outcomes. The
chapter concludes with a critical evaluation of the algorithms, discussing methodolog-
ical limitations, comparing them against a baseline and selecting the most promising
candidates for subsequent online verification.

3.1. Selection of Eye Movement Event Detectors
and Ground Truth

Because no eye movement event detection algorithms have been specifically developed
for helicopter pilots, this section begins with the selection of suitable ground truth data,
which forms the basis for developing offline algorithms optimized for helicopter use. It
then outlines the choice of candidate algorithms, including the criteria and rationale
guiding their selection.
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30 3. Design of an Offline Eye Movement Event Detector for Helicopter Use

3.1.1. Selection of Ground Truth

There are three main forms of datasets that can serve as ground truth for optimizing eye
movement event detection algorithms in a helicopter environment. These are synthetic
datasets, self-collected, and manually labeled datasets and preexisting open-source
datasets. The choice of dataset is critical, as the right hyperparameter optimization
depends directly on the quality of the selected ground truth. The distinct advantages and
limitations of each approach are summarized in Figure 3.1.

-} —

Customization & Control, leIJ.EEd Vahdi‘ty, Lack OT ;
c Realism, Possible Overfitting of
Scalability

Synthetic Dataset Algorithm to Synthetic Features

Time Consuming, Limited Scope,
No Expert Labelling, No Large Preexisting
Dataset of Helicopter Pilots

Custimization & Control,
Self-Collected & Relevance
Labelled Dataset

High Quality Labelled Data,  Different Eye-Tracking Setup,
Preexisting Standardized, Time Saving Possible Data Bias

Datset

I |
Figure 3.1.: Comparison of Ground Truth Dataset Options for Algorithm Optimiza-
tion.

O

A synthetic dataset refers to artificially designed tasks that elicit specific eye movement
patterns, such as the fixation—saccade invocation task. In such tasks, participants are
presented with visual stimuli that trigger sequences of fixations and saccades, enabling
the algorithm’s performance to be directly evaluated against expected outcomes.

The key advantage of this approach is that it provides clearly defined ground truth
events, ensuring reproducibility across participants and studies. However, these tasks
are inherently artificial, which limits their ecological validity and may fail to capture the
full variability of gaze behavior encountered in realistic helicopter operations.

A self-collected and manually labeled dataset involves collecting gaze data within a
helicopter flight simulator and annotating its eye movement events by trained experts.
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This approach has the advantage of capturing authentic gaze behavior under simulator
conditions, thereby providing high quality ground truth that reflects the operational
environment of helicopter pilots. However, the collection and manual labeling process
is extremely resource intensive and time consuming, particularly since no preexisting
datasets for helicopter pilots are available. Consequently, scalability is very limited,
making it impractical for larger datasets required in algorithm optimization.

Open-source datasets are publicly available collections of eye-tracking data that have
been hand-labeled by experts.

Their main advantages lie in their accessibility and standardization. They are freely
available, provide high quality manual annotations and can be used for cross-study
comparisons. Nevertheless, these datasets have drawbacks for an event detection of
helicopter pilots. They are typically collected in laboratory settings on monitor-based
setups, often assuming a constant viewing distance. This contrasts with helicopter
simulators, where the primary vision system and instrument panels differ in distance.
Furthermore, such datasets rarely use head-mounted eye trackers, reducing ecological
validity even further. As a result, their direct application to helicopter pilot studies is
limited due to differences in visual environments and task demands.[startsev2022]

Among these options, the synthetic dataset is the most suitable for hyperparameter
optimization of event detection algorithms in helicopter flight simulators. While no prece-
dent synthetic dataset was generated in a flight simulator before and overfitting of the
algorithms to the datasets synthetic features is possible, distinct fixation patterns of
helicopter pilots are derivable in literature on helicopter pilot eye movement behavior
[greiwe2022, greiwe2023, greiwe2023a]. Thus, a synthetic dataset mimicking heli-
copter pilot eye movements can be created using a fixation-saccade invocation task, as
already done successfully for the development of event detection algorithms in other
contexts [komorgotsev2010, olsen2012a].

The open-source datasets lack uniform eye movement definitions and oftentimes contain
more labels than fixations and saccades, requiring reclassification for a fixation filter
design. Moreover, these datasets are collected with eye trackers that differ from the
one used in this thesis, producing incompatible data formats (e.g., 2D pixel coordinates
rather than 3D Euclidean distances) and exhibiting distinct noise characteristics due
to differences in precision, accuracy, and calibration. These differences risk overfitting
the optimization process to the characteristics of a different setup and eye tracker. In
addition, many open-source datasets are recorded at higher sampling rates than the
eye tracker used in the thesis, meaning they capture subtle saccades that may be lost
during downsampling, potentially leading to aliasing effects and the removal or distortion
of short saccades.[startsev2022]
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In contrast, self-collected and manually labeled datasets would provide the highest
ecological validity, but are not viable within this thesis. The lack of available expert
annotators at DLR, combined with the time constraints of the project, make manual
labeling infeasible. Using an existing event detection algorithm to label self-collected
data as a substitute ground truth like Tobii's own velocity threshold filter is also unsuitable,
since such algorithms lack the labeling accuracy of established ground truths and are
not optimized for helicopter use, thereby undermining the primary aim of this thesis.

This makes a synthetic dataset based on a study incorporating a fixation—saccade
invocation task the most reliable and practical ground truth dataset for developing eye
movement event detectors tailored to helicopter pilot use.

3.1.2. Selection of Eye Movement Event Detectors

As outlined in the literature review in Section 2.4, three main algorithmic approaches
for eye movement event detection exist. These approaches must be evaluated and
compared to determine their suitability for optimization and application inside a helicopter
flight simulator.

While threshold-based algorithms are simple, easy to implement and computationally
efficient, their effectiveness is highly dependent on the choice of threshold. However,
their performance is highly dependent on the choice of threshold, which also makes
them more sensitive to noise compared to other approaches. Within this class, the
I-DT reduces threshold-related noise sensitivity by integrating gaze positions over a
time window, rather than classifying events based on single gaze samples. The I-VT,
by contrast, typically requires smoothing filters, such as a moving average, to achieve
similar robustness to noise [salvucci2000, olsen2012].

Both I-DT and I-VT are well-suited for real-time applications, as their simplicity and
computational efficiency make them ideal for online use, although they generally lack
the accuracy of other event detection approaches.[salvucci2000]

Probability-based methods offer several advantages over threshold-based algorithms. By
assigning probabilities to each event classification rather than a strict threshold, they are
more robust to noise and less affected by spurious fluctuations or outliers. This approach
also provides greater adaptability, as parameters can be more precisely fine-tuned for
helicopter pilots. Furthermore, the assigned parameters provide quantitative measures
that support more nuanced analyses or downstream decision-making. [jurafsky2025,
salvucci2000]
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Despite these benefits, probability-based methods also have limitations. They are
typically more computationally demanding than threshold-based algorithms, since they
must continuously calculate the likelihood of each eye movement state and determine the
most probable sequence of events, which requires additional calculations. Due to their
dependence on more parameters, a larger dataset for optimization may also be required.
Additionally, implementing these models often demands expertise in statistics, as their
performance is sensitive to the assumptions made about the underlying probability
distributions. [biraw02022, salvucci2000] Probability-based algorithms are also suitable
for real-time applications, although their responsiveness varies significantly depending
on the specific model. Simpler models like the I-KF can operate with low latency, whereas
more complex approaches, such as HMMs, introduce higher computational costs. While
they may have a small increase in latency compared to threshold-based algorithms due
to their computation time, they are preferred in cases when increased robustness to noise
is a higher priority than minimal extra latency. [komogortsev2007, salvucci2000]

Unlike the other approaches, deep learning models can directly process raw gaze
coordinates without requiring preprocessing steps such as angular velocity calculation.
They automatically learn the most informative features and capture complex, non-linear
patterns that human experts might overlook. This eliminates the need for predefined
thresholds or probability models, making them inherently more robust to noise and
small fluctuations [hoppe2016]. Their ability to learn from data also enables effective
generalization across individual differences. Combined with their capacity to model
temporal dependencies, these properties allow deep learning models to achieve high
accuracy in eye movement classification.[elmadjian2021]

Despite their advantages, deep learning techniques face significant challenges. First,
they require substantially larger amounts of labeled training data than threshold- or
probability-based approaches, which limits their practicality in domains where annotated
datasets are scarce [birawo2022]. Another major challenge is overfitting, which happens
when models learn the training data and its noise too well, leading to poor generalization
on new gaze data. This problem is exacerbated if the dataset is biased or unrepre-
sentative, further compromising accuracy. Retraining models for new tasks or datasets
are also more demanding than adjusting simpler algorithms. Finally, interpretability
is another critical limitation. Deep learning models are often treated as “black boxes,”
making it difficult to explain or validate their predictions.[hoppe2016, kumar2020]

Recent advances demonstrate that deep learning models can achieve low latency suit-
able for real-time applications. elmadjian2021 showed that CNN-LSTM, CNN-BIiLSTM
and TCN architectures can operate with very low computational overhead, achieving
processing latencies below 2 ms on standard hardware. Event detection accuracy
can be improved by using a 40—-60 ms look-ahead window, although the gain is small.
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Importantly, the TCN operates effectively without any look-ahead, underlining its strong
potential for online deployment.

Based on the discussed advantages and disadvantages of all three eye movement event
detection approaches, an overview of their performance is summarized in the radar
chart shown in Figure 3.2. The criteria are evaluated based on whether each approach
is generally considered to not meet, sufficiently meet, or exceed the requirements for
algorithm development and subsequent online applicability in the specific context of this
thesis.

| Simplicity |

@® Threshold-based methods
@ Probability-based methods Accuracy

: Real-time suitability
@ Deep learning models —

Noise robustness

Low compute  Low data requirement
tost

Figure 3.2.: Comparison of Eye Movement Detection Approaches.

As shown in Figure 3.2, deep learning models do not satisfy the requirements in terms
of interpretability and data efficiency, since, as outlined in the previous section, no
large-scale dataset is available and interpretability of algorithm results is crucial for later
evaluation of optimization results and for validating their event detections. They are
therefore excluded from further analysis. For threshold- and probability-based algorithms,
the choice is less obvious. Since no single method clearly emerges as the most suitable
for helicopter applications, a representative set of algorithms with different detection
principles is selected. From the threshold-based category, the I-VT and I-DT algorithms
are chosen. Both are widely established methods. The I-VT serves as Tobii’s standard
event detection filter [olsen2012], while the I-DT has demonstrated strong performance
in prior work [salvucci2000]. Accordingly, the I-VT used in this thesis is implemented
based on Tobii's I-T Fixation Filter, and the I-DT follows the implementation described by
salvucci2000.
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Within the probability-based category, the I-KF, based on komogortsev2007, and I-
HMM, based on salvucci2000, are selected. The I-KF is relatively simple, with fewer
parameters, while the I-HMM is more complex, having more parameters. Including both
allows for the evaluation of two distinct probability-based approaches, which supports a
more comprehensive assessment and helps identifying the most effective algorithm for
helicopter applications.

3.2. Algorithm Optimization Methodology

This chapter presents the methodology employed for algorithm optimization using a
fixation-saccade invocation task study.

The chapter begins with a description of the study setup, including experimental en-
vironment, equipment and participant details, to ensure reproducibility. After that, the
fixation-saccade invocation task is detailed, which forms the basis for collecting gaze
data for algorithm optimization. The study procedure section outlines the study work-
flow and task execution. Finally, the evaluation method of the offline algorithms is
presented, which includes the metrics and optimization method used to assess and
optimize performance based on the collected fixation-saccade invocation data.

3.2.1. Study Setup

The eye tracker used for the study is the Tobii Pro Glasses 3 (Figure 3.3). It is equipped
with a Full HD scene camera that captures the user’s Field Of View (FOV) (95° horizon-
tally and 106° vertically) and a microphone for audio recording. The gaze is measured
with an average accuracy of 0.6° by using the PCCR method described in Section 2.1.1.
The PCCR method utilizes 8 infrared illuminators and 2 infrared cameras on each eye
to enable gaze recording. The data is sampled at 50 Hz and stored on a dedicated
recording unit that is connected to the eye tracker glasses.[tobii2023c]

The fixation-saccade task is conducted in DLR’s 2PASD (Dual Pilot Active Sidestick
Demonstrator) fixed based flight simulator depicted in Figure 3.4. The simulator features
two pilot stations equipped with cyclic and collective sidesticks, as well as pedal inceptors.
The primary visual system comprises five LCD screens that have a diagonal size of 55

' Source: DLR (CC BY-NC-ND 3.0)
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Figure 3.3.: Tobii Pro Glasses 3.’

inch (resolution of 1920x1080 pixels, refresh rate 60 Hz), arranged in an arc around the
cockpit. The central screen is mounted in landscape orientation, while the surrounding
screens are in portrait orientation, providing a combined FOV of 150 ° horizontally and
50° vertically.

In addition, each pilot seat is equipped with a 17 inch instrument display (resolution of
1280x1024 pixels, refresh rate 60 Hz) in front and two smaller 10 inch displays (resolution
of 768x1024 pixels, refresh rate 60 Hz) stacked vertically in between to provide further
instrument readouts.[dikarew2024]

Eleven participants (10 male, 1 female; age range: 20-50 years, mean = 28.6, standard
deviation = 6.6) took part in the study. Some wore corrective lenses or had blue eyes,
potentially inducing additional noise. Consequently, the dataset spans a wide range
of noise levels, providing a suitable ground truth for an exhaustive evaluation of the
algorithms' performance.

3.2.2. Fixation-Saccade Invocation Tasks

To generate a synthetic dataset, a set of six fixation—saccade invocation tasks are
designed, in which fixations and saccades are elicited by presenting a sequence of
visual stimuli that participants are instructed to follow. The tasks are incorporated in a
fixation—saccade invocation study that builds on earlier work by komorgotsev2010 and
olsen2012a, but differs in its objective, as it is designed specifically for helicopter pilots

2 Source: DLR (CC BY-NC-ND 3.0)
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l |
Figure 3.4.: 2PASD (Dual Pilot Active Sidestick Demonstrator) Simulator.2

and conducted within a helicopter flight simulator, which requires additional considera-
tions.

To ensure algorithm parameters are tuned specifically for helicopter pilots, the stimulus
presentation patterns must be designed to cover a broad spectrum of visual demands
encountered in helicopter operations. To achieve this, the stimulus presentation patterns
are derived from previous studies [greiwe2022, greiwe2023, greiwe2023a].

Furthermore, the cockpit monitors are nearer to the pilot seat than the TV screens
for the primary vision system. In order to make the visual stimuli equally discernible
in both screens, the stimulus size is set in visual angle to 1 degree, as also defined
by komorgotsev2010. Moreover, the stimulus appears as a white dot with a smaller
black dot at its center, similar to a typical calibration marker, and is displayed on a black
background.

In all tasks, the stimulus jumps between 10 fixed locations to elicit saccades and
subsequent fixations, except in one task, where it moves smoothly across the visual field
to elicit three different smooth pursuit. Additionally, all six tasks are presented either in
the center display, side display or cockpit monitor as highlighted in Figure 3.5.

In the baseline task T1, the stimulus appears only on the center display of the simulator’'s
primary vision system. It jumps between predefined positions, eliciting short- to medium-
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Side
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Figure 3.5.: Stimulus Presentation Displays in the 2PASD.

amplitude saccades ranging from 5°to 20°, This task represents basic gaze behavior
directed Outside The Window (OTW).

In task 2 (T2), the stimulus alternates between the center primary display and the
cockpit instrumentation monitors. The jumps require participants to shift gaze between
the external visual scene and cockpit displays, with amplitudes between 10°and 25°,
mimicking typical transitions between OTW and Inside The Cockpit (ITC).

Task 3 (T3) extends T2 by presenting stimulus jumps within clusters of cockpit displays
and the center screen, resulting in saccade amplitudes between 3°and 25°. By concen-
trating sequences of jumps in small spatial clusters before moving to another region, the
task simulates monitoring strategies in which pilots scan instruments and visual cues
OTW before returning focus outside.

In task 4 (T4), stimulus jumps are limited to the side displays of the simulator. This
requires saccades of 3°to 15°into the periphery, reproducing conditions in which pilots
must monitor lateral visual cues presented outside the central field of view.

In the final jumping point task T5, the stimulus appears exclusively on the cockpit
monitors. This design emphasizes instrument-scanning behavior, requiring sequences
of short- to medium-amplitude saccades ranging from 3° to 10° within the cockpit
instrument panel.

Unlike the previous jump-based tasks, task 6 (T6) involves continuous motion of the
stimulus along trajectories on the side displays. Participants are required to follow
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the moving dot, which gradually accelerates over time and elicits smooth pursuit eye
movements combined with saccades when fixating on to the next moving stimulus
position. This task reflects situations in which pilots track moving cues in the peripheral
field.

The timing for the jumping stimulus presentation in the fixation—saccade invocation tasks
T1 to T5 is shown in Figure 3.6. The timeline consists of the four successive intervals
that are Saccade Latency (SL), Saccade Duration (SD), Modal Fixation Duration (MFD)
and the overlap.

The first 250 ms of the stimulus presentation accounts for the SL. After the SL another
50 ms has to be accounted for the SD. The durations of both values are chosen based
on section 2.2.2. After SL and SD, cognitive processing on the stimulus is assumed
to occur. For this processing interval the modal fixation duration of 190 ms is used,
as it is also used and suggested as the reference fixation duration by greiwe2022 for
helicopter pilots eye movement analysis. An additional overlap of 90 ms is included
at the end of the display time, during which the current and subsequent stimuli are
shown simultaneously. This overlap prevents a blank screen interval that might induce
wandering and ensures that saccades between targets are more likely to be direct,
thereby reducing intermediate search fixations. Given the study’s video frame rate of 10
Hz, the overlap used by olsen2012a is rounded up to 90 ms. As this overlap duration
is shorter than a typical saccadic latency, any fixation that begins during this period
is therefore attributed to the previous target or to transition behavior and not the new
stimulus.

In total, the sequence of these intervals sums to an effective display time of 580 ms per
stimulus. This fixation display time falls between the 1 second duration prescribed by
komorgotsev2010 and the 500 ms duration applied by olsen2012a.

3.2.3. Study Procedure

The study procedure for each participant follows the flow chart shown in Figure 3.7. It
begins with an explanation of the study’s purpose and the collection of informed consent
for gaze data recording. Afterwards, the eye tracker is calibrated to the participant using
a one-point manual calibration with a calibration card, as recommended for Tobii head
mounted eye trackers to ensure highest data accuracy during recording [tobii2023c].

Following calibration, a familiarization phase is conducted. In this phase, participants are
introduced to the general concept of the tasks and explicitly informed that no restrictions
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Figure 3.6.: Timeline of One Stimulus Presentation.

are imposed on head movement or position. To demonstrate the two task types, two
example scenarios are demonstrated in the simulator, resembling the jumping point task
T1 and the smooth pursuit task T6. This phase solely ensures task comprehension and
reduction in novelty effects and is not recorded for the algorithm evaluation.

After that, the fixation-saccade invocation tasks are performed, during which all eye-
tracking- and simulator data will be recorded during this phase. Prior to each task a brief
instruction stating the specific displays where stimuli will appear for that particular task is
provided. Crucially, no demonstrations of the stimuli patterns is shown during this phase.
This is to prevent participants from anticipating the exact timing or location of stimuli
within the specified areas, which encourages more natural and reactive eye movements
for data collection. All tasks are ordered in a unique sequence for each participant,
following a counterbalanced Latin square design. The final task order matrix is shown
in Table 3.1, where rows (P1—-P12) represent the number of participants and columns
(“1st”-“6th”) indicate the sequential order in which each task (T1-T6) is performed. This
design ensures that each task appears equally often in each sequence position, thereby
controlling for order effects such as practice and fatigue [lewis1989].

Since counterbalanced Latin squares require a round number of participants, the matrix
is constructed for 12 participants even though only 11 take part in the study. Besides,
the test matrix is structured into two blocks to facilitate the training and testing of the
algorithms, resulting in each participant completing every task twice.

Throughout the tasks gaze data is continuously recorded and saved for later algorithm
evaluation. After each task, participants complete a short questionnaire assessing
perceived task difficulty and mental workload on a Likert scale. In addition, a post-study
questionnaire collects demographic and participant specific information. Together, these
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Table 3.1.: Task Ordering Matrices.

Participant Training Block Testing Block

i1st 2nd 3rd 4th 5th 6th | 1st 2nd 3rd 4th 5th 6th
P1 ™M T2 T6 T3 T5 T4 |T4 T1 T2 T6 T3 T5
P2 T2 T3 T1 T4 T6 T5|T5 T2 T3 T1 T4 T6
P3 T3 T4 T2 T5 T1 T6|(T6 T3 T4 T2 T5 T
P4 T4 T5 T3 T6 T2 T1 |T1 T4 T5 T3 T6 T2
P5 5 T6 T4 T T3 T2 |T2 T5 T6 T4 T1 T3
P6 6 T1 T5 T2 T4 T3 |T3 T6 T1 T5 T2 T4
P7 5 T4 T1 T2 T6 T3 |T3 T5 T4 T1 T2 T6
P8 T6 T5 T2 T3 T1 T4 (T4 T6 T5 T2 T3 TI1
P9 T T6 T3 T4 T2 T5|T5 T1 T6 T3 T4 T2
P10 T2 T T4 T5 T3 T6 |T6e T2 T1 T4 T5 T3
P11 T3 T2 T5 T6 T4 T1 |T1 T3 T2 T5 T6 T4
P12 T4 T3 T6 T1 T5 T2 |T2 T4 T3 T6 T1 T5

questionnaires support the traceability of possible anomalies such as poor data quality or
unexpected gaze behavior by providing contextual information for gaze data evaluation.
The questionnaire is appended in Appendix C.

3.2.4. Evaluation of the Offline Algorithms

To evaluate the offline algorithms, a hyperparameter evaluation pipeline is established,
as shown in the schematic overview in Figure 3.8.

Within this pipeline, the optimization process iteratively explores combinations of param-
eter values for each algorithm, with the objective of identifying the settings that yield the
highest possible performance. The raw gaze data and ground truth annotations used for
optimization are taken from the training dataset, which is organized into the five jumping
point tasks (T1-T5), each containing data from all participants. For every ground truth
and raw gaze data pair, the offline algorithm is executed with a proposed hyperparameter
set. The resulting eye movement classifications are then compared against the ground
truth using an loU based scoring method. Details of both the loU-based scoring method
and the ground truth fixation generation are provided in Section 3.2.4 and 3.2.4.
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Figure 3.7.: Fixation-Saccade Invocation Task Study Procedure.

The scoring method produces Cohen'’s kappa and F1-score values for each task. To
obtain a single optimization objective, the unweighted average of Cohen’s kappa across
all five tasks is calculated and maximized, which ensures equal contribution of each
task. Only Cohen’s kappa is used as the optimization metric, since it provides a more
reliable measure of agreement than the F1-score (see Section 3.2.4). Nevertheless, the
F1-scores are still reported for comparison with other eye movement event detectors,
given their frequent use in the literature.

The optimization is conducted with the Optuna framework, which is described in detalil
by takuya2019. Optuna adaptively selects new hyperparameter sets to evaluate, guided
by the Kappa results of previous trials. This allows the framework to focus on promising
regions of the parameter space while efficiently discarding unpromising ones, leading to
faster convergence compared to random or exhaustive search.

After a predefined number of trials, the framework reports the optimal hyperparameter
set for each algorithm, along with their corresponding Kappa and F1-scores. These
best-performing configurations are then validated on the testing dataset and the resulting
Kappa and F1 values are used for the final evaluation of each algorithm.
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Figure 3.8.: Overview of Algorithm Hyperparameter Optimization and Evaluation.

Furthermore, the parameter spaces explored for each algorithm are summarized in Table
3.2. For all algorithms, the post-processing parameters are fixed according to Tobii’'s I-VT
filter settings to reduce the number of hyperparameters and enhance interpretability of
the results. In addition, the I-VT applies Tobii's moving median window size, which is not
used for the other algorithms, so that its detection method aligns with the I-TobiiVT filter.
The hyperparameter intervals for the remaining variables of all algorithms are defined
based on established knowledge of fixation and saccade characteristics, as outlined in
Section 2.2.

Algorithm Scoring Method

The loU based scoring method is chosen over the approaches of komorgotsev2010
and olsen2012a due to their scoring metrics such as Average Number of Fixations
(ANF), Average Fixation Duration (AFD) describing eye movement behavior. Conse-
quently, for these behavioral metrics to deliver accurate assessment of the algorithm

4% DLR - IB-2025-198



44

3. Design of an Offline Eye Movement Event Detector for Helicopter Use

Table 3.2.: Overview of Algorithm Specific Parameter Spaces and Fixed Values
Used in the Evaluation.

Algorithm  Parameter Range
Moving median window size 3 (fixed)
Velocity threshold 100 s (fixed)
I-TobiiVT Minimum fixation duration 60 ms (fixed)
Maximum gap duration between fixations 75 ms (fixed)
Maximum gap angle between fixations 0.5° (fixed)
I-VT Velocity threshold 5-150 s
DT Dispersion duration threshold 0.01-0.8s
Dispersion threshold 0.1-1.0°
Training epochs 50 - 500
Convergence tolerance le ®—1e? (log scale)
Start probability 0.01 -0.99
Transition probability 0.7-0.99
Mean saccade velocity 1-200 s
HMM Mean saccade angle 0-30°
Mean fixation velocity 0-50 %
Mean fixation angle 0-30°
Variance saccade velocity 1-500
Variance saccade angle 0.001 — 20 (log scale)
Variance fixation velocity 1-200
Variance fixation angle 0.001 — 20 (log scale)
Chi square threshold 30-200
I-KF Velocity process noise le ® —1.0 (log scale)

Position process noise

le~%—1.0 (log scale)

event detection accuracy, the subject must follow the jumping point stimulus exactly as
instructed whereas the loU based scoring is independent of it, which provides a more
robust evaluation framework. Moreover, loU based matching enables the calculation of
the well-established classification performance metrics F1 score and Cohen'’s kappa,
which are widely used for evaluating eye movement detection accuracy.[startsev2022]
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In this scoring method, ground truth fixations and predicted events are matched based on
their temporal overlap using the same loU thresholding procedure described in Section
2.5. If a ground truth fixation is matched with a predicted fixation a TP is counted and
conversely if matched with a predicted saccade counted as FN. For all other matching
scenarios, a special penalization strategy is applied, which is illustrated using a ground
truth and prediction matching example in Figure 3.9.

In the case of under-segmentation, where one predicted fixation spans multiple ground
truth fixations, a single TP is assigned and the surplus ground truth fixations are penalized
as FN. Conversely, in cases of over-segmentation, where multiple predicted fixations
cover a single ground truth fixation, one TP is counted and the excessive predicted
fixations are penalized as FP.

TN are derived indirectly, since the dataset does not provide ground truth annotations for
saccades. Consequently, no over- or under-segmentation is applied in this case, as the
non-fixation segments in the ground truth merely indicate that at least one saccade must
have occurred, without specifying its exact amount or duration. Accordingly, within each
ground truth non-fixation segment, the presence of one or more predicted saccades is
consistently counted as a single TN.

With the obtained counts of TP, FP, FN, and TN, both Cohen’s kappa and the F1 score
are computed to quantify detection accuracy and guide hyperparameter optimization.

+1TN

(2 Saccades, but same Scoring +1TP +1 FN +1 TP +1FP

Result as for 1 Saccade) (Over-Segmentation) (Under-Segmentation)
Algorithm

Ground Truth o

0 2 4
+1 TN +1 TP
I Fixation (Algorithms) B Saccade (Algorithms)
Il Fixation (Ground Trith) X  Fixation loU Mismatch

Figure 3.9.: Example of Ground Truth and Prediction Matching for Event Scoring.
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Ground Truth Generation

The ground truth fixations are identified by measuring the temporal and spatial alignment
between the jumping stimulus point and the participant’s gaze.

Due to small physiological movements and noise, such as those induced by suboptimal
calibration of the eye tracker to the participant’s eyes or inaccuracies in the device’s gaze
estimation, a spatial tolerance between the stimulus point and the gaze point is set up.
Hereby, angular deviation of the gaze from the ideal stimulus position is measured. Gaze
samples that fall within the defined angular threshold are classified as part of a stable
fixation on the stimulus and samples outside this threshold are labeled as unknown eye
movements, since both fixations and saccades could occur outside the stimulus points
position and cannot be verified.

Angular thresholds of around 0.6 were investigated, as this corresponds to the accuracy
of the eye tracker. As shown in Figure 3.10, which illustrates ground truth fixations for
different thresholds in one example time sequence, a threshold above 0.5° incorrectly
merges separate fixations into a single event, whereas the 0.4° threshold correctly
distinguishes them. It should be noted, however, that smaller thresholds generally yield
shorter fixation durations. Despite this, a 0.4 ° threshold was chosen, as shorter ground
truth fixations can still be reliably matched with the loU event matching approach. In
addition, a post-processing step is applied to regroup fixations that were incorrectly split
due to the stricter threshold.

GroundTruth
0 2 3 4 5 0 2 3 4 5
Tieme: 5 0.4 Degree Time () 0.5 Degree
0 2 3 4 5 0 1 2 3 4 5
Time (s) Time (s)
0.6 Degree 0.7 Degree

| |
Figure 3.10.: Ground Truth Fixation Detection at Different Angular Thresholds
(0.4°-0.7°) in One Example Time Sequence.

Temporal alignment is ensured by verifying that gaze points are not only spatially close
to the stimulus but also approximately matched in time. The temporal alignment window
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spans from the onset of stimulus presentation until 300 ms after stimulus offset. This
300 ms margin accounts for the combined saccade latency and duration and is included
after stimulus offset as well, since the gaze lingers on the same stimulus after its offset
before transitioning to the next stimulus point.

3.3. Overview of Optimization Results

The following section presents the results from the offline algorithm optimization based
on the fixation-saccade invocation task study.

First, the optimization results of the I-VT, I-DT, I-KF, and I-HMM algorithms from the
Jumping Point Task are reported, followed by a summary of the testing results of all
algorithms. After that, the results from the Moving Point Task are presented.

3.3.1. Optimization Results from the Jumping Point Task

The optimization results are presented by showing the parameter sets alongside their
corresponding objective values, while also specifically reporting the parameter set values
with the highest Cohen’s kappa and F1 scores achieved. Since the Optuna framework
minimizes the objective function for optimization, the objective value is defined as 1 -
Kappa, so that the optimal value is 0 and the worst is 1. Depending on the number of
parameters varied, these results are visualized using a graph, a contour plot or a parallel
coordinate plot.

I-VT Results

The results of the hyperparameter optimization process for the I-VT algorithm are
presented in Figure 3.11, which illustrates the objective value as a function of the velocity
threshold.

The data points on the plot are colored on a gradient from light to dark blue, corresponding
to the trial number in which the point was calculated. The objective value follows a
parabolic curve with a minimum located at an objective value of approximately 0.04 at a
velocity threshold of 44.03 corresponding to a Cohen’s kappa of 0.96 and F1 score of
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0.98. Deviations from this optimal threshold result in an increased objective value, rising
more sharply for lower thresholds and more gradually for higher thresholds.
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Figure 3.11.: I-VT Hyperparameter Optimization Resulis.

I-DT Results

The contour plots in Figure 3.12 illustrate the distribution of objective values using a blue
gradient, with the left plot showing the full range of dispersion and duration thresholds
and the right plot providing a close-up view of the optimal parameter region.

The best-performing parameter set is located at a dispersion threshold of 0.324 and
a duration threshold of 0.036, achieving an average F1 score of 0.917 and a Cohen’s
kappa of 0.843. The close-up view further highlights that the optimal parameter space
spans duration thresholds between 0.03 and 0.06 and dispersion thresholds between
0.25 and 0.4.

I-KF Results

The results of the I-KF optimization process state for the optimal parameters an average
F1 score of 0.978, a Cohen’s kappa of 0.957 and a Chi-square threshold of 84.30.

4 DLR - IB-2025-198



3.3. Overview of Optimization Results 49

0.30- 0.10- 096
©0.25 o 0.84
S S (.08- v
$0.20 B 072 3
= = =
F0.15 = 0.06 el @
= . = —
s 5 048 g
§0‘10 §0-04' 036 O
0.05 0.24
PEOL g 0.02 EE A P 1°°
0.00-SENTZTTS=—"7 71— . =l . W W12
02 04 06 08 1.0 02 03 04 05 06 0.7

Dispersion Threshold Dispersion Threshold

I |

Figure 3.12.: Contour Plot of the I-DT Optimization Results on the Left and a Close-
Up View of the Optimal Parameter Region on the Right.

Furthermore, the optimal position process noise (gpos) is 0.0015 and the optimal velocity
process noise (qyel) is 0.2275.

The parallel coordinate plot in Figure 3.13 depicts the correlations between the objective
value and the three optimized hyperparameters. Each vertical axis corresponds to a
parameter and each blue line represents a single trial from the optimization. The line
color reflects the objective value, with darker lines indicating lower objective values. By
identifying the darkest lines, the optimal regions for each parameter can be identified,
highlighting the convergence to the optimal parameter set.

I-HMM Results

Finally, the I-HMM results are presented using a parallel coordinate plot, analogous to
that of the I-KF, shown in Figure 3.14. Unlike the |-KF plot, no single converging optimum
is apparent. The darker lines are distributed across a wide range of values along all
parameter axes.

The best-performing parameter configuration, as determined by the optimization process,

is detailed in Table 3.3. This configuration achieved a best average F1 score of 0.938
and a Cohen’s kappa of 0.88.
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Figure 3.13.: Parallel Coordinate Plot of the I-KF Hyperparameter Optimization
Results.
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Resulis.
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Table 3.3.: Best Parameter Configuration for the I-HMM Algorithm.

Category Parameter Value
Training Epochs (n_epochs) 353
Convergence tolerance (tol) 0.0005
State probabilities  Start probability (startprob_0) 0.123
Transition probability (trans_11) 0.735
State means Mean saccade velocity (mean_sac_vel)  63.8 °/s
Mean saccade angle (mean_sac_va) 20.2°
Mean fixation velocity (mean__fix_uvel) 3.15%s
Mean fixation angle (mean_fiz_va) 17.6°
State variances Variance saccade velocity (var_sac_vel) 57.7°/s
Variance saccade angle (var_sac_va) 0.114°
Variance fixation velocity (var_fiz_vel)  64.1°/s
Variance fixation angle (var_fir_va) 3.22°

Testing Results of All Algorithms

The results from the testing dataset reinforce the performance trends observed during
training. For direct comparison, the F1 scores and Cohen'’s kappa values are reported
for all tasks and all algorithms across both datasets, with the final row summarizing the
average results in Figure 3.15.

As in training, the I-VT and I-KF algorithms achieve the highest scores, with F1 scores
ranging from 0.94 to 1.00 and Cohen’s kappa values between 0.88 and 0.99. Their
average Kappa values remain consistently high, at 0.97 for I-VT and 0.95 for I-KF.

In contrast, I-HMM largely underperforms relative to the other algorithms, with F1 scores
between 0.80 and 0.96 and Kappa values from 0.65 to 0.92, resulting in an average
Kappa of 0.79. I-DT performs slightly better, achieving F1 scores between 0.86 and 0.97
and an average Kappa of 0.88, while TobiiVT reaches an average Kappa of 0.91.

Similar to the training dataset, the weakest results across all algorithms are observed
in Task T4, where F1 scores fall between 0.80 and 0.97 and Kappa values drop to
0.65—-0.93. Task T3 also shows below-average performance for I-HMM and I-DT, with
Kappa values ranging from 0.67 to 0.88 and F1 scores from 0.82 to 0.94.
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Figure 3.15.: Highest F1- and Cohen’s kappa Scores for the Training- (Left) and
Testing Dataset (Right).

3.3.2. Results from the Moving Point Task

In contrast to the jumping point tasks, the results of the moving point task are presented
qualitatively. Figure 3.16 compares the detection outputs of all algorithms on this task.

The diagram on the left displays the detection outputs for participant 10. The top
plot depicts angular velocity over time, while the timeline plot below illustrates the
classifications of the five algorithms, with fixations marked in blue and saccades in red.
The gray boxes indicate the intervals where a stimulus point jump occurs, during which a
saccade is expected. In this example, the I-DT and I-HMM algorithms classify saccades
more frequently outside these intervals and, overall, assign longer saccade durations
compared to the other methods, particularly in contrast to the I-TobiiVT algorithm.

The table on the right quantifies these observations. It shows that I-HMM and I-DT have
the highest saccade counts (128 each), significantly more than the I-VT (117), |-KF
(124) and especially the I-TobiiVT (65). More notably, the table highlights a significant
difference in mean saccade duration. The I-HMM and I-DT algorithms have the longest
mean saccade durations, at 127.6 ms and 151.5 ms respectively, while I-VT (62.9 ms),
I-KF (80 ms) and particularly TobiiVT (39.8 ms) produce values closer to typical saccade
durations.
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Figure 3.16.: Comparison of Algorithm Saccade Detection in Moving Point Task.

3.4. Evaluation of Offline Eye Movement Event
Detectors

First, the methodological constraints of the fixation—saccade invocation task study are
examined to identify potential sources of bias and limitations in the generalizability of the
results. Subsequently, the algorithms are evaluated with respect to their strengths and
weaknesses in comparison to the baseline I-TobiiVT algorithm. This evaluation forms
the basis for the final selection of the algorithms to be advanced for online application.

3.4.1. Limitations of the Fixation-Saccade Invocation Task Study

One apparent limitation of the fixation—saccade invocation task study is that it was
performed exclusively in the 2PASD flight simulator, which is not representative of
all simulator setups. Simulator setups can vary considerably in their layout and size,
most notably in the distance between the pilot seat, the primary vision system and the
flight instruments. Because this distance directly influences the differential visual angle
calculated between gaze samples, optimized parameters, especially those dependent
on this measure, may differ significantly across simulator environments.

Furthermore, although most algorithms converged toward an optimum, the precision
of this convergence may have been constrained by the study’s sample size. A larger
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invocation task study may have allowed for more accurate determination of the optimal
parameters, particularly in the case of the I-HMM. This was the only algorithm for which
a clear convergence was not evident, likely due to its large parameter set combined with
the relatively small dataset. Evidence for this is provided by the comparison of kappa
and F1 scores between the training and testing datasets in Figure 3.15, which differed
more substantially for the I-HMM than for the other algorithms. This pattern strongly
suggests overfitting to the training dataset.

Another important factor influencing the optimization process is the underlying assump-
tion that all algorithms should perform equally well across the five distinct jumping point
tasks, which were designed to represent typical eye movement patterns inside a he-
licopter. In real helicopter operations, however, some of these patterns occur more
frequently than others. It can therefore be argued that the tasks should be weighted
according to their frequent use. Such weighting would favor algorithms that perform
strongly on the most common patterns, while allowing for weaker performance on less
frequent ones.

The optimization process was also strongly influenced by the chosen penalization strat-
egy. Because Cohen’s kappa was used as the optimization objective, the penalization
strategy directly affected the final hyperparameter selection. As the primary aim is to
develop an algorithm optimized for fixation detection and since the ground truth labeling
only allowed for reliable fixation identification, the fixation penalization strategy was
designed in greater detail. Nevertheless, alternative strategies are possible, such as
equally elaborate penalization for saccades or approaches that impose no additional
penalty for over- or under-segmentation.

For the moving point task, angular velocity peaks were observed during the time windows
in which saccades were expected, confirming that velocity peaks are associated with
saccades. However, comparable peaks also appeared outside these windows as seen
in Figure 3.16. If participants had followed the moving point strictly as instructed, the
total number of saccades across all 11 participants should have ranged between 22 and
33, since the task was designed to elicit only 2—-3 saccades per participant. In practice,
far more saccades were recorded. These additional events may have resulted from
eye-tracking noise, overshooting and corrective refixations or difficulties in maintaining
a smooth pursuit, all of which can result to a velocity peak. Given that the observed
saccade counts deviate significantly from the expected range and this deviation may in
fact be due to true saccades, as suggested by the velocity peaks, no reliable quantitative
analysis is possible.

Nevertheless, some qualitative insights can be drawn. The much longer saccade dura-
tions and higher counts reported by I-HMM and I-DT are likely false detections, given
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that typical saccade durations range between 30—80 ms and participants consistently
rated the workload as low to moderate, which is consistent with shorter saccade dura-
tions [zagermann2016]. For the other algorithms, however, no precise judgment can
be made, since participants may have produced more saccades than required and
subjective workload reports provide only indirect evidence. This again highlights the
limited qualitative evaluation and unsuitability of the moving point task for quantitative
assessment.

3.4.2. Final Selection for Online Deployment

The performance of each algorithm is assessed across several criteria, including perfor-
mance on the jumping point and moving point tasks, computational complexity, real-time
applicability, and robustness. Figure 3.17 summarizes this qualitative evaluation for the
I-VT, I-KF, I-DT, and I-HMM algorithms, using the |-TobiiVT algorithm as a baseline.

The I-VT algorithm performs almost identically to the I-TobiiVT baseline across all criteria,
as both rely on the same detection method and apply a moving median smoothing filter.
However, the optimized velocity threshold of 44 deg/s obtained through hyperparameter
optimization improves its performance on the jumping point tasks compared to the
baseline velocity threshold of 100 deg/s, while performance in the smooth pursuit
condition of the moving point task remain similar.

The I-KF algorithm is a probability-based method, making it slightly more complex to
set up and understand. In the jumping point tasks, the I-KF outperforms the baseline,
whereas in the moving point task, its performance is comparable, although it detects
more and longer saccades. Similarly to the I-VT, this is likely due to its higher sensitivity
to changes in eye movement velocity. In addition, the I-KF’s real-time applicability is
slightly better than the I-TobiiVT, as its built-in smoothing filter avoids the one-sample
delay associated with the moving median filter. Furthermore, its robustness is similar to
the baseline due to the presence of its own smoothing step.

The I-DT algorithm, like the I-TobiiVT, is threshold-based and therefore simple to set up
and interpret. Its performance on the jumping point tasks is slightly lower and it performs
particularly poorly in the moving point task. This is likely due to its higher sensitivity
to noise, a consequence of its low dispersion threshold, as reflected in the saccade
frequency and duration results. In terms of computational efficiency and robustness, it
is comparable to the baseline, since its two-sample duration threshold requires only a
single-sample lookahead without the need for a smoothing filter.

4% DLR - IB-2025-198



56 3. Design of an Offline Eye Movement Event Detector for Helicopter Use

The I-HMM algorithm performs worse than the I-TobiiVT across all evaluation categories.
Its large number of parameters and complex detection method reduce interpretability, and
it underperforms in both the jumping point and moving point tasks. A likely explanation is
that the available data were insufficient for the algorithm to converge to the right optimal
solution, leading to overfitting on the relatively small training dataset and resulting in a
noise-sensitive configuration similar to that observed for the I-DT method. Moreover, a
particular weakness of the I-HMM occurs when it initializes in the wrong state. Given
its state probabilities (see Table 3.3), the model tends to persist in the current state,
systematically mislabeling subsequent events by for instance classifying fixations as
saccades or saccades as fixations, until sufficient contradictory evidence triggers a state
correction. This behavior further reduces its robustness, especially when the model is
not optimized well.

Based on the qualitative evaluation above, the I-KF and I-VT are selected for online
deployment, as both generally perform better than the I-TobiiVT baseline. Between
these two, no clearly superior option emerges, which is why both are retained for
subsequent online verification. Conversely, the I-HMM and I-DT are excluded due to their
generally lower performance to the baseline. Since the smooth pursuit task revealed
significantly different detection behavior from the baseline, where the baseline suggested
slightly better performance, the I-VT and I-KF parameter values were chosen more
conservatively than the theoretical optimum. This reduces faulty fixation segmentations
caused by false saccade classifications during smooth pursuit. In addition, parameter
optimization for both algorithms indicates a performance plateau rather than a sharp
single optimum, meaning that slightly more conservative values achieve nearly the same
accuracy. Consequently, the final parameters applied are a velocity threshold of 559s for
the I-VT, a chi-square threshold of 85, a gpos 0f 0.002, and a gyl 0f 0.25 for the I-KF.
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Figure 3.17.: Comparison of Eye Movement Event Detection Algorithms Against

the I-TobiiVT Baseline.
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4. Online Adaptation of an Eye
Movement Event Detector in a
Helicopter Simulator Study

This chapter presents the implementation and application of the online adaptation of an
eye movement event detector in a helicopter simulator study. The chapter is structured
as follows. First, the development of the selected detection algorithms into (near)
real-time application is described. Next, the verification methodology for the online
algorithms is described, outlining the simulator setup, mission profile, study procedure
and evaluation method. The evaluation method used to verify the online algorithms
includes a user survey, a pilot questionnaire and metrics for both algorithm performance
and eye movement behavior. Finally, the results of the study are presented, including pilot
feedback, workload assessments, algorithm performance and the relationship between
eye movement metrics and subjective workload ratings.

4.1. Development of Online Event Detection
Algorithms

The development of the online eye movement event detection algorithms builds upon
the offline event detection algorithms introduced in the previous chapter by adapting
its preprocessing, classification and postprocessing stages into a real-time processing
pipeline. First, the overall algorithmic design is described, detailing the steps involved
in transforming raw gaze data into classified eye movement events. Subsequently, the
methods for storing the resulting data and visualizing detection outputs in near real time
are presented. The implementation of both algorithms is available through DLR’s internal
GitLab repository."

1

The source code for the online I-VT and I-KF algorithms is available at: https://gitlab.dlr.de/
ft-hub-eyetracking
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ey Study

4.1.1. Online Algorithm Design and Processing Pipeline

The online algorithms operate in a sequential workflow, where raw gaze data retrieved
from the eye tracker is continuously transformed and processed. This enables the
classification of eye movement events, which are then stored in an output file and
visualized in near real time.

Figure 4.1 illustrates the data flow within this pipeline, beginning with eye-tracking data
retrieval, followed by a three stage processing sequence for online event detection and
concluding with data storage and real-time visualization of the classified events.

Online Eye Movement Event Detection

1. Data 2. Classification of 3. Event Eye Movement Events
@ —— | Preprocessing || Eye Movement Events |[Postprocessing| — [ e
=, <D
Data Retrieval and Visualization
I |

Real-Time ' Online Data Storage
Figure 4.1.: Online Eye Movement Event Detection Pipeline.

In general, both scripts are written in C# and connect to the eye tracker streaming server
via a WebSocket to receive gaze data in real-time. Because gaze data are rendered
continuously and arrive at irregular intervals, the scripts retrieve the data asynchronously
by subscribing to the gaze stream with an initial request. This asynchronous approach
allows the program to run continuously while simultaneously listening for new data from
the WebSocket as it becomes available.

The WebSocket connection is initially established through an HTTP handshake. Once
the handshake is complete, the connection is upgraded to a WebSocket, which remains
open until explicitly closed by either the server or the user running the online algorithm.
To prevent the WebSocket from closing automatically, a keep-alive loop is implemented,
which sends periodic messages every four seconds. Termination of the WebSocket
connection is handled via cancellation tokens to enable graceful shutdown when the
user presses Ctrl+C or Enter.

Besides the keep-alive loop, another loop exists in each script, which implements the

main processing logic. The main loop is responsible for processing and outputting
data in near real time. It begins with data preprocessing, where the raw eye-tracking
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data are prepared. Following this, the processed data enter the sample-level eye
movement classification stage, in which the algorithm categorizes each sample into one
of three event types: Fixation, Saccade or N/A (Not Applicable). Finally, in the data
postprocessing stage, the classified samples are further analyzed and formatted for
output.

All three stages contribute to the overall latency from raw gaze data retrieval to the
generation of postprocessed, classified samples, as illustrated in Figure 4.2. The
timeline in the figure highlights the contribution of each stage to the total latency, showing
how preprocessing, classification, and postprocessing cumulatively add to the delay.
The exact implementation and impact of each stage on latency are discussed in detail in
the following sections.

Latency .
to t t; Wiy
to'Real-Time U1 Preprocessed Samples t2: Classified Samples t3 Postprocessed Classified Samples

tots: Lty Lty
Datapreprocessing  Sample-Level Classification  Datapostprocessing of Sample-Level Classifications

Figure 4.2.: Latency Breakdown of Online Algorithms.

Data Preprocessing

The preprocessing step is responsible for transforming the incoming eye-tracking data
from the WebSocket into a format compatible for the subsequent event classification.
Additionally, the preprocessing pipeline also includes noise reduction that is applied
to the eye-tracking signal. The data received from the WebSocket not only contains
gaze measurements but also messages related to the initialization and maintenance
of the WebSocket connection. Non-gaze related messages are therefore filtered out
beforehand to ensure that only relevant gaze samples are processed.

For the I-VT algorithm, the preprocessing first extracts timestamped left-eye and right-
eye gaze direction vectors from each received gaze sample. If valid measurements are
available from both eyes, an average gaze direction vector is computed as the mean of
the left and right vectors.
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To reduce high-frequency noise in the gaze data, a three sample moving median filter
is applied, consistent with the approach used in the Tobii I-VT [olsen2012]. This filter
computes the median for each component of the gaze vectors using the previous, current
and subsequent sample. If fewer than three valid samples are available, the current
sample is used as a fallback, ensuring that no data is lost during the denoising process.

Following denoising, the angular velocity of the gaze is calculated according to the
method described in Section 2.2. Velocity is computed primarily from the average gaze
vector, with fallback to the right-eye or left-eye vector if necessary.

Finally, the preprocessed sample of the I-VT, now containing median-denoised gaze
directions and an estimated angular velocity, is forwarded to the main classification loop
for event detection.

For the I-KF algorithm, a separate preprocessing step is not required, as the filter inher-
ently performs both denoising and velocity estimation within its internal computations.
Specifically, the Kalman filter maintains independent filter states for the average, left
and right eye gaze directions to apply the same fallback logic as in the I-VT velocity
computation. At each incoming sample, the filter updates these states using the current
and previous gaze vectors, applying a linear Kalman prediction and correction step. The
filtered gaze direction is taken directly from the filter’s estimated position state, while the
filtered velocity is derived from the estimated rate of change of the gaze position.

Consequently, the Kalman filter introduces no additional latency beyond the standard
main loop operations, as the filtering occurs concurrently with the classification stage. In
contrast, the |-VT preprocessing relies on a three sample moving median to denoise the
gaze vectors, which results in a one sample delay in the pipeline. Given the sampling
frequency of the Tobii Glasses 3, this equates to approximately 20 ms additional latency
for each gaze sample before classification.

Classification of Eye Movement Events

Classification for both algorithms is performed according to their respective eye move-
ment detection methods. For the I-VT and I-KF algorithms, the prescribed parameter
values, as defined in the previous chapter, are used to classify each sample into either
a fixation or a saccade. If no velocity can be computed for a sample, it is classified as
N/A (Not Applicable). It is classified as N/A, as it is uncertain whether the inability to
classify is due to a blink, an eye tracker related signal issue or signal loss e.g. when
looking outside the eye-tracking frame.
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Once each sample has been classified, the individual samples are grouped into eye
movement events. This is achieved by comparing the type of each classified sample
with the type of the previous sample. A new event is started whenever the sample type
changes and the previous event is closed with its start and end timestamps recorded.
Consequently, each event is defined by its type (fixation, saccade, or N/A) along with its
temporal boundaries.

Event Postprocessing

For both the I-VT and I-KF algorithms, the event postprocessing step is identical. It is
implemented to refine the initial classification of eye movement events by discarding short
fixations and merging adjacent ones. The two rules, namely Discard Short Fixations and
Merge Adjacent Fixations, are based on the same as the Tobii I-VT Attention Filter and
use the same parameterization [olsen2012].

The Discard Short Fixations rule operates on a five sample sliding window. If the window
contains fixation samples that are flanked by saccades on both sides and the total
duration of the consecutive fixation samples within that window is shorter than 60 ms, the
fixation is deemed false. All samples in that window are then reclassified as saccades.

The Merge Adjacent Fixations rule uses a six sample sliding window to detect short
saccade runs occurring between two fixations. If the duration of such a saccade segment
is shorter than 75 ms and the angular distance between the endpoints of the surrounding
fixations is smaller than 0.5°, the saccade samples are reclassified as fixations.

The refined output of this postprocessing step represents the final event classification
results with the angular distance computed from the best available gaze direction vectors
(average, right-eye, or left-eye), following the same approach as in the preprocessing
step. Due to the use of a six sample window for the Merge Adjacent Fixations rule, both
algorithms incur an additional latency of six samples, corresponding to approximately
120 ms. This is a substantial increase compared to the single sample latency added by
the moving median filter and the previous lightweight computation for the preprocessing
and event classification step.
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4.1.2. Online Data Storage and Visualization

This section outlines how the classified eye-tracking data is stored in an output file
for downstream use and how the data is displayed in the terminal to provide online
visualization.

Figure 4.3 illustrates the JSONL output format of a single processed eye-tracking data
sample for both the I-VT and I-KF algorithms.

The first five data fields are identical for both algorithms. The Algorithm field specifies
whether the sample was processed using I-KF or I-VT, which facilitates downstream
analysis or integration with other applications. The ReceivedUTC field provides the UTC
(Coordinated Universal Time) timestamp of the sample and can, for example be used
to synchronize the eye-tracking data with the eye tracker’s live video stream at a later
stage. The next three fields are Timestamp, LeftGazeDirection and RightGazeDirection
and contain the raw gaze data received from the eye tracker server. These values
form the basis of event detection and are stored explicitly so that the applied detection
method can be backtraced and the data can be reused for more advanced eye movement
analyses.

The next two fields differ between the algorithms. For I-VT, the fields are AvgGazeDi-
rection and Velocity (see Figure 4.3, orange bar), representing the computed average
gaze direction and angular velocity described in the preprocessing step. For |-KF, the
corresponding fields are FilteredDirection and FilteredVelocity (see Figure 4.3, blue bar),
which reflect the denoised estimates produced by the Kalman filter.

Both formats conclude with the same EMType field, which stores the final event classifi-
cation, which is either Fixation, Saccade or N/A. As new gaze samples are processed,
additional lines are appended to the JSONL file. This structure makes the output com-
patible with other online applications that require continuous access to both raw gaze
data and eye movement classifications.

In addition to writing results to an output file, the script provides an online visualization
of event statistics directly in the terminal, as shown in Figure 4.4. If the WebSocket
connection is established successfully, the filter prints a confirmation message in the
terminal and indicates that pressing Ctrl+C or Enter will terminate the script. Conversely,
if the connection fails, a “failed to connect” message is displayed. The latency of each
received sample is printed in the [RTLatency] row in milliseconds. Latency is calculated
by timestamping both the moment a sample is first received UTC and the moment the
received UTC value is written to the output file. Thus, the difference between these
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{"Algorithm":"XYZ","ReceivedUtc":"XYZ", "Timestamp" :XYZ, " LeftGazeDirection " :XYZ, " RightGazeDirection" :XYZ,

Figure 4.3.: JSONL Data Structure of Processed Eye-Tracking Samples for I-VT and
I-KF.

timestamps yields the sample latency.

The subsequent output is structured into two main sections that are continuously updated
as new gaze samples are processed.

The first section summarizes the event metrics average fixation duration, the fixation
rate (number of fixation per second) and the percentage of fixation samples relative
to all detected eye movement events. These values are computed over an evaluation
period defined by a fixed number of recent samples. To provide an intuitive overview, a
horizontal bar chart is rendered, where fixations (), saccades (1), and N/A events (-)
are displayed in proportion to their relative share.

The second section is a sliding window of the a number of specified last samples and
visualizes the sequence of recent eye movement classifications in temporal order. Here,
the individual characters right indicating fixation (), saccade ([J), and N/A (-) correspond
to classified events.

Finally, upon termination of the program, the terminal reports two additional metrics. The
mean processing latency across all processed samples and the data loss calculated as
the number of N/A samples divided by the total number of samples. This design allows
the user to monitor eye movement events online without relying on additional plotting
libraries or graphical interfaces, making the visualization computationally efficient and
lightweight to implement. Moreover, the visualization can be customized by modifying
the evaluation period for the event metrics or the sliding window, as well as both bar
chart lengths, thereby allowing the terminal output to be tailored to different test setups
or user preferences”
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Data loss: XYZ%

Figure 4.4.: Online Terminal Visualization of Eye Movement Events and Metrics.

4.2. Methodology for Online Algorithm Verification

This section outlines the methodology used to verify the feasibility and performance of the
online eye movement event detection algorithms in a helicopter simulator environment.
The study was designed to ensure both ecological validity and reproducibility. First,
the study setup is described, including the simulator configuration and pilot data. The
following section presents the flight mission profile, which defines the flight maneuvers
forming the basis of the study tasks. The study procedure is then outlined, covering pilot
familiarization, data collection and evaluation protocols. Finally, the methods for online
algorithm evaluation are introduced, including the applied metrics and data sources.

4.2.1. Study Setup

The study setup consists of the flight simulator, in which the experiment was conducted,
and the equipment required for the execution of the online algorithms.

The AVES (Air Vehicle Simulator) is DLR’s research flight simulator, designed among
other purposes for flight test preparation and special mission training of DLR’s flying
test bed EC135 ACT/FHS (Active Control Technology/Flying Helicopter Simulator). It
comprises a motion platform with interchangeable cockpits that can be operated in either
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motion or fixed-base mode [holger2013]. The cockpit used in this study is a replica of
the ACT/FHS cockpit. The ACT/FHS itself is DLR’s highly modified EC135 equipped
with a full-authority fly-by-light control system and an experimental flight control system
[kaletka2005]. To model the flight dynamics of the ACT/FHS in the simulator, HeliWorX
was used, which is based on the real-time simulation model SIMH. The ACT/FHS replica
cockpit inside the AVES, together with the dome visual projection, is shown in Figure 4.5
[strbac2022, hamers1997].

The dome visual projection of AVES provides a horizontal field of view from —120°
to +120° and a vertical field of view from —53° to +40° The measured resolution is
approximately 5 arc-min per optical line pair (OLP), indicating the finest detail the system
can resolve. lts brightness is 13.5 cd/m? (candelas per square meter) with a contrast
ratio of 7:1 [holger2013].

| |
Figure 4.5.: AVES ACT/FHS Cockpit with Dome Projection of a Maritime Offshore
Wind Farm.?

The equipment used for the verification study in the AVES simulator included the Tobii
Glasses 3, as previously introduced and described in Chapter 3 and an off-the-shelf
laptop on which the online algorithms were executed. The laptop operated independently
of the AVES simulator environment. Its specifications are summarized in Table 4.1. No
special hardware requirements were imposed, as the algorithms are designed to perform
reliably on any standard off-the-shelf laptop.

2 Source: DLR (CC BY-NC-ND 3.0)
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Table 4.1.: Laptop Specifications

Component Specification

Processor (CPU) Intel(R) Core(TM) i7-10510U

CPU Speed 1.80 GHz (Base) / 4.90 GHz (Boost)
CPU Cores / Threads 4 Cores / 8 Threads

Installed RAM 16 GB DDR4

Storage Type SSD (Solid State Drive)

Graphics Card (GPU) Intel(R) UHD Graphics (Integrated)
Operating System (OS) 64-bit Operating System, x64-based processor

The pilot data for the simulator study are summarized in Table 4.2. The participant
is not a certified test pilot but has accumulated a total of 105 total flight hours, with
no prior experience on the EC135 helicopter type. Notably, the pilot is familiar with
research flight testing procedures, which is relevant as such experience increases a
pilot's familiarity with flight maneuvers outside routine mission tasks and with structured
test procedures.

The participant uses visual aids, which are worn via corrective lenses integrated into the
Tobii Glasses 3 eye tracker that match the pilot’s prescription. Additionally, the pilot has
blue eyes, a feature that may affect eye-tracking data quality.

Table 4.2.: Pilot Data Summary

Parameter Value
Test Pilot (Y/N) N
Flight Hours, Total 105
Flight Hours, EC135 0

Familiar with Research Flight Tests (Y/N) Y

4.2.2. Flight Mission Profile of Study

The simulated mission replicates an offshore hoist operation in the Alpha Ventus offshore
wind park, located off the North Sea coast of Lower Saxony, using DLR’s research
helicopter ACT/FHS. Although the ACT/FHS is heavily modified from the original EC135,
it remains representative of light utility helicopters typically employed in offshore wind
farm operations [strbac2022]. The Alpha Ventus wind farm serves as a research field for
multiple institutions, providing opportunities to test offshore flights and highlighting both
the current demand and future prospects of helicopter operations in such environments®.

a

https://www.alpha-ventus.de/forschung (accessed: 26 August 2025)
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Simulator flights in the wind farm have already been conducted using the AVES simulator,
confirming its suitability for this study.

An additional advantage of this environment is the increased pilot workload, as visual
references in wind farm settings are generally limited. This characteristic enables a study
design in which pilot workload can be varied by adjusting the environmental visibility
range, which acts as the primary visual reference [lehmann2017].

The simulated offshore hoist operation does not incorporate global wind effects. An
overview of its four distinct flight phases is given in Figure 4.6. It involves (1.) a
helipad departure with an initial confined-space hover and backward flight to the Take-
Off Decision Point (TDP), (2.) an approach to a wind turbine while maintaining stable
airspeed and altitude, (3.) a stabilized hover over a hoist target under temporal and
positional constraints, and (4.) a repositioning to a second turbine with controlled
acceleration, deceleration and hover stabilization. Collectively, these maneuvers cover a
broad spectrum of flight tasks. Consequently, both the visibility range and flight control
inputs are varied in the study to elicit a wide range of workload demands.

[ |

[ |
Figure 4.6.: Overview of the Flight Task in Plan View.

The mission begins with a takeoff specifically designed for departures from a helipad.
The maneuver follows the Airbus Helicopter EC135 flight manual and is illustrated in
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Figure 4.7. Initially, the pilot establishes a hover in ground effect (HIGE) at 4+15 ft,
followed by rearward motion of no more than 3+6 m. From this position, the helicopter is
flown backward to the TDP at 120+30 ft above helipad elevation (AHE). At the TDP, the
helicopter transitions into forward flight, accelerating to a target speed of 65+20 knots.

The EC135 flight manual specifies boundaries for climb power upon reaching the TDP.
However, these constraints are neglected in the simulation to simplify pilot instructions
and task training. Additionally, the tolerances for the flight limits were formulated collabo-
ratively with the pilot prior to the study, as the EC135 manual does not provide explicit
tolerance values.

| I

Performance - Helipad T/0  Flight Limits

Hover with HIGE at

; 4+15;
x ft height and 3+ '
+6b

X m rearward movement
Fly backward to TDP of x ft
AHE 12030
Transiti f ligh

ransition to forward flight 65420

and accelerate to x kts

| |
Figure 4.7.: Helipad Take-Off Performance Table and Corresponding Flight Maneu-
ver lllustration.

After departure, the pilot performs a controlled approach to the first wind turbine, as
illustrated in Figure 4.8. The maneuver begins with an almost 180° left turn to align
the helicopter with the intended flight path. The helicopter then flies alongside the wind
park, which is positioned on its left side. Throughout this segment, a steady airspeed of
100+10 knots and an altitude of 300430 ft, approximately corresponding to the rotor hub
height, must be maintained. As the helicopter nears the final wind turbine, it executes
another left yaw to approach the target turbine. The target is identified among the idle
turbines, of which there are two and of which the nearest idle turbine serves as the
designated approach location.

Flight tolerances were derived from the Mission Task Elements (MTE), which provide a
standardized reference for establishing operational boundaries. MTEs are widely used
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in military aviation to evaluate an aircraft’'s performance and handling qualities, making
them a suitable basis for defining tolerances in this study.[usa2000]

|

Performance - Approach Flight Target Idle Wind Turbine
to Wind Turbine Limits

Maintain an airspeed
of x knots throughout 100+£10
the course

Accomplish maneuver
at an altitude of x ft 300+30

| |
Figure 4.8.: Approach to Wind Turbine Performance Table and Corresponding
Flight Maneuver lllustration.

Upon reaching the wind turbine, the pilot transitions into a stabilized hover adjacent to
the hoist platform. This hover must be maintained for at least 30 seconds, adhering
to an altitude of 330+15 ft and a heading of 275°t5°, as illustrated in Figure 4.9. This
maneuver represents the operationally critical hoisting phase, during which the helicopter
must remain sufficiently stable to transfer personnel or equipment. Maintaining this hover
requires precise control, making it the presumed most challenging segment of the task.

The hover location is positioned next to the wind turbine rather than directly above the
hoist platform to simplify pilot instructions, as no strict positional constraints were defined.
All other limits and tolerances were established collaboratively with the pilot prior to the
study.

After completing the hoist at the first turbine, the helicopter departs and accelerates to 60
* 10 knots while transitioning toward the second, idle turbine as depicted in Figure 4.10.
On arrival, the helicopter is decelerated and repositioned into a hover at 330 + 15 ft with
a heading of 275° + 5° This final maneuver replicates the approach and hover to the
first turbine with the difference of adding rapid acceleration and deceleration segment
based on a MTE to strain the pilot with further workload while repeating precision hover
and positioning task.
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next to Hoist Target
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I |
Figure 4.9.: Stabilized Hover next to the Hoist Target Performance Table and Corre-
sponding Flight Maneuver lllustration.

4.2.3. Study Procedure

The study procedure follows the flow chart in Figure 4.11.

Before the simulator study starts, informed consent is obtained. The pilot is then briefed
on the study objectives, the overall timeline and the sequence of flight tasks. Performance
limits and completion criteria are reviewed (see Section 4.2.2).

Afterwards, the eye tracker is calibrated to the pilot's eyes.

Next, the test point is conducted. Successful execution of the test point is supported
by allowing the pilot to become familiar with the simulation environment and the flight
task using the “long-look” evaluation technique described in dod1990. Following this
technique, two hot runs are guaranteed, although additional runs may be performed
at the pilot's request. During each run, whether familiarization or evaluation, pilot
feedback and comments are recorded. This helps reduce variance in performance due
to unfamiliarity and enables thorough identification of deficiencies such as handling
quality issues, undesirable aircraft behavior or discomfort with the eye tracker.
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Performance - Flight " . -
Depart and Arrive at Limits Final Target Idle Wind Turbine

Final Wind Turbine

Accelerate after departure
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Maintain heading of x degree 27545

| |
Figure 4.10.: Departure and Arrival at Second Idle Turbine Performance Table and
Corresponding Flight Maneuver lllustration.

The predefined maneuvers are flown as described earlier, adhering to the stated per-
formance limits. Eye-tracking data, simulator parameters, and pilot control inputs are
recorded continuously. After each test point, a questionnaire is administered, which is
described later in more detail. This process is repeated until all task points in the test
matrix are completed. Finally, once all task points are finished, pilot data as specified in
Table 4.2 are collected.

The test points flown depend on the evaluation conditions defined by the active flight
control laws and the visual environment. Two distinct control system configurations are
tested. The first employs only a basic Stability Augmentation System (SAS) in pitch,
roll, and yaw (SAS 3AXES). The second employs a more advanced setup, with Attitude
Control in pitch and roll, SAS only in yaw and Direct Control for the collective (ACpr
SASy DIC) [faa2019].

Each control configuration is evaluated under two levels of visual environmental condi-
tions, as shown in Figure 4.12, depicting the differences in external visibility. The Good
Visual Environment (GVE, left in Figure 4.12) corresponds to a visibility range of 40,000
m. In contrast, the Degraded Visual Environment (DVE, right in Figure 4.12) corresponds
to a visibility range of 2,500 m. The latter is expected to increase pilot workload and task
difficulty, as the absence of a clear horizon complicates spatial orientation.
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Figure 4.11.: Overview of the Study Procedure.
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Figure 4.12.: Visual Environments Used in the Study: GVE (40,000 m) on the left
and DVE (2,500 m) on the right.

This results in a 2 x 2 factorial matrix with four test points (TP01-TP04) presented in
Table 4.3. A latin squared test matrix is not needed in this case as familiarization runs
are conducted, which already eliminate variability due to the pilot’s learning curve.
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Table 4.3.: Test Matrix for Offshore Hoist Operation
Visual Environment SAS 3AXES ACpr-SASy-DIC

GVE (40,000 m) TPO1 TP0O2
DVE (2,500 m) TPO3 TP04

4.2.4. Evaluation of the Online Algorithms

To verify the applicability of the online eye movement detection algorithm in a flight
simulator environment, an evaluation framework is designed. This chapter defines the
metrics and data sources used to assess both the feasibility and performance of the
algorithm.

The evaluation method comprises subjective- and objective measures. Subjective
measures consist of pilot workload ratings, task-specific questionnaire items and the
post-study user survey. Objective measures include eye movement metrics derived from
the online detection algorithms as well as output data from both the scripts. The following
sections provide a detailed description of each measurement method.

User Survey

The user survey is developed to specifically assess the usability, clarity and practical
applicability of the online eye movement event detection scripts. The purpose of this
guestionnaire is to collect qualitative feedback from the user regarding the system’s
output format, interpretability and configuration options. This survey will be filled out
by an DLR internal expert on gaze behavior analysis, who will operate the algorithms
during the study, so that the survey contributes to the evaluation of whether the detection
tool is suitable for a (near) real-time use in a flight simulator. The survey is appended in
Appendix A and consists of five sections.

In the first section it is evaluated how easily the console output can be read in real time,
whether metrics are self-explanatory and whether visual aids such as sliding windows,
color coding, or symbols improve interpretability. After that, the user’s perception of
system latency and performance, including whether any delays interfered with real-time
monitoring and under which circumstances the algorithm might misclassify events are
surveyed. The next section examines the accessibility of adjustable settings (e.g., bar
width, history length, post-processing toggle) and whether alternative configuration ap-
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proaches such as command-line parameters or configuration files would be preferred.

Then, the tool’'s applicability in live flight testing, including whether synchronization with
live scene video playback would be needed for future use cases are addressed. Finally,
the user assesses the overall experience, which provides space for open comments on
confusing aspects, preferred features and suggestions for improvements to usability.

Pilot Questionnaire

To assess pilot workload, a structured questionnaire is administered during the simulator
campaign. The questionnaire combines standardized workload rating scales with task-
specific evaluation items, thereby capturing both quantitative and qualitative aspects of
pilot performance and perception. The complete test card, including the questionnaire,
is provided in Appendix B. Each test point includes an Instantaneous Self-Assessment
(ISA) [kirwan1997], Bedford Workload Rating (BWR) [roscoe1990] and task specific
evaluation.

For the ISA, the pilot provides workload ratings at fixed 15-second intervals using the ISA
scale from kirwan1997 (see Appendix B). In this approach, ratings range from 1 to 5,
where 1 corresponds to the lowest workload demand and 5 corresponds to the highest
workload demand. This interval-based method allows the construction of a workload
profile over time, enabling analysis of workload dynamics across test points. The ISA
data can be compared to the workload classifications based on the online algorithms
to evaluate whether algorithm-derived workload estimates correspond to pilot-reported
workload at specific moments.

The Bedford Workload Rating Scale serves as a second subjective measure and is
illustrated in the flight test card (Appendix B). Ratings follow the scale developed by
roscoe1990, ranging from 1 to 10 and are divided into four categories: Satisfactory
(1=3), Tolerable (4—6), High (7—9), and Intolerable (10) workload. The pilot assigns
these ratings after each task for both the approach to the wind turbine phase and the
flight phase perceived as most critical. These two flight phases provide complementary
insights. The approach phase, assumed to be the least demanding, helps identify
potential learning effects across test points, while the most critical phase highlights the
workload peak and allows direct comparison with gaze-derived workload estimates.

Unlike ISA, which focuses on perceived intensity, Bedford ratings explicitly account

for pilot spare capacity and the operational feasibility of continuing the task. Thus,
the Bedford scale complements ISA by adding an operational perspective to workload
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assessment. Moreover, it was selected over the NASA Task Load Index, as the Bedford
scale is explicitly recommended for verification tasks [nasa2019].

Additional questions address practical aspects of the scenario, which are the visibility
during the approach, manageability of the flight control settings and potential interference
of the eye tracker with visual perception, and are answered using a 1-5 Likert scale. An
additional space for comments allows the pilot to report deficiencies, difficulties or other
observations that might not be reflected in the rating scales. Finally, after completion of
all flight test points, a post-study questionnaire collects pilot demographic data, as these
can also influence flight behavior, workload and consequently gaze behavior during the
experiment [haslbeck2014, greiwe2023a].

Algorithm Performance- and Eye Movement Metrics

For the final evaluation of both algorithms, performance metrics are defined. In particular,
eye movement metrics are used to evaluate whether the online event detectors yield
results consistent with the subjective ratings obtained from the pilot questionnaire.

To determine the real-time capability of both algorithms, the mean output latency is
recorded across all test points. As the scripts already compute and display mean latency
upon termination (see Section 4.1), these values are systematically noted after each
run.

A further metric addresses the share of samples that are not classified as eye movements.
The percentage of “N/A” classifications in the algorithm output is compared against the
percentage of samples where the eye tracker provides no gaze direction and only
monocular gaze. Ideally, the no gaze direction and algorithm N/A percentages should
be equal, ensuring that “N/A” classifications are only assigned when the eye tracker
itself provides insufficient gaze data. Contrary, If the N/A percentages are worse than
the percentages of monocular gaze, the algorithm is deemed unsuitable for reliable eye
movement detection.

Another important factor is data integrity, which examines whether all incoming eye
tracker samples are processed and output by the algorithms. If the incoming data
rate exceeds the processing rate, buffer overflow occurs, leading to dropped samples.
This can also happen in case of CPU overload, where computational demand exceeds
hardware capacity. To check for possible data loss, the number of samples recorded by
the Tobii APl logged on the SD card is compared to the number of samples processed by
the algorithms. Since Tobii APl data use different timestamps and are not given in UTC,
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exact synchronization of start and end samples is not feasible. Instead, mean sampling
frequency is calculated for both data sources. Matching mean frequencies indicate that
no data loss occurs in the algorithm output despite potential timing misalignments.

Finally, algorithm accuracy is evaluated using eye movement metrics displayed in the
real-time terminal output. Prior literature indicates that mean fixation duration typically
ranges from 200-300 ms and that saccade rate averages 3-5 per second (see Section
2.2). From this, two verification criteria are derived. First, fixation durations and fixation
rates reported by both algorithms should in general approximate these reference ranges.
Large deviations would indicate unreliable classification. Second, for the most cognitively
demanding flight phases, mean fixation duration should increase and fixation rate should
decrease, reflecting the well-established relationship between higher cognitive workload
resulting in longer fixations and lower fixation rates (see Section 2.3.2).

Because the algorithms are designed for online application, both metrics are calculated
using a moving time window. Following previous studies described in Section 2.3.2, a
10-second window is chosen to balance temporal resolution with classification reliability.
Within this window, fixation duration and fixation rate are computed and compared
against subjective workload ratings from the pilot questionnaire. This cross-validation
of subjective and objective measures allows verification of whether the algorithms are
sufficiently accurate for real-time eye movement event detection.

Specifically, for the BWR, comparisons are made qualitatively, while for the ISA ratings a
standardized quantitative approach is applied. For the quantitative approach, the mean
fixation duration and fixation rate values are extracted every 15 seconds and aligned with
the ISA ratings provided at the same temporal resolution. Correlation analyses are then
performed using scatter plots with linear regression lines and Pearson’s r values. The
scatter plots help visualize trends between ISA scores and eye movement metrics, which
are further highlighted by the regression lines.s. Additonally, the Pearson'’s r quantifies
the strength and direction of a linear relationship between two variables, ranging from
—1 (perfect negative correlation) to +1 (perfect positive correlation), with values near 0
indicating no linear relationship [duchowski2017].

4 DLR - IB-2025-198



4.3. Results of the Helicopter Flight Simulator Study 79

4.3. Results of the Helicopter Flight Simulator
Study

The findings are structured along the evaluation framework defined in Section 4.2.4.
First, subjective measures are reported, including the responses to the task-specific
questionnaire and user survey as well as pilot workload ratings from the ISA and
Bedford scales. Second, objective results from the online event detection algorithms
are presented, which covers latency, data integrity and eye movement metrics such as
fixation duration and fixation rate.

4.3.1. Survey Results and Pilot Feedback

The user survey indicates that the online algorithm application is generally well-received,
with the user finding the console output clear, metrics intuitive and the sliding window
effective for identifying trends. The latency display and UTC timestamps were rated
as helpful while particularly the tool’s sliding window output in the terminal was highly
valued. However, the survey also highlighted key areas for improvement. The user noted
the need to synchronize the output with live scene video playback for future applications.
Additionally, the user also found the current configuration settings difficult to locate and
modify. Overall, the tool was considered suitable for potential use in live flight tests.

The pilot feedback summarizing the pilot’s ratings of visibility, control manageability and
eye tracker comfort across the four test points is displayed in Figure 4.13.

Visibility was consistently rated high across all test points, showing that external visual
cues remained sufficient while being slightly lower under DVE conditions. Control
manageability was rated lower at 3 in TPO1 and TP02, but improved to 4 in TP03 and
TPO04, indicating greater ease of handling with task repetition.

Eye tracker comfort was rated lowest at 3 in TPO1, where the device was initially worn
without a headband and tended to slip during maneuvers. After the headband was
introduced, comfort improved to 4 and remained stable for TP02-TP04.
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Figure 4.13.: Pilot Ratings of Visibility, Control Manageability and Eye Tracker
Comfort for Each Test Point (TP0O1-TP04).

4.3.2. Subjective Workload Assessment

This section presents the pilot's ISA and BWR subjective workload assessments during
the simulator study.

Figure 4.14 shows the results of the pilot's ISA workload ratings over time for all four
test points. Across all test points, the workload profile shows considerable fluctuations,
which reflect varying task demands during different flight phases.

For TPO1, ratings at T/O phase start at a moderately high level (4), decrease to lower
levels (2) during the mid-phase and then rise sharply to peak values of 5 during the first
hovering phase next to the wind turbine around 4:00—4:15 minutes. After dropping again,
workload briefly increases to 5 once more when stabilizing the helicopter to the final
hover condition on the last wind turbine at approximately 5:30 minutes.

In TPO2, high workload ratings (4-5) are reported within the first 45 seconds of T/O but
quickly fall to around 1—2 during the approach to the wind turbine. In the later stages, at
around 4:00 minutes, workload rises again to 4-5 during hovering next to the first wind
turbine and later increases from 2 to 4 when stabilizing the helicopter at the final turbine
at about 5:45 minutes.

The degraded visual environment is first flown in TP03 and produces an initial short-term
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high workload of 4 at T/O, which sharply drops to 1 and then fluctuates between 2 and
3 during the approach to the wind turbine. At 3:45 minutes, workload reaches its peak
value of 5. In the final phases, ratings gradually rise again, reaching 4 at 6:15 minutes.

The final test point, TP04, the T/O begins with high workload ratings (4-5) during the
first 30 seconds before decreasing sharply to the lowest level (1) during the mid-flight
segments. Toward the later stages, ratings gradually increase again to 2—3 during the
hovering phase next to the first wind turbine, drop briefly at around 5:00 minutes and
finally peak at 4 at approximately 6:00 minutes during the final stabilization phase at the
last wind turbine.
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Figure 4.14.: ISA Ratings over 15 s Intervals for Each Test Point (TP01-TP04).

Figure 4.15 summarizes the Bedford ratings for each test point, reported separately for
the approach to the wind turbine and for the most critical phase of the task, defined
as the stabilization phase in which the pilot attempts to establish the hover within the
predefined conditions next to the first wind turbine.

For TPO1, the approach is rated 3, indicating low to moderate workload with ample spare
capacity. The most critical phase is rated 6, reflecting high workload with limited spare
capacity.

In TPO2, the approach receives the lowest rating of 1, denoting very low workload and
substantial spare capacity. By contrast, the most critical phase is rated 7, corresponding
to very high workload with only minimal spare capacity remaining.
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For TP03, the approach is rated 2, consistent with low workload, while the most critical
phase is rated 6, indicating high workload comparable to TPO1.

Finally, TP04 shows the lowest approach rating same as TP02 (1), yet the most critical
phase reaches 8, which is the highest workload rating observed across all conditions,
suggesting performance close to the limits of manageability.

Overall, all test points fall within the satisfactory workload range (1—3) during the ap-
proach phase. In contrast, the most critical stabilization phase differentiates between
conditions. TPO1 and TP0O3 remain within the tolerable workload bracket (4—6), while
TP02 and TP04 escalate into the lower bracket (7—9), where task completion is possible
but workload is intolerable.
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Figure 4.15.: Bedford Ratings per Test Point (TP01-TP04) for Approach- and Critical
Phase.

4.3.3. Algorithm Performance- and Eye Movement Metrics

First, the algorithm performance metrics are presented, which quantify the proportion
of missing data, system latency and unclassified eye-tracking samples. In the following
section, the eye movement metrics that relate to workload demand will be reported.

Algorithm Performance Metrics

Figure 4.16 summarizes the results for the two evaluated algorithms, I-VT (orange) and
I-KF (blue), as well as the raw eye-tracking data (green). All values are averaged across
all four test points.

4 DLR - IB-2025-198



4.3. Results of the Helicopter Flight Simulator Study 83

The first bar group displays the average percentage of samples in which data from both
eyes were missing, while the second bar group shows the percentage of samples where
data from either the left or right eye was unavailable. Both algorithms exhibit an equal
share of unclassified data samples (3.8%), which is close to the 2.3% of fully missing
samples in the raw data. This contrasts with the much higher 16.8% of single-eye data
loss observed in the raw recordings.

The third bar group reports the effective sampling frequency. Both algorithms reproduce
the raw sampling rate of 49.91 Hz, which is consistent with the Tobii eye tracker’s nominal
sampling rate of 50 Hz.

The latency results, shown in the last bar group, represent the only metric where a clear
difference between the two algorithms was observed. I-VT yielded an average latency
of 140.3 ms, whereas |-KF achieved a lower latency of 120.2 ms. Thus, I-KF not only
provides reduced overall latency but also exhibits a shorter computational processing
time, with 0.2 ms compared to 0.3 ms for I-VT.
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Figure 4.16.: Comparison of Raw Data, I-VT, and I-KF across Performance Metrics.

Eye Movement Metrics

The eye movement metrics are presented in Figure 4.17. The graphs depict the results
for the four test points (TP01-TP04) over the flight test period, expressed in minutes
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and seconds. One figure displays the results derived from the I-VT event detection
method, while the other shows the corresponding I-KF filter results. In each figure, the
top graph illustrates the mean fixation duration (ms), and the bottom graph illustrates the
fixation rate (fix/s). Both metrics were calculated using a 10-second sliding window that
advanced with every new sample timestamp, providing a continuous time series of these
metrics rather than being based on fixed 10-second interval computations.

Both figures reveal broadly similar trends across the four test points. Mean fixation
duration remained relatively stable during cruise phases, typically ranging between 200
and 400 ms from approximately 0:50 to 2:40 min. Distinct mean fixation duration peaks
were observed during hover and final approach, around 2:40-5:00 min and 5:10-6:25
min, respectively, which were consistent across test points. Similarly, fixation rate tended
to slightly decrease during these phases. In particular, a prominent outlier was identified
in the final approach, where the maximum fixation duration reached 2.0 s (I-KF) and 1.6
s (I-VT) and fixation rates 0.5 and 0.7 fix/s,respectively. In contrast, during takeoff, the
mean fixation duration showed less pronounced deviations from the cruise baseline for
the first 50 seconds compared to hover and final approach, although it exhibited higher
fluctuations. The fixation rate, however, remained very low, close to zero, and increased
steadily over time toward the rates observed during the cruise phase.

4.3.4. Correlation of Eye Movement Metrics and Workload Ratings

First, the relationship between the ISA workload ratings and eye movement metrics
are presented, followed by description of qualitative relation between the BWR and eye
movement metrics. Notably, the derived correlations between eye movement metrics
and subjective workload ratings are based on a single pilot and therefore reflect only this
individual's data, rather than generalizable trends across pilots.

The scatter plots in Figure 4.18 illustrate the quantitative correlation between eye move-
ment metrics derived from the I-KF and I-VT algorithms and ISA workload ratings across
all four test points (TP01-TP04), along with their respective r values. In the plots, blue
dots represent I-KF data points and orange dots represent I-VT data points. Regression
lines are included for both algorithms, with the same color as for the data points.

The top four scatter plots show the correlations between mean fixation duration and ISA
ratings. For nearly all test points, except TP02 in both algorithms, mean fixation duration
exhibits a positive correlation with ISA ratings. The strongest positive correlations occur
at TPO1 and TPO3, with r values approaching 0.5. When averaged across test points,
both algorithms show the same positive correlation of approximately r=0.2.
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Figure 4.17.: Mean Fixation Duration and Fixation Rate over a 10 Second Time
Window for I-VT and I-KF Across all Test Points (TP01-TP04).

Conversely, the fixation rate plotted in the lower four scatter plots exhibit generally
negative correlations with ISA ratings for all test points except TP02 in both algorithms.
The strongest negative correlation appears at TP03, with r values around -0.4. Overall,
the I-VT algorithm shows slightly stronger negative correlations (average r ~ -0.15)
compared to |-KF (average r =~ -0.1).
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In total, correlations between mean fixation duration and ISA ratings are generally
stronger than those observed for fixation rate.
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Figure 4.18.: Correlation of Eye Movement Metrics with ISA Workload Ratings.

BWR Ratings versus Eye Movement Metrics

The BWR ratings demonstrate a broad consistency with the eye movement metrics
during the approach to the wind turbine and the stabilization phase to achieve hover
conditions. Specifically, the higher BWR ratings given for the hover phase align with an
observed increase in mean fixation duration and a corresponding decrease in fixation
rate relative to the cruise phase. This pattern reflects the same relationship between
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workload and eye movement metrics as seen in the comparison with the ISA ratings.

However, similar to the comparison with ISA ratings, this alignment does not hold
consistently when examined in more detail. For instance, in TP03, the peak in fixation
duration, which is the highest across all test points, occurs during the final approach
phase. In contrast, the highest BWR rating was neither assigned to TP0O3 nor to its final
approach phase.
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5. Discussion on Online Eye
Movement Event Detection in a
Helicopter Simulator

In the following, the verification of the developed online eye movement event detection
algorithms applied in the helicopter simulator study is discussed. The aim is to assess
their suitability for real-time use and their potential for supporting pilot monitoring and
workload assessment. The verification is structured around three core aspects. The us-
ability of the detectors, their capability to operate in real time and their event classification
accuracy. Building on these findings, the feasibility of applying such algorithms to detect
helicopter pilots eye movements is evaluated. In this context, the research questions
stated in Section 1.1, concerning how online eye-tracking algorithms can be developed
to effectively classify helicopter pilots’ gaze points and to what extent their feasibility can
be demonstrated in a preliminary full-flight simulator study, are addressed. Finally, the
limitations of the eye movement detection setup are examined, outlining technical and
methodological constraints that affect both the generalizability and quality of the results.
These insights will help identifying areas of improvement and guiding future research
toward practical implementation in helicopter flight simulators.

5.1. Verification of Algorithms for Helicopter
Simulator Application

The verification for a helicopter simulation application is structured around three core
aspects. The usability of the detectors, their capability to operate in real time and their
event classification accuracy. Together, these factors verify the reliability and practical
applicability of the eye movement event detection algorithms.
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5.1.1. Usability of Eye Movement Event Detectors

Since the head-mounted eye tracker of the eye-tracking setup can connect via Wi-Fi, the
system can be integrated into the AVES flight simulator as well as other flight simulator
platforms or laptops equipped with the required .NET framework for C#. The script
has been successfully tested on an off-the-shelf laptop, meaning no special hardware
requirements are imposed on either the laptop or the experimental system. Additionally,
the head-mounted eye tracker allows free head movement, without significantly impairing
overall vision. To prevent slippage, the eye tracker can be secured with the provided
headband, which the pilot noted to be effective. The pilot reported no notable discomfort
or visual impairment from the device. However, this may be partly explained by their
regular use of glasses for short-sight correction and may have therefore increased their
tolerance to discomfort or minor obstructions, such as those introduced by the eye
tracker’s frame.

All'in all, the eye-tracking setup is highly flexible and can be deployed across different
flight simulators and potentially even in real helicopter flights, with only minimal impact
on pilot comfort.

Furthermore, by organizing the algorithms into distinct modules for preprocessing, clas-
sification, post-processing, and the main pipeline, their maintainability and adaptability
are significantly improved. This structure allows for future modifications or extensions to
be integrated with minimal complexity. The online storage of preprocessed velocity and
average gaze position makes the detection logic traceable, which is a critical requirement
for validating their event detections and post-hoc analysis. Besides, the expert user’s
intuitive understanding of the metrics and the live terminal output from the sliding window
indicates that the system requires minimal training. Clear notifications during initialization
and termination further enhance the ease of operation.

The results also suggest that the eye movement metrics displayed in the online terminal
can provide useful insights into ongoing behavioral patterns. Figure 4.17 illustrates
variations in these metrics for different flight phases using the same 10-second time
window as applied in the terminal display. Peaks observed during hover and final
approach indicate that the metrics respond to flight mission demands, underscoring
their potential for real-time analysis. Additionally, the correlations between ISA workload
ratings and the online eye movement metrics further suggest that the observed variations
are not purely by chance.

Finally, robustness to gaze data loss of the live display is demonstrated under conditions
such as taking off the eye tracker. The system’s ability to output “unknown” in the
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absence of valid events ensures that misleading classifications are avoided, which is
essential for reliable online use.

5.1.2. Real-Time Performance Capability

The proportion of classified eye-tracking samples was close to optimal, with both algo-
rithms showing only around 1.5% more N/A classifications than the theoretical minimum.
This deviation arises because velocity calculation requires both the current and previous
gaze sample. Consequently, following an N/A event, at least two valid gaze samples must
be available before velocity and thus an eye movement event can be computed. The
results show that the implemented approach of classifying data as soon as a single valid
gaze sample is available significantly improves performance as without it, the proportion
of N/A classifications would have been at least 16.8%, which is more than four times
greater than the implemented approach.

Both algorithms also demonstrated stable sampling performance, with no evidence of
data loss. The achieved sampling rate of around 49.91 Hz matched the recorded rate
while being close to the nominal eye tracker rate of 50 Hz, indicating that samples were
retrieved and processed with consistent approximate 20 ms spacing. Consequently,
the buffer size of the algorithms proved sufficient to operate without imposing special
demands on the CPU, even when running on a standard off-the-shelf laptop.

In terms of processing efficiency, the I-KF algorithm holds an advantage of about 20
ms in processing time, matching the expected latency difference. This is attributable to
the I-VT’s additional one-sample delay caused by the moving median smoothing filter.
Preprocessing and event detection contributed only marginally to overall latency, with
post-processing representing the largest component. This raises the question of whether
post-processing should be reduced or omitted in applications where minimal latency is
prioritized over maximum detection accuracy. Importantly, the algorithms required no
special processing power and stable runtimes were achieved even on standard hardware,
The inclusion of live terminal output and simultaneous online data storage only increased
processing times minimally, with total execution remaining within 2-3 ms. This indicates
that both algorithms are computationally efficient and capable of stable performance
under online application.
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5.1.3. Classification Accuracy of Eye Movement Events

The reliable accuracy of eye movement event detection was first assessed during offline
algorithm development. Both the I-VT and I-KF algorithms outperformed the baseline
I-TobiiVT in detecting events. Smooth pursuit performance was slightly lower in the
moving point task, but this was mitigated by selecting slightly more conservative values
for the final parameters of both algorithms.

The combined scatter plots from the AVES verification study showed a generally con-
sistent relationship between ISA ratings and eye movement metrics. Specifically, mean
fixation duration tended to increase, while fixation rate tended to decrease with higher
subjective workload, except for TP02. For this test point, a negative correlation was
observed in the r values, which can be attributed to the eye movement metric peaks
occurring before the hover, whereas the ISA ratings peaked afterward. The BWR ratings
suggest that these eye movement metric peaks are likely genuine, as the BWR identifies
the stabilization-to-hover phase as the most critical, corresponding to the observed
peaks.

For the other test points, r values showed positive correlations, confirming the expected
workload-related trends. Strong positive correlations were observed primarily for TPO1
and TPO03, while the correlation for TP04 was relatively small. Overall ISA ratings
decreased from test point to test point, suggesting a training effect. In contrast, the BWR
classified TP04 as having the highest critical workload, likely due to the combination
of DVE conditions and the more challenging ACPR SASy DIC flight control law. This
indicates that for TP04, ISA ratings alone may not be reliable, as the eye movement
metrics also showed the second-highest extreme value for this test point, corresponding
more closely to the BWR rating.

For TPO1 and TPO03, general trends were consistent between ISA ratings and eye
movement metrics, likely contributing to the higher positive correlations. However, pilot
feedback and BWR ratings suggested that maintaining hover was less demanding than
stabilizing into it, whereas the ISA scale and eye movement metrics reflect workload
more generally across the entire stabilization and hovering phase, without capturing the
distinct increase in workload during the stabilization phase alone.

One peculiarity between ISA ratings and eye movement metrics is the highly variable
mean fixation durations and very low fixation rates observed during takeoff at each test
point, compared to the ISA ratings, which generally identified takeoff as the second-
highest workload phase. This ISA rating is plausible, given the takeoff setup. The
helicopter started in hover in ground effect above the platform, requiring immediate
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stabilization, which significantly increased workload, as reported by the pilot. In contrast,
the eye movement metrics during this period are affected by the first 10 seconds,
delivering inaccurate results for the takeoff phase, as can be seen in Figure 4.17. During
this interval, the sliding window covers less than 10 seconds, causing inaccuracies in both
mean fixation duration and fixation rate. Specifically, mean fixation duration is computed
over a shorter interval, while fixation rate is normalized to the predefined 10-second
window regardless of its actual length. This leads to large initial fluctuations in mean
fixation duration and a sharp increase in fixation rate during the first 10 seconds, making
the metrics in this time frame unreliable and rendering the takeoff phase incomparable
with the subjective workload ratings.

Another peculiarity is that the highest extreme value across all test points occurred in
TPO3 during the final approach phase, which neither the BWR nor ISA ratings identified
as the highest workload for that test point or overall. This extreme value may, however,
be plausible. The gaze data recording suggests that the unusually long fixation was due
to the pilot using the platform directly in front of them as a visual reference. Notably,
this visual reference was used only in TPO03, likely because it was the first test point
conducted under DVE conditions. In TP04, the pilot did not use this visual cue, likely
due to increased familiarity with the environment, as indicated by the lower ISA and
BWR ratings for the approach phase compared to TP03, although differences in the
flight control law may also have contributed.

Comparing the two online algorithms, I-VT and I-KF, revealed generally consistent trends
in mean fixation duration and fixation rate across flight phases. The I-KF method showed
slightly higher peak values for both metrics, particularly during the final approach, where
maximum fixation durations reached 2.0 seconds for |-KF and 1.6 seconds for I-VT.
Although fixation durations of several seconds are uncommon, they can occur under
specific task conditions, as in this case, where the pilot used the platform directly in front
of their view as a visual reference, making both values plausible.

The results show that, while phase-specific discrepancies were observed between the
workload ratings and the eye movement metrics, overall trends were identifiable, and the
metrics fell within the range of expected mean fixation durations and rates. Furthermore,
although the optimization was performed in a different flight simulator, the algorithms
also demonstrated high accuracy in the fixation-saccade invocation task study. Finally,
the comparison between subjective workload and eye movement metrics was conducted
solely to verify reliable event detection and not to determine event detection accuracy.
Given that both algorithms demonstrated reliable performance and that optimization
results did not identify a superior event detection method, it cannot be concluded that
either algorithm outperforms the other in terms of event detection performance.
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5.2. Feasibility and Limitation of the Eye Movement
Event Detection

In the following, the feasibility and limitations of the developed online eye movement
event detection algorithms, as well as their setup and verification, are discussed. Building
on the verification results presented earlier, the discussion is divided into two parts.

The first part revisits the two research questions posed at the beginning of the thesis,
evaluating the feasibility of the I-VT and I-KF algorithms for online application and their
development approach. The second part addresses the methodological limitations of
the verification study and the technical constraints of the event detection setup.

5.2.1. Feasibility of the Eye Movement Event Detection Algorithms

Finally after discussing the verification of the algorithms the two research question stated
at the beginning of the thesis can be reflected on.

The first research question addressed how an online eye-tracking algorithm can be
developed and optimized to effectively classify real-time gaze points of helicopter pilots.
The findings demonstrate that such an algorithm can indeed be developed using a
relatively small, synthetically derived dataset from a fixation—saccade invocation task.
Since the elicited eye movement patterns resemble those typically observed in helicopter
flight simulators, the algorithms could be optimized for this specific use case. From this
process, two implementations, namely the |-VT and the |-KF, were adapted for online
applicability and verified in the AVES flight simulator. Importantly, both algorithms main-
tained reliable detection accuracy in both AVES and 2PASD, suggesting that they can
be applied across simulator environments and provide a valid approach for developing
online algorithms suitable for helicopter pilot eye movement event detection.

The second research question concerned the feasibility of these algorithms in real-time
application, which was assessed across multiple criteria. These criteria allow for a
critical appraisal of the algorithms’ suitability for online eye movement event detection
of helicopter pilots and their assessment is summarized in a qualitative evaluation
depicted in Figure 5.1. The chart illustrates both algorithms and their performance
for each criteria on a scale ranging from unsatisfying to exceeding online feasibility
requirements. Both online algorithms exceed performance expectations in terms of
simplicity, interpretability, low computational cost and minimal data requirements for
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parameter optimization. Although accuracy and robustness exceeded satisfactory levels,
they fell short of the highest rating, as deep learning models, as discussed in the literature
review, outperform both algorithms in these criteria. Real-time performance, on the
other hand, reached only a satisfactory level, with both algorithms achieving latencies
of around 100 ms, and the I-KF showing a slight advantage. User-friendliness also
remains an aspect with considerable room for improvement and was therefore rated as
only satisfactory.

Overall, both algorithms can be considered feasible for online application. As a final
recommendation, the I-VT filter is suggested, as its only drawback compared to the
I-KF is slightly higher latency, while its event detection method is based on the [-TobiiVT
and allows researchers in the field to cross-validate and reproduce results by adjusting
I-TobiiVT’s velocity threshold to the personalized threshold of the |-VT.
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Robustness Accuracy

Low Data
Requirement

>
>

User-Friendliness

e Exceeding [=] Satisfying ¢ Unsatisfying  Online Feasibility Requirements

Figure 5.1.: Evaluation of I-VT and I-KF Online Algorithm’s Overall Performance.

5.2.2. Limitations of the Eye Movement Event Detection Setup and Verification

Despite these strengths, several limitations remain regarding the event detection setup
and its verification.

First, while the head-mounted eye tracker allows free head movement, it obstructs

peripheral vision due to the glasses’ frames. Wearing the glasses may also cause
discomfort and slippage is possible during longer sessions. Nevertheless, these issues
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96 5. Discussion on Online Eye Movement Event Detection in a Helicopter Simulator

appear to be minor, as the pilot reported no significant impairment of vision and comfort
was rated high when the Tobii’s eye tracker headband was used to prevent slippage.

Second, since the primary focus of this thesis was on achieving reliable eye movement
event detection, the development of a user-friendly graphical interface received less
attention and thus represents the area with the greatest potential for improvement.
Currently, the configuration of live output and event detection parameters is hardcoded
in the script, making it difficult to adjust settings such as the investigation period, sliding
window length, or detection thresholds. Furthermore, the system does not provide a
synchronized live video stream, which would enable direct linking of gaze classifications
to the visual scene.

Third, although the verification study demonstrated reliable event detection across
simulator setups, it cannot be ruled out that slightly different optimal parameter values
occur if optimization were performed directly in the AVES simulator. This is particularly
relevant because the optimal configuration depends on factors such as the distance from
pilot seat to instrument panels and primary vision system,

Finally, the verification was conducted with a single participant and the study was pri-
marily designed to test event detection rather than workload or situational awareness
measures. While correlations between eye movement measures and workload pro-
vide preliminary evidence of validity, larger and more diverse studies are required to
reduce variability and strengthen generalizability. Furthermore, the observed correlations
between eye movement metrics and workload appear minor, however, they may under-
estimate the true relationship. This is partly because workload was measured using the
ISA ratings, which are inherently subjective and may not fully capture the pilot’s actual
cognitive load. Addtionally, the temporal resolution of the measurements introduces
further limitations. ISA ratings were intended to be recorded at 15-second intervals, but
in practice they were not always provided exactly on schedule, while eye movement
metrics were computed continuously using 10-second intervals. This mismatch in both
interval length and timing may have reduced their correlation, giving the appearance of a
weak association between workload and eye movement metrics.
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6. Conclusion and Outlook

This thesis investigated how online eye-tracking algorithms can be developed to effec-
tively classify the gaze points of helicopter pilots and to what degree their feasibility can
be demonstrated in a preliminary study in a full-flight simulator. Building on a structured
development and verification process, the work provided methodological contributions
to the design of online eye movement event detection algorithms and two deployable
implementations.

The thesis began with a literature review to establish the foundations for algorithm
development. First, an overview of common eye trackers was conducted, with particular
focus on head-mounted trackers and the PCCR method, as the eye-tracking setup had
been predetermined to use this approach. Following this, the eye movement typologies
relevant to event detection were examined and their potential application to future use
cases such as online workload and situational awareness assessment or adaptive pilot
support systems was explored to derive the algorithm requirements. Next, the main
algorithmic approaches that enables these future use cases, which are threshold based,
probability based and deep learning models, were studied, followed by a review of
suitable evaluation metrics at the event-statistic, sample and event level.

Based on this groundwork, several algorithms were optimized for helicopter pilot use.
Optimization was conducted using the Optuna framework with gaze data and ground
truth derived from a study based on fixation-saccade invocation tasks, which replicated
typical eye movement patterns observed in helicopter flight. Four algorithms (I-VT, I-
DT, I-KF, and I-HMM) were evaluated, while deep learning models were excluded due
to the limited available dataset size and their limited interpretability. After parameter
optimization, additional analysis of smooth pursuit handling and parameter validation on
a test dataset, the I-VT and I-KF algorithms were identified to outperform the baseline
I-TobiiVT and were selected for online adaptation.

To verify their applicability, a study was conducted in the AVES flight simulator. The
designed mission simulated offshore wind farm operations under varying visual envi-
ronments and flight controls to induce different workload demands. Results showed
that both I-VT and I-KF maintained reliable detection accuracy in AVES and 2PASD
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98 6. Conclusion and Outlook

simulators, indicating that the optimized parameters generalize across different simula-
tion environments. Both algorithms proved feasible for online application, with the I-VT
offering the additional benefit of easier reproducibility and comparability to the existing
I-TobiiVT.

Beyond these two implementations that have been proven to be feasible for helicopter pi-
lot eye movement event detection, the thesis provides several broader contributions. The
fixation—saccade invocation task study generated a synthetic dataset that can be reused
to optimize or validate algorithm parameters for helicopter specific applications. Further-
more, a novel optimization pipeline was developed, combining loU-based event matching,
a customized penalization strategy for mismatches and intelligent parameter search with
the Optuna framework. Finally, the verification demonstrated robustness and reliable
event detection across AVES and 2PASD, strengthening the case for generalizability.

While this thesis provides important contributions and demonstrates the feasibility of
online eye movement event detection for helicopter pilots, certain limitations remain. The
verification was conducted with a single participant, which restricts the comparability and
generalizability of workload related results. Furthermore, aspects such as hardcoded
algorithm configuration, the absence of synchronized video feedback, and the potential
influence of the head-mounted tracker on comfort and peripheral vision point to areas
where usability could be enhanced. Finally, optimal parameter settings may vary de-
pending on pilot—instrument distances, primary vision system configurations, or cockpit
layouts, which were beyond the scope of this work.

Building on these identified constraints of the thesis, several recommendations for future
development and research on eye movement event detection and its setup for online
application in helicopter environments are proposed.

First, if head position data from head-mounted eye trackers can be reliably retrieved in
real time, it should be incorporated into the preprocessing stage. Accounting for head
movement would substantially reduce noise and enable reliable detection of smooth
pursuit eye movements. With head movement corrected, postprocessing may no longer
be required, as the majority of fixation fragmentation stems from head movement noise
and smooth pursuits. Removing this step from the algorithm would in turn significantly
reduce latency. To further reduce slippage-induced noise, the use of a headband is
recommended to stabilize the eye tracker.

Second, future implementations should also consider alternative detection methods. In
particular, deep learning models may become viable once larger ground-truth datasets
are available, offering potentially higher accuracy and robustness.

4 DLR - IB-2025-198



99

Third, while the current PowerShell based online eye movement event metrics and
sliding window display was highly valued by the user, usability enhancements should
be implemented for broader adoption. Configuration should be made more accessible
by shifting parameter adjustments to a configuration file or command-line interface,
thereby eliminating the need for source code modifications. User-friendliness could be
further enhanced through the development of a graphical or web interface. Furthermore,
synchronizing the live video stream with event classifications would further enhance
interpretability by linking gaze events directly to the visual scene. To address the
live video stream synchronization, the tool could leverage the clock synchronization
capabilities of the Tobii Pro SDK. The modular design of the current implementation
provides a solid basis for extending such functionalities.

Fourth, for future workload and situational awareness assessments based on eye move-
ment, the use of the modal fixation duration instead of the mean should be examined,
given the skewed distribution of fixation durations reported in the literature. Furthermore,
incorporating additional physiological and behavioral measures, such as pupil diameter,
electrodermal activity (EDA), and electrocardiogram (ECG), alongside eye movement
metrics could enhance online workload assessment by providing complementary indica-
tors

Finally, future research should also extend verification to larger studies in different
operational settings and more pilots with also diverse pilot backgrounds. The algorithms
could potentially be verified in a real helicopter flight as well. The ISA rating proved to be
a useful benchmark for comparison with eye movement metrics and might be able to
be adapted for shorter 10-second intervals if implemented with a button press, allowing
pilots to input ratings themselves without the need for verbal communication. Finally,
beyond event detection verification, a validation on its application as real-time workload
or situational awareness assessment or adaptive pilot support systems should also be
considered.
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MA Verification Study - 2025

Date Simulator Offshore Hoist Participant 1D
AVES Operation

USER SURVEY QUESTIONNAIRE

This questionnaire is designed to gather feedback on the usability, clarity and performance of the
online eye movement event detections scripts. Please answer the questions below.

Output & Interpretation

Is the console output layout easy to read in real time?

Do you understand what each metric means without additional explanation?

Does the use of the sliding window help you identify trends in the data?

Would you prefer a different format for displaying event history?

Would color coding or alternative symbols make the output easier to interpret?

Is the latency display and UTC Time helpful for your use case?

Performance & Responsiveness

Did the script feel responsive (enough) during your session?

Did you experience any delays that interfered with real-time monitoring?

Can you think of scenarios where the algorithm might misclassify events?




MA Verification Study - 2025

Date Simulator Offshore Hoist Participant 1D
AVES Operation

Configuration & Flexibility

Are the adjustable settings (e.g., bar width, history lengths, post-processing toggle) easy to locate
and modify?

Would you prefer a configuration file or command-line options instead of editing the source code?

Are there features you would like to toggle on/off while the script is running?

Are there any additional metrics you think should be included for real-time analysis?

Practical Use Case

Could you imagine using this tool in a live flight test scenario?

For future applications, would you need the script’s output stream to be synchronized with live
scene video playback?

Overall Experience

Was there any confusing part of running the script?

What did you like most about the script’s interface?

What would you change to improve usability?
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MA Verification Study - 2025

Date Simulator

AVES

Offshore Hoist
Operation

Participant ID

Study Goal

The goal is to verify the online applicability of an online eye movement event detector in a flight
simulator. By introducing flight tasks with varying flight conditions but a consistent flight scenario, a
range of cognitive workloads are induced to verify the algorithm's performance.

Procedure

Perform familiarization- & evaluation run:
Familiarization = 2x or according to pilot's decision l
Evaluation run = pilot’s evaluation, questionnaire

and ratings

Brief, introduce
study and take
consent

v

Calibrate eye-
tracker to pilot's
eyes

Conduct
familiarization- &
evaluation run

For the evaluation
run: Record and
save gaze data

!

Fill out test point
specific questions
on the pilot
guestionnaire

.
— All tasks —

Prepare next test
point

A

‘“*m,g:xompleted?,/'

HI,_/
Finish pilot
guestionnaire

Flight Scenario and Test Matrix

Execution according to test matrix and flight scenario description below.
Recording of pilot's gaze movements with Tobii Pro Glasses 3.

TeEST MATRIX: OFFSHORE
HoisT OPERATION

2SAS 3AXES

5ACprr SASY DIC

GVE 40.000

TPO1

TPO02

DVE 2.500

TPO3

TPO4




g
s ,,f/_j___("‘{&/

af—t

MA Verification Study - 2025

Date Simulator Offshore Hoist Participant ID
AVES Operation

Flight Scenario Description
Performance — Helipad T/O | Flight

Limits
* Hover with HIGE at
x ft height and 4+15;
x m rearward movement 3+6
* Fly backward to TDP of x ft L 4
AHE 120+30 -
« Transition to forward flight
and accelerate to X kts 65:20
Performance — Approach |Flight
to Wind Turbine Limits
* Maintain an airspeed of X

+ _

knots throughout the course | 100+10 Target Idle Wind Turbine
* Accomplish maneuver at
an altitude of X ft 300+30
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Date Simulator Offshore Hoist Participant ID
AVES Operation
Performance — Establish Flight
Hover Position over Hoist | Limits
Target
» Maintain a stabilized hover
for at least X seconds 30
* Maintain altitude of X ft
330+15
* Maintain heading of X 27545
degree B
Performance — Depart and |Flight
Arrive at Final Wind Limits
Turbine
* Accelerate after departure
to X kts Final Target Idle Wind Turbine
and decelerate when arriving
at the other idle wind turbine | 60+10 l
When arriving at final wind
turbine:
« Maintain altitude of X ft 330£15
* Maintain heading of X
degree 27515
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Date Simulator Offshore Hoist Participant 1D
AVES Operation

Questionnaire

PLEASE ANSWER THE QUESTIONS BELOW.

FOR A SCHEMATIC VIEW OF THE BEDFORD WORKLOAD RATING SCALE (BR) AND THE INSTANTANEOUS
SELF-ASSESSMENT (ISA), REFER TO THE DESIGNATED PAGES.

WHAT IS WORKLOAD?

“WORKLOAD IS THE INTEGRATED MENTAL AND PHYSICAL EFFORT REQUIRED TO SATISFY THE PERCEIVED
DEMANDS OF A SPECIFIED FLIGHT TASK” (ROSCOE, 1987)

For each task, please:

1. Assign a workload rating using the Bedford and ISA scales (refer to the provided scale
sections).

2. Answer the task-specific difficulty questions based on your experience during the task.

After all tasks are completed, please fill out the Post-Study Questionnaire.
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Date Simulator Offshore Hoist Participant ID
AVES Operation

TP
01

No. of Hot Runs:
Annotations regarding hot runs:

ISA Ratings:

0:15: 0:30: 0:45: 1:00: 1:15: 1:30: [1:45: 2:00:
215: 2:30: 2:45: 3:00: 3:15: 3:30: :3:45: 4:00:
415: 4:30: 4:45: 5:00: 5:15: 5:30: :5:45: 6:00:

Bedford Workload Ratings:

Bedford Workload Rating for “Approach to Wind Turbine” flight phase:

112 )3 (45|67 (8]9]10

Bedford Workload Rating for most critical flight phase:

112 |3 |4|5|6(7 (89|10

which flight phase do you considered the most critical?

How would you rate the visibility during the approach to the wind turbine?
1 2 3 4 5

Were the flight control settings manageable?
1 2 3 4 5

Did the eye tracker cause any visual impairment?
1 2 3 4 5

Comments:
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Date Simulator Offshore Hoist Participant ID
AVES Operation

TP
02

No. of Hot Runs:
Annotations regarding hot runs:

ISA Ratings:

0:15: 0:30: 0:45: 1:00: 1:15: 1:30: [1:45: 2:00:
215: 2:30: 2:45: 3:00: 3:15: 3:30: :3:45: 4:00:
415: 4:30: 4:45: 5:00: 5:15: 5:30: :5:45: 6:00:

Bedford Workload Ratings:

Bedford Workload Rating for “Approach to Wind Turbine” flight phase:

112 )3 (45|67 (8]9]10

Bedford Workload Rating for most critical flight phase:

112 |3 |4|5|6(7 (89|10

which flight phase do you considered the most critical?

How would you rate the visibility during the approach to the wind turbine?
1 2 3 4 5

Were the flight control settings manageable?
1 2 3 4 5

Did the eye tracker cause any visual impairment?
1 2 3 4 5

Comments:
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Date Simulator Offshore Hoist Participant ID
AVES Operation

TP
03

No. of Hot Runs:
Annotations regarding hot runs:

ISA Ratings:

0:15: 0:30: 0:45: 1:00: 1:15: 1:30: [1:45: 2:00:
215: 2:30: 2:45: 3:00: 3:15: 3:30: :3:45: 4:00:
415: 4:30: 4:45: 5:00: 5:15: 5:30: :5:45: 6:00:

Bedford Workload Ratings:

Bedford Workload Rating for “Approach to Wind Turbine” flight phase:

112 )3 (45|67 (8]9]10

Bedford Workload Rating for most critical flight phase:

112 |3 |4|5|6(7 (89|10

which flight phase do you considered the most critical?

How would you rate the visibility during the approach to the wind turbine?
1 2 3 4 5

Were the flight control settings manageable?
1 2 3 4 5

Did the eye tracker cause any visual impairment?
1 2 3 4 5

Comments:
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Date Simulator Offshore Hoist Participant ID
AVES Operation

TP

No. of Hot Runs:
Annotations regarding hot runs:

ISA Ratings:

0:15: 0:30: 0:45: 1:00: 1:15: 1:30: [1:45: 2:00:
215: 2:30: 2:45: 3:00: 3:15: 3:30: :3:45: 4:00:
415: 4:30: 4:45: 5:00: 5:15: 5:30: :5:45: 6:00:

Bedford Workload Ratings:

Bedford Workload Rating for “Approach to Wind Turbine” flight phase:

112 )3 (45|67 (8]9]10

Bedford Workload Rating for most critical flight phase:

112 |3 |4|5|6(7 (89|10

which flight phase do you considered the most critical?

How would you rate the visibility during the approach to the wind turbine?
1 2 3 4 5

Were the flight control settings manageable?
1 2 3 4 5

Did the eye tracker cause any visual impairment?
1 2 3 4 5

Comments:
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Date Simulator Offshore Hoist Participant ID
AVES Operation

Post-Study Questionnaire

Please provide your background information and qualitative impressions related to the

No | . .
simulator session.

What is your age?

01

____years

What is your eye color?
02

Do you currently use any vision aids (e.g., glasses, contact lenses)?
03

How many years have you held a valid pilot license?
04

____years

Approximately how many flight hours do you have?
05 . .

Total flight hours: Flight hours on EC135:

Are you familiar with research flight tests?
06

O Yes O Somewhat O No

Do you have any additional comments or feedback regarding the study or tasks?

o7
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Date Simulator Offshore Hoist Participant ID
AVES Operation
Workload Description Rating

Workload insignificant 1

| > Workload low 2

| Enough spare capacity for all 3

desirable additional tasks
Insufficient spare capacity for casy 4

Is workload
satisfactory
without reduction in

attention to additional tasks

spare (workload) capacity?

Is workload tolerable
for the task?

Reduced spare capacity. Additional
tasks cannot be given the desired 5
amount of attention

i 1 1

Little spare capacity: level of effort
allows little attention to additional 6

tasks

Very little spare capacity, but
maintenance of effort in the primary 7
tasks not in question

-

Is it possible to
complete the task?

Very high workload with almost no
spare capacity. Difficulty in 8
maintaining level of effort

Extremely high workload. No spare
capacity. Serious doubts as to ability 9
to maintain level of effort

4

'

Pilot Decisions

Task abandoned. Pilot unable to 10
apply sufficient effort

Figure 1. Bedford Workload Rating Scale
(Source: Roscoe, A. H., & Ellis, G. A. (1990). A subjective rating scale for assessing pilot workload in
flight: A decade of practical use (Technical Report No. 90019). Bedford, UK: Royal Aerospace

Establishment, Ministry of Defence.)

Level | Workload Heading Spare Capacity | Description
Excessive None Behind on tasks; losing track of the full
picture.

4 High Very Little Non-essential tasks suffering. Could not
work at this level very long.

3 Comfortable Busy Pace | Some All tasks well in hand. Busy but stimulating
pace. Could keep going continuously at this
level.

2 Relaxed Ample More than enough time for all tasks. Active
on task less than 50% of the time.

Underutilised Very Much Nothing to do. Rather boring.

Figure 2. ISA workload scale
(Source: Kirwan, B., Evans, A., Donohoe, L., Kilner, A., Lamoureux, T., Atkinson, T., & MacKendrick,

H. (1997). Human factors in the ATM system design life cycle. In Proceedings of the
FAA/Eurocontrol ATM R&D Seminar (pp. 16—20). Paris, France.)
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Questionnaire

P-1D:

Please fill in the ratings in section 1 after each task completion. If you encounter a task for a
second time and wish to change your previous rating, please cross out the new score and
encircle it. The tasks listed below may not be in the same order as you experience them in the

simulator.

Section 1: Task-Specific Feedback

For each task you complete, please rate the perceived difficulty to trace the stimulus point:

Strongly
Disagree

Disagree

Neutral

Agree

Strongly
Agree

The Jumping Point on the
Center Display was difficult to trace.

The Jumping Point on the Cockpit Monitors
was difficult to trace.

The Jumping Point on the Side Displays
was difficult to trace.

The Jumping Point on the Cockpit Monitors
and Center Display was difficult to trace.

The Clustered Jumping Point on the
Cockpit Monitors and Center Display was
difficult to trace.

The Moving Point on the Side Displays
was difficult to trace.

For each task, how mentally demanding did you find it?

Strongly
Disagree

Disagree

Neutral

Agree

Strongly
Agree

The Jumping Point Task on the Center
Display was mentally demanding.

The Jumping Point Task on the Cockpit
Monitors was mentally demanding.

The Jumping Point Task on the Side
Displays was mentally demanding.

The Jumping Point Task on the Cockpit
Monitors and Center Display was mentally
demanding.

The Clustered Jumping Point Task on the
Cockpit Monitors and Center Display was
mentally demanding.

The Moving Point Task on the Side
Displays was mentally demanding.

Stimulus
Paint Display

Side
Displays

Cockpit Monitors




Questionnaire P-1ID:

Section 2: Participant Background and Qualitative Feedback

What is your age?

What is your gender?

What is your eye color?

Do you use any vision aids (contact lenses)?

Do you hold a helicopter pilot license? (Yes/No)
Do you have experience flying helicopters in flight simulators?  (Yes/No)

Were there any aspects of the tasks or simulation that felt confusing?

Do you have any other comments or feedback about the study or the tasks?




