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Introduction:  The MERTIS (MErcury Radiome-

ter and Thermal Infrared Spectrometer) is a mid-
infrared imaging instrument, onboard the BepiColom-
bo ESA/JAXA mission to Mercury, launched in Octo-
ber 2018. After arrival in 2026, among other objec-
tives, it will map the mineralogy of the surface of Mer-
cury [1,2]. 

Part of MERTIS is the Thermal Infrared spec-
trometer (TIS) covering the wavelength range from 7 
to 14 µm. 

The MERTIS instrument is one of the few detec-
tors used during the 5th flyby at Mercury, resulting in 
the first thermal infrared data of the hermean surface 
from a spacecraft after radiometer studies by Mariner 
10 [3]. While the footprint is still large (26-30 km) due 
to the distance of nearly 40000 km during the flyby, 
the first results already allow distinguishing surface 
details.  

One challenge is to derive quantitative mineralogi-
cal information from the vast amount of spectra. One 
way is to model modal mineral data using complex 
unmixing routines, which provide detailed mineralogy, 
but require much time and input [e.g., 4]. A simple and 
fast method to obtain maps of the mineral distribution 
is the use of simple band ratios instead.  

Techniques:  While most minerals exhibit charac-
teristic features in their ‘pure’ spectra (Fig.1), most of 
these idiosyncratic bands are difficult to identify in 
mixtures owing to overlapping features and physical 
effects like temperature. Therefore the first step is 
identifying bands that are easy to find even in complex 
mixtures expected from the surface regolith.  

In a first attempt to identify such band ratios, we 
used spectra of 28 synthetic mixtures with exactly de-
fined modal mineralogy [5,6]. We limited ourselves to 
the spectra of the finest size fraction (0-25µm), which 
is expected to be the dominant grain size on the surface 
of Mercury [2]. Since our surface data from Mercury 
are emissivities, we calculated our laboratory reflec-
tance spectra into emissivity using Kirchhoffs’ law [7]. 
This is a simplified approach, for detailed future stud-
ies the directional hemispherical laboratory setup will 
be taken into account.     

In order to minimize the influence of absolute spec-
tral intensities, we apply band ratios in our modelling. 
Here the integrated area of two bands are divided. 
MERTIS obtains spectra using 80 channels, which are 
binned by a factor of 2. The first and last channel are 
usually omitted due to instrument noise. 

We set up a Python code that first calculates all 
possible bands – starting with bands consisting of one 
channel, to bands with a width of 38 channels, at all 
positions possible in the range of a given mixture spec-
trum. Afterwards each of these bands was divided by 
all other bands. As a result, we obtained 28 arrays con-
taining all possible band ratio intensities for each spec-
trum of the synthetic mixtures. Thus we obtained all 
possible band ratios for each of the 28 mixture spectra. 

In the next step, the band ratios for each synthetic 
mixture were correlated with the modal mineralogy for 
6 phases (Glass, Forsterite, Diopside, Plagioclase, En-
statite and Quartz) available for each of the 28 mix-
tures. Thus, we identified the band ratios with the 
highest correlation to a mineral phase (Table 1).   

Data Processing: Routines for data processing 
were developed in Python. For the programming, we 
used the Pandas, NumPy, SciPy, and Matplotlib Py-
thon open source packages [8-11]. 

Results: For all six phases, remarkably high corre-
lations r = 0.89 – 0.99 were found (r=correlation coef-
ficient) already in the first run. Table 1 presents the 
wavelength ranges for the two bands of the highest 
correlations of each mineral phase. 

 
Table 1: Band pairs BAND 1 and BAND 2 (range 

of each band in µm) for which the strongest correla-
tions were found when ratio was calculated. r = corre-
lation coefficient. ID = database identification number. 
Phase r BAND 1 BAND 2 
ID 158 Glass 0.89 8.49-10.41 8.84-10.59 
ID 249 Forsterite 0.97 7.96-8.84 7.53-9.19 
ID 22 Diopside 0.96 9.19-12.08 7.18-9.63 
ID 28 Plagioclase 0.94 12.16-12.86 12.78-13.83 
ID 53 Enstatite 0.98 7.18-12.43 7.18-13.83 
ID 13 Quartz 0.99 7.18-8.31 7.35-8.40 
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Figure 1 shows the band ratios for some of the phases, 
which are controlled by different spectral features. For 
ID 249 Forsterite, the ratio bands cover mainly the 
Christiansen Feature (CF), a characteristic reflectance 
low, small shifts of this position will affect the relative 
band intensities. In the case of ID 28 Plagioclase, the 
grain-size sensitive Transparency Feature (TF) pro-
vides the best band ratios. For ID 53 Enstatite, wide 
ranges of the spectrum are required for a sensitive ra-
tio, while the best band ratio for glassy material centers 
around the single  main Reststrahlen Band (RB).  

Summary and Outlook: We have modeled a se-
ries of band ratios based on synthetic laboratory spec-
tra for the use on hermean surface spectra. In the next 
step, we will use these ratios to produce mineral maps 
of the hermean surface using the processed MERTIS 
emissivity spectra of the 5th flyby.  
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Figure 1: Comparison of laboratory spectra. For 

presentation purposes we show reflectance. The light 
gray and pink shaded areas indicate the range for the 
two bands having the strongest correlation with the 
mineral phase (Table 1). ID = database identification 
number 
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