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Abstract

The main goal of this thesis is to enable robots to learn controllers directly on real hardware
in a short time using deep reinforcement learning (DRL).
DRL excels in simulation, usually starting from scratch, and impressive results can even

be transferred to real robots. However, successful transfers come at the cost of extensive
domain randomization, time-consuming reward engineering, and tedious modeling.
Learning on real hardware eliminates the gap between simulation and reality, but in-

troduces new challenges such as ensuring the safety of the robot and its environment, the
inability to parallelize training, time delays, broken actuators, and manual resets.
To overcome these challenges, we investigate how to empower the learning agent with

expert knowledge, saving costly interactions with the real world. To apply DRL directly on
real robots, we propose a smoother exploration scheme, a safer alternative to the standard
step-based exploration. We show that this new exploration enables learning on the robot
and that there is a trade-off between smoothness and performance.
We use different types of prior knowledge to reduce training time and improve per-

formance on two robots with elastic components, the David elastic neck and the bert
quadruped. A data-driven fault-tolerant pose estimator is presented and reused to learn
a controller, by providing a feedforward component.
To learn locomotion policies, we contribute an open-loop baseline consisting of simple

oscillators. This baseline highlights the current limitations of DRL algorithms and shows
the minimum knowledge required to have locomotion controllers. We then build on this
controller and close the loop with RL to improve robustness and performance.
For its application to real robots, DRL requires a solid software base that is trustworthy,

allows for fast iterations, and produces reproducible experiments. To address this need, we
develop the Stable-Baselines3 (SB3) library, the core of the thesis, which provides reliable
and easy-to-use RL implementations. SB3 is complemented by its Jax equivalent SBX for
faster experiments and the RL Zoo training framework to ensure reproducibility.
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CHAPTER 1

Introduction

The promise of reinforcement learning (RL) in robotics is to enable robots to learn complex
tasks through trial and error, without the need for tedious programming or manual control.
This is achieved by providing feedback to the agent in the form of a reward, which measures
the robot’s immediate performance [SB18a].

The goal of RL is to find an optimal behavior, known as an optimal policy, that maxi-
mizes a given objective function. By learning from the consequences of its actions, rather
than from being explicitly taught, RL becomes a powerful tool for tasks where the optimal
behavior is unknown or difficult to specify.

The potential of RL to learn control from interactions without knowledge of the under-
lying model was first demonstrated in the early 1980s, when RL with discrete actions was
used to balance a simulated cart-pole system [BSA83]. The first results on real robots were
shown in the 1990s, on a wheeled robot [MC92] and in a peg-in-hole insertion task [GFB94].

As RL algorithms advanced, researchers began to tackle more complex tasks. In the
2000s, RL was successfully applied to quadruped locomotion [KS04], and helicopter control
[BS01]. Furthermore, RL was used in conjunction with task-specific parametrization,
such as dynamic movement primitives [STS12, SS13], to learn skills such as ball-in-a-
cup [SHHR14] and playing table tennis [KPKP14]. These early successes paved the way
for the development of more sophisticated RL algorithms and their application to a wide
range of robotic tasks.

The advent of deep learning in the 2010s revolutionized the field of RL, leading to the de-
velopment of deep reinforcement learning (DRL) methods [MKS+15, LHP+16, HZAL18].
These early DRL works demonstrated the potential of learning complex robotic skills us-
ing large amounts of data and neural networks [LHP+16]. They also enabled agents to
learn from high-dimensional sensory inputs, such as images [LFDA16]. However, learn-
ing with more general representations using neural networks came at the cost of sample
inefficiency, requiring more data to learn features from scratch. This need for data drove
the field towards more simulation and away from real robots [TET12, RVR+17, TFR+17,
MBT+18, CB21].
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1 Introduction

(a) DLR David neck (b) DLR quadruped bert

Figure 1.1: The two robots with elastic components that are the main application plat-
forms of this thesis: (a) a tendon-driven robot, (b) a quadruped with series
elastic actuators.

1.1 Motivation

In recent years, substantial progress has been made to bring the success of DRL in sim-
ulation to the real world [ICT+18, AAC+19, ZQW20]. However, most studies focus on
learning from scratch, which is often impractical (requiring thousands of trials) and unsafe
when applied directly in the real world [DALM+21]. Training on real robots is rare due to
the inherent challenges posed by DRL algorithms, which can lead to dangerous behavior
and significant wear and tear [RSS+10, KBP13].

As a result, most work focuses on bridging the simulation-to-reality gap1 [TFR+17,
PAZA18, ABC+20, KFPM21], for instance with the help of accurate simulators, using
system identification or learning actuator models [HLD+19, LHW+20]. A common tech-
nique is also to heavily randomize the simulation (both robot and environment dynam-
ics) [TFR+17, PAZA18, ABC+20]. Randomization makes the task more difficult for the
RL agent, and with no guarantee of successful transfer. This added complexity leads
to approaches that are “data-hungry” and rely on massively parallel simulated environ-
ments [RHRH22], which is not feasible in a real-world setting.
In contrast, this thesis avoids the sim-to-real gap altogether, with the aim to train di-

rectly on the real hardware and guide the learning process with existing expert knowledge.
This expert knowledge can take various forms, such as:

• Robot-specific knowledge to design tasks and minimize safety risks, for instance safer
exploration

• Prior knowledge for a category of problems, e. g. periodic policies for locomotion
tasks

• Controllers that partially solve the task, such as feedforward controllers (e. g. gravity
compensation)

By incorporating such expert knowledge, we can enable safe and efficient learning directly
on real robots.
In particular, we are interested in applying RL to robots with unique properties: elastic

robots (see Fig. 1.1). Elastic robots offer an energy-efficient alternative to traditional rigid

1hereafter referred to as sim-to-real
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1.2 Challenges of Real-Robot Reinforcement Learning

robots, with the ability to store and release energy in their elastic components, provid-
ing enhanced robustness through compliance-by-design [DSBG+17]. However, because of
their elasticity, they are challenging to model and require the development of novel con-
trollers [KLOAS18]. Machine learning can help overcome the limitations of model-based
approaches in this field, making elastic robots an ideal platform to demonstrate the bene-
fits of learning directly on real hardware. As such, they are the primary application focus
of this thesis.
In addition to developing new approaches for learning on real robots, we also recognize

the importance of reproducibility and reliability in DRL research. The steady escalation of
algorithmic complexity in DRL together with poor evaluation practices has led to a repro-
ducibility crisis [RLTK17, HIB+18a, MGR18, PNWW23]. Although a lot of implementa-
tions can be found online, too few can be trusted because of the implementation details that
are not always presented in the original papers [HIB+18a, HDR+22, HGF+24, PNWW23].
The lack of a common interface for algorithms prevents them from being easily compared
or applied to new problems. In this thesis, we aim to fill this gap by providing reliable
implementations that share a common interface, together with a training framework that
incorporates the best practices for empirical RL. The goal of the software is also to enable
DRL on real hardware, allow for fast iterations, and produce reproducible experiments.

1.2 Challenges of Real-Robot Reinforcement Learning

Learning on real hardware closes the gap between simulation and reality, but introduces
new challenges that must be addressed.

i. Exploration-Induced Wear and Tear. One major concern is ensuring the safety of the
robot during training. Real robots deteriorate over time and even damage themselves if
not properly controlled. The exploration phase of RL training is particularly problematic,
as it can cause significant wear and tear on the robot. Therefore, it is essential to design
safe exploration strategies that minimize mechanical fatigue.

ii. Sample Efficiency. Another challenge is the inability to parallelize training, which is
a common practice in simulation-based RL. In simulation, multiple agents can be trained
simultaneously, speeding up the learning process. Resetting the robot to an initial state
after each trial is also easy in virtual environments. On real hardware, where parallel
training is not possible and manual resets are required, it is crucial to be sample efficient.

iii. Real-Time Constraints. In contrast to simulation, the real world cannot be paused or
accelerated. This means that the control frequency must be constant, and the time taken
to update the policy must be minimized to avoid adding to the existing time delay. Asyn-
chronous updates can partially solve this problem, but fast implementations are required
to ensure that the policy improvement step does not affect the control loop. In addition,
the learning process can span multiple days, making it vital to be able to reproduce and
continue experiments without losing data or performance.

iv. Computational Resource Constraints. Real robots are also subject to sensor noise
and limited power resources (e. g. no GPU on embedded platforms). To deploy learning
algorithms on real robots, they must be robust to noise and computationally lightweight
to run on resource-constrained hardware.
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1 Introduction

The next section presents the contributions made in this thesis. Each contribution
addresses at least one of the challenges discussed above.

1.3 Contributions and Overview

The structure of the thesis is summarized in Fig. 1.2. Table 1.1 presents the main publica-
tions on which this dissertation is based, while Table 1.2 lists the publications of secondary
contributions.
Chapter 2 provides the background for understanding black-box optimization and

reinforcement learning in the context of this thesis. It includes a practical introduction to
Deep RL, starting from tabular RL, presenting the main concepts and providing intuitions
to understand the algorithms used in this thesis. The next section presents two robots
with elastic components and their associated challenges. They are the main application
platforms for the contributions presented in this dissertation.
In Chapter 3, we develop reliable and easy-to-use RL implementations along with fast

variants and a framework that incorporates the best practices for RL experimentation. We
contribute software that unifies the interface for using the different algorithms and enables
fast and reproducible experiments. These implementations and the training framework are
the cornerstones of this thesis. By minimizing implementation errors, they allow learning
on real hardware, thus addressing challenges ii. (Sample Efficiency) and iii. (Real-Time
Constraints). This chapter is based on [RHG+21].
Chapter 4 addresses the issues of the step-based exploration used by DRL algorithms

for continuous control. The contribution is to generalize state-dependent exploration
(SDE), leading to the novel algorithm gSDE, which enables successful learning from
scratch directly on the real robot without any modifications. This addresses challenge
i. (Exploration-Induced Wear and Tear). This chapter is based on [RKS21].
In Chapter 5, we contribute a new fault-tolerant, data-driven approach to obtain

an accurate pose predictor for an elastic robotic neck. This predictor can be inverted to
provide a feedforward controller and enables faster learning of a controller on the hardware,
addressing challenges i. (Exploration-Induced Wear and Tear) ii. (Sample Efficiency) and
iv. (Computational Resource Constraints). This chapter is based on [RDS21].
In Chapter 6, we explore what kind of prior knowledge is helpful for learning loco-

motion controllers. Addressing challenges ii. (Sample Efficiency) and iv. (Computational
Resource Constraints), we contribute a model-free open-loop baseline that can compete
with complex DRL algorithms. We then combine open-loop control with a learned feed-
back controller, thus closing the loop using reinforcement learning. The learned controller
allows to exploit the elastic actuators of a quadruped robot and discover new behaviors.
This chapter is based on [RSK+22, RSK+24].

Finally, we summarize the thesis in Chapter 7 and discuss future work.
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1.3 Contributions and Overview

Table 1.1: Main publications on which the thesis is based.

Reference Details

[RHG+21]
Journal

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M. and Dormann,
N., Stable-baselines3: Reliable reinforcement learning implementations. The
Journal of Machine Learning Research, 2021.

[RDS21]
Journal

Raffin, A., Deutschmann, B. and Stulp, F., Fault-tolerant six-DoF pose es-
timation for tendon-driven continuum mechanisms. Frontiers in Robotics and
AI, 2021.

[RKS21]
Conference

Raffin, A., Kober, J. and Stulp, F., Smooth exploration for robotic reinforce-
ment learning. In Conference on Robot Learning (CoRL), PMLR, 2022.

[RSK+22]
Journal -
Submitted

Raffin, A., Seidel, D., Kober, J., Albu-Schäffer, A., Silvério, J. and Stulp, F.,
Learning to Exploit Elastic Actuators for Quadruped Locomotion. 2023.

[RSK+24]
Journal

Raffin, A., Sigaud, O., Kober, J., Albu-Schäffer, A., Silvério, J. and Stulp, F.,
An Open-Loop Baseline for Reinforcement Learning Locomotion Tasks. RLJ,
2024.

Table 1.2: Publications of secondary contributions.

Reference Details

[FLO+22]
Preprint

Franceschetti, M., Lacoux, C., Ohouens, R., Raffin, A., and Sigaud, O., Mak-
ing Reinforcement Learning Work on Swimmer. 2022.

[HKR+22]
Conference -
Submitted

Huang, S., Kanervisto, A., Raffin, A., Wang, W., Ontañón, S., and Dossa, R.
F. J., A2C is a special case of PPO. 2022.

[HDR+22]
Conference

Huang, S., Dossa, R. F. J., Raffin, A., Kanervisto, A., and Wang, W., The 37
implementation details of proximal policy optimization. The ICLR Blog Track,
2023.

[PQS+23]
Conference

Padalkar, A., Quere, G., Steinmetz, F., Raffin, A., Nieuwenhuisen, M.,
Silvério, J., and Stulp, F, Guiding Reinforcement Learning with Shared Con-
trol Templates. ICRA, 2023.

[PQR+24]
Journal

Padalkar, A., Quere, G., Raffin, A.., Silvério, J., and Stulp, F., Guiding real-
world reinforcement learning for in-contact manipulation tasks with Shared
Control Templates. AuRo, 2024.

[VDR+24]
Conference

Vezzi, F., Ding, J., Raffin, A., Kober, J., and Della Santina, C., Two-
Stage Learning of Highly Dynamic Motions with Rigid and Articulated Soft
Quadrupeds. ICRA 2024.

[HGF+24]
Conference -
Submitted

Huang, S., Gallouédec, Q., Felten, F., Raffin, A., Dossa, R. F. J., Zhao, Y.,
. . . & Yi, B., Open RL Benchmark: Comprehensive Tracked Experiments for
Reinforcement. 2024.

[COR+24]
Conference

Open X-Embodiment Collaboration, Open X-Embodiment: Robotic Learning
Datasets and RT-X. ICRA, 2024.

[SSL+24]
Conference

Seidel, D., Schmidt, A., Luo, X., Raffin, A., Mayershofer, L., Ehlert, T.,
Calzolari, D., Hermann, M., Gumpert, T., Loeffl, F., Den Exter, E., Köpken,
A., Luz, R., Bauer, A.S., Batti, N., Lay, F.S., Manaparampil, A.N., Albu-
Schäffer, A., Leidner, D., Schmaus, P., Krüger, T., and Lii, N.Y., Toward
Space Exploration on Legs: ISS-to-Earth Teleoperation Experiments with a
Quadruped Robot. IEEE Conference on Telepresence, 2024.
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1 Introduction

Chap 1: Introduction

Motivation

Contributions

Chap 2: Background

Chap 3: Reliable Implementations

Section 3.1

Stable-Baselines3 & SBX

[RHG+21]

Section 3.3

RL Baselines Zoo

Chap 4: Smooth Exploration

Section 4.4

gSDE

[RKS21]

Chap 5: Integrating Pose Estimation

Section 5.1

Fault-Tolerant Pose Estimation

[RDS21]

Section 5.2

Learning to Control

Chap 6: Combining Oscillators and RL

Section 6.1

Simple Open-Loop Baseline

[RSK+24]

Section 6.2

Learning to Exploit

Gait discovery

[RSK+22] (under review)

Chap 7: Conclusion

Future Work

Figure 1.2: Structure of the thesis, highlighting the main themes and contributions of
each chapter, and the associated publications. Solid lines show where chapters
build on other chapters, and dotted lines show the connection between chapters
where results are improved by the use of expert knowledge.
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CHAPTER 2

Background

The following sections provide the background for understanding the two main techniques–
black-box optimization (BBO) and reinforcement learning (RL)– that are used extensively
throughout this thesis. Both techniques are similar in that they attempt to optimize a
non-differentiable objective function by updating parameters [SS13], but differ in their
assumptions and domain of application.

The next section introduces the two elastic robots that are the main application plat-
forms of this thesis. This chapter concludes with a discussion of the design of real-world
RL experiments.

2.1 Black-Box Optimization

In BBO, the goal is to find a set of parameters α ∈ Rn that minimizes an objective function
f : Rn → R,

α∗ = argmin
α

f(α). (2.1)

A BBO algorithm only has access to function evaluations of f . It treats f as a black box
and does not make any assumption about it (e. g. f can be non-differentiable).

The objective function f is a measure of how good the chosen parameters are. For
example, if we are trying to optimize the parameters α of a robot controller for locomotion,
i. e. learning to walk, the objective f can be the average speed achieved by the robot for
the given set of parameters. The BBO algorithm does not have access to the intermediate
steps of the trial.

One of the simplest BBO algorithms is the 1+1 evolution strategy. The idea is as follows:
start with some best-known parameters (random parameters in the first iteration), perturb
them randomly, if the objective improves, keep the new parameters, and repeat.

BBO is a very versatile technique that can usually be easily parallelized. Due to its
low requirements, it is inefficient for larger problems (number of parameters≫ 10), where
many function evaluations are needed to find a good solution.

In the cases where the objective function can be decomposed as a sum of immediate
rewards, reinforcement learning is better suited to these larger problems.
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2 Background

2.2 A Practical Introduction to Deep Reinforcement Learning

In reinforcement learning, an agent interacts with its environment, usually modeled as a
Markov Decision Process1 (MDP) (S,A, P, r) where S is the state space, A the action
space and P (s′|s,a) the transition function. At every step t, the agent performs an action
a in state s following its policy π : S 7→ A. It then receives a feedback signal in the
next state s′: the reward r(s,a). The objective of the agent is to maximize the long-term
reward. More formally, the goal is to maximize the expectation of the sum of discounted
reward, over the trajectories ρπ generated using its policy π:

J =
∑
t

E
(st,at)∼ρπ

[
γtr(st,at)

]
(2.2)

where γ ∈ [0, 1[ is the discount factor and represents a trade-off between maximizing short-
term and long-term rewards. The agent-environment interactions are often broken down
into sequences called episodes, that end when the agent reaches a terminal state.
In the example of learning to walk, if the goal is to achieve the fastest speed, an im-

mediate reward can be the distance traveled between two timesteps. The state would
be the current information about the robot (joint positions, velocities, torques, linear
acceleration, ...) and the action would be a desired motor position.
The rest of this chapter is meant to be a practical introduction to (deep) reinforcement

learning2, presenting the main concepts and providing intuitions to understand the algo-
rithms used in this thesis. For a more in-depth and theoretical introduction, we recommend
reading [SB18b].

We will start with tabular Q-learning and work our way through Deep Q-Learning
(DQN) and other key algorithms to the Soft-Actor Critic (SAC) algorithm.

2.2.1 From Tabular Q-Learning to Deep Q-Learning

In tabular RL, states and actions are discrete, so in this setting it is possible to represent
the world as a large table. Each entry corresponds to a state and can be subdivided by
the number of possible actions in that state.

Action-Value Function (Q-function)

One key element to solve the discounted RL problem (presented in Section 2.2) is the
action-value function, or Q-function, noted Qπ for a given policy π. It is defined as the
expected discounted return starting in state s, taking action a, and following policy π:

Qπ(s, a) = E
τ∼π

[
rt + γrt+1 + γ2rt+2 + . . . |st = s, at = a

]
. (2.3)

In other words, the Q-function gives an estimate of how good it is to take the action a in
state s while following a policy π(s).
The Q-function can be estimated recursively, also known as the Bellman equation:

Qπ(s, a) = E
s′∼P

[
r(s, a) + γ E

a′∼π

[
Qπ(s′, a′)

]]
. (2.4)

1The Markov property states that next state and reward depend only on the current state and action,
not on the history of previous states and actions.

2For the purposes of this thesis, we focus on value-based methods.
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2.2 A Practical Introduction to Deep Reinforcement Learning

This rewrite allows to build an estimate of the Q-value without having to wait for terminal
states. It is the formula used in practice.
By definition of the optimal policy, which selects the actions thatmaximize the expected

return, the following optimal Q-function Bellman equation is obtained:

Q∗(s, a) = E
s′∼P

[
r(s, a) + γmax

a′
Q∗(s′, a′)

]
. (2.5)

The other way around, if we have the optimal action-value function Q∗, we can retrieve
the action taken by the optimal policy π∗ using:

π∗(s) = argmax
a∈A

Q∗(s, a). (2.6)

Similarly, we can derive a greedy policy from the Q-function:

π(s) = argmax
a∈A

Qπ(s, a). (2.7)

This policy is implicitly defined: we take the action that maximizes the Q-function. In
the tabular case, this action is found by enumerating all possible actions.
For the rest of this chapter, we will drop the π superscript from Qπ so as not to overload

the notation (more indices are coming), but unless otherwise noted, Q will always be Qπ.

Estimator

Estimator

-0.7
0

1

0.9
0

1

Input Output

State

Action

State

Action

Action

State

Figure 2.1: Illustration of a Q-Table (left) and Fitted Q-Iteration (FQI) value estimator
(right). Compared to the Q-Table, which is limited to discrete states, the FQI
value estimator approximates the Q-value for continuous state spaces.

Q-Learning

For discrete states and actions, the Q-learning algorithm can be used to estimate the Q-
function of a policy, in this particular case represented as a lookup table (Q-table, shown
in Fig. 2.1). The idea is to start with an initial estimate for the first iteration (n = 0)3 and

3The initial estimate is usually zero, see [SB18a]
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2 Background

slowly update the estimate over time according to Eqs. (2.4) and (2.5). For each transition
tuple (st, at, rt, st+1), we compute the error between the estimation and the target value
and update the estimate with a learning rate η:

Qn(st, at) = Qn−1(st, at) + η · (rt + γ ·max
a′

Qn−1(st+1, a
′)−Qn−1(st, at)). (2.8)

Under the assumptions that all state-action pairs are visited an infinite number of times
and that we use a learning rate η ∈]0, 1[, the Q-learning algorithm converges to a fixed
point (i. e. Qn+1(s, a) = Qn(s, a)): the optimal action-value function Q∗(s, a).

Figure 2.2: Illustration of a Q-function approximated by a lookup table (left, tabular case)
and using regression (right, FQI)

The main limitation of Q-learning and its Q-table is that it can only handle discrete
states. The size of the table grows with the number of states, which becomes intractable
when this number is infinite (continuous states). Moreover, it does not provide any gen-
eralization as shown in Fig. 2.2 left: knowing the Q-values for some states does not help
to predict the Q-values of unseen states.

Function Approximation and Fitted Q-Iteration (FQI)

A straightforward extension to Q-learning is to estimate the Q-function using function ap-
proximation instead of a Q-table, displayed in Figs. 2.1 and 2.2 on the right.
In other words, the Q-value estimation problem can be formulated as a regression problem
(fθ(X) = Y ):

Qn
θ (st, at) = rt + γ ·max

a′∈A
(Qn−1

θ (st+1, a
′)) (2.9)

L(θ,X, Y ) =
1

2
(Y − fθ(X))2 (2.10)

where X = (st, at) is the input, Y = rt + γ ·maxa′∈A(Q
n−1
θ (st+1, a

′)) is the target, θ are
the parameters to be optimized4, and L is the loss function. This is similar to what the
Q-learning algorithm does in Eq. (2.8).

Since the target Y used to update Qθ depends on Qθ itself, we need to iterate. Comput-
ing an iterative approximation of the Q-function using regression is the main idea behind

4To ease the transition to DQN, we consider only parametric estimators here (i. e. , we exclude kNN for
instance)
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2.2 A Practical Introduction to Deep Reinforcement Learning

the Fitted Q-Iteration algorithm (FQI) [EGW05, Rie05], presented in Algorithm 1. This
algorithm uses a fixed dataset D of m transitions (st, at, rt, st+1).

Algorithm 1: Fitted Q-Iteration (FQI)

1. Create the training set based on the previous iteration Qn−1
θ and the m tran-

sitions from the dataset D:

xi = (st, at) (2.11)

yi =

{
rt + γ ·maxa′∈A(Q

n−1
θ (st+1, a

′)) if st+1 is non-terminal

rt if st+1 is terminal
(2.12)

2. Fit a model using a regression algorithm to obtain Qn
θ :

fθ(xi) = yi (2.13)

3. Repeat, n = n+ 1

FQI is a step toward a more practical algorithm, but it still has some limitations:

1. It requires a dataset of transitions D and does not provide an explicit way to collect
new transitions

2. A loop over actions is needed to obtain maxa′∈A(Q
n−1
θ (st+1, a

′)), which is inefficient

3. Because Qn
θ depends on Qn−1

θ , this leads to instability (the regression target is con-
stantly moving)

Deep Q-Learning (DQN)

The Deep Q-Learning (DQN) algorithm [MKS+13] introduces several components to over-
come the limitations of FQI.

First, instead of having a fixed dataset of transitions, DQN uses experience replay [Lin92],
also called a replay buffer. The replay buffer, shown in Fig. 2.3, is a first in first out
(FIFO) data structure of capacity m, the maximum number of transitions that can be
stored. When the buffer is full, old experience is removed. Experience replay provides a
compromise between online learning, where transitions are discarded after use, and offline
learning, where transitions are stored forever.

transition 2transition n

X
old experience

is removed
FIFO of capacity 

new experience

transition n+1

Figure 2.3: DQN replay buffer.
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To train its Q-network, DQN creates mini-batches5 of experience by sampling uniformly
from the replay buffer, as illustrated in Fig. 2.4. This breaks the correlation between
consecutive samples, allows the agent to learn from diverse experiences (not just the most
recent ones), and allows more efficient use of data by reusing past transitions multiple
times.

transition n

transition 1

���

transition i

transition j

mini-batch 1

transition 2

transition n

���

transition k

transition i

mini-batch 2

transition 1transition 2transition n

Figure 2.4: DQN replay buffer sampling.

DQN collects samples using an ϵ-greedy strategy (shown in Fig. 2.5): at each step,
it chooses a random action with a probability ϵ, or otherwise follows the greedy policy
(take the action with the highest Q-value in that state). To balance exploration and
exploitation, DQN starts with ϵinitial = 1 (random policy) and linearly decreases its value
until it reaches its final value, usually ϵfinal = 0.01.

Like [Rie05], DQN uses a neural network to approximate the Q-function. However, to
avoid the loop over actions of FQI, it outputs all the Q-values for a given state, as shown
in Fig. 2.5.

Finally, to stabilize learning, DQN uses an old copy of the Q-network Qθtarg to com-
pute the regression target. This second network, the target network, is updated every k
steps, so that it slowly follows the online Q-network. Overall, the DQN algorithm, shown
in Algorithm 2, is very similar to the FQI algorithm, the main difference being that DQN
alternates between collecting new transitions and updating its network.

5Rather than doing updates using the entire dataset, it is more practical to perform gradient updates
with subsets sampled from the dataset.
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copy

transition 1transition 2transition n
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Figure 2.5: Deep Q-Network (DQN) and its main components.

Algorithm 2: Deep Q-Network (DQN)

Initialize replay memory D of capacity m
Initialize action-value function Qθ with random weights θ
Set target parameters equal to online parameters θtarg ← θ
Initialize the environment and retrieve s1 (initial state)
for t = 1, T do

With probability ϵ, select a random action at,
otherwise use the greedy policy at = argmaxa∈AQθ(st, a)
Execute action at in the environment
Observe reward rt and next state st+1

Store transition (st, at, rt, st+1) in D
Sample random mini-batch of transitions (si, ai, ri, si+1) from D

Set yi =

{
ri + γmaxa′ Qθtarg(si+1, a

′) for non-terminal si+1

ri for terminal si+1

Perform a gradient descent step on (yi −Qθ(si, ai))
2

Every k steps, set target parameters equal to online parameters θtarg ← θ
end for

The key components of DQN (Q-network, target network, replay buffer) are at the core
of Deep RL algorithms for continuous control used on real robots such as Soft Actor-Critic
(SAC). We introduce these algorithms in the next section.

2.2.2 From Deep Q-Learning to Soft Actor-Critic and Beyond

While FQI and DQN algorithms can handle continuous state spaces, they are still limited
to discrete action spaces. Indeed, all possible actions (a ∈ A) must be enumerated to
compute maxa′∈AQ

n−1
θ (st+1, a

′) or argmaxa∈AQ(s, a) Eq. (2.9) and Algorithm 2, used to
update the Q-value estimate and select the action according to the greedy policy.
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2 Background

One solution to enable Q-learning in continuous action space is to parametrize the Q-
function so that its maximum can be easily and analytically determined. This is what the
Normalized Advantaged Function (NAF) [GLSL16] does by restricting the Q-function to
a function quadratic in a.

Extending DQN to Continuous Actions: Deep Deterministic Policy Gradient (DDPG)

Another possibility is to train a second network πϕ(s) to maximize the learned Q-function6.
In other words, πϕ is the actor network with parameters ϕ and outputs the action that
leads to the highest return according to the Q-function:

max
a∈A

Qθ(s, a) ≈ Qθ(s, πϕ(s)). (2.14)

This idea, developed by the Deep Deterministic Policy Gradient (DDPG) algorithm [DCH+16],
provides an explicit deterministic policy πϕ for continuous actions. Since Qθ and πϕ are
both differentiable, the actor network πϕ is directly trained to maximize Qθ(s, πϕ(s)) using
samples from the replay buffer D as illustrated in Fig. 2.6:

Lπ(ϕ,D) = max
ϕ

E
s∼D

[Qθ(s, πϕ(s))] . (2.15)

For the update of the Q-function Qθ, DDPG uses the same regression target as DQN.

Q-Network

Actor

NetworkState

State

Action

0.8
0

1

Gradient

Figure 2.6: DDPG update of the actor network. The gradient computed using the loss
of Eq. (2.15) is backpropagated through the Q-network to update the actor
network so that it maximizes the Q-function.

DDPG extends DQN to continuous actions but has some practical limitations. πϕ
tends to exploit regions of the state space where the Q-function overestimates the Q-
value [FvHM18], as shown in Fig. 2.7. These regions are usually those that are not well
covered by samples from the buffer D. Because of this interaction between the actor and
critic networks, DDPG is also often unstable in practice (divergent behavior).

Twin Delayed DDPG (TD3) and Soft Actor-Critic (SAC)

To overcome the limitations of DDPG, Twin Delayed DDPG (TD3) [FvHM18] employs
three key techniques:

1. Twin Q-networks: TD3 uses two separate Q-networks and selects the minimum Q-
value estimate from the two networks. This helps to reduce overestimation bias in
the Q-value estimates.

6A third option is to sample the Q-value, as explored by QT-Opt [KIP+18].

30



2.2 A Practical Introduction to Deep Reinforcement Learning

-function approximation

overestimation

extrapolation error

true -function

observed data

Figure 2.7: Illustration of the overestimation and extrapolation error when approximating
the Q-function. In regions where there is training data (black dots), the ap-
proximation matches the true Q-function. However, outside the training data
support, there may be extrapolation error (in red) and overestimation that the
actor network can exploit.

2. Delayed policy updates: TD3 updates the policy network less frequently than the
Q-networks, allowing the policy network to converge before being updated.

3. Target action noise: TD3 adds noise to the target action during the Q-network
update step. This makes it harder for the actor to exploit the learned Q-function.

Since TD3 learns a deterministic actor network πϕ, it relies on external noise during the
exploration phase. A common approach is to use a step-based Gaussian noise7:

at = πϕ(st) + ϵt, ϵt ∼ N (0, σ2). (2.16)

While the standard deviation σ is usually kept constant, it is a critical hyperparameter
that gives a compromise between exploration and exploitation [PHD+17, Raf20, HGF+24].

To better balance exploration and exploitation, Soft Actor-Critic (SAC) [HZAL18],
successor of Soft Q-Learning (SQL) [HTAL17], optimizes the maximum-entropy objective,
which is slightly different from the classical RL objective Eq. (2.2):

J(π) =
∑
t

E(st,at)∼ρπ

[
γtr(st,at) + αH(π( · |st))

]
(2.17)

where H is the policy entropy and α is the entropy temperature, allowing to have a trade-
off between the two objectives. This objective encourages exploration by maximizing the
entropy of the policy while still solving the task by maximizing the expected return (classic
RL objective).

SAC learns a stochastic policy using a squashed Gaussian distribution, and incorporates
the clipped double Q-learning trick from TD3. In its latest iteration [HZH+18], SAC
automatically adjusts the entropy coefficient α, eliminating the need to tune this crucial
hyperparameter.

7Chapter 4 will present more details about exploration for continuous action spaces
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Algorithm 3: Soft Actor-Critic (SAC)

Initialize replay memory D of capacity m
Initialize Q-networks Qθ1 , Qθ2 and actor network πϕ with random weights
Set target parameters equal to online parameters θtarg,1 ← θ1, θtarg,2 ← θ2
Initialize the environment and retrieve s1 (initial state)
for t = 1, T do

Select action at ∼ πϕ(st)
Execute action at in the environment
Observe reward rt and next state st+1

Store transition (st, at, rt, st+1) in D
Sample random mini-batch of transitions (si, ai, ri, si+1) from D
Compute targets for the Q functions:

yi = ri + γ(1− di)
(
min
j=1,2

Qθtarg,j (si+1, a
′)− α log πϕ(si+1)

)
, a′ ∼ πϕ(si+1)

where di = 1 if si+1 is terminal, di = 0 otherwise

Update Q-functions by one step of gradient descent using

∇θj

(
yi −Qθj (si, ai)

)2
for j = 1, 2

Update policy by one step of gradient ascent using

∇ϕ

(
min
j=1,2

Qθj (si, aϕ)− α log πϕ (si)
)
, aϕ ∼ πϕ(si)

Update target networks with

θtarg,j ← ρθtarg,j + (1− ρ)θj for j = 1, 2

end for

In summary, as shown in Algorithm 3, SAC combines several key elements from the
algorithms presented in this chapter. It uses the update rule from FQI and adopts the
Q-network, target network and replay buffer from DQN to learn the Q-function. SAC also
incorporates techniques from DDPG to handle continuous actions, uses the clipped double
Q-learning trick from TD3 to reduce overestimation bias, and optimizes the maximum
entropy objective with a stochastic policy to balance exploration and exploitation.

SAC and its variants are the algorithms used in this thesis to train RL agents directly
on real robots.

Beyond SAC: TQC, REDQ, DroQ, . . .

Several extensions of SAC have been proposed, in particular to improve the sample ef-
ficiency. One notable example is Truncated Quantile Critics (TQC) [KSGV20] which
builds upon SAC by incorporating distributional RL [BDM17]. In distributional RL,
the Q-function estimates the distribution of returns instead of just the expected return.
Fig. 2.8 illustrates the benefits of learning the distribution of returns rather than only the
expected value in an example.
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Distribution of 

higher probability to obtain
low returnProbability

small probability
to obtain high return
(maybe taking a risk)

Expected value of ,

what SAC -network approximates

Figure 2.8: An example where learning the distribution of returns (distributional RL) in-
stead of the expected value (classic RL) can be useful. We plot the distribution
of returns for a given state-action pair (s, a). In this case, there is a bimodal
distribution. Learning the expected value of it instead of the distribution itself
is harder and does not allow to measure the risk of taking a particular action.

A key idea to improve sample efficiency is to perform multiple gradient updates for each
data collection step. However, simply increasing the update-to-data (UTD) ratio may
not lead to better performance due to the overestimation bias. To address this issue, the
algorithms REDQ [CWZR21] and DroQ [HIH+22] rely on ensembling techniques (explicit
for REDQ, implicit for DroQ with dropout). Finally, a new algorithm, CrossQ [BPB+24],
takes a different approach by removing the target network and using batch normalization
to stabilize learning.
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2.3 Elastic Robots System Description: Hardware and
Challenges

Robotic systems with deliberately introduced elasticity are a promising alternative to their
rigid counterparts [MKH21, BLA+23]. In addition to the passive compliance, which refers
to the ability to yield to external forces without breaking, the elastic elements provide
energy storing and improved efficiency if properly used. Designing controllers that take
full advantage of the intrinsic dynamics of elastically actuated robots remains a challenge,
as it requires a considerable amount of time and system-specific knowledge [KLOAS18].
In this thesis, we address the problem of obtaining efficient controllers for robots with
elastic components by formulating controller design as a learning problem.

This section introduces two robotic platforms with elastic components and are used
extensively in this thesis: the David elastic neck and the bert quadruped robot. Further,
we present the unique challenges posed by the platforms in controlling them effectively.

2.3.1 David Elastic Neck

Rigid platform (moving)

Continuum structure (neck)

Additional length sensors

Measurement:

Model:

Rigid platform (fixed)

Tendons used for actuation

Measurement: 

Model:

Figure 2.9: Neck and head of the humanoid robot DLR David . Left: Demonstration of the
structural flexibility and range of motion of the neck joint. Middle: Detailed
schematic of the experimental system. Right: Experimental setup showing the
LEDs used by the tracking system (in black) and the additional length sensors
(highlighted in green).

The David elastic neck [RDF16] is a tendon-driven continuum mechanism, as shown
in Fig. 2.9. It consists of a fixed lower platform, a moving upper platform and a continuum
structure in between. The inertial frame of reference, denoted by B, is attached to the base
of the neck. The position of the upper platform is described by the origin of the frame H,
expressed in B, and is denoted by Br = (x, y, z)T . The orientation of frame H, expressed
in B, is represented by the three Euler angles, denoted as θ = (θx, θy, θz)

T . Since the
workspace of the system does not exceed ±90◦ in any direction, no singular configurations
of the Euler angles appear. The pose is summarized in the vector q ∈ R6, which includes
the position and orientation of the platform:

q = (x, y, z, θx, θy, θz)
T . (2.18)
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Free length

Moving platform

Fixed platform

Figure 2.10: Schematic of the tendon-driven continuum mechanism, showing the coordi-
nate frames.

The tendons are connected to the upper platform and run along the continuum to the
lower platform without touching, as shown in red in Fig. 2.9. The actuators are located
in the lower platform and allow deformation of the continuum by applying tension to the
tendons. The position displacement ∆l̃ ∈ R4 allows the free length of each tendon to be
measured, assuming a known initial length lt,0 ∈ R4,

lt = lt,0 −∆l̃. (2.19)

Additionally, four length sensors are placed on the system, shown in green in Fig. 2.9,
which provide sensor values s̃ ∈ R4 that are linearly proportional to their length:

ls = Kss̃, (2.20)

with the constant calibration matrix Ks ∈ R4×4.
In summary, the David elastic neck is a tendon-driven continuum mechanism that uses

tendons and length sensors to control the motion of the upper platform. The pose of the
upper platform is described by the position and orientation of the platform, and the sensor
information l̃ = (lt, ls) ∈ R8 is used to measure the length of the tendons and additional
length sensors.
The David elastic neck presents several challenges because of the deformation of its

continuum structure, which cannot be measured directly. To effectively control the robot,
it is crucial to accurately measure the tendon lengths and determine the position and
orientation of the upper platform. In addition, achieving precise control is difficult and
requires a complex strategy due to the non-linear relationship between the motion of the
tendons and the upper platform.
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2.3.2 DLR Quadruped bert

Figure 2.11: Compliantly actuated DLR quadruped bert jumping in place.

The DLR quadruped bert [SHG+20] (shown in Fig. 2.11) is a cat-sized quadruped robot
with series elastic actuators (SEA). The legs are attached to the trunk through the hip
axes, while the motors are located inside the trunk and connected by belt drives. Each
leg consists of a hip and a knee joint and is composed of two segments of equal length of
approximately 8cm. The total mass of the robot is about 3.1kg. As depicted in Fig. 2.12,
motors are connected to the links via a linear torsional spring with constant stiffness
k ≈ 2.75Nm/rad. We use the deflection of the spring to estimate the external torque
applied to each joint:

τi = k(θi − qi) (2.21)

where θ is the motor position before the spring and q the joint position.

hip

knee

foot

Figure 2.12: Model of the compliantly actuated leg (left) and a serial elastic actuator
(right).

The springs on bert are extremely soft compared to its weight and size,
i. e. 2.75Nm/rad, compared to for instance StarlETH [HGB+12] with 20cm link length,
total weight of 23kg and k=70Nm/rad. This means that, for example, when standing in a
default position with joints at 30 deg, bert can be pushed into joint limits without motor
movement, while StarlETH can be pushed into its springs only minimally. This unique
characteristic makes bert well-suited for using its springs for energy storage. Forces re-
quired to load the springs are quite low and occur during normal gait motions. When
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released at the right time, the stored energy can be converted into kinetic energy (joint
velocity), potentially improving its performance.
Finally, bert was built with low cost in mind. The robot’s chassis is entirely 3D printed,

and it uses off-the-shelf servo motors with custom electronics. Due to their low torque
output, these motors have a very high gear ratio (1:325), which results in a generally poor
efficiency of the entire drivetrain. The combination of soft springs and low-cost motors
presents both a challenge and an opportunity: the robot’s elasticity must be exploited to
make it move. Just like pushing a child’s swing at the wrong frequency, controlling bert
against its natural dynamics is inefficient and ineffective.
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2.4 Designing Real-World Reinforcement Learning Experiments

As discussed in the introduction, while RL has shown remarkable success in simulated
environments, translating these results to the real world presents unique challenges. Real-
world experiments require careful consideration of safety, efficiency, and reproducibility,
among other factors. In this section, we will explore key aspects of designing real-world
RL experiments, from task design and algorithm selection to safety considerations. By
exploring best practices and strategies for overcoming common challenges, we aim to
provide a starting point for researchers and practitioners seeking to use RL on real robots.

2.4.1 Starting Simple: Gall’s Law

When designing RL experiments, a key principle is to always start simple. This applies to
various aspects such as selecting the problem to solve and choosing the reward function.
Complexity should be introduced only after the simple problem is well understood and
solved. This principle is summarized by Gall’s law [Gal77]:

A complex system that works is invariably found to have evolved from a simple
system that worked. The parallel proposition also appears to be true: a com-
plex system designed from scratch never works and cannot be made to work.
You have to start over, beginning with a simple system.

Although it is tempting to begin with the interesting and complex problem we want to
solve, it is important to start with a rudimentary version of it. By gradually increasing
the complexity, we have a better understanding of the problem, what works and what
does not, and the implications of each design decision. Having an elementary version of
the task allows for faster iterations: instead of waiting hours to know if a single change
has an effect, we can try different variants in minutes.

2.4.2 Task Design

Task design is the most critical aspect of an RL experiment, as it determines how the
agent perceives and interacts with its environment. This involves defining the observation
space, action space, reward function, and termination conditions.
It is important to normalize these quantities, ensure the observation space contains

sufficient information to solve the task, and avoid violating the Markov assumption. The
aim is to create a well-defined environment for the RL agent to learn and perform efficiently.

Observation Space

The observation space specifies the information available to the agent at each time step
[TTK+23]. It is essential to ensure that the observation space contains sufficient informa-
tion for the agent to solve the task while avoiding the inclusion of irrelevant details that
could slow down learning. For example, if the agent is learning to balance a pole on a
cart, the observation space should include the cart’s position, the pole’s angle, and their
respective velocities.
To maintain the Markov property, the observation space should provide all necessary

information for the agent to make decisions based solely on the current state [SB18a].
Violating the Markov assumption can lead to suboptimal performance [PTLK17]. For
instance, in the case of the cart-pole task, removing the velocity from the observation
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makes it impossible to balance the pole without memory (e. g. using a recurrent neural
network).

Since Deep RL algorithms are optimized using gradient descent, normalizing the obser-
vation space can improve learning stability and speed [HDR+22, HGF+24]. This involves
scaling the observations to a range between -1 and 1, which can be achieved using a
running average if the limits are not known in advance.

Action Space

The action space defines the set of actions available to the agent in each state to interact
with the environment. In robotics, continuous action spaces are often more suitable than
discrete ones, as they allow for finer control granularity. However, there is a trade-off
between the complexity of the action space and the final performance.

A larger action space provides the agent with more flexibility, potentially leading to
better performance at the cost of slower learning. Conversely, a smaller action space can
accelerate learning but may result in suboptimal solutions. For example, when learning to
race with a car, restricting the agent’s steering range reduces the search space but prevents
it from going faster in sharp turns [Raf21].

When using continuous action spaces, it is recommended to normalize actions to the
range of -1 to 1 [HDR+22]. This recommendation comes from the fact that many RL algo-
rithms for continuous action spaces rely on a Gaussian (normal) distribution to represent
the policy. This distribution is commonly initialized with a mean of zero and a standard
deviation of one. If the boundaries of the action space are not normalized, the sampling
of actions from this distribution can lead to inefficient learning or undesirable behavior8.

For example, if the action limits are too large (e. g. -1000 to 1000), the sampled actions
will be clustered near zero, far from the actual action space boundaries, limiting explo-
ration and the agent’s ability to use the full range of actions. In the opposite case, if the
limits are too small (e. g. -0.02 to 0.02), the sampled actions will often exceed these limits,
leading to saturation (actions outside the defined range are usually clipped). This clipping
of actions can make debugging difficult and hinder the learning process.

Normalizing the action space to -1 and 1 matches the initial standard deviation of the
Gaussian distribution, ensuring that the sampled actions are well distributed within the
action space. In addition, normalization allows for flexibility in scenarios where action
limits may change during training, as the normalized actions can be rescaled to match the
dynamic limits of the environment [PQR+24].

Reward Function

The reward function is a fundamental component of an RL experiment as it defines the
objective the agent is trying to achieve. A well-crafted reward function will guide the agent
toward learning the desired behavior, while a poorly designed one can lead to unintended
or undesirable strategies. An example of unintended consequence is called reward hacking,
where the agent exploits loopholes in the reward function to maximize its reward without
achieving the intended goal.

Following Gall’s law, it is recommended to start with a simple, shaped reward and
gradually increase complexity over time. Reward shaping [NHR99] is a technique that can
facilitate learning by providing the agent with intermediate rewards that guide it towards

8See https://github.com/DLR-RM/stable-baselines3/issues/1450 and related issues.
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the ultimate goal. For instance, in a maze navigation task, the agent can receive small
rewards for moving closer to the exit, helping it learn the optimal path more efficiently.

When designing the reward function, it is also useful to distinguish between primary and
secondary rewards. The primary reward represents the main goal of the task, while sec-
ondary rewards encourage other desirable behaviors. For example, in a robot locomotion
task, the primary reward could be the distance traveled, and the secondary reward could
be minimizing energy consumption. To simplify the tuning of weights between different
reward components, it is recommended to normalize the reward terms. When reward
terms have the same magnitude, it is easier to assign priority to each of them.

Termination Conditions

Termination conditions determine when an episode should end. Common termination
conditions include early stopping or time limits [TTK+23].

Early stopping can improve learning speed by preventing the agent from spending time
in irrelevant parts of the environment. For example, in a robot locomotion task, the episode
could be ended if the agent falls. However, care must be taken with early stopping, as it
can lead to reward hacking if the agent learns to deliberately fail early to maximize its
reward.

Choosing appropriate termination conditions is critical because they can significantly
influence the agent’s learning. For example, if the agent is penalized at every time step,
but the episode only ends when the goal is reached or when the robot fails (early stopping),
the agent might learn to fail quickly to maximize its reward. Another case of failure in this
scenario is that the agent learns to get to the goal as fast as possible, but may overshoot
at deployment time (if the episode ends as soon as the goal is reached).

Timeouts (or time limits) are commonly used to ensure episodes do not run indefi-
nitely [TTK+23]. However, if not handled correctly, timeouts can violate the Markov
assumption. One approach to address this issue is to include the remaining time in the
observation space [PTLK17]. Alternatively, the algorithm can be modified to use an infi-
nite horizon variant.

Handling Truncations: Infinite Horizon Tasks

In infinite horizon tasks, such as robot locomotion, distinguishing between truncation and
termination is essential. Truncation occurs when an episode ends due to external factors
like time limits or reaching the boundaries of the task, while termination happens due to
the agent’s actions, such as falling. We illustrate these two concepts in Fig. 2.13.

Proper handling of truncation is crucial to avoid penalizing the robot for events it cannot
control. This involves treating truncated episodes as if they had continued indefinitely.
The distinction between truncation and termination can significantly impact the learning
process [PTLK17, RKS21, HGF+24].

An example that shows the effect of handling truncations is the derivation of the value
function in a simple case. We consider a task with an artificial time limit of four (i. e. there
are four steps per episode). At each step, the agent receives a reward of one (∀t, rt = 1).
With a discount factor of γ = 0.98, according to the definition of the value function (see
Section 2.2), we get two different values for the initial state, depending on whether we
take the time limit into account or not. If we treat the timeout as a normal termination:
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Vπ(s0) =
3∑

t=0

[γtrt]

= 1 + 1 · 0.98 + 0.982 + 0.983 ≈ 3.9.

If we handle the truncation properly, treating the problem as an infinite horizon problem,
we obtain:

Vπ(s0) =

∞∑
t=0

[γtrt]

=
∞∑
t=0

[γt] (∀t, rt = 1)

=
1

1− γ
≈ 50 (geometric series).

This simple example illustrates the impact of appropriate handling of truncation on the
value function. It may have similar effects in more complex scenarios.

2.4.3 Algorithm Selection

Choosing the appropriate algorithm for an RL experiment depends on several factors, such
as the type of action space (continuous or discrete), the desired balance between learning
speed (training time) and sample efficiency, and the feasibility of parallelization.

For scenarios that prioritize fast learning and the ability to parallelize, on-policy al-
gorithms like Proximal Policy Optimization (PPO) [SWD+17] or Advantage Actor-Critic
(A2C) [MBM+16, HKR+22] are well-suited. When dealing with discrete action spaces and
the need for high sample efficiency, Deep Q-Network (DQN) [MKS+13] and its variants,
including Rainbow [HMVH+18] and Quantile Regression DQN (QR-DQN) [DRBM18],
are particularly effective. In continuous action spaces where sample efficiency is crucial,
off-policy algorithms from the Soft Actor-Critic (SAC) family, such as Truncated Quantile
Critics (TQC) and Dropout Q-Functions (DroQ), are recommended (see Section 2.2.2).
Evolution strategies, on the other hand, can be effective when extensive parallelization is
possible, enabling large-scale, asynchronous experiments [SHC+17].

2.4.4 Safety Layers

Ensuring the safety of real-world RL experiments is of utmost importance, especially when
using model-free algorithms that are inherently unsafe (as we will see in Chapter 4). One
approach to mitigate risks is to carefully design the action space to limit dangerous actions.
For example, controlling bounded tendon forces instead of motor positions in a robotic
neck can prevent tendon damage.

Another approach to safety is implementing hard constraints or safety layers that over-
ride the agent’s actions if they violate safety limits [QHI+20, LTAP22, PQS+23, PQR+24].
For example, a safety layer could prevent a robotic arm from knocking over objects or
spilling liquids. These constraints ensure that the agent operates within safe boundaries,
even during exploration.

Incorporating prior knowledge can also enhance safety and efficiency in RL experiments.
By leveraging existing controllers or domain-specific knowledge, the search space for the
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RL agent can be reduced, guiding it towards safer and more efficient solutions. This
strategy will be explored notably in Chapter 5 and Chapter 6.
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tracking limits

00:15 Remaining time

(a) Experimental setup of a quadruped robot on a treadmill.

tracking limits

Episode terminated

(b) The episode terminates because the robot falls (early stopping)

Episode truncated

00:00 Timeout!

(c) The episode ends because the time limit has been reached (truncation).

tracking limits

Episode truncated

(d) The episode ends because the robot reached the limits of the tracking device
(truncation).

Figure 2.13: Illustration of the difference between termination and truncation in a locomo-
tion task setup (a). The robot must learn to walk forward as fast as possible
without falling (termination, as in (b)). If the robot reaches the limit of the
tracking device or the time limit (here a maximum of 15s per episode), the
episode ends, but it is considered a truncation (as seen in (c) and (d)).
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CHAPTER 3

Reliable Software for Reproducible RL Research

Results in RL are often difficult to reproduce [HIB+18b] and require a careful development
process so that no important details are overlooked [HDR+22]. Trusted implementations
are especially needed when learning directly on a real hardware, where interaction with
the environment is costly–as discussed in challenges ii. (Sample Efficiency) and iii. (Real-
Time Constraints)– and potential bugs can affect the performance. Furthermore, it is
important to have fast and reproducible experiments, keep track of changes, and be able
to isolate the key factors leading to success or failure.

To address these challenges, this chapter presents reliable implementations of DRL
algorithms along with fast variants and a training framework for reproducible experiments.
This software, developed during the course of this thesis, forms its core: every subsequent
chapter rely on it.

3.1 Stable-Baselines3 (SB3): Reliable RL Implementations

A major challenge in RL is that small implementation details can have a substantial effect
on performance – often greater than the difference between algorithms [EIS+20, HDR+22].
It is particularly important that implementations used as experimental baselines are reli-
able; otherwise, novel algorithms compared to weak baselines lead to inflated estimates of
performance improvements.

To address this challenge, we developed Stable-Baselines3 (SB3), an open-source
framework that implements ten popular model-free DRL algorithms (see Section 3.1.2)
using the Gym interface [TTK+23]. To ensure high-quality implementations, we follow
software engineering best practices, including automated tests, static type checking, and
code reviews. Each algorithm is benchmarked on common environments [RKS21] and
compared to prior implementations. Our comprehensive test suite covers 96% of the code,
and our active user base1 scrutinizing changes, helps minimize implementation errors.

Building on our experience with Stable-Baselines2 (SB2) [HRE+18], a previous im-
plementation forked from OpenAI Baselines [DHK+17], we have completely rewritten the

1At the time of writing, SB3 has 5M downloads on PyPi, has 9000+ stars, 1400+ closed issues and 500+
merged pull requests on GitHub, and the accompanying paper [RHG+21] has 2500+ citations.
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codebase in PyTorch [PGM+19]. SB3 maintains a similar API to SB2, allowing for a
seamless upgrade pathway2.

import gymnasium as gym

from stable_baselines3 import SAC

# Train an agent using Soft Actor-Critic on Pendulum-v1

env = gym.make("Pendulum-v1")

model = SAC("MlpPolicy", env).learn(total_timesteps=20_000)

# Save the model

model.save("sac_pendulum")

# Load the trained model

model = SAC.load("sac_pendulum")

# Start a new episode

obs, _ = env.reset()

# What action to take in state `obs`?

action, _ = model.predict(obs, deterministic=True)

Figure 3.1: Using Stable-Baselines3 to train, save, load, and infer an action from a
policy.

3.1.1 Design Principles

Our main objective is to provide a user-friendly and reliable RL library. To keep SB3
simple to use and maintain, we focus on model-free and single-agent RL algorithms, and
leverage external projects for imitation [WTGE20] and offline learning [Sen20]. We prior-
itize maintaining stable implementations rather than adding new features or algorithms,
and avoid making breaking changes. We provide a consistent, clean and fully documented
API, inspired by the scikit-learn API [PVG+11]. Our code is designed to be readable
and simple, using object-oriented programming to minimize duplication, making it easy
for users to modify.

3.1.2 Features

Simple API. Training and querying agents with Stable-Baselines3 is straightforward,
requiring only a few lines of code. This simplicity enables researchers to easily integrate
the baseline algorithms and components into their experiments (e. g. [NZSL19, GDW+20,
MYY+23, BPB+24]) and apply RL to novel tasks and environments, such as autonomous
drone racing [SRM+23] and controlling electric motors [TBKW20]. Fig. 3.1 illustrates the
ease of use.

Documentation. SB3 provides extensive documentation of its code API3. It includes a
user guide with concrete examples, a Colab notebook-based RL tutorial4, general tips for
running RL experiments, and a developer guide. We also pay close attention to questions
and uncertainties from SB3 users and update the documentation to address them.

2An upgrade guide is available at https://stable-baselines3.readthedocs.io/en/master/guide/

migration.html
3https://stable-baselines3.readthedocs.io/en/master/
4https://github.com/araffin/rl-tutorial-jnrr19, running directly in the browser.
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3.1 Stable-Baselines3 (SB3): Reliable RL Implementations

High-Quality Implementations. Algorithms are verified against published results by
comparing agent learning curves5. All functions are typed, documented, and covered
by unit tests (currently 96% code coverage). Continuous integration ensures that modifi-
cations pass unit tests, type checking, and code style validation.

Comprehensive. Stable-Baselines3 contains the following state-of-the-art on- and off-
policy algorithms, commonly used as experimental baselines: ARS [MGR18], A2C [MBM+16],
DDPG [LHP+16], DQN [MKS+15], HER [AWR+17], PPO [SWD+17], SAC [HZAL18],
TRPO [SLA+15], TD3 [FvHM18] and QR-DQN [DRBM18]. In addition, SB3 provides
several algorithm-independent features. We support logging to CSV files and TensorBoard.
Users can log custom metrics and modify training via user-provided callbacks. To speed
up training, we support parallel (or “vectorized”) environments. To simplify training, we
implement common environment wrappers, such as preprocessing Atari observations to
match the original DQN experiments [MKS+15].

Stable-Baselines3 Contrib. Experimental features are implemented in a separate con-
trib repository [RHE+20], allowing Stable-Baselines3 to maintain a stable and compact
core while providing the latest features, like Truncated Quantile Critics (TQC) [KSGV20].
Contrib implementations undergo the same rigorous review process to ensure trustworthi-
ness.

3.1.3 Comparison to Related Software

Most RL libraries are designed for experienced researchers, requiring expert knowledge
to use [WZD+20, HSA+20, FNKI21, CMG+18, GKR+18, GCL+18, SA19, Kol18]. Few
RL libraries offer more than brief API documentation [gc19, LLN+18, KSF17, GKR+18],
and some are notoriously difficult to understand6. In contrast, Stable-Baselines3 is
designed to be easy to use, with extensive documentation and tutorials.

The previous version of Stable-Baselines3, Stable-Baselines2, has its roots in
OpenAI Baselines [DHK+17], but the two codebases have diverged significantly (see PR
#481). SB3 is a complete rewrite of Stable-Baselines2 in PyTorch, building on the
improvements and new algorithms from SB2 while further enhancing code quality (e. g.
cleaner codebase, better test coverage, type hints). Compared to Baselines, SB3 is fully
documented, commented, tested, and features five additional algorithms (ARS, QR-DQN,
SAC, TD3, TQC) and many additional features (e. g. dictionary observation support,
callbacks, evaluation with multiple environments, environment checker). The only legacy
features of OpenAI Baselines are the code structure (one folder per algorithm), the use of
code-level optimizations, and the environment tools, which have been greatly improved7

(additional features, bug fixes, comments, documentation and more testing).

Many RL libraries have a modular design [CLNE17, KG17b, HSA+20, gc19], allowing for
quick combination of advances from different papers. However, this requires new users to
understand the full code structure before making changes. On the other hand, educational
implementations like Spinning Up [Ach18] or Clean RL [HDY+22] are self-contained but
hard to maintain due to code duplication. SB3 strikes a balance, factoring out widely

5For example, issue #48 or issue #49.
6OpenAI Baselines [DHK+17], see https://www.reddit.com/r/MachineLearning/comments/95ft1j/.
This was a major starting point for Stable-Baselines2 [HRE+18]

7As an example, one can compare “VecNormalize” in OAI Baselines vs SB3.
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used components (like replay buffers) while minimizing the amount of code that needs to
be understood to modify an algorithm.

Since an exhaustive comparison to all RL libraries is not possible, in Table 3.1 we
compare SB3 to a subset of other active or popular libraries, focusing on quality of im-
plementation and openness to new users.

RLlib [LLN+18] scores highly in the table, but targets a different use-case than SB3.
While SB3 prioritizes simplicity and reliability, RLlib [LLN+18] focuses on scalability and
support for distributed training. RLlib’s versatility comes at the cost of a larger and more
complex codebase.

Overall, we find that SB3 compares favorably to other libraries in terms of documen-
tation, testing, and activity.

SB3 OAI Baselines PFRL RLlib Tianshou Acme Tensorforce

Backend PyTorch TF PyTorch PyTorch/TF PyTorch Jax/TF TF

User Guide / Tutorials ✓/ ✓ ✗/ / ✓ ✓/ ✓ / ✓ / ✓ ✓/

API Documentation ✓ ✗ ✓ ✓ ✓ ✗ ✓

Benchmark ✓ ✓ ✓ ✓

Pretrained models ✓ ✗ ✓ ✗ ✗ ✗ ✗

Test Coverage 96% 49% ? ? 94% 74% 81%

Type Checking ✓ ✗ ✗ ✓ ✓ ✓ ✗

Issue / PR Template ✓ ✗ ✗ ✓ ✓ ✗ ✗

Last Commit (age) < 1 week > 4 years > 1 month < 1 week < 1 week < 1 month > 1 month

Approved PRs (6 mo.) 75 0 13 222 85 5 7

Table 3.1: Comparison of SB3 to a representative subset of active or popular RL libraries.
Key: means that the feature is only partially present; OAI: OpenAI; TF:
TensorFlow; PR: Pull Request.

3.2 SBX: A Faster Version of SB3

While Stable-Baselines3 offers extensive features and flexibility using the PyTorch
library, SBX is designed to be a faster version with a more limited scope but sharing the
same interface. To achieve significant speedup (SBX is up to 20 times faster than SB3),
SBX uses the Jax library [BFH+18] and its just-in-time (JIT) compilation capabilities.
More specifically, SBX compiles the policy updates that are the bottleneck of SB3.

The faster implementations in SBX have two main advantages. First, experiments can
be run much more quickly as shown in Fig. 3.2 (e. g. 10 minutes to run one experiment
in simulation instead of two hours). Second, more gradient updates can be performed in
the same amount of time, resulting in improved sample efficiency. This is the main idea
behind the DroQ [HIH+22] algorithm, which is up to ten times more sample efficient than
other model-free algorithms. This improved sample efficiency is particularly relevant when
learning directly on real robots.

Importantly, SBX implementations share the same interface and have been benchmarked
against SB3 implementations. SBX also reuses significant components from SB3.
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SB3 vs. SBX on HalfCheetah-v4
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Figure 3.2: Comparison of runtime between SB3 and SBX on the HalfCheetah envi-
ronment for the TD3 algorithm. Here, SBX is around 10x faster than SB3.

3.3 RL Zoo: A Training Framework for Reproducible RL

RL Baselines Zoo [Raf18, Raf20] is a training framework based on SB3 and SBX. SB3 and
SBX provide algorithms and components such as replay buffers and callbacks; RL Zoo
complements these libraries with scripts for training, evaluating agents, tuning hyperpa-
rameters, visualizing results, and recording videos. Fig. 3.3 shows the main features of the
RL Zoo.

In addition, the RL Zoo includes a collection of pre-trained reinforcement learning agents
along with tuned hyperparameters for a large variety of tasks, including PyBullet envi-
ronments [CB21] and Atari games. This allows to quickly assess performance and serve
as a starting point for exploring new tasks.

# Train an SAC agent on the Pendulum task using tuned hyperparameters,

# evaluate the agent every 1k steps and save a checkpoint every 10k steps

# Pass custom hyperparameters to the algo/env (here gravity=9.8)

python -m rl_zoo3.train --algo sac --env Pendulum-v1 --eval-freq 1000 \

--save-freq 10000 -params train_freq:2 --env-kwargs g:9.8

# Plot the learning curve

python -m rl_zoo3.cli all_plots -a sac -e Pendulum-v1 -f logs/

# Load and evaluate a trained agent for 1000 steps

# optionally, you can also load a checkpoint using --load-checkpoint

python -m rl_zoo3.enjoy --algo sac --env Pendulum-v1 -n 1000

# Tune the hyperparameters of ppo on BipedalWalker-v3 with a budget of 50 trials

# using 2 parallel jobs, a TPE sampler and median pruner

python -m rl_zoo3.train --algo ppo --env BipedalWalker-v3 -optimize --n-trials 50 \

--n-jobs 2 --sampler tpe --pruner median

Figure 3.3: Using RL Baselines3 Zoo to train, evaluate and save checkpoints; plot results;
load, evaluate and render a trained agent; and perform hyperparameter tuning.

The RL Zoo adheres to best practices for RL experimentation [HIB+18b, PNWW23],
ensuring reproducible experiments and allowing the user to focus on defining their task.
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Each time an experiment is run, the RL Zoo saves all relevant information in a dedicated
folder, making it easy to replicate and compare results. This includes the algorithm hyper-
parameters, the command line arguments, and the arguments passed to the environment
(e. g. when trying variations of a task).

Thanks to its integration with platforms like Weight&Biases and HuggingFace, RL Zoo
results can be easily aggregated and compared, the Open RL Benchmark [HGF+24] being
an example.

Overall, the RL Baselines3 Zoo is a key component for having reliable and reproducible
experiments, which is critical when learning directly in the real world.

3.4 Best Practices for Testing and Implementing RL Algorithms

To conclude this chapter, we will examine two aspects that distinguish SB3 and its asso-
ciated software suite. First, we will present in more detail the type of tests we use for all
tools (SB3, SBX, and RL Zoo), and then dive into the steps required to reliably implement
a new RL algorithm. The best practices presented here use RL for illustration, but they
can also be applied to other domains.

3.4.1 Automated Tests for RL Software

# Training budget (cap the max number of iterations)

N_STEPS = 1000

def test_performance_ppo() -> None:

agent = PPO("MlpPolicy", "CartPole-v1").learn(N_STEPS)

# Evaluate the trained agent

episodic_return = evaluate_policy(agent, n_eval_episodes=20)

# check that the performance is above a given threshold

assert episodic_return > 90

Figure 3.4: An example of a performance test that trains a PPO agent with a small budget
and checks that it achieves a performance above a given threshold.

SB3 employs several strategies to ensure reliability. One key approach is to adhere to
software engineering best practices and use automated checks.

The automated checks include a formatter that unifies the code style, a linter that scans
the code for potential errors (e. g. a variable is defined but not used) and a static type
checker that helps ensure code correctness (e. g. checking that the type of a variable passed
to a function is the expected one). In addition, SB3 has a large collection of tests, which
translates into high code coverage (percentage of code covered by at least one test). Three
main types of tests are employed: execution tests, unit tests, and performance tests.

Execution tests (or “run tests”) check that the code executes without errors (the differ-
ent component of the code can work together without crashing), while unit tests validate
the behavior of specific features (e. g. for a given input, a function must return an ex-
pected output). Performance tests go beyond typical runtime tests by evaluating whether
the algorithm demonstrates actual learning progress, rather than random behavior. For
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example, as shown in Fig. 3.4, testing a PPO implementation with a small training budget
in a simple environment can help detect regressions by setting a performance threshold.

3.4.2 Implementing a New Algorithm

Implementing a new RL algorithm can be a difficult task [HDR+22, HGF+24], but follow-
ing a systematic approach is the key to success.

Understanding the Algorithm

Figure 3.5: An excerpt from the appendix of the DQN[MKS+15] paper that mentions
the “update frequency” parameter, which has a great impact on the learning
process.

The first step in implementing a new algorithm is to thoroughly read the original re-
search paper. It is essential to pay close attention to details that may significantly impact
implementation and performance. Examining the appendix and supplementary materials
can reveal important hyperparameters or implementation details that may not be explic-
itly mentioned in the main body of the paper. For example, in the Deep Q-Network
(DQN) paper [MKS+13], a detail about network update frequency is only mentioned in
the appendix (the excerpt is displayed in Fig. 3.5).

Reviewing Existing Implementations

Figure 3.6: An excerpt from SB3 codebase that shows the computation of the TD target
for PPO value function using TD(λ) estimator. If not careful, this type of
implementation detail can be easily missed.

Reviewing existing implementations, especially the original implementation by the au-
thors of the algorithm, is crucial. This step helps uncover undocumented tricks and
implementation details that can affect performance. For instance, the Proximal Policy
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Optimization (PPO) [SWD+17] code reveals the use of a TD(λ) estimator for the value
function [SML+15] instead of the Monte Carlo estimator mentioned in the paper (see
Fig. 3.6). This subtle but important difference can be easily overlooked without careful
examination of the code.

Basic Implementation and Validation

After understanding the details of the algorithm, the next step is to create a basic imple-
mentation that exhibits some “sign of life” on a simple toy problem. The goal is to ensure
that the algorithm shows some learning progress rather than behaving randomly. Using
a toy problem allows for faster iteration and easier debugging. For example, to verify
the functionality of a PPO implementation with memory (PPO with LSTM), it can be
tested on a modified Pendulum environment [TTK+23], where the velocity observation is
removed. This modification makes it impossible for a standard PPO implementation to
solve the task, while the PPO with LSTM implementation should successfully learn to
control the pendulum, demonstrating that the memory component of the algorithm works
as intended.

Step-by-Step Validation

import numpy as np

# Demonstration of automatic broadcasting

batch_size = 64

# shape: (64,)

rewards = np.ones((batch_size,))

# shape: (64, 1)

current_q_values = np.zeros((batch_size, 1))

# auto broadcast, shape: (64, 64)!

td_target = current_q_values + rewards

Figure 3.7: An example of unexpected result due to automatic broadcast: when adding
two vectors together, the output is a matrix.

Step-by-step validation is another aspect of the implementation. This involves logging
relevant values, such as the mean and maximum Q values, to monitor the algorithm’s
progress and identify potential problems. Using a debugger to step through the code
and inspect the variables allows to catch subtle errors such as unintended broadcasting
in NumPy [HMvdW+20]. For example, adding a vector to a single-column matrix can
cause unexpected broadcasting, resulting in a matrix output instead of a vector (as shown
in Fig. 3.7). While the code may run without error, this broadcasting problem can signif-
icantly affect the results.

Visualizing the behavior of the trained agent is another validation technique. Observing
how the agent interacts with the environment can often provide more insight than simply
analyzing metrics.
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Thorough Evaluation

Once the implementation seems reasonably functional, the next step is to validate it
on known environments with increasing complexity. This allows for a more thorough
evaluation of the algorithm’s capabilities and helps identify potential issues related to
exploration or other aspects of the algorithm’s performance [CSO18, FLO+22]. Starting
with simpler environments and gradually progressing to more complex ones provides a
systematic way of assessing the robustness of the implementation (following Section 2.4).

3.5 Conclusion

In this chapter, we introduced two software tools that facilitate the application of RL to
real robots: SB3 and SBX. Stable-Baselines3 provides core features and well-tested
implementations, while SBX extends SB3 and significantly improves its performance,
allowing for faster iteration and the use of more sample-efficient algorithms. These two
software tools offer a reliable foundation for training RL controllers, enabling users to focus
on defining the RL task rather than worrying about implementation details. Furthermore,
the RL Zoo toolkit ensures reproducibility and adherence to best practices when running
the experiments.
This chapter is probably the one with the greatest impact. Since its release, SB3,

SBX and the RL Zoo have been used by students, educators, researchers, and engineers
who want to apply reinforcement learning. The software has been integrated into Deep
RL courses [SS23]8 and is widely used by students [RFK+23]9. Researchers from various
fields have employed it, from video games [Whi23] to large language models [RAB+23],
particle accelerators at CERN [VGK+23], climate change problems [LCNB22], biped
robots [Car22] or autonomous drone racing [SSKS21, SRM+23]. Finally, it was also used
to develop new RL algorithms [BPB+24].

8See also https://edu.epfl.ch/coursebook/en/legged-robots-MICRO-507 and https://www.kaggle.

com/code/alexisbcook/deep-reinforcement-learning
9See also https://github.com/DLR-RM/stable-baselines3/network/dependents
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CHAPTER 4

Smooth Exploration with generalized State-Dependent Exploration
(gSDE)

Most RL practitioners only train agents in simulation [TET12, MBT+18, CB21, MWG+21,
TTK+23]. Among the few who apply learned controllers on actual robots, the major-
ity follow the same simulation-to-reality approach [ICT+18, AAC+19, ZQW20, SGFH21,
SPB22, KFPM21, MLH+22, RHRH22, ZFW+23]. Training in simulation hides some
weaknesses of DRL algorithms that make them unsuitable for real robots. One prob-
lem is the default exploration method for continuous control, which relies on adding
noise at each step, illustrated to the left in Fig. 4.1. It can be very effective in simu-
lation [DCH+16, ABC+20, FvHM18, PALvdP18, HLD+19] but poses safety risks and is
ineffective for real systems.

This chapter contributes a simple alternative to the standard step-based exploration,
providing a smoother exploration strategy. Our approach enables the direct training of
RL agents in the real-world, tackling challenge i. (Exploration-Induced Wear and Tear),
without relying on heuristics like low-pass filters. We integrate the proposed method into
Stable-Baselines3 and use the software suite introduced in Chapter 4 to run all the
experiments.

4.1 Introduction

When it comes to experiments on real robots, the standard white noise exploration, or
unstructured exploration, has many drawbacks. These limitations have been consistently
highlighted in the literature [RFS08, KP09, RSS+10, SS13, DNP+13]:

1. Sampling independently at each step can result in shaky behavior [MMMS21], lead-
ing to noisy and jittery trajectories.

2. The jerky motion patterns generated by this approach can cause damage to the
motors on a real robot, leading to increased wear and tear.

3. A real system acts as a low-pass filter, which means that successive perturbations can
cancel each other out, resulting in poor exploration. This is particularly problematic
when the control frequency is high [KMVB19].
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Figure 4.1: Comparison of exploration methods. Top: Unstructured exploration (step-
based exploration) producing high-frequency noise, commonly used in sim-
ulated DRL. Bottom: Our proposed method, gSDE, provides smooth and
consistent exploration.

4. Unstructured exploration can lead to a large variance that grows with the number
of time-steps [KP09, RSS+10, SS13]

In practice, we have observed all of these drawbacks on three real robots, including the
tendon-driven robot David Section 2.3.1, which is the main experimental platform used
in this chapter.

In robotics, multiple solutions have been proposed to counteract the inefficiency of
unstructured noise. These include correlated noise [HZH+18, KMVB19], low-pass fil-
ters [HHZ+18, HXT+20], action repeat [NAW+20] or lower level controllers [HHZ+18,
KHJ+19]. A more principled solution is to perform exploration in parameter space, rather
than in action space [PHD+17, PS18]. This approach usually requires fundamental changes
in the algorithm, and is harder to tune when the number of parameters is high.

State-Dependent Exploration (SDE) [RFS08, RSS+10] was proposed as a compromise
between exploring in parameter and exploring in action space. SDE replaces the sampled
noise with a state-dependent exploration function that returns the same action for a given
state during an episode. This results in smoother exploration and less variance per episode.

To the best of our knowledge, no Deep RL algorithm has yet been successfully combined
with SDE. We suspect this is because the problem it solves – shaky, jerky motion – is not
as noticeable in simulation, which is the current focus of the community.

In this chapter, we aim at reviving interest in SDE as an effective method for addressing
exploration issues that arise from using independently sampled Gaussian noise on real
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robots. Our concrete contributions, which also determine the structure of the chapter,
are:

1. Highlighting the issues with unstructured Gaussian exploration (Section 4.1).

2. Adapting SDE to Deep RL algorithms, and tackling some issues of the original
formulation (Sections 4.3.2 and 4.4).

3. Evaluate the different approaches with respect to the compromise between smooth-
ness and performance, and show the impact of the noise sampling interval (Sec-
tions 4.5.1 and 4.5.2).

4. Successfully applying DRL directly on three real robots: a tendon-driven robot, a
quadruped and an RC car, without need of a simulator or filters (Section 4.5.3).

4.2 Related Work

Exploration is a key topic in reinforcement learning [SB18a]. It has been studied exten-
sively in the discrete case, and most recent work still focuses on discrete actions [OBPVR16,
BSO+16, OAC18, FAP+18].

For continuous control, several papers tackle the problem of unstructured exploration
by introducing correlated noise. [KMVB19] use an autoregressive process with variables
to control exploration smoothness. Similarly, [vHTP17] employ a temporal coherence
parameter to interpolate between step- or episode-based exploration, using a Markov chain
to correlate the noise. This approach requires a history, altering the problem definition.

Exploring in parameter space [KP09, SOR+10, RSS+10, SS13, SS19] is an orthogonal
approach that also solves some issues of unstructured exploration. It has been successfully
applied to real robots, but relies on motor primitives [PS08, SS13], which requires initial
demonstrations. [PHD+17] adapted parameter exploration to DRL by defining a distance
in the action space and applying layer normalization to handle high-dimensional space.

Population-based algorithms like Evolution Strategies (ES) and Genetic Algorithms
also explore parameter space. With massive parallelization, they compete with RL in
training time but are sample inefficient [SMC+17]. [PS18] combines ES exploration with
RL gradient updates to mitigate this inefficiency. While powerful, this approach introduces
numerous hyperparameters and significant computational overhead.

Smooth control is essential for real robots but often overlooked in DRL. [MMMS21] in-
corporated continuity and smoothing loss into RL algorithms, achieving smooth controllers
that reduce energy consumption at test time on real robots. However, their method does
not address smooth exploration during training, limiting their approach to training in
simulation.

4.3 Exploration for Continuous Control

4.3.1 Exploration in Action or Policy Parameter Space

In the case of continuous actions, the exploration is commonly done in the action space
[SLA+15, LHP+16, MBM+16, SWD+17, HTAL17, FvHM18]. A noise vector ϵt is inde-
pendently sampled from a Gaussian distribution at each time-step, and then added to the
policy output as follows:

at = µ(st; θµ) + ϵt, ϵt ∼ N (0, σ2). (4.1)
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Here, µ(st, θµ) is the deterministic policy, and π(at|st) ∼ N (µ(st, θµ), σ
2) is the resulting

stochastic policy used for exploration. The parameters of the deterministic policy are
denoted by θµ. For simplicity, we consider only Gaussian distributions with diagonal
covariance matrices, so σ is a vector with the same dimension as the action space A.
Alternatively, the exploration can be performed in the policy parameter space [RSS+10,

PHD+17, PS18]. This involves adding a perturbation ϵ to the policy parameters θµ at the
beginning of an episode:

at = µ(st; θµ + ϵ), ϵ ∼ N (0, σ2). (4.2)

While this approach can lead to more consistent exploration, it becomes increasingly
challenging as the number of parameters grows [PHD+17].

4.3.2 State-Dependent Exploration

State-Dependent Exploration (SDE) [RFS08, RSS+10] is an intermediate approach that
adds noise to the deterministic action µ(st) as a function of the state st. At the beginning
of an episode, the parameters θϵ of this exploration function are drawn from a Gaussian
distribution. The resulting action at is given by:

at = µ(st; θµ) + ϵ(st; θϵ), θϵ ∼ N (0, σ2) (4.3)

This episode-based exploration is smoother and more consistent than unstructured step-
based exploration. As a result, during an episode, the action a for a given state s will be
the same, rather than oscillating around a mean value.
In the rest of this chapter, we drop the time subscript t to avoid overloading the notation,

i. e. we write s instead of st.
In the case of a linear exploration function ϵ(s; θϵ) = θϵs, it can be shown that the action

element aj is normally distributed [RFS08]:

πj(aj |s) ∼ N (µj(s), σ̂j
2) (4.4)

where σ̂ is a diagonal matrix with elements σ̂j =
√∑

i (σijsi)
2.

Since we know the policy distribution, we can obtain the derivative of the log-likelihood
log π(a|s) with respect to the variance σ:

∂ log π(a|s)
∂σij

=
∑
k

∂ log πk(ak|s)
∂σ̂j

∂σ̂j
∂σij

(4.5)

=
∂ log πj(aj |s)

∂σ̂j

∂σ̂j
∂σij

(4.6)

=
(aj − µj)2 − σ̂j2

σ̂j
3

s2iσij
σ̂j

(4.7)

This can be easily plugged into the likelihood ratio gradient estimator [Wil92], allowing
σ to be adjusted during training. SDE is thus compatible with standard policy gradient
methods, while addressing most of the shortcomings of unstructured exploration.

4.4 Generalized State-Dependent Exploration

The original formulation of SDE has several limitations that follow from Eqs. (4.4)
and (4.5). In particular:
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i The noise remains constant throughout an episode, which can limit exploration in
long episodes [vHTP17].

ii The policy variance σ̂j =
√∑

i (σijsi)
2 depends on the state space dimension, re-

quiring problem-specific adjustments to the initial σ.

iii The exploration noise is linearly dependent on the state, limiting its expressiveness.

iv The state must be normalized, as the gradient and noise magnitude depend on the
state magnitude.

To address these limitations and adapt SDE to Deep RL algorithms, we propose two
improvements:

1. We sample the exploration function parameters θϵ every n steps, rather than every
episode.

2. Instead of using the state s, we use policy features zµ(s; θzµ) (the last layer before
the deterministic output µ(s) = θµzµ(s; θzµ)) as input to the noise function ϵ(s; θϵ) =
θϵzµ(s).

Sampling θϵ every n steps overcomes limitation i and provides a unifying framework
[vHTP17] that encompasses both unstructured exploration (n = 1) and original SDE
(n = episode length). Although this formulation follows the description of DRL algorithms
that update their parameters everym steps, the influence of this parameter on smoothness
and performance has been overlooked until now.

Using policy features addresses issues ii, iii, and iv. The relationship between state s and
noise ϵ becomes non-linear, and the variance of the policy depends only on the network
architecture. This makes gSDE more task-independent, since the network architecture
typically remains constant. It also reduces the number of parameters and computations
required for large state spaces, such as images. The number of parameters and operations
is determined only by the size of the last layer and the action dimension, no longer by
the size of the state space. Therefore, this formulation is more general and includes the
original SDE description when the state is used as an input to the noise function or when
the policy is linear.

We refer to the resulting approach as generalized State-Dependent Exploration (gSDE).

4.5 Experiments

In this section, we study gSDE to answer the following questions:

• How does gSDE compares to the original SDE? What is the impact of each proposed
change?

• How does gSDE compares to other types of exploration noise in terms of the tradeoff
between smoothness and performance?

• How does gSDE performs on a real robot?
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4.5.1 Compromise Between Smoothness and Performance

Experimental Setup To compare the performance and smoothness of gSDE with other
exploration methods, we use four locomotion tasks from the PyBullet package [CB21]:
HalfCheetah, Ant, Hopper, and Walker2D. We focus on the SAC algorithm, as it
will be used on a real robot.
To evaluate smoothness, we define a continuity cost C = 100× Et

[
(at+1−at

∆amax )2
]
, ranging

from 0 (constant output) to 100 (action jumps from one boundary to another at every
step). The training continuity cost Ctrain serves as a proxy for the robot’s wear-and-tear.
We compare the performance of the following configurations:

a)No exploration noise

b)Unstructured Gaussian noise (original SAC implementation)

c)Correlated noise (Ornstein–Uhlenbeck process [UO30], σ = 0.2, labeled OU noise)

d)Adaptive parameter noise [PHD+17] (σ = 0.2)

e)gSDE

To isolate exploration noise from parameter update noise and to better simulate a real
robot scenario, gradient updates are applied only at the end of each trial.

We fix the budget to one million steps and report the average score over 10 runs,
along with the average continuity cost during training and its standard error. For each
run, we test the learned policy on 20 evaluation episodes every 10000 steps, using the
deterministic controller µ(st). Regarding the implementation, we use the software tools
presented in Chapter 3: Stable-Baselines3 implementations [RHG+21] together with the
RL Zoo training framework [Raf20].

Algorithm HalfCheetah Ant Hopper Walker2D

SAC Return ↑ Ctrain ↓ Return ↑ Ctrain ↓ Return ↑ Ctrain ↓ Return ↑ Ctrain ↓

w/o noise 2562 +/- 102 2.6 +/- 0.1 2600 +/- 364 2.0 +/- 0.2 1661 +/- 270 1.8 +/- 0.1 2216 +/- 40 1.8 +/- 0.1
w/ unstructured 2994 +/- 89 4.8 +/- 0.2 3394 +/- 64 5.1 +/- 0.1 2434 +/- 190 3.6 +/- 0.1 2225 +/- 35 3.6 +/- 0.1
w/ OU noise 2692 +/- 68 2.9 +/- 0.1 2849 +/- 267 2.3 +/- 0.0 2200 +/- 53 2.1 +/- 0.1 2089 +/- 25 2.0 +/- 0.0
w/ param noise 2834 +/- 54 2.9 +/- 0.1 3294 +/- 55 2.1 +/- 0.1 1685 +/- 279 2.2 +/- 0.1 2294 +/- 40 1.8 +/- 0.1

w/ gSDE-2 2987 +/- 85 4.1 +/- 0.2 3366 +/- 50 4.7 +/- 0.1 2532 +/- 70 2.8 +/- 0.1 2237 +/- 55 2.8 +/- 0.1
w/ gSDE-4 2798 +/- 41 4.1 +/- 0.2 3227 +/- 182 3.8 +/- 0.2 2541 +/- 49 2.6 +/- 0.1 2322 +/- 69 2.6 +/- 0.1
w/ gSDE-8 2850 +/- 73 4.1 +/- 0.2 3459 +/- 52 3.9 +/- 0.2 2646 +/- 45 2.4 +/- 0.1 2341 +/- 45 2.5 +/- 0.1
w/ gSDE-64 2970 +/- 132 3.5 +/- 0.1 3160 +/- 184 3.5 +/- 0.1 2476 +/- 99 2.0 +/- 0.1 2324 +/- 39 2.3 +/- 0.1
w/ gSDE-Episodic 2741 +/- 115 3.1 +/- 0.2 3044 +/- 106 2.6 +/- 0.1 2503 +/- 80 1.8 +/- 0.1 2267 +/- 34 2.2 +/- 0.1

Table 4.1: Detailed results for SAC with various exploration methods on PyBullet envi-
ronments. We present the mean and standard error of returns and continuity
costs over ten runs of one million steps. For each benchmark, we highlight
the results of the method(s) with the highest mean return if the difference is
statistically significant.

Results Table 4.1 and Fig. 4.2 presents the results on the PyBullet tasks and the trade-
off between continuity and performance. Without any noise (“No Noise” in the figure),
SAC can partially solve these tasks due to a shaped reward, but it exhibits the highest
result variance. Although the correlated and parameter noise achieve lower continuity
costs during training, it comes at the expense of performance. gSDE strikes a balance
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Figure 4.2: Trade-off between normalized return and continuity cost of SAC on four lo-
comotion tasks with various exploration methods. gSDE strikes a balance
between smoothness and performance, offering a compromise between these
two objectives.

between unstructured exploration and correlated noise using the noise repetition param-
eter n. Specifically, gSDE-8 (sampling the noise every n = 8 steps) achieves even better
performance with a lower continuity cost during training. This balance is ideal for train-
ing on a real robot, as it minimizes wear-and-tear during training while maintaining good
performance at test time.

4.5.2 Comparison to the Original SDE

In this section, we examine the contribution of the proposed modifications to the original
SDE: sampling the parameters of the exploration function every n steps and using policy
features as input to the noise function.

Sampling Interval gSDE is an n-step extension of SDE, where n allows interpolation
between unstructured exploration (n = 1) and the original SDE per-episode formulation.
This flexibility provides a balance between smoothness and performance during training
(cf.Table 4.1 and Fig. 4.2). Fig. 4.3b demonstrates the importance of this parameter for
PPO on the Walker2D task. A large sampling interval results in insufficient exploration
during long episodes, while a high sampling frequency (n ≈ 1) leads to issues discussed in
Section 4.1.

Policy features as input Fig. 4.3a presents the impact of changing the input to the
exploration function for SAC and PPO. Using policy features (‘latent’ in the figure) is
generally advantageous, particularly for PPO. This approach also requires less tuning and
no normalization, as it relies solely on the policy network architecture. In this case, the
PyBullet tasks have low-dimensional state spaces, so no environment-specific tuning is
necessary. Using features also enables learning directly from pixels, which is not possible
in the original formulation.

Compared to the original SDE, the two proposed modifications enhance performance,
with the noise sampling interval n having the most significant impact. Fortunately, as
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Figure 4.3: Impact of gSDE modifications on PyBullet tasks. (a) Influence of the input to
the exploration function ϵ(s; θϵ) for SAC and PPO: using latent features from
the policy zµ (Latent) is generally better than using the state s (Original). (b)
The sampling interval of the noise function parameters is important for PPO
with gSDE.

shown in Table 4.1 and Fig. 4.2, this parameter can be chosen relatively freely for SAC.

4.5.3 Learning to Control a Tendon-Driven Elastic Robot

(a) Tendon-driven elastic continuum neck in a hu-
manoid robot
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Figure 4.4: (a) The tendon-driven David neck robot [RDF16] used in the experiment, with
tendons highlighted in orange. (b) Comparison of tracking performance on an
evaluation trajectory: the model-based controller and the RL agent achieve
similar results.

Experimental Setup To evaluate the effectiveness of gSDE, we apply it to a real-world
system: controlling a tendon-driven elastic continuum neck (introduced in Section 2.3.1
and shown in Fig. 4.4a) to achieve a target pose. The control task is challenging due to
the nonlinear tendon coupling and deformation of the structure, which requires accurate
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modeling. However, this modeling is computationally expensive [DDO17, DCR+19] and
relies on assumptions that may not hold in the real system.

The system is underactuated, with only four tendons, and the desired pose is defined
by a 4D vector: three angles for rotation (θx, θy, θz) and one for position (x). The input
is a 16D vector consisting of measured tendon lengths (4D), current tendon forces (4D),
current pose (4D), and target pose (4D). The reward is a weighted sum of two components:
negative geodesic distance to the desired orientation and negative Euclidean distance to
the target position. The weights are chosen to balance the magnitudes of both components.
A small continuity cost is added to reduce oscillations in the trained policy.

The action space is the desired change in tendon forces, limited to 5N. For safety,
tendon forces are clipped between 10N and 40N. A trial ends when the agent reaches the
desired pose or after 5 s. Success is defined as reaching the desired pose within a 10mm
position threshold and a 5° orientation threshold. The agent sets desired tendon forces at
30Hz, while a PD controller regulates motor current at 3 kHz.

Results We initially tested unstructured exploration on the robot, but had to halt the
experiment early: the high-frequency noise in the commands damaged the tendons and
risked breaking them because of friction on the bearings. As a baseline, we trained a
controller using SAC with a hand-tuned action smoothing (a 2Hz cutoff Butterworth
low-pass filter) for two hours. We then trained a policy using SAC with gSDE for the
same duration.

To evaluate the performance of both learned controllers, we compared them to an ex-
isting model-based controller (passivity-based approach) from [DDO17, DCR+19] using a
predefined trajectory (cf. Fig. 4.4b). The results show that all controllers achieved similar
accuracy on the evaluation trajectory (cf. Table 4.2), with mean orientation errors below
3° and position errors below 3mm. However, the policy trained with the low-pass filter
exhibited significantly more jitter than the others. This jitter is quantified as the mean
absolute difference in action between two timesteps, referred to as the continuity cost in
Table 4.2.

Unstructured gSDE Low-pass filter Model-Based

noise

Position error (mm) N/A 2.65 +/- 1.6 1.98 +/- 1.7 1.32 +/- 1.2

Orientation error (deg) N/A 2.85 +/- 2.9 3.53 +/- 4.0 2.90 +/- 2.8

Continuity cost (deg) N/A 0.20 +/- 0.04 0.38 +/- 0.07 0.16 +/- 0.04

Table 4.2: Comparison of the mean error in position, orientation, and mean continuity
cost on the evaluation trajectory. The results show that the model-based and
learned controllers achieve comparable performance, while the policy trained
with the low-pass filter has a significantly higher continuity cost, indicating
increased jitter.

4.5.4 Additional Real Robot Experiments

To showcase the versatility of gSDE, we successfully applied SAC with gSDE to two addi-
tional real-world robotics tasks (illustrated in Fig. 4.5a): (1) training an elastic quadruped
robot to walk, with the learning curve shown in Fig. 4.5b, (2) learning to drive around
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(a) Quadruped and RC car robots
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Figure 4.5: Additional robots that were successfully trained with SAC using gSDE in the
real world, demonstrating the applicability of the approach to various robotic
systems.

a track with an RC car. Notably, both experiments were conducted entirely on the real
robots, without relying on simulation or filters, and using the same hyperparameters as
for Section 4.5.3.

Learning to Drive a Racing Car in Minutes In this experiment, a small racing car is
trained to drive autonomously. The car is equipped with minimal sensors: a camera to
capture images of the track and sensor to measure motor speed. This setup presented
several challenges, such as variability in lighting, shadows, and the presence of other cars,
in addition to constraints on computational power and communication delays.

To address these challenges, we first trained an autoencoder to learn a compact repre-
sentation of the visual scene. This allows the RL agent to learn from a lower-dimensional
input, significantly speeding up the learning process [LDRGF18, KHJ+19, RHT+19]. The
action space is also reduced by limiting the steering angle, which helps to achieve smoother
driving behavior. The reward function was designed to encourage the car to maximize
speed while maintaining smoothness. A safety driver is in charge of terminating the
episode before the car crashes. The agent sets steering and throttle commands at 10 Hz,
while a low-level controller regulates motor currents at a higher frequency.

The training takes only 5-10 minutes for the car to learn basic driving. The car could
successfully navigate the track, even with challenging lighting conditions and obstacles.

Learning to Walk with an Elastic Quadruped Robot In this experiment, the bert elastic
quadruped was trained to walk. This experiment came with multiple challenges. Ensuring
the robot’s safety was crucial, as the fast motors and soft springs could cause it to tip
over, potentially damaging the robot’s case and electronics. Manual resets were required
after falls, and communication delays over Wi-Fi further complicated the training process.
To overcome these challenges, safety bars were installed to prevent the robot from tipping
over, and a basic recovery strategy was implemented to semi-automate resets. A treadmill
was also used to help reposition the robot between episodes.

The RL agent received information about its joint positions, torques, acceleration, and
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orientation via an inertial measurement unit (IMU) and a gyro sensor. To account for
communication delays and promote smooth movements, historical data, such as previous
actions and states, were included in the observation space. The action space consisted of six
dimensions, representing the desired motor positions for each joint. The reward function
was designed to encourage forward movement while maintaining stability. It included
a primary reward for forward distance and secondary rewards for walking straight and
minimizing jerk.
The training process took several hours (see learning curve in Fig. 4.5b), with the robot

starting to move forward after three hours, achieving a basic walking gait after four hours,
and refining its movements to become more stable after five to six hours.

4.6 Conclusion

This chapter highlights several problems that arise when using unstructured exploration
in Deep RL algorithms for continuous control. These issues prevent DRL algorithms from
learning directly on real robots.
To address these issues, we adapt State-Dependent Exploration to Deep RL algorithms

(gSDE) by extending the original formulation: we sample the noise every n steps and use
learned features as input to the exploration function. gSDE achieves competitive results
on several continuous control benchmarks while reducing wear-and-tear during training.
An ablation study shows that the noise sampling interval has the most significant impact,
balancing performance and smoothness.
In addition to its use on other robots [SHI+23], gSDE has inspired several follow-up

works addressing exploration for continuous control [EHPM22, CMVHM23]. It has been
extended to high-dimensional action space [CMVHM23], which was part of the winning
object manipulation solution of the MyoChallenge 20231. With gSDE, RL algorithms can
be applied directly on real robots without additional heuristics (such as low-pass filters)
and without damaging the motors during exploration.
In this chapter, we successfully trained policies from scratch on various hardware plat-

forms. In subsequent chapters (Chapter 5 and Chapter 6), we will attempt to build upon
these initial efforts by incorporating expert knowledge, for the David elastic neck and the
bert quadruped tasks (see Section 2.3), with the aim of improving policy performance.

1See https://github.com/amathislab/myochallenge-lattice
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CHAPTER 5

Integrating Fault-Tolerant Pose Estimation and RL

In Chapter 4, we discussed how to apply RL in real-world settings, specifically controlling
the David elastic neck [RDF16] (shown in Fig. 2.9). However, learning from scratch is
usually not the best option when training directly on the real robot; it still requires two
hours of interactions. In addition, the controller relies on a neck position estimator to
achieve the desired pose. Due to the nature of the soft neck, obtaining such estimator is
not trivial.
In this chapter, we first contribute a data-driven approach for learning a fault-tolerant

neck pose estimator. We then explore different levels of expert knowledge to guide the
RL agent, with the goal of reducing training time and improving performance, address-
ing challenges i. (Exploration-Induced Wear and Tear) ii. (Sample Efficiency) and iv.
(Computational Resource Constraints). One option is to reframe the problem as a goal-
conditioned task and use hindsight experience replay to relabel experiences, thereby im-
proving sampling efficiency. Finally, we design a feedforward controller by inverting the
pose estimator and integrate it with reinforcement learning to close the control loop.

5.1 Fault-Tolerant Pose Estimation

To enable accurate control of David ’s neck pose (presented in Section 2.3.1) in downstream
applications, a reliable pose estimation method is required. However, rigorous models that
convert actuator encoder values to end-effector poses are computationally expensive and
prone to model parameter uncertainties. Furthermore, for mobile systems, such a pose
estimation method should only require an external tracking system for calibration and
evaluation.
To address these challenges, we propose a data-driven approach to pose estimation for

elastic robots that incorporates uncertainty estimation and error handling. Our main
contributions are:

• A fast, six-DoF pose estimation method for tendon-driven continuum mechanisms
using a small number of data points (Section 5.1.2).

• An uncertainty estimation technique to detect sensor failure (e. g. slack tendons).
This is achieved by building ensembles of estimators and observing their uncertainty,
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each ensemble using a subset of the sensor information as input (Section 5.1.2).

• A strategy for dealing with sensor failure by adjusting the pose estimation. When an
anomaly is detected, we select the estimators that do not rely on the faulty sensors
and continue to accurately predict the pose (Section 5.1.2).

• Experimental validation of these methods on the David elastic neck. We demon-
strate a significant improvement in pose estimation accuracy and show that reliable
predictions can still be made with only three out of eight sensors (Section 5.1.3).

5.1.1 Related Work

Pose estimation for elastic structures. To estimate the pose of elastic structures,
there are two primary methods. When geometric and material parameters are accurately
known, [JW06] and [CCS09, RW11] have employed geometric or static deformation mod-
els, which rely on actuator positions or forces. [DCR+19] proposed a pose estimation
technique based on a model for pose-dependent length measurements, leveraging tendon
actuation encoder values and deformation-based length sensors. Model-based approaches
are sensitive to parameter uncertainty and rely on the assumption of taut tendons, assump-
tions that can be violated by rapid motion or external contact, leading to performance
degradation.

In contrast, data-driven approaches learn direct input-output mappings from measured
data, avoiding the need for deformation models. These methods typically use actuation
torques or actuator positions as inputs and end-effector pose as the output. In particular,
[BDWN07] and [GRC+15] have used neural networks, while [MQS16] used a Gaussian
mixture model to map actuator lengths to end-effector poses.

Fault detection in robotic systems. Fault detection in robotic systems [KK18] is
a specific instance of the broader field of anomaly detection [CBK09] and can be divided
into two main categories: knowledge-based and data-driven approaches.

Knowledge-based approaches rely on the assumption that all faults and their corre-
sponding symptoms are known, enabling causal analysis to identify the fault [HLTB01].
Data-driven approaches, on the other hand, use machine learning techniques to classify
normal and abnormal behavior, either in a supervised [HUK+14] or unsupervised man-
ner [HW07, YLS10]. Other data-driven methods include generating nominal behavior
data using physical simulators [HKB15] and employing statistical filters, such as Kalman
filters [STA16, SRSB12, GDRS00].

Our proposed method is an unsupervised machine learning approach, eliminating the
need for labels. Unlike previous approaches that only detect potential failures, we leverage
minimal task knowledge to detect and handle faults.

5.1.2 Method

Pose Estimation as a Regression Problem

We formulate the task of predicting the six-DoF pose q given measurements l̃ as a super-
vised learning problem. For a given estimator fΘ, with parameters Θ ∈ Rp, the goal is to
find the parameters Θ that minimize the error between the true pose q and its prediction
q̂ = fΘ(̃l) ∈ R6. This is achieved by minimizing the loss function L:

L(q, q̂) = ∥q − q̂∥22 . (5.1)
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1 2

3 4

Figure 5.1: Illustration of the ensemble E and sub-ensembles creation for m = 2 masked
sensors per estimator. 1-2. We create an ensemble of models, denoted as E ,
masking m = 2 sensors per estimator. 3-4. The estimators are grouped based
on the sensor that was not masked, creating sub-ensembles which are used for
uncertainty estimation and failure detection.

This is a standard regression problem that can be solved using a variety of tech-
niques [SS15]. In this chapter, we employ linear models fΘ(̃l) = ΘT l̃ and second-order
polynomial models fΘ(̃l) = ΘTϕ(̃l), where ϕ extracts polynomial features, and use least
squares to estimate the parameters. We choose these models and methods because they
are computationally efficient and do not require hyperparameter tuning or large amounts
of data. Furthermore, we found that adding more complexity (e. g. using a neural network
or higher-order polynomial) does not improve accuracy.

Uncertainty Estimation using Bootstrapped Ensemble

While querying a single predictor fΘ is the fastest approach, it does not provide uncer-
tainty estimation, which is essential for detecting and handling failures. We distinguish
between two types of uncertainty: aleatoric and epistemic uncertainty [Gal16]. Aleatoric
uncertainty arises from sensor noise and is irreducible (unless sensor precision is improved).
Epistemic uncertainty, on the other hand, corresponds to the uncertainty in the model,
which can be reduced by providing more training data. This type of uncertainty increases
with samples that are out of the training distribution [KG17a]. It is this uncertainty that
enables failure detection.

We can estimate uncertainty by training an ensemble of n models, denoted as E =
{fΘ1 , fΘ2 , . . . fΘn}, where each model has different parameters Θi. For example, this can
be achieved by using different parameter initialization for each model.

The uncertainty of the ensemble can be measured by calculating the variance of the
predictions. Specifically, the uncertainty for dimension k of the pose q ∈ R6 can be
estimated using:
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Figure 5.2: Illustration of the failure detection using an ensemble of estimators. 1. Each
model in the ensemble E predicts the pose of the system. 2. The predictions
from all models are aggregated to obtain a mean and a variance σ2. 3-4. A
threshold is applied to the variance to detect potential failures. If the variance
exceeds the threshold, a failure is detected.

σ2k =
1

n

n∑
i=1

(fΘi (̃l)k − fΘ(̃l)k)
2 (5.2)

where fΘ(̃l) is the mean of the predictions and the subscript k denotes the k-ith element
of the vector.

However, such an ensemble underestimates the epistemic uncertainty, as all the models
are trained on the same dataset D. To address this, each model fΘi can be trained only on
a subset of the training set Di ⊂ D. This way, each model makes different errors, reducing
the overconfidence of the ensemble. This technique is known as bootstrapping [Efr92,
Bre96], and the resulting ensemble is called a bootstrapped ensemble. The advantage of
a bootstrapped ensemble is that any predictor fΘi can be used. Fig. 5.1 illustrates the
creation of ensembles and sub-ensembles of models.

Failure Detection and Handling

The variance σ2k of the ensemble E of predictors provides an uncertainty measure. This
uncertainty measure can be used to detect failures by applying a threshold ϵ. Specifically,
a failure is detected if σ2k > ϵ. Fig. 5.2 illustrates how the ensemble can be used to detect
a failed sensor.

In our six-DoF pose estimation problem, we have redundant sensor information: there
are more sensors than needed, and the system exhibits coupling. Due to the extra sensors,
we can detect which sensor(s) failed by grouping the predictions accordingly. This allows
accurate pose estimation q even with multiple sensor failures. The key is in how we define
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Figure 5.3: Illustration of the failure handling using an ensemble of estimators. 1. Each
sub-ensemble predicts the pose, and the uncertainty remains small, indicating
that all sensors are functioning correctly. 2-3. A failure occurs, causing the
uncertainty to increase for most sub-ensembles. However, one sub-ensemble
remains unaffected by the failure, as it does not rely on the faulty sensor.
4. This sub-ensemble continues to predict the pose accurately and with low
uncertainty.
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the subsets Di ⊂ D to build the ensemble (cf.Fig. 5.1): we use only part of the sensor
measurements l̃ to construct the subsets and then group the estimators into sub-ensembles
El ⊂ E based on the sensors not used for prediction. For example, masking the first sensor
results in the input vector l̃ =

[
0 l̃2 l̃3 · · · l̃8

]
.

To illustrate this, consider the case where we mask m = 2 sensors (out of N = 8) as
shown in Figs. 5.1 and 5.3. Among the ensemble of trained models E = {fΘi , i = 1 . . . n},
one model does not use sensors l̃1 and l̃2 (masked sensors are filled with black in Fig. 5.1),
another does not use l̃1 and l̃3, and so on. Thus, we have a sub-ensemble El̃1 ⊂ E composed

of estimators that do not use the first sensor l̃1 for predicting the pose (first sub-ensemble
in Fig. 5.1), a second sub-ensemble El̃2 with estimators that do not use the second sensor

l̃2, and so forth. As a result, if one sensor fails as shown in Fig. 5.3, we can still use the
predictions from the sub-ensemble that does not use the failing sensor.

To determine if a sub-ensemble El is usable, we compute its variance σ2k and compare it
to the threshold ϵ. When there is no error, all sub-ensembles should have a variance below
the threshold. If a failure occurs, for example, on sensor j, then only one sub-ensemble
should pass the test: El̃j , which consists of estimators that do not use sensor j. The

appropriate threshold ϵ is chosen empirically.

To detect and handle multiple sensor failures, we repeat the following three steps:

1. Ensemble Prediction: Predict the pose using each model from the ensemble E .

2. Group Predictions: Group the predictions by sensors not used to create the sub-
ensembles El ⊂ E .

3. Failure Detection: Check the variance of each sub-ensemble to detect failure.

We start by masking m = 2 inputs to detect and handle one failure and increment
that number as needed. To detect nfailures failures, we build sub-ensembles El with m =
nfailures sensors masked. To identify which sensor(s) failed, we mask one additional sensor.

We create the subsets Di ⊂ D for all possible
(
N
m

)
mask configurations, training one model

for each subset. This results in an ensemble E of n =
(
N
m

)
models.

We repeat this process with additional sensors masked until there are not enough sensors
left for a reliable prediction. For our experimental platform, we found that relying on three
(out of N = 8) sensors is sufficient to have an acceptable precision, allowing us to detect
and handle up to four failures.

To detect and react up to four failures concretely, we cover the following cases:

• One failure: mask 2 sensors and train
(
8
2

)
= 28 polynomial models.

• Two failures: mask 3 sensors and train
(
8
3

)
= 56 polynomial models.

• Three failures: mask 4 sensors and train
(
8
4

)
= 70 polynomial models.

• Four failures: mask 5 sensors and train
(
8
5

)
= 56 polynomial models.

This results in a total of
∑5

m=2

(
N
m

)
= 210 polynomial models to handle all possible cases.

We begin with m = 2 masked sensors and the first 28 polynomial models (nominal case,
no failure), then increment the number of masked sensors and use additional polynomial
models as needed. The failure detection and handling process remains the same at each
stage: the three steps presented above.
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5.1.3 Experimental Setup and Results

The objective of this section is to evaluate the performance of the proposed approach in
terms of accuracy and speed, and to investigate its robustness against one or more sensor
failures.

Experimental Setup

We use the David elastic neck Section 2.3.1 for the experiments, as shown in Fig. 2.9. The
platform is equipped with a marker target from an external camera tracking system that
provides ground truth data for the pose. The tracking system is used only for data collec-
tion and analysis and is not needed afterwards. The pose dependent length information
is retrieved at a frequency of 300Hz. By commanding different tendon tensions, the neck
achieves different poses.
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Figure 5.4: Error distribution in position and in orientation on 180 static poses for the
polynomial model (data-driven) and the model-based approach [DCR+19].

Static Pose Estimation. To evaluate the performance of our six-DoF estimator, we
command the elastic neck to achieve 200 static poses. For each pose, we obtain the ground
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truth q using an external camera tracking system [Met16] and calculate the prediction
error in both position and orientation. To train the models, we randomly sample 20 poses
and use the remaining data points for testing. Each model is trained with the same 20
data points, but with different sensors masked, resulting in each model using a distinct
set of sensors as input. This process is repeated ten times with different random seeds.
To estimate the runtime of each method, we perform 1000 predictions and average the
time taken. This test is performed on a computer equipped with 8 Intel i7-8550U CPUs
clocked at 1.80GHz.

Dynamic Pose Estimation. We then evaluate the pose estimation method, trained
only on static poses, during dynamic motion. For this evaluation, we record the ground
truth and the estimated pose along a predefined trajectory.

Results

Static Pose Estimation. The results are summarized in terms of mean error and stan-
dard deviation over the test poses in Table 5.1, with runtimes included when available.
The error distribution in position and orientation is shown in Fig. 5.4.

Overall, the data-driven approaches demonstrate fast execution speeds (about 5000Hz)
and higher accuracy than the model-based approach: the mean error is reduced by up to
five times (cf. Table 5.2). As expected, the linear model runs faster but with a slight loss
in accuracy compared to the polynomial model.
It is worth noting that, although the model-based approach appears less accurate in this
comparison, it remains relatively accurate and fast compared to other model-based pose
estimation techniques as discussed in [DCR+19].

Model-Based [DCR+19] Linear Polynomial

Runtime (ms) N/A +/- N/A 0.1 +/- 0.0 0.2 +/- 0.0

Static Pose Estimation

Error in position (mm) 1.1 +/- 1.0 0.3 +/- 0.3 0.2 +/- 0.2

Error in orientation (deg) 0.9 +/- 0.8 0.3 +/- 0.3 0.1 +/- 0.1

Dynamic Pose Estimation

Error in position (mm) 5.1 +/- 2.3 1.7 +/- 1.4 1.6 +/- 1.4

Error in orientation (deg) 3.8 +/- 3.0 0.8 +/- 0.6 0.5 +/- 0.4

Table 5.1: Comparison of mean runtime and error (in both position and orientation) for
each method. The data-driven approaches are both faster and more accurate
than the model-based approach. For each metric, the best mean value is high-
lighted. “N/A” indicates that the data is not available.

Dynamic Pose Estimation. To evaluate the performance for dynamic pose estima-
tion, we drive the experimental platform through a sequence of static poses and record
the estimated pose for both the model-based and our approach. The mean error along
the trajectory of 200 poses is presented in Table 5.1, and the corresponding trajectories
of four estimated coordinates (x, θx, θy, θz) are shown in Fig. 5.5.

Similar to static poses, the data-driven approaches perform best, with the polynomial
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model being more accurate than the linear model. The mean error reported in Table 5.1
is higher for dynamic poses than for static poses for two reasons. First, it includes the
transition error between static poses, which is not accounted for during training. Second,
when considering trajectories, static errors at fixed poses accumulate, resulting in a higher
mean value.
It is worth noting that these models were trained on static poses only, and including
dynamic poses in the training set could potentially improve the results.
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Figure 5.5: Qualitative evaluation of the polynomial estimators (data-driven) and model-
based for dynamic pose estimation.

Hyperparameters study

To investigate the impact of different hyperparameters (model type, training set size, and
number of sensors) on performance, we compare the baseline regressors (trained with 20
datapoints and 8 sensors) to several variants. The results of this comparison are presented
in Table 5.2.

Effect of the training set size. We investigate the impact of varying the training set
size from five datapoints to 40 datapoints on the performance of the polynomial model.
Our results indicate that the performance improves with more training data, but only up
to a certain point (30 datapoints in this case). Beyond this point, adding more data does
not lead to significant improvements, likely due to the presence of irreducible error (sensor
noise) and the limited capacity of the polynomial model. Although the results with 40
datapoints are slightly worse, the difference is not statistically significant.

Effect of the type of model. We compare linear, polynomial, and neural network1

models. While the neural network achieves good performance, it requires more training
data to reach the same level of accuracy as the other two models. In addition, the neural
network requires hyperparameter tuning (mini-batch size, learning rate, etc.) and has
a significantly larger number of parameters (approximately 3 × 106 compared to 276 for

1The neural network consists of 2 fully connected layers of 256 units each, trained to convergence with
the Adam optimizer using a learning rate of 1 × 10−3 and a batch size of 20 (the size of the training
set).
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5 Integrating Fault-Tolerant Pose Estimation and RL

Position error (mm) Orientation error (deg)

Model-Based 1.1 +/- 1.0 0.9 +/- 0.8
Linear baseline 0.3 +/- 0.3 0.3 +/- 0.3
Polynomial baseline 0.2 +/- 0.2 0.1 +/- 0.1

Neural network (2 layers) 0.8 +/- 0.6 0.8 +/- 0.7
Linear (3 sensors) 1.0 +/- 0.7 1.2 +/- 1.0
Linear (4 sensors) 0.4 +/- 0.3 0.5 +/- 0.6
Polynomial (3 sensors) 0.9 +/- 0.6 1.2 +/- 0.9
Polynomial (4 sensors) 0.1 +/- 0.1 0.1 +/- 0.1
Polynomial (5 datapoints) 0.9 +/- 0.9 1.1 +/- 0.9
Polynomial (10 datapoints) 0.5 +/- 0.5 0.6 +/- 0.5
Polynomial (40 datapoints) 0.2 +/- 0.3 0.3 +/- 0.2

Table 5.2: Ablation study: influence of the amount of training data, number of sensors,
and type of model on performance. Results with the lowest mean error are
highlighted. Baseline models are trained using 20 datapoints and 8 sensors.

the polynomial model). Therefore, a second-order polynomial model is sufficient for our
purposes.

Effect of the number of sensors. We compare the performance of the baseline linear
and polynomial models (using 8 sensors) to models with fewer sensors as inputs (3 and 4
sensors). As expected, adding more sensors reduces the error for the linear model. For
the polynomial model, there is almost no change with more than four sensors; the results
are slightly worse, but the difference is not significant. As discussed in Section 5.1.2, hav-
ing redundant sensor information is crucial for detecting and handling potential failures.
Therefore, using 8 sensors is preferable because it allows for the detection of more failures.

Effect of the placement of sensors. Since the polynomial model performs well
with only four sensors, the placement of the four additional sensors has little impact on
accuracy. However, the placement of the sensors does affect the ability to detect failures:
if a sensor’s information is not useful for prediction, the polynomial model will assign a
weight close to zero to that input feature. As a result, if such a sensor fails, the failure
will not be detected, but the pose will still be accurately estimated.

Failure Detection and Handling

To assess the effectiveness of our approach in detecting and handling failures, we simulate
sensor losses while the neck was in motion. We consider two types of failures: (1) a
length sensor outputting incorrect values due to a tendon becoming slack, resulting in
zero outputs, and (2) a sensor freezing and outputting a constant value.

In Figs. 5.6a and 5.6b, we show the effect of both failures on the uncertainty: a jump
is observed immediately after the loss of tension in Fig. 5.6a. When the sensor freezes
(cf. Fig. 5.6b), the failure is detected only when the neck position changes. In both
cases, the variance increases significantly, so no careful tuning of the detection threshold
is required. To demonstrate that the method can handle multiple failures, we simulate
the loss of four sensors in Fig. 5.7.

In Figs. 5.6c and 5.7, we display the prediction over time for the sub-ensemble without
the faulty sensors, using the ground-truth pose as reference. The approach successfully
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Figure 5.6: Example of failure detection and handling on a recorded trajectory. We simu-
late two types of failures indicated by the red vertical line. These failures occur
at time t = 35: (a) One tendon becomes slack, causing the associated sensor l̃1
to output zeros (b) The sensor l̃1 freezes, causing it to output a constant value.
For (a) and (b), we plot the mean prediction (dark blue) from the ensemble of
estimators along with the uncertainty (shaded blue area). In both scenarios,
the uncertainty exceeds the threshold, allowing the method to detect the fail-
ures and select the sub-ensemble that does not use the faulty sensor. In (c), we
plot the prediction of this sub-ensemble, along with the corresponding ground
truth. The method accurately predicts the pose even with a faulty sensor.
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Figure 5.7: We simulate four failures along a recorded trajectory, indicated by the red
vertical lines. The proposed method automatically detects these failures at the
following times: sensor l̃6 at t=4, l̃2 at t=27, l̃5 at t=75, and l̃3 at t=125. It
then selects a sub-ensemble of estimators that do not use the faulty sensors and
continues to predict the pose accurately. The plot shows the pose prediction
along with the mean and variance for the selected sub-ensemble of estimators.

detects all the failures and handles them by using the sub-ensemble not affected by the
sensor losses. As a result, the proposed method can robustly and accurately (cf. Table 5.2)
predict the pose even with multiple sensor failures.
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5.1.4 Discussion

Data-Driven Approaches for Pose Estimation. In the previous sections, we have
shown that data-driven approaches are viable alternatives for estimating the pose of a
tendon-driven continuum mechanism. The linear and polynomial models have several ad-
vantages, including fast training times, minimal data requirements, and improved accuracy
over the model-based approach. Model-based methods rely on assumptions about sensor
linearity and perfectly known kinematics. If these assumptions are violated, they result in
larger pose estimation errors. In contrast, the polynomial model learns a direct mapping
from sensor readings to measured pose without relying on these assumptions, resulting in
improved accuracy.

Handling sensor failures with ensembling and domain knowledge. To detect
and handle sensor failures, we leverage ensembling techniques and minimal domain knowl-
edge. By clustering different models, our method accurately predicts the pose even in the
presence of four out of eight faulty sensors.

The presented method provides a computationally fast and accurate pose estimation
approach. This method was used in the previous chapter to train an RL controller (Chap-
ter 4) and will be further exploited in the following section to improve training time and
final performance.

5.2 Learning to Control an Elastic Neck

In the following section, we further investigate the task presented in Section 4.5.3. The
goal is to control David ’s elastic neck to follow trajectories and reach desired poses using
the pose estimator described in the previous sections. Compared to Section 4.5.3 where
learning was done from scratch and without prior knowledge, we explore here different
ways of guiding the RL agent.

5.2.1 Goal Conditioned Reinforcement Learning

First, we reformulate the RL problem as a goal-conditioned RL task. The agent re-
ceives as input the estimated state of the robot st and the desired goal gdesired, a 4D
pose it should reach. When collecting interactions with the environment, we also store
the current achieved goal gachieved. This allows to use the Hindsight Experience Replay
(HER) [AWR+17] method, implemented in SB3 (see Chapter 3), to relabel transitions.
In short, during training, HER samples alternative goals g′ from the set of achieved goals
and then recomputes the reward for those new desired goals. Thus, it creates virtual
transitions that are more likely to contain successful experiences (reaching a desired pose
in our case). Those virtual transitions are sampled together with real transitions.

In Fig. 5.8, we display the results when training on the real robot. We can see that
this simple reformulation guides the RL agent which needs only half the time to learn a
controller (compared to Section 4.5.3). The goal-conditioned formulation allows the agent
to learn from failed attempts, improving the data-efficiency of the training.

5.2.2 Combining Learned Feedforward and Feedback Controller

To further improve the sample efficiency and performance of the controller, we investigate
how to guide the RL agent with domain knowledge. To this end, we re-use the pose
estimator presented in the previous sections.
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Figure 5.8: Training with Hindsight Experience Replay (HER) on the real robot, and com-
bining feedforward and feedback control. SAC corresponds to the experiment
presented in Section 4.5.3.

The linear pose estimator from Section 5.1.2 predicts the neck pose given the tendons
lengths: fΘ(̃l) = ΘT l̃ = q̂. If we invert the mapping2, we obtain a feedforward controller:
the estimator l̂ = f−1

Θ (q) predicts desired tendons lengths l̂ for a given desired pose q.
The feedforward already allows reaching some poses without any additional training,

as we re-use the data acquired to learn the pose estimator. We then close the loop with
reinforcement learning to refine the controller and improve the success rate. The RL
controller only outputs a delta on top of the predicted feedforward action.
Fig. 5.8 shows the results on the robot. Because it leverages the feedforward controller,

the RL agent learns very quickly to achieve the task and reaches a success rate above 90%
after only 15 minutes. This is eight time faster than in Chapter 4.

5.3 Conclusion

In this chapter, we presented a data-driven fault-tolerant approach to accurately predict
the pose of a soft robot. Although model-free, the estimator outperforms its model-based
counterpart and can be easily inverted to obtain a feedforward controller.
After learning from scratch in Chapter 4, we also show how to guide the RL agent with

additional knowledge. Reformulating the problem to explicitly include the desired goal
improves the sample efficiency, allowing the agent to learn from its mistakes using virtual
transitions.
The best result, both in terms of performance and training time, is obtained by com-

bining the learned feedforward model with RL. In this case, the agent only needs to learn
a delta command on top of the feedforward controller that partially solves the task.

2Either using pseudo-inverse or training a new model on the inverse problem.
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CHAPTER 6

Combining Oscillators and RL to Efficiently Learn Locomotion

In Chapter 4, we showed the use of reinforcement learning to teach a real quadruped
robot to walk from scratch. However, this approach requires several hours of training and
engineering effort, and the resulting gait may not be natural.

As in Chapter 5, where we combined domain knowledge with RL to accelerate robot
training, we now explore how prior knowledge can be used to guide the agent and learn
better locomotion controllers more quickly (tackling challenges ii. (Sample Efficiency) and
iv. (Computational Resource Constraints)). Specifically, we propose a simple open-loop
baseline controller that can solve locomotion tasks and compare it with DRL algorithms.
We then build on the open-loop oscillators and close the loop with RL to improve perfor-
mance.

Our focus in this chapter will be on the elastic quadruped presented in Section 2.3.2. By
learning directly on the real hardware, we can take advantage of its springs. We will close
this chapter with an experiment where learning on the real robot in a matter of minutes
was essential for a mission with the International Space Station (ISS), where astronauts
from the ISS operated the robot in a planetary exploration scenario.

6.1 An Open-Loop Baseline for RL Locomotion Tasks

The increasing complexity of Deep RL algorithms has led to a reproducibility crisis,
with many implementation details required to achieve satisfactory performance [HDR+22,
HIB+18a]. Moreover, even state-of-the-art methods struggle to solve simple problems, such
as the Mountain Car environment [CSO18] and the Swimmer task [FLO+22, HGF+24].
This has led to a reassessment of the field, with some work advocating simpler, more scal-
able alternatives [RLTK17, SHC+17, MGR18]. We argue that the use of prior knowledge
can reduce complexity in both algorithms and task formulation, especially for specific
problem categories such as locomotion tasks.

To illustrate this, we introduce a minimal open-loop model-free strategy as a baseline for
locomotion challenges. By comparing this baseline to DRL algorithms in various scenarios,
our goal is not to replace them, but to highlight their limitations, provide insights, and
encourage reflection on the costs of complexity and generality.

The following sections present the concrete contributions of this work:
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6 Combining Oscillators and RL to Efficiently Learn Locomotion

• a simple open-loop model-free baseline for learning locomotion that can handle sparse
rewards and high sensory noise with minimal parameters (on the order of tens,
Section 6.1.2),

• demonstrating the importance of prior knowledge and policy structure in locomotion
tasks (Section 6.1.3),

• an investigation of the robustness of RL algorithms to noise and sensor failure (Sec-
tion 6.1.3),

• successful simulation-to-reality transfer without randomization or reward engineer-
ing, where DRL algorithms fail (Section 6.1.3).

6.1.1 Related Work

The quest for simpler RL baselines. Amid the trend of increasingly complex RL algo-
rithms, some research has focused on developing simple yet effective baselines for robotic
tasks. In particular, [RLTK17] explored the use of policies with simple parameterizations,
highlighting the lack of robustness of RL agents. Concurrently, [SHC+17] investigated evo-
lution strategies as an alternative to RL, taking advantage of their fast execution time to
scale policy search. Augmented Random Search (ARS) [MGR18] is a more recent example
of a population-based algorithm that optimizes linear policies.

Periodic policies for locomotion. Given the fundamental role of rhythmic move-
ments in locomotion [Del80, CW80, Ijs08], oscillators have been employed in robot con-
trol to solve locomotion tasks [CI08, IAST13], with recent work focusing on quadruped
robots [KS04, TZC+18, ICT+18, YZC+22, BI22, RSK+22]. Surprisingly, however, we
found no prior studies exploring the use of open-loop oscillators in RL locomotion bench-
marks.

Reinforcement learning for locomotion. Obtaining locomotion controllers is com-
monly based on fast simulators and massive parallelism [MLH+22, RHRH22]. It usually
consists of learning the controllers in simulation and subsequently deploying them on
real hardware [LHW+20, KFPM21]. Learning in simulation, however, requires an accu-
rate model of the robot [HLD+19], complex reward engineering, and there is no guar-
antee that a controller working in simulation can be deployed on the real robot. Heavy
randomization and generation of diverse training environments help mitigate these is-
sues [FKMP21, RHRH22], but still requires engineering efforts to find the right balance
between environments too hard to solve and ones that do not transfer to the real robot.
In the first part of this chapter, we explore how to reduce the engineering effort by using
prior knowledge and focus on learning directly on the real hardware in the second part.

Training on real robot. Thanks to more robust hardware [BGC+22] and more
sample-efficient algorithms [CVS+19, SKL23, WEH+22, HIH+22], learning directly on
the real hardware in only a few hours is now possible [CSPD16, RKS21]. Despite these
advances, training on real robots can nevertheless be time-consuming and often does not
yield natural-looking gaits [SKL23, WEH+22]. In the present chapter, we aim both at
reducing the training time (and thus the robot wear and tear) and obtaining gaits that
look natural by 1) providing domain knowledge in the form of open-loop oscillators and
2) exploiting the natural dynamics of the robot, in particular its elastic joints.
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6.1 An Open-Loop Baseline for RL Locomotion Tasks

6.1.2 Open-Loop Oscillators for Locomotion

Inspired by nature and central pattern generators, as explored by [RBI06, RSK+22, BI22],
we propose using nonlinear oscillators with phase-dependent frequencies to generate de-
sired motions for each actuator. The equation governing one oscillator is:

qdesi (t) = ai · sin(ψi(t) + φi) + bi

ψ̇i(t) =

{
ωswing if sin(ψi(t) + φi) > 0

ωstance otherwise

(6.1)

where qdesi is the desired position for the i-th joint, ai, ψi, φi and bi are the amplitude,
phase, phase shift and offset of oscillator i. ωswing and ωstance control the oscillations in
rad/s for the swing and stance phases, respectively. To reduce the search space, we employ
the same frequencies ωswing and ωstance for all actuators.

This formulation is both computationally efficient and simple to implement; since we
do not have any feedback terms, all desired positions can be pre-computed. The phase
shift φi serves as a coupling term, allowing joints with the same phase shift to oscillate
synchronously. However, unlike previous work, the phase shift is learned rather than
pre-defined.

We optimize the oscillator parameters using black-box optimization (BBO), namely the
CMA-ES algorithm [HMK03, Han09] implemented within the Optuna library [ASY+19].
Furthermore, BBO’s reliance on episodic returns rather than immediate rewards makes
the baseline robust to delayed or sparse rewards. Finally, a Proportional-Derivative (PD)
controller converts the desired joint positions generated by the oscillators into desired
torques.

6.1.3 Results

We benchmark DRL algorithms against our baseline by conducting experiments on lo-
comotion tasks, which encompass both simulated scenarios and real-world transfer to an
elastic quadruped robot. Our study is guided by three main research questions:

• How do simple open-loop oscillators compare to DRL methods in terms of perfor-
mance, computational efficiency, and parameter efficiency?

• What is the relative robustness of RL policies versus the open-loop baseline to sensor
noise, failures, and external disturbances?

• How effectively do learned policies transfer to a real-world robot when trained with-
out randomization or reward engineering?

By addressing these questions, we aim to provide a comprehensive understanding of the
strengths and weaknesses of our proposed baseline and highlight the potential benefits of
incorporating prior knowledge in robotic control.

Results on the MuJoCo locomotion tasks

We evaluate the performance of our method on five MuJoCo v4 locomotion tasks (Ant,
HalfCheetah, Hopper, Walker2d, Swimmer) included in the Gymnasium v0.29.1
library [TTK+23]. We compare our approach to three established DRL algorithms: Deep
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Deterministic Policy Gradients (DDPG), Proximal Policy Optimization (PPO), and Soft
Actor-Critic (SAC). To ensure a fair comparison, we adopt the hyperparameter settings
from the original papers, except for the swimmer task, where we fine-tune the discount
factor (γ = 0.9999) according to [FLO+22]. Additionally, we also benchmark Augmented
Random Search (ARS), a population-based algorithm that uses linear policies.

Our choice of baselines features one representative example per algorithm category:
DDPG as a historical algorithm (see Section 2.2), PPO for on-policy, SAC for off-policy,
and ARS for population-based methods and simple model-free baselines. We select SAC
[HHZ+18] due to its strong performance in continuous control tasks [HGF+24] and its
shared components with newer variants. SAC and its variants, such as TQC [KSGV20],
REDQ [CWZR21], or DroQ [HIH+22], are frequently used in the robotics community
[RSK+22, SKL23]. For the reward functions, we keep the ones provided by Gymnasium,
except for ARS, where we remove the alive bonus to match the results from the original
paper.

The RL agents are trained for one million steps. To obtain quantitative results, we run
each experiment 10 times with distinct random seeds. We follow the recommendations
by [ASC+21] and report performance profiles, probability of improvements in Fig. 6.1,
and aggregated metrics with 95% confidence intervals in Fig. 6.2. The scores are nor-
malized over all environments using a random policy for the minimum and the maximum
performance of the open-loop oscillators.
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Figure 6.1: Performance profiles on the MuJoCo locomotion tasks (left) and probability of
improvements of the open-loop approach over baselines, with a 95% confidence
interval.
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6.1 An Open-Loop Baseline for RL Locomotion Tasks

Performance. As displayed in Figs. 6.1 and 6.2, the open-loop oscillators show re-
spectable performance across all five tasks, despite their minimalist design. They out-
perform ARS and DDPG, a simple baseline and a classic DRL algorithm, and perform
comparably to PPO. In particular, this is achieved with only a dozen parameters, as op-
posed to the thousands typically required by DRL algorithms. Our results suggest that
simple oscillators can effectively compete with complex RL methods for locomotion, and
do so in an open-loop fashion. However, the open-loop approach has its limitations, as
the baseline does not reach the maximum performance of SAC.

Table 6.1: Runtime comparison to train a policy on HalfCheetah, one million steps
using a single environment, no parallelization.

SAC PPO DDPG ARS Open-Loop

CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

Runtime (in min.) 80 30 10 14 60 25 5 N/A 2 N/A

Runtime. A comparison of the runtime of the different algorithms1, as presented in Ta-
ble 6.1, highlights the benefits of simplicity over complexity. Remarkably, ARS requires
just five minutes of CPU time to train on a single environment for one million steps,
whereas open-loop oscillators are twice as fast. This efficiency is especially advantageous
when deploying policies on embedded platforms with limited computing resources2. Addi-
tionally, both methods can be easily scaled using asynchronous parallelization to further
reduce training time. On the other hand, more complex methods like SAC need a GPU
to achieve reasonable runtimes (15 times slower than open-loop oscillators), even with the
help of JIT compilation.
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Figure 6.3: Parameter efficiency of the different algorithms. Results are presented with a
95% confidence interval and score are normalized with respect to the open-loop
baseline.

1We display the runtime for HalfCheetah only, the computation time for the other tasks is similar.
2A concrete example will be presented at the end of this chapter.
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Parameter efficiency. As shown in Fig. 6.3, the open-loop oscillators stand out for
their simplicity and performance with respect to the number of optimized parameters. On
average, the proposed approach has 7x fewer parameters than ARS, 800x fewer than PPO,
and 27,000x fewer than SAC. This comparison underscores the importance of choosing
an appropriate policy structure that delivers satisfactory performance while minimizing
complexity.
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Figure 6.4: Robustness to sensor noise (with varying intensities), failures of Type I (all
zeros) and II (constant large value) and external disturbances. All results are
presented with a 95% confidence interval and score are normalized with respect
to the open-loop baseline.

In this section, we evaluate the robustness of the trained agents from the previous
section against sensor noise, failures, and external disturbances [DALM+20, SGS+21].
To investigate the impact of noisy sensors, we introduce Gaussian noise with varying
intensities into one sensor signal (specifically, the first index in the observation vector,
which provides the end-effector position). We simulate two types of sensor malfunctions
to study the robustness against sensor faults: Type I failure involves outputting zero values
for one sensor, while Type II failure generates a constant value with a larger magnitude (set
to five in our experiments). Finally, we assess the robustness to external disturbances by
applying perturbations with a force of 5N in randomly chosen directions with a probability
of 5% (around 50 impulses per episode). By examining the agents’ performance under these
scenarios, we can evaluate their ability to adapt to imperfect sensory input and react to
perturbations. We also study the effect of randomization by training SAC with a Gaussian
noise with intensity σ = 0.2 on the first sensor (SAC NOISE in the figure).

In the absence of noise or failures, SAC outperforms simple oscillators on most tasks,
with the exception of the Swimmer environment. However, as seen in Fig. 6.4, SAC’s
performance deteriorates quickly when exposed to noise or sensor faults. This is also the
case for the other RL algorithms, where ARS and PPO are the most robust, but still show
degraded performance. In contrast, open-loop oscillators remain unaffected, except when
exposed to external disturbances, as they do not rely on sensors. This highlights one of
the primary advantages and limitations of open-loop control.
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The performance of SAC trained with noise on the first sensor (SAC NOISE) shows
that it is possible to mitigate the effects of sensor noise. This finding, together with the
performance of the open-loop controller, suggests that the first sensor is not essential for
achieving good results in the MuJoCo locomotion tasks. SAC with randomization on the
first sensor has learned to ignore its input, while SAC without randomization shows a high
sensitivity to the value of this uninformative sensor. This illustrates a limitation of DRL
algorithms, which can be sensitive to useless inputs.

Simulation to Reality Transfer on an Elastic Quadruped

Figure 6.5: Robotic quadruped with elastic actuators in simulation (left) and real hardware
(right)

The open-loop approach presents a promising baseline for locomotion control on real
robots, given its computational efficiency, robustness to sensor noise, and satisfactory
performance. To assess its potential for real-world applications, we investigate the trans-
ferability of the simulation results to the bert quadruped robot equipped with serial elastic
actuators (introduced in Section 2.3.2).

We employ a simulation of the robot in PyBullet [CB21] to perform our evaluation. The
bert simulation incorporates a model of the elastic joints but omits motor dynamics. The
objective is to achieve maximum forward speed: we define the reward as displacement
along the desired axis and limit each episode to five seconds of interaction. The agent
receives the current joint positions q and speeds q̇ as observations and commands the
desired joint positions qdes at a frequency of 60Hz.

In this experiment, we compare the open-loop approach with the best performing algo-
rithm from Section 6.1.3, which is SAC. Both algorithms are given a budget of one million
steps for training. In particular, we do not use any randomization or task-specific tech-
niques during the training process. Our aim is to understand the strengths and weaknesses
of RL relative to the open-loop baseline in a simple simulation-to-reality setting. We test
the policy learned in simulation on the real robot for ten episodes.

As presented in Table 6.2, SAC outperforms the open-loop oscillators in simulation,
achieving a mean speed of 0.81 m/s compared to 0.55 m/s over ten runs, similar to the
results in Section 6.1.3. However, a closer examination reveals that the policy learned by
SAC generates high-frequency commands, making it unlikely to transfer to the real robot
– a common challenge faced by RL algorithms [RKS21, BI22]3. When deployed on the real
robot, the jerky motion patterns result in suboptimal performance (0.04 m/s), potentially
damaging commands for the motors, and increased wear-and-tear.

3Chapter 4 discusses this issue in more detail.
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6 Combining Oscillators and RL to Efficiently Learn Locomotion

Table 6.2: Results of simulation-to-reality transfer for the elastic quadruped locomotion
task. We report mean speed and standard error over ten test episodes. SAC
performs well in simulation, but fails to transfer to the real world.

SAC Open-Loop

Sim Real Sim Real

Mean speed (m/s) 0.81 +/ 0.02 0.04 +/ 0.01 0.55 +/ 0.03 0.36 +/ 0.01

In contrast, our open-loop oscillators, with less than 25 adjustable parameters, produce
smooth outputs and achieve good performance on the real robot. Although there is still
a gap between simulation and reality, it is much smaller than for the RL algorithm.

6.1.4 Ablation Study

In this section, we analyze how design choices from Eq. (6.1) affect performance. In
particular, we explore the impact of using phase-dependent frequencies (where we set
ωswing = ωstance = ω) and the role of phase shifts φi between oscillators (where we set
φi = 0). The results are presented in Figs. 6.6 and 6.7 and Table 6.3.

The equations of the different variants of Eq. (6.1) are:

qdesi (t) = ai · sin(ω · t+ φi) + bi No ωswing

qdesi (t) = ai · sin(ψi(t)) + bi No φi

qdesi (t) = ai · sin(ω · t) + bi No φi No ωswing

(6.2)

where ψi(t) is the same as in Eq. (6.1).

For the HalfCheetah, Swimmer, and Ant tasks, a single frequency ω proves suf-
ficient. However, for the Hopper environment, it is crucial to have phase-dependent
frequencies. Phase shifts φi are necessary when joints cannot move synchronously, as
observed in the Swimmer task. For quadrupeds, these phase shifts φi are essential for
representing gaits and capturing leg symmetries.

Table 6.3: Results on MuJoCo locomotion tasks (mean and standard error are displayed)
with different variant of the approach.

Open-Loop

No φi No ωswing No φi No ωswing Full

Ant-v4 1167 +/- 3 1173 +/- 3 1239 +/- 8 1235 +/- 6

HalfCheetah-v4 2221 +/- 27 2245 +/- 30 2532 +/- 42 2400 +/- 31

Hopper-v4 929 +/- 9 785 +/- 28 986 +/- 7 1241 +/- 30

Swimmer-v4 -119 +/- 8 -82 +/- 6 356 +/- 0 356 +/- 0

Walker2d-v4 1484 +/- 36 1482 +/- 34 1140 +/- 32 1508 +/- 27
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Figure 6.6: Performance profiles on the MuJoCo locomotion tasks using different variants
of the open-loop approach, with a 95% confidence interval.
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Figure 6.7: Metrics results on MuJoCo locomotion tasks for the different variants using
median and interquartile mean (IQM), with a 95% confidence interval.

6.1.5 Discussion

A simple open-loop model-free baseline. We present a simple, open-loop model-
free approach that achieves satisfactory performance on standard locomotion tasks with-
out relying on complex models or expensive computational resources. Although it may
not outperform DRL algorithms in simulation, this method offers several advantages for
real-world applications, including efficient computation, ease of deployment on embed-
ded systems, smooth control outputs, and robustness to sensor noise. These features help
bridge the gap between simulation and reality, avoiding common problems associated with
DRL algorithms, such as jerky motion patterns [RKS21] or convergence to a “bang-bang”
controller [SGS+21]. Our approach is specifically designed for locomotion tasks, but its
simplicity does not compromise its versatility, allowing it to be applied to a variety of
locomotion tasks and transfer to a real robot with just a few adjustable parameters, while
remaining model-free.

The cost of generality. Deep RL algorithms for continuous control often seek gener-
ality by using a versatile neural network architecture for the policy. However, this pursuit
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6 Combining Oscillators and RL to Efficiently Learn Locomotion

of generality in the algorithm comes at the cost of specificity in the task design. Indeed,
the reward function and action space must be carefully designed to solve the locomotion
task and avoid solutions that exploit the simulator but do not transfer to real hardware.
Our study and recent work [ICT+18, BI22, RSK+22] suggest integrating domain knowl-
edge into policy design. Even minimal knowledge, such as simple oscillators, can reduce
the search space and the need for complex algorithms or reward design.

Unexpected results. While the success of open-loop oscillators in the Swimmer
environment is expected, their effectiveness in theWalker, Hopper, or elastic quadruped
environments is more surprising, as one might assume that feedback control or inverse
kinematics would be needed to balance the robots or learn a meaningful open-loop policy.
Although previous studies have already shown that periodic movements are at the heart of
locomotion [Ijs08], we argue that the periodic motion required can be surprisingly simple.
With the ARS algorithm, [MGR18] showed that simple linear policies can be used to
solve locomotion tasks. Our work takes this a step further by reducing the number of
parameters by a factor of ten and removing the state as an input.

Limitations Naturally, open-loop control alone is not a definitive solution to loco-
motion challenges. By design, open-loop control is sensitive to disturbances and can-
not recover from a potential fall. In such cases, it becomes essential to close the loop
with RL to adapt to changing conditions, maintain stability, or track a desired goal. A
hybrid approach that leverages the strengths of feedforward (open-loop) and feedback
(closed-loop) control offers an intermediate solution, as seen in various fields of engineer-
ing [GGS00, AM08, DSBG+17]. By combining the fast computation and noise resilience
of open-loop control with the adaptability of closed-loop control, it enables reactive loco-
motion. This combination is explored in the next section.

6.2 Learning to Exploit Elastic Actuators: Combining
Open-Loop Oscillators with RL

In this section, we investigate the combination of open-loop oscillators, presented in the
previous section, with reinforcement learning. The idea is to exploit the strengths of the
open-loop oscillators and learn only a delta on top of the feedforward term (similar to what
we did in Section 5.2). We also reduce the dimensionality of the problem by generating
trajectories in task space. This allows fast learning of different gaits directly on the elastic
robot bert that take advantage of its springs.

6.2.1 Open-Loop Oscillators in Task Space

Similar to Section 6.1.2, we generate open-loop policies for locomotion using a system of
nonlinear oscillators, that have phase-dependent frequencies. Compared to Section 6.1.2
where we were operating at the joint level, we reduce the search space and use one oscillator
per leg, as done by previous work on CPGs [RBI06, RI08, APSI13].

As shown in Fig. 6.8, the output of each oscillator determines the foot trajectory in
Cartesian space. The trajectory of each leg i depends on four parameters4 that have to be
tuned: ground clearance ∆zclear and penetration ∆zpen, step length ∆xlen, swing ωswing

and stance ωstance frequencies. We convert the output of one oscillator i to a desired foot

4In the remaining section, we fix manually the phase shift parameters φi to obtain desired known gaits
(trot, pronk, . . . ). We lift this restriction in Section 6.4.1.
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Figure 6.8: The parameters of the open-loop oscillators gait that are optimized.

trajectory following:

xdes,i = ∆xlen · cos(ψi + φi)

zdes,i = ∆z · sin(ψi + φi)

∆z =

{
∆zclear if sin(ψi + φi) > 0 (swing)

∆zpen otherwise (stance).

(6.3)

The most critical parameters for an elastically-actuated quadruped are the swing and
stance duration, as they should match the natural dynamics of the robot [DSLBAS20,
ASDS20].

Tuning these variables manually is time-consuming and usually results in suboptimal
choices. Therefore, we automate their tuning using BBO (as in Section 6.1.2) and run the
optimization directly on the real robot, avoiding any model mismatch.

6.2.2 Online Learning for Legged Locomotion

To learn a locomotion controller for the elastic legged robot, we combine two model-free
methods. We first optimize the parameters of a selected gait to quickly obtain an open-
loop controller that works in the nominal case without disturbances. Then, we refine the
controller and make it more robust to perturbations by learning a RL controller that adds
offsets to the oscillators output. The entire optimization process – depicted in Fig. 6.9 – is
conducted directly on the real robot, removing the need for modeling, accurate simulators
or simulation-to-reality transfer.

The oscillators provide a compact representation of limb end-effector trajectories (Eq. (6.3))
that can be adjusted via the set of parameters α shown in Fig. 6.8:

α = {∆zclear,∆zpen,∆xlen, ωswing, ωstance } . (6.4)

While the BBO algorithm optimizes the parameters of the gait generated by the coupled
oscillators (as in Section 6.1.2), we use RL to learn a reactive controller π as a set of
corrective actions per leg i defined as πi = [πx,i (st) , πz,i (st)]. The learned policy π adjusts

91



6 Combining Oscillators and RL to Efficiently Learn Locomotion

2. Close the loop with RL

reward

RL
controller

sensors
data

corrective
actions

Environment
with optimized 

oscillators

3. Final learned controller

+

sensors data

corrective
actions

IK desired
motor positions

Optimized 
oscillators

desired
foot positions

RL controller

Swing

Stance

1. Optimize oscillators parameters

Figure 6.9: Overview of the proposed approach: oscillators parameters are first optimized
using BBO, then a RL controller is trained on top and outputs corrective
actions.

desired foot positions produced by the oscillators (Eq. (6.3)) given the current state of the
robot st, closing the control loop:

xdes,i = ∆xlen · cos(ψi + φi) + πx,i(st)

zdes,i = ∆z · sin(ψi + φi) + πz,i(st)
(6.5)

6.2.3 Metrics for Elastic Robots

Objective functions of learning methods typically describe tasks (e. g. move forward as fast
as possible), and do not enforce explicit usage of the compliant actuators. To measure if
the learned controllers exploit the capability of the elastic robot, we define metrics that
quantify the spring usage.

By storing and releasing energy, springs allow joints to reach much higher velocities
than the motors [MKH21]. The peak joint velocity usually has a delay compared to the
peak motor velocity. Therefore, we propose to compare the ratio between maximum joint
and motor velocity over a trajectory for each joint:

R
q̇

θ̇
i =

maxt q̇i

maxt θ̇i
. (6.6)

Intuitively, if the springs are fully exploited, the ratio R
q̇

θ̇ should be greater than one
(rigid robot baseline), meaning that the energy is stored and released at the right moment.

We also monitor the potential and kinetic energy to better understand how energy is
transferred and how the learned controllers utilize the elastic actuators. We only consider
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the kinetic energy related to the task (translational velocity of the center of mass) and
therefore do not plot the rotational kinetic energy.

6.2.4 Task Specification

To evaluate the proposed approach, we focus on two dynamic gaits: trotting and pronking
(jumping in place).

Trotting The first task we are interested in is to obtain a fast walking trot, where we
optimize for mean forward speed (f(α) = −∆x

∆t ). We define the immediate reward as the
distance traveled between two timesteps along the desired axis (rt = ẋrobot).

After optimization, we further evaluate the five best performing candidates for more
episodes. This post-processing step is key to filtering out the evaluation noise, i. e. it helps
to find parameters that lead to reliable gaits.

Pronking The second task is to jump in place (pronk) without falling or drifting from the
starting position. In a pronking gait, all legs are synchronized: they all take off and land at
the same time (as seen in Fig. 6.10). The step length is set to zero in that case. We penalize
angular velocity for roll and yaw, distance to the starting point and reward velocity along
the z axis (aligned with gravity field): rt = w1|ż| −w2(ψ̇

2
roll+ ψ̇2

yaw)−w3∆
2
xy, where w1,2,3

are weights chosen in a way that the primary reward |ż| has a higher magnitude than the
secondary costs. We define the objective function for the BBO as the total reward per
episode (f(α) = −

∑
t rt).
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Figure 6.10: Pronking gaits for a 2-second period.

In all tasks, the RL agent receives as input st the current joint positions, velocities,
torques, linear acceleration and angular velocity (from the IMU), and the desired foot
position generated by the open-loop controller. The action space corresponds to offsets
for each foot in Cartesian space.
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6.2.5 Results

We evaluate our approach on two locomotion tasks (trotting and pronking) to answer the
following questions:

• Can we quickly learn a controller directly on the real elastic robot?

• How does the learned controller exploit the elastic actuators?

• What is the added value of closing the loop with RL?

• Is the open-loop controller needed or is RL from scratch enough?

Setup

The agent is trained at 30Hz but can be evaluated at 60Hz (limited by the tracking system).
The oscillators parameters are optimized during 45 minutes for the trotting experiment
and 25 minutes for the pronking one (250 and 160 trials respectively). The RL controller
is then trained on top during one hour. For safety, the motor velocities are capped at
θ̇max = 4rad/s.

Hand-tuned Baseline. We use parameters tuned by hand by a human experimenter
familiar with the elastic quadruped as a baseline. The experimenter was given the same
time and search space as the BBO algorithm, as well as an explanation of the meaning
and importance of each parameter.
RL Baseline. When learning from scratch, we use the setting described in [SKL23]

to be able to learn a controller in minutes, using 10 gradient steps per control step. The
action space is extended to be similar in task space to the one used by the open-loop
controller.
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Figure 6.11: Optimization history plot for trotting (45 minutes).

Fast Trotting

Without the need for a simulator or prior knowledge, the automatic tuning with BBO
quickly finds good parameters for trotting in less than an hour with the real robot. Looking
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at the optimization history in Fig. 6.11, the algorithm discovers parameters that match
the hand-tuned performance in less than 5 minutes (30 trials, a trial takes around 10s
on average, accounting for resets) and parameters that exceed 0.20m/s in 10 minutes (60
trials).

After only 40 minutes of optimization, the gains are significant for the trotting gait
(cf. Table 6.4): with the same maximum motor velocity, the quadruped trots 70% faster,
reaching a mean speed of 0.26m/s (vs. 0.15m/s with hand-tuned parameters).

Closing the loop with reinforcement learning helps to further improve performance. Both
with the hand-tuned and the optimized oscillators, the robot trots significantly faster (20%
and 30% faster respectively). The combination of optimized oscillators + RL gives the
best results (0.34m/s), and the hand-tuned oscillators + RL do not reach the performance
of the optimized oscillators gait (0.19m/s).

RL Oscillators Oscillators + RL
hand-tuned optimized hand-tuned optimized

Speed (m/s) ↑ 0.14 0.15 0.26 0.19 0.34

Mean R
q̇

θ̇ ↑ 1.4 +/- 0.1 1.4 +/- 0.1 1.9 +/- 0.1 1.6 +/- 0.1 2.0 +/- 0.3

Table 6.4: Results for the fast trotting experiment. The optimized gait trots 70% faster
that the hand-tuned controller and exploit more the springs.

Concerning joint and motor velocities, the optimized controller reaches higher peak joint
velocities for the same peak motor velocities (Table 6.4). The peak joints velocities are

almost twice the one of the motors (R
q̇

θ̇=2.0 vs. 1.4 for the hand-tuned) showing the
potential of springs for locomotion. In fact, as seen in Fig. 6.12, the peak in joint velocity
q̇ corresponds to a sudden decrease in the spring potential energy: the energy of the spring
is converted into kinetic energy. The main difference between the results of hand-tuned
and optimized parameters is the timing of this conversion. For the learned controller, it
happens when the motor velocity θ̇ is still at its peak B , while for the hand-tuned one, it
happens when the motor velocity has already started to decrease A .

Is RL from scratch sufficient?

Table 6.4 also shows the result of learning to walk from scratch with RL on the real robot.
The RL controller learns to walk in 10 minutes only, but the performance plateaus after-
ward. The RL controller barely reaches the hand-tuned oscillators performance (0.14m/s),

and this translates into less use of the springs (R
q̇

θ̇ ≈ 1.4).

This experiment illustrates the shortcomings of learning from scratch. RL would require
extensive reward engineering [LHW+20, MLH+22] to achieve natural-looking gaits similar
to the open-loop oscillators (e. g. adding a foot clearance reward). The gait learned by
RL is also unpredictable: since we only optimize for the forward speed, it does not have
to trot, but could for example, pronk. On the other hand, as shown in Section 6.1, the
gaits produced by the open-loop controller encode basic primitives for walking (e. g. foot
clearance does not need to be specified in the reward), and the phase shifts gives control
over the gait type. Learning from scratch with RL is more dangerous for the hardware,
as any kind of movement of the legs is allowed, and the smoothness of the controller must
be enforced to not damage the motors with high frequency control output (as explored in
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Figure 6.12: Joint and motor velocity of the front right foot while trotting for a 2-second
period. Darker background represents stance phase. Blue and orange dotted
lines represent maximum joint and motor velocities, respectively.

Chapter 4).

Stabilizing Pronking

For the pronking task, the BBO algorithm discovers multiple good sets of parameters in
less than 10 minutes (60 trials), as seen in the optimization history in Fig. 6.13. The
hand-tuned and optimized oscillators parameters both allow the robot to jump in place,
but the open-loop controller rapidly fails when the robot roll angle increases, either as a
consequence of an applied perturbation or due to the interaction with the floor.

By closing the loop between the robot state and actions, the reinforcement learning
controller helps mitigating this issue, as summarized in Table 6.5. Here we see that the
solution with RL results in no failures. The quadruped also jumps better in place (less
drift with respect to the starting position) while keeping the same jumping height.

As for the trotting experiment, adding RL on top of the hand-tuned oscillators improves
performance but does not match the optimized controller.

We show in Fig. 6.10 the patterns for the hand-tuned and optimized pronking gaits. The
optimized parameters are quite different from the hand-tuned ones: the swing phase is
shorter (0.10s vs. 0.18s for the hand-tuned one) and stance phase longer (0.22s vs. 0.15s),
and the ratio between the two is inverted (swing phase shorter than the stance phase).

The energy evolution in Fig. 6.14 demonstrates how elastic properties of the actuators
are exploited. The robot first crouches on the floor (decrease in gravitational potential
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Figure 6.13: Optimization history plot for pronking (30 minutes).

energy), compressing and loading the spring C . To jump, it then pushes all its legs against
the floor, while at the same time releasing the energy stored in the springs. This energy
is converted both into kinetic energy (the robot reaches its maximum speed shortly after
takeoff D ) and gravitational potential energy. After reaching the maximum height E , the
gravitational potential energy is converted back into kinetic energy before the robot lands
and the jumping cycle starts again.

The main difference between the hand-tuned and optimized parameters is the maximum
spring potential energy. This results in higher jumps for the optimized controller (higher
peak in gravitational potential energy in Fig. 6.14).

Finally, the peak joint velocity is higher for pronking compared to trotting (R
q̇

θ̇=3.5
vs. 1.8) because the leg springs are compressed and released synchronously. As shown
in Table 6.5, the peak joint velocity is on average 3.5 times the maximum velocity reached
by the motors for the optimized parameters, versus 2.9 for the hand-tuned parameters.

Oscillators Oscillators + RL
hand-tuned optimized hand-tuned optimized

Mean reward (103) ↑ 1.0 +/- 0.1 1.4 +/- 0.2 1.4 +/- 0.1 1.6 +/- 0.1 (+60%)

Drift ∆xy cost ↓ 1.3 +/- 0.1 1.5 +/- 0.1 1.3 +/- 0.1 1.3 +/- 0.1

Angular vel. cost ↓ 204 +/- 6 194 +/- 14 183 +/- 10 160 +/- 10

Max height (cm) ↑ 7.3 9.3 8.1 9.4

Failures 1 failure 1 failure no failure no failure

Mean R
q̇

θ̇ ↑ 2.9 +/- 0.2 3.3 +/- 0.2 3.2 +/- 0.2 3.5 +/- 0.3 (+20%)

Table 6.5: Results for the jumping in place experiment, on 5 evaluation episodes. Failures
occur without external perturbations.
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Figure 6.14: Energy evolution while pronking for a 2-second period.

6.3 Learning from Human Feedback

Designing a reward function to achieve a desired behavior can be a tedious and time-
consuming process, often requiring many trial and error [DVM+14, SYH+19]. In the case
of on-robot learning, obtaining a clean reward signal can be particularly challenging. For
instance, in the last section (and in Chapter 4), a tracking system surrounding a treadmill
was needed to reward the agent for moving forward. Outside the treadmill, an IMU
combined with leg kinematics can be used to estimate the robot’s motion, but the signal
is noisier and subject to drift [BHH+08].

Figure 6.15: Learning from human feedback directly on the real robot with a web-based
GUI (top left)
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6.4 Conclusion

To address this, we investigate replacing engineered reward by a simple human feed-
back [ISK+01, VH18] to optimize the gaits generated by open-loop oscillators (Section 6.2.1).
A human observer evaluates the robot’s behavior via a web-based GUI (top left of Fig. 6.15)
and provides a discrete rating (five possible values, from -2 to 2) for each trial. This rating
serves as the reward signal for the CMA-ES algorithm (with a population size of 10),
which optimizes the oscillator parameters. To improve efficiency, a trial is stopped as soon
as the human clicks on one of the rating buttons.
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Figure 6.16: Learning curve in simulation using only human feedback (left) and the cor-
responding forward speed for each trial (right). The forward speed is not
available to the robot during training.

In the left panel of Fig. 6.16, we show the learning curve in simulation and display the
ground truth speed in the right panel (not available to the robot during training). The
robot learns to walk forward in five minutes (≈ 50 trials), using only human feedback.
This experiment has been successfully reproduced five times, directly on the real robot,
with different human labelers (Fig. 6.15 shows a screenshot of one of the experiment).

6.4 Conclusion

In this chapter, we have explored the benefits of guiding RL with prior knowledge to learn
locomotion controllers directly on a real quadruped robot.
We have seen that open-loop oscillators can serve as a useful starting point for learning

locomotion controllers, providing insight into the current limitations of DRL algorithms.
By integrating the open-loop oscillators with RL, we can further improve performance

and robustness, learning directly on the bert quadruped. This approach eliminates the
need for complex reward engineering and massively parallel simulation. In particular, the
learned gaits exploit the natural dynamics of the robot, enabling efficient energy storage
and release in the springs, without requiring explicit reward design.
Furthermore, a learning controller can adapt to new situations, such as changes in

dynamics, and discover new behaviors. This ability to quickly adapt and find innovative
gaits was demonstrated in an experiment with the ISS.
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6.4.1 Epilogue: Surface Avatar Mission with the International Space Station

The Surface Avatar experiment series [LSL+22, SSL+24] is a telerobotics mission in which
an astronaut on the International Space Station (ISS) commands robots on Earth with
varying degrees of autonomy. For this mission, the elastic quadruped robot bert was
heavily modified. The new robot, called norbert (shown in Fig. 6.17), has new motors,
springs with a different stiffness (k ≈ 3.1Nm/rad vs. 2.75Nm/rad previously), a 400g
battery, and a 1kg arm mounted on top of it. These modifications significantly change the
center of mass, symmetries, and dynamics of the robot, making it impossible to reuse any
of the gaits that were optimized for bert .

Figure 6.17: Surface Avatar mission with the ISS, the astronaut remotely operating the
robot can be seen in the TV (left) and the modified hardware, norbert (right)

For the mission, norbert needed to walk forward, backward, and turn [SSL+24]. How-
ever, unlike other quadruped robots, norbert has no hip joints, making it necessary to find
a completely new strategy for turning. This is where learning directly with a model-free
approach on the real hardware was crucial. We used the open-loop controller in task space
described in this chapter and enabled the agent to discover novel behavior by learning the
phase shift φi between oscillators. With just 30 minutes of retraining for each gait, we
were able to provide the desired commands to the astronaut, making norbert the first
quadruped robot to be controlled from space.
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CHAPTER 7

Conclusion

In this thesis, we have focused on developing techniques to enable deep reinforcement
learning on real robots. As our conclusion, we summarize the main contributions of this
thesis, its impact on the DRL field, discuss the remaining open problems to extend the
presented research, and offer a perspective on how RL for real robots might look like in
the future.

7.1 Summary

7.1.1 TL;DR

Throughout this thesis, we have applied reinforcement learning directly on real robots.
This was made possible by reliable, fast software as well as reproducible experiments
(Chapter 3). Learning from scratch can be dangerous and inefficient, so we have explored
different methods to incorporate expert knowledge and guide the learning agent.

In Chapter 4, we developed a safer and smoother exploration strategy that allows learn-
ing in the real world without any modifications. In addition, we showed how to leverage
different types of expert knowledge for two different robots with elastic elements.

For the David elastic neck (Chapter 5), we integrated a new pose estimation model
to obtain a feedforward controller, and reformulating the problem as a task-conditioned
one led to improved results. In the case of the elastic quadruped bert (Chapter 6), we
combined RL with open-loop oscillators, which were shown to be tailored for locomotion.

In all cases, enabling RL on real robots with expert knowledge reduced training time,
wear-and-tear, and improved the final performance.

7.1.2 Challenges of Real-Robot Learning

In the introduction (Section 1.2), we presented several challenges that arise when learn-
ing directly on a real robot. We now summarize how the different contributions of this
dissertation address those challenges and enable on-robot RL.
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Challenge i. (Exploration-Induced Wear and Tear)

gSDE (Chapter 4) is specifically designed to tackle the problem of wear and tear by
smoothing the exploration process. The standard approach of adding step-based Gaus-
sian noise to the actions can lead to jerky movements, causing unnecessary stress on the
hardware. In contrast, gSDE samples exploration parameters less frequently and uses
policy features, resulting in smoother exploration. This directly addresses the challenge
of minimizing mechanical fatigue during the learning process.

Integrating a data-driven, fault-tolerant pose estimator for the David elastic neck (Chap-
ter 5) reduces the need for extensive exploration. When inverted, the pose estimator pro-
vides a feedforward controller that can guide the robot to desired poses, reducing reliance
on random exploration and minimizing the risk of wear and tear.

For the bert quadruped, using open-loop oscillators as a basis for locomotion control
(Chapter 6) inherently generates smooth, rhythmic movements. This approach reduces the
reliance on random exploration to discover basic locomotion patterns, further minimizing
wear and tear on the hardware.

Challenge ii. (Sample Efficiency)

Stable-Baselines3 (SB3), SBX, and the RL Zoo (Chapter 3) directly address the need
for sample efficiency in real-robot learning. By providing reliable and tested implemen-
tations of DRL algorithms, they ensure that experiments are reproducible and minimize
wasted trials due to bugs or implementation errors. Additionally, SBX, with its focus on
speed, allows for more gradient updates per unit of time, improving sample efficiency.

Two methods are presented to improve sample efficiency in controlling the David elastic
neck (Chapter 5). Goal-conditioned RL with Hindsight Experience Replay (HER) relabels
unsuccessful experiences with alternative goals, allowing the agent to learn from a wider
range of situations. Combining RL with a feedforward controller derived from the pose
estimator enables the agent to start with a reasonably good policy, drastically reducing
the number of trials needed to achieve high performance.

For the bert quadruped (Chapter 6), the open-loop oscillators provide a strong prior for
locomotion control, reducing the search space for the RL agent. This allows bert to learn
effective locomotion gaits with significantly fewer interactions than learning from scratch
(Chapter 4).

Challenge iii. (Real-Time Constraints)

Both Stable-Baselines3 and SBX (Chapter 3) are designed to satisfy the real-time needs
of robot control. SB3 and its RL Zoo provide a stable and well-documented framework
that can be used to run experiments over several days, while SBX focuses on speed, using
the Jax library for faster execution. The just-in-time compilation of Jax allow policy
updates to be performed in a timely manner, meeting the real-time constraints of a robot
control loop.

Challenge iv. (Computational Resource Constraints)

With a focus on clean, efficient code, SB3 and SBX models (Chapter 3) can be deployed
on the resource-constrained hardware often used in robotics (with the help of ONNX in
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the case of SB3 1). This makes it possible to run DRL algorithms directly on the robot,
without requiring powerful external computers.

The data-driven pose estimation method for the David elastic neck (Chapter 5) uses
simple models (linear and polynomial) that are computationally efficient. This ensures that
pose estimation can be performed in real-time on the robot’s hardware. This efficiency is
maintained even when managing an ensemble of estimators.

Open-loop oscillators are computationally lightweight, requiring minimal resources to
generate control signals. This allows for real-time control even on embedded platforms with
limited processing power. The on-robot learning experiments with the norbert quadruped,
a modified version of bert used in a mission with the International Space Station, highlights
this capability.

7.1.3 Impact

The work presented in this thesis has already impacted the field of deep reinforcement
learning, particularly in its application to real-world robotics.

High Quality Software The tools developed during this thesis and presented in Chap-
ter 3 (SB3, SBX, and the RL Zoo) have become a standard resource. They are used
by researchers and practitioners that want to apply RL in various domains, from climate
change [LCNB22] and particle accelerators [VGK+23] to video games [Whi23] and drone
racing [SRM+23]. The impact of SB3 extends beyond research, as it is also integrated into
educational resources [SS23, RFK+23, Car22], benefiting both students and educators.

Enabling RL for Robots The methods presented have seen broader application be-
yond the scope of this dissertation. Generalized State-Dependent Exploration (gSDE)
has been applied to other robotic platforms [SHI+23, dPLF23] and inspired further re-
search [EHPM22, CMVHM23], contributing to a winning robotic manipulation solution
[CMVHM23]. The pose estimation and control approach for the David elastic neck
(Chapter 5) was applied to a new neck of the neoDavid platform [WHB+23] and in-
tegrated with vision for robust arm tracking [Sto23]. Finally, the open-loop oscillators
for locomotion were used in two telerobotics missions with the International Space Sta-
tion [LSL+22, SSL+24].

7.2 Future Work

Software SB3, SBX, and the RL Zoo are powerful tools for conducting single-agent,
model-free RL experiments. However, they do not cover multi-agent, model-based, or
offline RL, all of which are missing easy-to-use and reliable libraries. In addition, the RL
Zoo currently lacks features to analyze and group experiments independently of an online
service, and would benefit from a GUI. Finally, deploying a trained model with SB3 (using
ONNX or C++) currently requires manual steps, and automating this part would benefit
the community.

Safety In this thesis, we have made efforts to prioritize safety by using safer exploration
techniques and incorporating expert knowledge into the task design. However, it is still

1https://github.com/onnx/onnx
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possible for the agent to encounter dangerous situations, and in some experiments, a
human was required to intervene and prevent harm (e. g. when learning from scratch, bert
tended to load its springs and attempt a backflip). Instead of relying on soft constraints
or relying on a human, one line of research is to explore strategies to ensure that the agent
respects hard constraints and never explores dangerous regions of the space.

Pose Estimation and Iterative Learning. The fault-tolerant pose estimation method
presented in this thesis is able to handle many failures, but could benefit from a more
sophisticated ensembling technique to improve its scalability. Additionally, the method
requires an initial dataset that covers the entire task space in order to ensure accurate
pose predictions in all situations. A possible solution to these limitations is to use an
iterative learning approach for both the pose estimation and the controller. Initially, the
controller would only be able to reach a small region around the default pose, where the
initial pose estimator would be accurate. Over time, as the pose prediction and controller
accuracy improve, this region would expand until it covers the entire domain.

Open-Loop Oscillators. While our approach generates desired joint positions using os-
cillators without relying on the robot state, a PD controller is still required in some envi-
ronments to convert these positions into torque commands. Since the generated torques
appear to be periodic, a straightforward extension would be to replace the PD by addi-
tional oscillators (additional harmonic terms).

Learning locomotion. In this thesis, we have shown that it is possible to quickly learn
a locomotion controller for an elastic quadruped robot. However, the current approach
is limited to single-task controllers and has primarily been tested on flat ground. Future
work should focus on learning command-conditioned controllers and adapting the gait to
new and unseen environments, including outdoor environments. This would allow the
robot to perform a wider range of tasks and operate in a variety of real-world settings.

7.3 Outlook

This thesis is a step towards bringing deep reinforcement learning to real robots. Although
many challenges remain, learning methods have started to be integrated into robotic con-
trollers, such as in the Anymal robot and more recently in Spot, which historically focused
on model-based MPC control [HGJ+16, Dyn20].

Learning from Human Feedback

One important aspect of learning controllers is reward design. Designing reward functions
for complex robotic tasks can be challenging, as it requires carefully specifying the desired
behavior and balancing multiple objectives. Misspecified rewards can lead to unintended
(e. g. reward hacking, the agent maximizes the objective but does not solve the task) and
potentially unsafe behaviors.

The recent interest in learning from human feedback [KS08, CLB+17], as seen in the
training of large language models [SOW+20, OWJ+22], should benefit RL for robotics.
By learning reward functions from human preferences, the robot could learn the desired
behavior without the need for manual reward engineering. However, integrating human
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feedback into RL for robots remains an open research question, requiring further inves-
tigation into effective feedback mechanisms, human-robot interaction, and robustness to
feedback noise and bias.

Advances in Software, Hardware and Cost of Generality

RL practitioners, and more generally machine learning practitioners, often overlook ad-
vancements in hardware design. Recent successes in learning controllers on real robots are
not only due to better simulators, algorithms, or compute power but also to more robust
hardware. As RL learns by trial and error, it is demanding on the robot.
To improve performance, one can either enhance software or hardware, or both (co-

design). The trade-off between generality and specificity is also crucial, as shown in the
Amazon Picking Challenge, where the compromise between embodiment and computation
was a key aspect [EHJ+16]. In this challenge, it was more robust and easier to use suction
to pick objects instead of a more versatile robotic hand. Similarly, in the case of folding
clothes, one can use a dual-arm setup with complex interactions or create a system that
solves the problem by design, such as a clothes-folding board.

The Role of Simulation and Learning on Real Robots

As simulation can now be easily scaled to thousands of robots on a single GPU [RHRH22],
it will likely remain the starting point when designing learning controllers, as long as the
robot can be modeled accurately enough. However, learning in simulation should be seen
as an initial step to obtain a pre-trained controller. Just as pre-trained encoders are used
for vision tasks, learning in simulation should enable pre-trained controllers that can be
quickly fine-tuned for new tasks or robots.
To further adapt to new situations, compensate for robot defects, or improve accuracy,

simulation alone is not enough. Fine-tuning in the real world to account for model inac-
curacies or to adapt to new situations (e. g. robot damage, unseen terrain) will hopefully
become more common. To improve the safety and tackle common issues of RL, such
as credit assignment, it should be combined with classic robotics techniques like motion
planners for higher-level control, obstacle avoidance, and long-term path planning.

Ultimately, the future of robot learning lies in combining the flexibility of simulation
with the directness of on-robot training, enabling robots to learn quickly, adapt to new
situations, and perform complex tasks reliably.
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Hejna, Jonathan Booher, Jonathan Tompson, Jonathan Yang, Jordi Sal-
vador, Joseph J. Lim, Junhyek Han, Kaiyuan Wang, Kanishka Rao, Karl
Pertsch, Karol Hausman, Keegan Go, Keerthana Gopalakrishnan, Ken
Goldberg, Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka, Kevin
Black, Kevin Lin, Kevin Zhang, Kiana Ehsani, Kiran Lekkala, Kirsty El-
lis, Krishan Rana, Krishnan Srinivasan, Kuan Fang, Kunal Pratap Singh,
Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu, Laurent Itti, Lawrence Yunliang
Chen, Lerrel Pinto, Li Fei-Fei, Liam Tan, Linxi ”Jim” Fan, Lionel Ott,
Lisa Lee, Luca Weihs, Magnum Chen, Marion Lepert, Marius Memmel,
Masayoshi Tomizuka, Masha Itkina, Mateo Guaman Castro, Max Spero,
Maximilian Du, Michael Ahn, Michael C. Yip, Mingtong Zhang, Mingyu
Ding, Minho Heo, Mohan Kumar Srirama, Mohit Sharma, Moo Jin Kim,
Naoaki Kanazawa, Nicklas Hansen, Nicolas Heess, Nikhil J Joshi, Niko
Suenderhauf, Ning Liu, Norman Di Palo, Nur Muhammad Mahi Shafi-
ullah, Oier Mees, Oliver Kroemer, Osbert Bastani, Pannag R Sanketi,
Patrick ”Tree” Miller, Patrick Yin, Paul Wohlhart, Peng Xu, Peter David
Fagan, Peter Mitrano, Pierre Sermanet, Pieter Abbeel, Priya Sundare-
san, Qiuyu Chen, Quan Vuong, Rafael Rafailov, Ran Tian, Ria Doshi,
Roberto Mart’in-Mart’in, Rohan Baijal, Rosario Scalise, Rose Hendrix,
Roy Lin, Runjia Qian, Ruohan Zhang, Russell Mendonca, Rutav Shah,
Ryan Hoque, Ryan Julian, Samuel Bustamante, Sean Kirmani, Sergey
Levine, Shan Lin, Sherry Moore, Shikhar Bahl, Shivin Dass, Shubham Son-
awani, Shuran Song, Sichun Xu, Siddhant Haldar, Siddharth Karamcheti,
Simeon Adebola, Simon Guist, Soroush Nasiriany, Stefan Schaal, Stefan
Welker, Stephen Tian, Subramanian Ramamoorthy, Sudeep Dasari, Suneel
Belkhale, Sungjae Park, Suraj Nair, Suvir Mirchandani, Takayuki Osa,
Tanmay Gupta, Tatsuya Harada, Tatsuya Matsushima, Ted Xiao, Thomas
Kollar, Tianhe Yu, Tianli Ding, Todor Davchev, Tony Z. Zhao, Travis Arm-
strong, Trevor Darrell, Trinity Chung, Vidhi Jain, Vincent Vanhoucke, Wei
Zhan, Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiangyu Chen, Xiao-
long Wang, Xinghao Zhu, Xinyang Geng, Xiyuan Liu, Xu Liangwei, Xuan-
lin Li, Yansong Pang, Yao Lu, Yecheng Jason Ma, Yejin Kim, Yevgen Cheb-
otar, Yifan Zhou, Yifeng Zhu, Yilin Wu, Ying Xu, Yixuan Wang, Yonatan
Bisk, Yongqiang Dou, Yoonyoung Cho, Youngwoon Lee, Yuchen Cui, Yue
Cao, Yueh-Hua Wu, Yujin Tang, Yuke Zhu, Yunchu Zhang, Yunfan Jiang,

110



Bibliography

Yunshuang Li, Yunzhu Li, Yusuke Iwasawa, Yutaka Matsuo, Zehan Ma,
Zhuo Xu, Zichen Jeff Cui, Zichen Zhang, Zipeng Fu, and Zipeng Lin. Open
X-Embodiment: Robotic learning datasets and RT-X models. In 41th IEEE
International Conference on Robotics and Automation, ICRA 2024. IEEE,
2024.

[CSO18] Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. Gep-pg: Decou-
pling exploration and exploitation in deep reinforcement learning algo-
rithms. In International conference on machine learning, pages 1039–1048.
PMLR, 2018.
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Scikit-learn: Machine learning in Python. Journal of Machine Learning Re-
search, 12:2825–2830, 2011.

[QHI+20] Gabriel Quere, Annette Hagengruber, Maged Iskandar, Samuel Busta-
mante, Daniel Leidner, Freek Stulp, and Jörn Vogel. Shared control tem-
plates for assistive robotics. In 2020 IEEE international conference on
robotics and automation (ICRA), pages 1956–1962. IEEE, 2020.

[RAB+23] Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack
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Alin Albu-Schäffer. Using elastically actuated legged robots in rough ter-
rain: Experiments with DLR quadruped bert. In 2020 IEEE Aerospace
Conference, pages 1–8, 2020.

[SHHR14] Freek Stulp, Laura Herlant, Antoine Hoarau, and Gennaro Raiola. Simul-
taneous on-line discovery and improvement of robotic skill options. In 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1408–1413. IEEE, 2014.

[SHI+23] Raghav Soni, Daniel Harnack, Hauke Isermann, Sotaro Fushimi, Shivesh
Kumar, and Frank Kirchner. End-to-end reinforcement learning for torque
based variable height hopping. In 2023 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 7531–7538. IEEE,
2023.

[SKL23] Laura Smith, Ilya Kostrikov, and Sergey Levine. Demonstrating a walk in
the park: Learning to walk in 20 minutes with model-free reinforcement
learning. Robotics: Science and Systems (RSS) Demo, 2(3):4, 2023.

124

https://github.com/takuseno/d3rlpy


Bibliography

[SLA+15] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International conference on
machine learning, pages 1889–1897, 2015.

[SMC+17] Felipe Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth
Stanley, and Jeff Clune. Deep neuroevolution: Genetic algorithms are a
competitive alternative for training deep neural networks for reinforcement
learning. arXiv preprint arXiv:1712.06567, 12 2017.

[SML+15] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter
Abbeel. High-dimensional continuous control using generalized advantage
estimation. arXiv preprint arXiv:1506.02438, 2015.

[SOR+10] Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan
Peters, and Jürgen Schmidhuber. Parameter-exploring policy gradients.
Neural Networks, 23(4):551–559, 2010.

[SOW+20] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe,
Chelsea Voss, Alec Radford, Dario Amodei, and Paul F Christiano. Learn-
ing to summarize with human feedback. Advances in Neural Information
Processing Systems, 33:3008–3021, 2020.

[SPB22] Leon Sievers, Johannes Pitz, and Berthold Bäuml. Learning purely tactile
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