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Kurzfassung

Ziel dieser Thesis ist es, die performanteste Optimalsteuerungsmethode fiir Model Predic-
tive Control (MPC) Formulierungen zu ermitteln. Zunéchst werden verschiedene explizite
und implizite Methoden der Optimalsteuerung anhand eines reprasentativen Beispiels
fiir Mehrkorpersysteme untersucht. Der Fokus liegt dabei auf der Echtzeitfdhigkeit der
Methoden, ihrer Regelgiite und dem Verhalten im offenen und geschlossenen Regelkreis.
Die Optimalsteuerungsmethoden werden zusammen mit den verschiedenen nichtlinearen
Solvern FATROP, IPOPT und SQP bewertet. Als effektivsten Ansatz erweist sich die
Kombination von FATROP entweder mit einer Multiple-Shooting (MS) Methode oder
einer angepassten lokalen Legendre-Gauss-Radau (LGR-LOC*) Pseudospektralmethode.

AnschlieSend werden MS und LGR-LOC* verglichen und fiir den Tracking- und Escape-
Fall im On-Orbit Servicing (OOS) bewertet. Die MS Methode erweist sich als die rech-
nerisch effizienteste Losung, wahrend die LGR-LOC* Methode eine geringfiigig bessere
Regelgiite erzielt.

Im letzten Kapitel wird ein universelles Bayes’sches Optimierungsverfahren (BO) zur
Identifizierung der performantesten Optimalsteuerungsmethode fiir MPC vorgeschlagen.
Besonderheit der entwickelten LGR-LOC* Methode ist das Beinhalten expliziter MS
Methoden und impliziter Kollokationsmethoden geringer und hoher Ordnung in einer
Formulierung. Dies nutzt der BO-Algorithmus, um die optimale Parametrisierung zu
bestimmen, wodurch die Notwendigkeit entféllt, jede Methode separat zu implementieren
und zu evaluieren.

Mit diesem Ansatz wird die Rechenzeit der MPC fir OOS um 45 % reduziert, wiahrend
gleichzeitig die Leistung des geschlossenen Regelkreises um 8-43 %, je nach Manover,
verbessert wird.
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Abstract

This thesis aims to identify the most performant optimal control parametrization for
Model Predictive Control (MPC) setups. The work begins with a systematic investiga-
tion of various explicit and implicit optimal control methods based on a generic multi-
body benchmark example. A detailed validation is done on the real-time performance
capabilities of the methods, their closed-loop performance, and open-loop versus closed-
loop behavior. The optimal control strategies are evaluated along the nonlinear program
solvers FATROP, IPOPT and SQP. Among the approaches considered, combining FAT-
ROP with a MS method or an adapted local LGR-LOC* pseudospectral method proves
in simulations to be the most effective.

Further, MS and LGR-LOC* are compared and evaluated in the context of a tracking
and escape maneuver for On-Orbit Servicing (OOS). The MS method is identified to
be the computationally most efficient solution, while the LGR-LOC* method achieved
minimally improved closed-loop performance.

The final section of the thesis proposes a universal Bayesian Optimization (BO) frame-
work for identifying the most suitable optimal control method and parametrization for a
respective MPC control problem. The developed LGR-LOC* incorporates explicit mul-
tiple shooting and implicit low- and high-order collocation methods in one formulation.
This leverages the BO algorithm to determine the optimal parametrization, eliminating
the need to implement each control method individually.

This approach decreases the computational cost of MPC for OOS by 45 %, while simul-
taneously improving the closed-loop performance by 8-43 %, depending on the maneuver.
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Introduction

“Satellite collisions would produce orbiting fragments, each of which would
increase the probability of further collisions, leading to the growth of a belt of
debris around earth.” — Kessler, 1978 [29]

This is a quote by Donald J. Kessler in 1978 identifying the Kessler Syndrome for the
first time. Over 40 years later, this problem is undoubtedly an increasing threat for
human’s access to space [39]. The greater the population of spacecraft orbiting the earth,
the greater the impact on the space environment. Methods to prevent uncooperative
spacecrafts that avoid potential collisions have to be established.

Reducing the number of launches while oppositely having a growing space economy with
increased interest in space applications is globally infeasible. Therefore, approaches that
reliably extend the lifetime of satellites until performing a deorbit maneuver are required
to prevent further debris. This leads to a reduced number of non-maneuverable objects
in space that can cause collisions.

For already existing non-cooperative spacecraft, one promising solution to remove space
debris is the Active Debris Removal (ADR) [33]. The idea is to capture passive satel-
lites with a servicing spacecraft and then perform a controlled deorbit maneuver. This
procedure reduces the number of collision-causing debris in orbit.

More generally, ADR is a special case of On-Orbit Servicing (OOS). It describes the term
of performing various types of servicing tasks in orbit, such as inspection, refueling or
repair with a robotic manipulator mounted on the spacecraft [33]. The key functionality
for the OOS to be successful is the capability to grasp the target satellite and stabilize
it. Tailored technology for this capturing approach has to be developed.

One crucial part of this technology development is to find a suitable controller strategy.
More precisely, control inputs for the control of the spacecraft’s servicer (position and
attitude) as well as the robotic manipulator are sought. This is particularly challenging
due to the space environment, real-time performance requirements, autonomy and safety
requirements, and the complexity of the dynamics of a free-flying spacecraft base with
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a coupled robotic manipulator. One potential controller strategy is Model Predictive
Control (MPC) that is optimized for real-time performance within this thesis.

1.1. On-Orbit-Servicing at the DLR

At the Institute of Robotics and Mechatronics at the German Aerospace Center (Deutsches
Zentrum fir Luft- und Raumfahrt) (DLR) in Oberpfaffenhofen, technology for the pur-
pose of OOS is being developed. The idea is to approach a target satellite with a servicing
satellite (Servicer or Chaser). In the most challenging case, the target is non-cooperative,
meaning that it has no active communication or attitude and orbit control system. Con-
sequently, no navigation data can be shared, and the target may be tumbling. This
requires detumbling before performing the actual servicing task. From a technological
point of view, this is the most complex scenario.

Figure 1.1 shows the hardware simulation of an OOS-scenario. The left satellite represents
the Chaser with the 7 DOF robotic manipulator mounted while the right satellite repre-
sents a non-cooperative target satellite. To test and validate control and pose-estimations
algorithms on earth, the two satellite are mounted on robotic arms to simulate relative
motion.

Figure 1.1.: OOS simulator at the DLR Institute of Robotics and Mechatronics [21].

Combined or coordinated control describes the terminology of simultaneously controlling
the spacecrafts base position and attitude as well as the pose of the robotic manipulator.
This approach involves a high-dimensional state and control input. Assuming a 7 Degrees
of Freedom (DOF) robotic manipulator as a free-flying robot on a spacecraft based leads
to £ € R?*" and u € R3.
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1.2. Motivation

One approach to face the challenge of controller development tailored for OOS is Model
Predictive Control (MPC). It is a model based control strategy, that optimizes, based
on the incorporated nonlinear dynamics, for the optimal control inputs to minimize a
defined metric [47]. The advantage to conventional control strategies is the capability
to deal with nonlinear models and to guarantee constraints. In the case of OOS, such
constraints can be actuator limits, the Field-of-View (FoV) or the collision avoidance
with obstacles [32]. On the negative side, MPC approaches rely on solving an Optimal
Control Problem (OCP) each control iteration. This has to be computationally tractable
within the real-time requirements of the system. Consequently, the computation time of
the optimization problem limits the application of MPC.

Most MPC formulations use direct optimal control formulations to transcribe the contin-
uous problem into a nonlinear optimization problem [47]. The method and discretization
strategy impact the computation time of MPC drastically. Therefore, the question arises,
which optimal control method fits the best to the MPC formulation? General recommen-
dations are restricted due to the dependency on the system dynamics, the incorporated
constraints, the cost function design and real-time requirements.

This thesis discusses general properties of various optimal control methods and provides
a universal framework to find a tailored optimal control method for the MPC. With this,
the application of MPC in complex, high-dimensional problems is facilitated since a low
computation time is a pre-condition for its utilization. The capability of the framework
is used to enhance the performance of the MPC for OOS. However, it is expected that
the strategy can be applied to various fields of applications that involve MPC.

1.3. Literature Review

Solving an OCP is a substantial part of MPC formulations. For solving a continuous
optimal control problem indirect and direct methods exist.

Indirect methods use the calculus of variations to derive optimality conditions resulting in
a two-point boundary value problem [30, 46]. This is also known as solving Pontryagin’s
Minimum principle [10]. Due to the analytical derivation of indirect methods the solution
is always exact, although it suffers from a reduced region of convergence [7]. A good initial
guess for the adjoint variables is required, which can be hard in practice due to sensitive
behavior when varying the adjoint variables [10].

Direct methods discretize the continuous OCP into a Nonlinear Program (NLP) that can
be solved with nonlinear optimization solvers. Instead of deriving necessary conditions
that requires the differentiation of the Hamiltonian of the system, a sequence of control
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inputs is sought that minimizes a given cost functional [8]. Direct methods rely on
a discretization of the continuous-time OCP, yielding an approximate solution. This
discretization-based approach typically enhances by making the method less sensitive to
poor initial guesses [8]. Hence, the preferable choice for MPC applications are direct
methods [23].

1.3.1. Overview of direct methods

Direct methods use a discretization to find a suitable solution. Different methods to solve
the Nonlinear Program (NLP) exist [46]. As shown in Figure 1.2, one separates between
control parameterization and state & control parameterization.

Direct methods

Control State & Control
Parameterization Parameterization
Single Multiple Local Global
Shooting Shooting Collocation Collocation
Implicit Orthogonal Pseudospectral
Integration Collocation Methods

Figure 1.2.: Overview of direct methods to solve OCPs (adapted from [46]).

Specific methods for control parameterization are shooting methods. Even though multi-
ple shooting involves a discretization of the state for the multiple shooting intervals, the
discretization of the intervals does not affect the accuracy and is therefore categorized as
only control input parameterization.

State and control parameterization can be achieved using collocation methods which are
subdivided into local and global collocation. For local collocation, the finite problem is
separated into sub-intervals on which the collocation is solved. The solutions of each
subinterval are then merged by introducing continuity constraints. Examples for implicit
integration are the Trapezoidal collocation and the Hermite-Simpson collocation [28].

Global collocation methods are commonly referred to as pseudospectral methods. The
fundamental concept behind these methods is the approximation of the state and con-
trol input trajectories using a global function. While the terms “pseudospectral” and
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“orthogonal methods” are often used interchangeably in the literature, they describe the

same underlying technique [46].

In contrast, local orthogonal collocation involves the

application of pseudospectral methods on multiple sub-intervals, thereby partitioning the
problem into several segments.

1.3.2. Existing surveys comparing optimal control methods

Table 1.1 gives a comparative summary on existing surveys of optimal control methods.
Additionally, it is indicated which direct methods, namely shooting, uniform collocation
or pseudospectral collocation methods are included in the comparison. Apart from the
content itself, it is also stated if the survey includes the application in an MPC context.

Table 1.1.: Existing surveys that compare different direct methods for discretizing OCPs.

¢ =
o".’& 9&‘& \\0 @QJ
3 S

Source %‘0 O ‘Zo”) @ Content

Betts 7] x X Comparison in the formulation of indirect
and direct OCPs.

Rao [46] x x X Thorough comparison of direct methods for
optimal control.

Kelly 28] (x) x (%) Tutorial on how to formulate equidistant col-
location methods. Shooting and pseudospec-
tral methods briefly mentioned.

Diehl et al. [13] x X Comparison of single and multiple shooting
with collocation for embedded NMPC appli-
cations. Focus on shooting methods.

Sanchez et al. [49] x X Comparison of shooting and pseudospectral
methods on two examples.

Garg et al. [19] X Overview of LG, LGR and LGL methods.

Fahroo et al. [16] X Overview in their mathematical properties.

Huntington et al.  [27] X Comparison of global and local pseudospec-

tral methods.

One of the earliest surveys in optimal control addressing various discretization approaches
is published in [7]. A more recent and comprehensive overview, incorporating advanced
pseudospectral collocation techniques, is presented in [46]. Both works provide a com-
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parative discussion of the advantages and disadvantages of different methods and include
remarks on computational effort. In [28], a detailed derivation of the formulation of
equidistant collocation optimal control problems is presented. The work primarily fo-
cuses on the formulation itself rather than on a comparative analysis that also includes
pseudospectral or shooting methods.

None of the aforementioned studies provide concrete numerical examples contrasting
the approaches, particularly with respect to computational time. Moreover, no specific
recommendations are given regarding their applicability within a MPC framework.

In [13], the focus lies on the applicability of direct methods for MPC. Nevertheless, given
its publication date in 2006, the study does not consider more recent solver developments
or advanced methods such as pseudospectral collocation. A subsequent comparison by [49]
includes these methods alongside shooting techniques within an MPC framework, evalu-
ated on two benchmark examples. Instead of comparing the methods towards accuracy,
the methods are evaluated assuming an identical number of discretization nodes. This
might bias the comparison since different methods require a different number of nodes
for achieving similar accuracy.

The works presented in [16, 19, 27] primarily investigate pseudospectral methods tailored
for offline trajectory optimization problems. Consequently, a comprehensive comparison
of these advanced techniques with uniform collocation and shooting methods in the con-
text of MPC would represent a valuable contribution to the field.

1.3.3. Pros and Cons of OCP methods

The performance of optimal control strategies strongly depends on the underlying system
dynamics, constraint setup, and cost functional, which complicates the formulation of
general guidelines for method selection [28]. The following section discusses the specific
properties of each direct method in more detail.

The Single shooting method (SS) only uses control input discretization resulting in small,
but dense Nonlinear Program (NLP) with a few degrees of freedom [13]. For highly
nonlinear systems this makes it hard to potentially find feasible solutions [13].

Multiple shooting overcomes this issue by simultaneously shooting in parallel within each
interval [9]. Even though having an increased size of the NLP, the sensitivity towards
poor initial guesses is reduced due to integration over shorter time domains in each
subinterval [46]. This makes multiple shooting the prioritized method compared to single
shooting [28].

In contrast to single shooting, multiple shooting provides a sparse NLP that can efficiently
be solved with modern solvers [13]. Generally, shooting methods are a suitable option
for OCPs assuming a relatively simple control input parameterization and only a few
optimization variables (smaller prediction horizons) included in the NLP.



1.3. Literature Review

Collocation methods generally produce a very sparse NLP [8, 13, 46]. Additionally due
to their implicit formulation they are also capable of stabilizing systems with stiff dy-
namics [47]. In the context of offline trajectory optimization, collocation methods are the
method of choice with increasing problem complexity [46]. One disadvantage, specifically
for higher-order collocation methods, are oscillations that might require grid adaption.
Different strategies are explained in [12, 45, 36]. Applying such a scheme to MPC is
time-consuming and not always feasible since the NLP dimension changes over each it-
eration [13].

Direct transcriptions (collocation) methods of higher order are referred to as pseudospec-
tral collocation. Assuming smooth state and control inputs, the solution trajectories are
highly accurate [47]. If smoothness is not sufficiently given, local pseudospectral com-
bined with grid adaption might be a viable alternative [36]. In [27], a comparison between
global and local strategies is pursued. Specifically the structure of local PS method can
be exploited with modern solvers, as shown within the thesis.

As a summary one can conclude, that shooting methods are mostly used for online appli-
cations. Collocation methods are rooted more in the trajectory optimization background
that involve more complex NLPs with more optimization variables included.

1.3.4. Application of collocation methods for OCPs

Recent developments reveal an increased popularity with collocation methods applied to
MPC. Exemplary use-cases are the application of the pseudospectral collocation method
to motion planning tasks for vehicles [17], the autonomous driving of vehicles [3, 14] or
the guidance for hypersonic reentry [53]. Specifically [3] and [17] focus on embedded
applications comparing the computation time between shooting and the pseudospectral
methods both indicating a performance boost when applying pseudospectral methods.
In [5], a thorough insight in the difficulties arising with pseudospectral methods applied
to MPC schemes is given, and their suitability is demonstrated on several benchmark
examples.

General applications of collocation strategies to trajectory optimization tasks are given
in [18, 37, 58, 59]. In [18] a comparison of equidistant collocation with pseudospectral
methods indicates the pseudospectral method to be more performant. Another analysis
in [59] indicated equidistant collocation to be more performant. However, the latter
analysis assumed an identical number of nodes for each method and not comparable
accuracy biasing the results.
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1.4. Scope and Contribution

The contribution of the thesis divides into three different topics:
1. A comparative survey of optimal control methods for MPC.

2. The application and comparison of a pseudospectral method to multiple shooting
for MPC in OOS.

3. A universal framework to find the best optimal control method for a given control
problem.

Comparative Survey A comparative overview of optimal control methods and their
properties with respect to MPC implementations is provided. Special focus is set on
the real-time performance capabilities. The characteristics of shooting and collocation
methods are evaluated on an academic benchmark example representative for multi-body
dynamics. The compatibility of each method with various nonlinear optimization solvers
is analyzed to identify efficient method-solver combinations. As evaluated in Table 1.1,
no comprehensive survey has systematically examined optimal control methods including
different solver combinations in the MPC context.

Pseudospectral methods in MPC A pseudospectral formulation is identified to be a
promising alternative to an already existing Multiple-shooting baseline version. Both
methods are applied and compared on OOS scenarios.

Framework for finding the best optimal control method Furthermore, this thesis
presents a universal framework for finding the most performant optimal control method
for MPC tailored to domain-specific design-objectives, such as computation time or
closed-loop performance. A novel Bayesian Optimization (BO) strategy derives the most
suitable combination of optimal control method, its number of intervals and its non-
uniform interval spacing.

An adapted multiple-segement Legendre-Gauss-Radau method (LGR-LOC*) is core of
the BO. It incorporates explicit Multiple Shooting and implicit low and high-order collo-
cation methods in one formulation. Tunable hyperparameters of the LGR-LOC* change
the formulation from one to another. This enables the BO to find the best parameteri-
zation obviating the need to implement each optimal control method individually.

Moreover, the designed LGR-LOC* preserves a special structure of the OCP making it for
all configurations compatible with the sparsity pattern required by the nonlinear solver

FATROP [55].
The developed framework facilitates the design process of MPC by the combination of
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 incorporating a single method that contains explicit and implicit formulations,

» ensuring the sparsity pattern of FATROP and

o finding the best hyperparameter setup for the optimal control method via BO.
To the best knowledge of the author, this combined approach is a novelty.

1.5. Thesis Structure

In Chapter 2, the mathematical foundations for numerical integration and the solution of
initial value problems are presented. With these concepts, different explicit and implicit
optimal control methods are derived. Lastly, the concept of MPC is introduced and
relevant components for stability are explained.

In the following Chapter 3, the introduced optimal control methods are evaluated along
different metrics. Such are computation time, closed-loop performance, method-solver
combinations and the influence of open-loop oscillations on the trajectory. The results
are systematically organized and summarized in the form of structured remarks. As a
benchmark example a multijoint inverted pendulum is utilized.

The previously evaluated most performant optimal control methods are implemented
on OOS scenarios and compared towards computation time and tracking accuracy in
Chapter 4. The aforementioned methodologies comprised a local pseudospectral method
and the Multiple-shooting approach.

The last Chapter 5 introduces the framework for finding the most performant optimal
control method for a specific problem. The mathematical formulation of the LGR-LOC*
is further addressed and the workflow for the hyperparameter optimization is explained.
In a consequent step the strategy is applied to the OOS controllers and the results are
presented.






Theoretical Background

This chapter provides a comprehensive background on the methodologies employed within
this thesis. Section 2.1 focuses on numerical integration, with particular emphasis on the
Newton-Cotes integration formulas and the Gauss quadrature rule.

The Newton-Cotes formulas form the foundation for standard collocation methods. In
particular, the trapezoidal rule and the Hermite-Simpson method are based on this inte-
gration scheme. The Gauss quadrature rule underpins the more advanced pseudospectral
collocation technique.

In Section 2.2 numerical methods for solving initial value problems are explained. They
serve as a basis principle for the shooting methods that are, next to various collocation
methods, explained in Section 2.3. All optimal control formulations are embedded within
the context of Model Predictive Control (MPC), with a detailed discussion provided in
Section 2.4.

2.1. Numerical Integration

The concept of numerical integration is to approximate an analytical integral using a
quadrature rule, i.e.,

/f(T)dT ~ szf(n) (2.1)

where the integral is estimated by a weighted sum of function evaluations at selected
points 7;. In this approach, the function f(-) is effectively approximated through its
values at these discrete points.

Asseen in Eq. (2.1), there are two degrees of freedom, namely the choice of the quadrature
weights w; and the quadrature points 7;. Newton-Cotes formulas assume equidistant
quadrature points, while Gauss quadrature employs non-equidistant points, exploiting
both degrees of freedom to achieve higher accuracy.

11



2. Theoretical Background

Table 2.1.: The Newton—Cotes formulas for numerical integration, adapted from [43]. The
order of the polynomial is denoted with p, the number of quadrature points
with N and the order of the method with m.

p N m Zf\il wifi
Rectangle rule 01 1 hf

Trapezoidal rule 1 2 2 g( fi+ fix1)
Simpson rule 2 3 4 %(fi + 4fi+% + fit1)

2.1.1. Newton-Cotes formulas

The Newton-Cotes formulas belong to the class of interpolating integration schemes aim-
ing to approximate the integrand f(¢) by a polynomial p(t) of order p. This results in
the general quadrature form with N = p + 1 equidistant quadrature points

b b

b N N
[t o= [ S L@ de =Y wfe).  with b=t 5,
w =1 =1

a a

p(t)
where LY refers to the i-th Lagrange polynomial

Nt

ti—t;’

LY (1) =
j=1,j#i
It is zero at all quadrature points except from the i-th. The step size between two

quadrature points is denoted as h. In Newton-Cotes formulas the only degree of freedom
are the weights w;, that are obtained by

w; = /b LY (t)dt. (2.3)

The accuracy of Newton-Cotes formulas is influenced by the order p of the polynomial.
Common Newton-Cotes formulas and their order are listed in Table 2.1. The order m of
a method indicates that the formula integrates polynomials of degree p = m — 1 exact.
For all Newton-Cotes quadrature rules it is at least m > p+ 1, this property is discussed
in [48].

i=1,...,N. (2.2)

2.1.2. Gauss quadrature
The Gauss quadrature is an improved method to the Newton-Cotes formulas assuming

non-equidistant quadrature points. This results in an order of the Gauss method of
m = 2p + 1, as noted in [48].

12



2.1. Numerical Integration

The quadrature points 7 are chosen as the roots from orthogonal polynomials. For clas-

sical orthogonal polynomials, the roots are in the interval 7 € [—1,1]. Applying them to

arbitrary intervals ¢t € [—1, 1] can be achieved with the transformation
b—a b+a

R R e

(2.4)

The most common families of orthogonal polynomials, specifically for pseudospectral
collocation (see Section 2.3.4), are Legendre or Chebyshev polynomials [18]. In this
thesis, the Legendre polynomials [25, 50]

1 d7

Py(7) = P-1)" 2.5
N<T) onpl drn [(T ) } ( )
are used. Independent of the chosen group of orthogonal polynomials, the location of the
roots 7i,...,7n can either include one (Radau methods), two (Lobatto methods) or no

endpoint of the interval (Gauss methods).
For the case of Legendre polynomials, the quadrature points are derived in the following
way:

» Legendre Gauss (LG), 7 € (—1,1): Roots of the Py-th Legendre polynomial. Nei-
ther of the endpoints is included.

+ Legendre Gauss Radau (LGR), 7 € [-1,1): Roots of the Py(7) + Py_1(7) polyno-
mial. Only the start point is included.?

« Legendre Gauss Lobatto (LGL), 7 € [~1,1]: Roots of the (1 — 72)Py_1(7) polyno-
mial. Both, start and end point are included.

As a summary, the Gauss quadrature rule approximates an arbitrary interval ¢ € [a, b]
with

[rwar= [ rarenTZar =150 [ rmyar =150 [ e
g “1 S

The weights w; in (2.6) are computed with w; = [, LN (7)dr. The transformation (2.4)
is used to shift the roots 7 to any general interval ¢ € [a,b]. An illustration of LGR and
LGL roots 7 and weights w is found in Figure 2.1.

The refinement over the Newton-Cotes formulas presented in Section 2.1.1 lies in the
choice of quadrature points 7;. Instead of equidistant nodes, they are selected as the

'LGR can also contain only the right endpoint. In this thesis, only LGR with the left-endpoint is used.

13



2. Theoretical Background

roots of an orthogonal polynomial, most commonly Legendre polynomials, leading to a
substantial increase in the accuracy and order of the method.

2.2. Numerical methods for solving Initial Value
Problems

Initial Value Problems (IVPs) for non-autonomous time-invariant systems have the form

(1) = f(x(t), u(t), w(to) = wo.

Solving this problem for complex dynamics is not always feasible analytically. Instead,
different numerical methods exist to approximate the solution. A good overview about
the different types of time-marching methods for IVPs is given in [46]. Generally, explicit
and implicit methods are distinguished.

A multistep explicit method computes the next state with information only from the
current and previous states x;11 = g(x;, w;, ;_1,u;_1, . ..). An explicit single step method
uses information only from the current state x; .1 = g(z;, u;).

Implicit methods for IVPs involve information from unknown states in the future: x;,; =
9(Ti, Uiy Tivq, Ui, - . .). Consequently, a nonlinear system of equations must be solved.
This is discussed in detail for OCP solved with collocation in Section 2.3.2 and 2.3.3.

One state-of-the-art explicit method is the Runge-Kutta (RK) method. The most trivial
is the RK method of order 1 (RK1), i.e.,

Tiy1 = Xy + hf(.]fz, Ui), with h = ti—i—l — ti7 (27)

which is also known as the Euler-Cauchy rule [43] (in the following only referred as Euler
rule).

A widely used higher-order method is the fourth-order Runge-Kutta (RK4) scheme:
ki = f(@i, ),
h
k}Q = f(l’z + Elﬁ, UZ'>,
h
ks = flx: + §k2; u;), (2.8)
k’4 = f(xz + hk’3, Ui),
h
Tiy1 = X4 + 6(/{71 + 2]€2 + 2/{73 + k4)

Here, the control input u is assumed to remain constant over the interval length.

Both the Euler method RK1 (2.7) and the RK4 method (2.8) are used for shooting
methods.

14



2.3. Optimal Control

2.3. Optimal Control

The continuous optimal control problem (OCP) with the initial time assumed to be zero,
to = 0, is given as

Iil(lgl J = Vi(z —I—O/E ), t)dt (2.9)
subject to  &(t) = f(x(t),uw(t),t), te€|0,T] 2.10

8

( (2.10)
(0) = Togare (2.11)
g(x(t),u(t), ) <0, t€l0,T] (2.12)
2(T) = Tpina € X (2.13)
with f(-) denoting the (nonlinear) system dynamics, &(0) the initial condition, g(-) state
or control input constraints and x(7") the terminal state within the terminal region Aj.
The cost functional J consists of the terminal cost term Vi(ax(T')), which penalizes de-
viation from the desired final state, and the stage cost term expressed as the integral
with the Lagrangian L(x(t),u(t),t) over the time horizon. A common choice for the
Lagrangian is a quadratic form in the states and inputs, as presented in (2.56).

Indirect and direct methods exist for discretizing the continuous OCP (2.9). A compar-
ative overview with focus on direct methods can be found in Section 1.3.

In the following sections the derivation of a discrete nonlinear program (NLP) based on
the continuous optimal control problem (2.9) is presented for different methods.

2.3.1. Direct Shooting methods
Single Shooting

The single shooting method (SS) transcribes the continuous OCP (2.9) into a NLP by
discretizing control input w(t). The number of optimization variables for the control
input is referred to as NV,. The step size between two discretized control inputs wg, ugi
is denoted as h*. The formulation is shown in NLP 2.1.

The Lagrangian £ in the cost functional does not take state variables as an argument,
which is an important property of the SS. The state approximation is only given pas-
sively by incorporating the Ordinary Differential Equation (ODE) by an explicit numer-
ical scheme ®, discussed in Section 2.2. Such integrator can be an Euler (2.7) or RK4
method (2.8). However, no optimization variables for the state discretization exist.

The major drawback of single shooting methods is the poor convergence radius [46]. Due
to the explicit integration from start point to end point, small changes in the initial guess
produce large deviations in the terminal state @c,q [8, 46].

15



2. Theoretical Background

NLP 2.1: Single Shooting

Ny
min = J = Vi(@ena) + Y HFL(u!, L u™) (2.14)
UL, WN
k=1
subject to  Xeng = ®(F(x, u), Topare, w', ..., N R RN, (2.15)
glu', ... u™) <0 (2.16)
Lend € Xf~ (217)

Multiple Shooting

The multiple shooting (MS) method overcomes the poor convergence properties [9]. In-
stead of integrating from start to the terminal state, multiple segments are introduced,
on which a single shooting method is applied. This results in a discretization in state
and control inputs, where x(t) is approximated by Ny shooting intervals @;. The control
inputs are approximated by discrete variables u¥ with k=1,...,N,; andi=1,..., N,.
The total number of control inputs is given by

Nx
No=)_ Nui
=1

To ease the notation, all control inputs in the interval ¢ are grouped to the matrix U; =

(u),u?, ..., us“) Respectively, different-step size are grouped per interval to the vector

h; = (h},h2,.. ., h™"). The most general form of formulation for MS is shwon in NLP 2.2,

)

NLP 2.2: Multiple Shooting

Ny—1 Nu,i
R SRS CORD 9D BT 219
subject to @41 = ®(f(@,u) @, Uphy), i=1,... Ny—1 (219
L1 = Lstart
glxy,..., N, UL, ..., Uy) <0
TN, € X

The discretization of the control inputs should be finer than that of the state variables,
meaning N, +1 > N,. The additional “4+1” accounts for the fact that no discretization
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2.3. Optimal Control

of the control input is required at the terminal point . In practice, a common choice is
to set the number of control inputs equal to the number of shooting intervals, such that
Ny =N and N, = N — 1. The NLP 2.2 reduces to

N-1

min J =Vi(xy) + Z hiL(x;, u;)

Ty TN UL N —
subject to  x;11 = ®(f(x,u), x;,ui hy), i=1,...,N—1
L1 = Lstart
g(xy,...,xNn, Uy, ..., un_1) <0
xy € AL

2.3.2. Direct Trapezoidal collocation

In comparison to shooting methods, collocation methods enforce the system dynamics
constraints implicitly. The coefficients of an n-order polynomial are fitted to match the
system dynamics at given collocation points. In the case of trapezoidal collocation, the
system dynamics are approximated by piecewise linear polynomials

&(t) = f(z(t), ult) ~a(t —t) +b (2.21)

in each interval t € [t;,t;11]. The resulting state trajectory in a given interval i is a
quadratic polynomial

x(t) = o /f 7)) dr  with t; <t <ty

~ x(t;) +/a7'+bd7'

ti

:wy+g@—mf+b@—m) (2.22)

The value of the state at x(t;) is abbreviated with a;. The polynomial (2.22) has to
be aligned with the system dynamics by choosing the coefficients a, b properly. For the
determination of the two unknowns a, b, the system dynamics have to be equivalent to
the state approximation at the start time ¢; and the end time ¢;,, of the interval:

x(t=1t;) = f(xs,u;) = fi a2 a(ti—t;)+b = b=f;= f(z;u,) (2.23)
T(t =tip1) = F(@ig1, Wip1) = i1 220 a(tiyn—t)+b = a= J;: fz- (2.24)

17



2. Theoretical Background

Inserting the above constraints (2.23) and (2.24) into the formulation (2.22) leads to a
function of the state in each interval

.ferl fz

2t —t; ( )2 + fl(t - ti)? te [ti;ti+1]- (2.25)

z(t) ==z, + =

NLP transcription for trapezoidal collocation

The variables x; 1, u;+1 and consequently fiv1 = f(@;11, ;1) are unknown at a given
point ¢;. Computing equation (2.25) at any time ¢ € [t;,t;+1] is only possible after having
the full state and control input solution. To account for this, continuity constraints are
incorporated in the NLP transcription. To derive them, the state trajectory (2.25) is
evaluated at the end of the interval ¢ = ¢;,, leading to the formulation

1 (A 1
x(t=tip1) = Tip1 =T + P LI (tis1 — 6:)* + filtisa — 1)
2 tiv1 —

=x; + §(fi+1 = fi)(tivr — ) + filtin — i)
1 h;
+ 5(fz‘+1 = fohi + fihi = z; + 5(fi+1 + fi)
which can be compactly written as the classical trapezoidal update:
h;
Tip1 — X = E(fi-i-l + fi)- (2.26)

with h; = t;11 — t; being the step size of the interval.

Equation (2.26) is the trapezoidal rule for approximating an integral which gives the
method its name (see Table 2.1). This leads to the formulation in NLP 2.3.

The control inputs are chosen equivalently as the state discretization and are interpo-
lated linearly in between interval borders. The integral in the cost function (2.9) is
approximated with the trapezoidal rule.

2.3.3. Direct Hermite Simpson collocation

The direct Hermite Simpson follows a similar approach than the TC, but uses a quadratic
polynomial instead of a linear polynomial for the state derivative approximation

x(t) = flx(t),u(t)) =~ a(t —t;)* +b(t — t;) + c. (2.29)
This leads to a cubic representation for the state

b
x(t) =~ x;+ - (t—1;)° + 5(t —ti)*+et, witht; <t <t (2.30)

w| e

18
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NLP 2.3: Trapezoidal Collocation (TC)

N-1
hz
min J = Vi(xn) + Z— (i, ;) + L(xi11, Uig1)) (2.27)
T, BN UL, UN 1 — 2
h
subject to  @; 1 — §<.fz+1 +fi) i=1,...,.N—1 (2.28)
L1 = Tstart
g(xy,...,xn, Uy, ..., un_1) <0
Ty € Xf

The control input uy at the final point is required for the computation of fy in
the trapezoidal rule. It is assumed to be constant to the previous control input
uy_1 = uwy and consequently not considered as optimization variable.

To define the coefficients a, b, ¢, three constraints are required. The derivatives of the
polynomial are enforced to be equivalent to the system dynamics at the start (2.31) and
end point of the interval (2.32). The third constraint is to apply the dynamics equal to
the derivative of the polynomial at the mid-point of the interval (2.33):

et =1) = flziw) =" alt;—t)2+b(t,—t) +c = c=fi = f(z,u) (2.31)
. 1(2.29)

x(t =tip1) = f(@Tir1, Wirr) = fina 29 a(tizn —t:)° + bty — ;) + ¢ (2.32)
(1 =1,1) = f@ 1, un ) = fin 20 altis — )2+ bty — 1) +e. (2.33)

The first constraint (2.31) can be solved directly, while for the constraints (2.32) and (2.32)
the solution of a linear equation system leads to the coefficients

2fi —4Afi 1 +2f; —3fi+4fi 1 —fi
a= = SE - - i (2.34)

The state trajectory (2.30) with the coefficients then is

2fi —4fi 1 +2fin X —3fit+afir - fin

2hs t—t;)° + 57 (t—t.)*+ fi(t — t,;).

(2.35)

x(t) = xo +
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NLP transcription for Hermite-Simpson collocation

The implicit formulation for the Hermite-Simpson collocation method follows by evalu-
ating (2.35) at t = t;41 leading to

h
x(t =tip1) = T + g(fz + 4fi+% + fir1) = Tiy1- (2.36)

In this formulation, in addition to the unknown variables x;;1,u;,; as in the case of
trapezoidal collocation, the state at the mid-point x; $ Uiy to compute f; 1 is un-
known. To embed the mid-point within the NLP, one differs between the compressed
and separated form [8]. In the compressed form, an approximation for the mid-point state
is used (interpolating polynomial) while for the separated form mid-point optimization
variables are included in the NLP. This increases the dimension, but might have some
advantages for specific problem and solver combinations [8]. In the frame of this thesis,
the compressed form is used.

As an approximation for the state x; il A cubic Hermite interpolation method is used
that predicts the mid-point state based on x; and x;:

1 h

Lipl = 2(2157, +Tiy1) + 3 <(fi = firn)- (2.37)

The Equations (2.36) and (2.37) give the method its name. The first rule is identical

to the Simpson rule for integration (refer to Table 2.1), while the interpolation rule for

the estimate at the midpoint is called cubic Hermite interpolation. This results in the
NLP 2.4.

The Hermite-Simpson rule discretizes the continuous integral in the cost function (2.9)
with the Simpson quadrature to avoid inconsistencies. The control inputs are piecewise
constants within each interval [t;, ;1 1].

2.3.4. Pseudospectral methods

A comparison between pseudospectral methods and local implicit collocation schemes
highlights two fundamental distinctions in their design principles. The first one is to
use global approximation instead of dividing the interval into subsegments. The second
one is the application of higher order quadrature rules, namely the Gauss quadrature
(Section 2.1.2), to approximate the system dynamics and the Lagrange term in the cost
functional. This results in spectral (exponential) convergence properties for pseudospec-
tral methods assuming smooth problems [15, 54].

Three different methods for the quadrature can be used, namely Legendre Gauss (LG),
Legendre Gauss Radau (LGR) and Legendre Gauss Lobatto (LGL) methods. In this
thesis, only LGR and LGL quadrature is used. LG methods are more complex to embed
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2.3. Optimal Control

NLP 2.4: Hermite-Simpson Collocation (HS)

Compressed form, using an approximation for the midpoint state x; 1 8].

N-1

h;
min J = Vi(xn) + E — <£(:cl-,ui) +4L(x; 1, u 1)+ E(:ciﬂ,uiﬂ))
L1,--, LN, UL,.- - UN—1 im1 6 2 2

(2.38)
h
subject to @; 1 — x; = g(fZ + 4f¢+% + fir1), i=1,...,N—1 (2.39)

L1 = Lstart
g(w17"'7$N7u17"'auN—1) S 0
xry € X;

The control input wx at the final point is required for the computation of fx in the
Hermite-Simpson rule. It is assumed to be constant to the previous control input
uy_1 = wy and consequently not considered as optimization variable.

in MPC applications, due to the non-existence of a collocation point at 7 = —1 and
7 = 1, which is required for the initial and the terminal state in the receding horizon.
The specific nodes and corresponding weights for LGL and LGR are shown in Figure 2.1.
The LGR method that includes the left endpoint is used throughout the thesis.

NLP transcription for Legendre Gauss Lobatto (LGL) method

The LGL method is firstly implemented by [15]. The state and control input trajectories
are approximated according to the Gauss quadrature with Lagrange polynomials L; (2.2)

bl L s
mﬁullluH

0

w

Figure 2.1.: Roots 7 and weights w of the Legendre polynomial with N = 10 for the LGL
and LGR method.
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as basis functions
N N
x(r)=> xLY(r), u(r)=> wL)(r) (2.40)
i=1 i=1

An important property of the LGL method is, that within the IV collocation points, the
initial point @, but also the final point &y = xg,, is included.

To determine the unknown parameters x;,u; in (2.40), collocation constraints are en-

forced at the orthogonal collocation points 7, ..., 7y derived by the quadrature rule
N N
. d N d dr N
x(t;) = 1 (; x;L; (%‘)) R (; x;L; (Tj)>
= = (2.41)

2 L 2
— T ;%Lfv(%) = m ;szﬂ = _f(;vj,uj).

This formulation must be incorporated for each collocation point 7 = 1,...,N. The
derivative of the Lagrange polynomials is described as

d .
ELZN(TJ) = LY (7).

The derivation of the transformation (2.4) equals to

dr 2
dt  b—a
With the differentiation matrix
Ly(m) Ly(m)
D_ Li(m2) Ly (m2) c RNXN
Li(ty) -+ Ln(tn)

the formulation (2.41) is written compact as

2
b—a

DX = F(X,U). (2.42)

The matrices X € RY¥X™ and U € RV*™ are denoted as the state and control input
matrix, storing the state information at each collocation point in a matrix

m}‘ Tl o Tiny u U1 ... Ulp,
X=| =z - |, U= )=: - ] (243

T T
TN IN1 -+ TNny U N UN1 ... UNnp,
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The matrix for the system dynamics is defined as

f(:z:l,'u,l)T fl(,Il,Ul) fnx(xl,ul)
F= : = : - :

Flavun)®)  \filewsun) oo fo(zwuy)

Fahroo et al. give more details on the mathematical properties on the differentiation
matrix [16]. This results in the NLP 2.5.

NLP 2.5: Legendre Gauss Lobatto method (LGL)

N
b—a
L]yeeey LN, UL .., U N 2 )
=1
2
subject to DX = F(X,U)
—a
L1 = Tstart
g(xy,...,xn,uy,...,uy) <0
N € Xf
All parameters «i,...,xy and uy,...,uy refer to the values at the collocation

points t;. A similar discretization of the state and control inputs is assumed.

NLP transcription for Legendre Gauss Radau (LGR) method

The LGR method does not contain the end-point of the interval 7 = 1,t = a (see
Figure 2.1). In addition to the N collocation points 71, ..., Ty, another node 7y exists,
that is not collocated, but used for interpolation to the terminal state

N+1 N+1

x(r) = Z x; LN (1), u(r) = Z w; LN (1) (2.45)

with
N+1 S
LNt (1) = || . Vi=1,...,N+1.
o, T Ty
J=1,j#i

This formulation is similar to the one used in [20]. Deriving the differentiation matrix with
a non-equal number of interpolation points and collocation points results in a non-square
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shape
Ly(m) Ly(r)  Lysi(m)
p- |10 Pt bvalm) | ¢ g, (2.46)
Ll(TN) LN(TN) LN—H(TN)

The dimension for the state matrix, with the structure shown in (2.43), is X € RW+1Dxnx,
for the control input matrix it is U € RW+D>m and for the system dynamics matrix it
is F € RV*"x_ This leads to the collocation condition

2

DX = F(X, ). (2.47)

The difference between (2.42) and (2.47) is the different collocation points used within
the differentiation matrix and the corresponding dimensions of D and X. Fundamentally
different mathematical properties result from the different methods, that are discussed
in detail in [19]. This results in the NLP 2.6.

NLP 2.6: Legendre Gauss Radau method (LGR)

N
b—a
min J = Vi(xyy) + > wil(wi, ;) (2.48)
T1ye BN A1, UL e UN 2 —
2
subject to DX Z F(X,U)
—a
L1 = Lstart
g(x1,.. ., TNy, UL, UNgr) SO
TN+ € X
All parameters xq,...,xy and uy,...,uy refer to the values at the collocation

points t;, the variable @y refers to the non-collocated state variables at the final
point.

2.3.5. Local orthogonal methods

Local orthogonal methods are a subgroup of pseudospectral methods using not only one
global polynomial, but dividing the domain [a, b] into Ny, intervals:

a=a; <b =ay<by=uaz<...by, =0
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Within each subdomain [a;, b)) with [ € Ny, a classical pseudospectral method is applied.

In local orthogonal methods, the scalar N extends to a vector N = (Ny,..., Ny,,)
specifying the number of collocation nodes in each interval [ = 1,..., Nyy. In index
notation each element of the vector IN is denoted as N;, [ = 1,..., Ny. For simplicity,

the number of collocation nodes is assumed to be constant in each interval for this work:
N; =const., VI =1,..., Niy.

As a result, the NLP formulation of a local pseudospectral method is parameterized by
the two parameters N;,; for the number of intervals and N, for the number of collocation
nodes in each subinterval.

An illustration of a local orthogonal method is shown in Figure 2.2. The domain is divided
into two equidistant intervals (Np,; = 2). In comparison to Figure 2.1 with N = 10
collocation points, the local orthogonal method has five collocation points (N, = 5) in
each interval summing up to a total number of Zl]\]:i?_t N; = 10.

w/\

RPN ST
LGL-LOC

AN

-
LGR-LOC —l—L—>

a=ay by = as by =10

Figure 2.2.: Roots 7 for a local LGL and LGR method with two intervals Ny, = 2. The
domain [a, b] is divided into equidistant intervals. Both methods use V; =5
collocation points in each interval. On the y-axis the weights w corresponding
to the quadrature rule are shown.

The advantage of local orthogonal methods is the increased sparsity in the NLP Ja-
cobian [12]. This can be seen in Figure 2.3, in which a global pseudospectral method
with N = 10 (collocation points from Figure 2.1) and a local orthogonal pseudospectral
method with Ny, = 2, N; = 5 (collocation points from Figure 2.2) are compared. A
sparser problem is handled more efficiently with modern nonlinear solvers resulting in
reduced computational costs.

It should be noted, that the sparsity can be further enhanced by increasing the number of
intervals V.. However, a lower bound exists, as each interval must contain a minimum
number of collocation points to ensure the validity of the discretization.

The spectral convergence properties of global pseudospectral methods (Section 2.3.4) can-
not be guaranteed for the local scheme, although the local methods might be capable for
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Figure 2.3.: Sparsity comparison of the constraint Jacobian Vg for the global LGL
method (N = 10) and the local method LGL-LOC (N = 10).

handling non-smooth problems due to the possibility to divide the interval into multiple
segments [12].

NLP transcription for the Local Legendre Gauss Lobatto (LGL-LOC) method

For the LGL-LOC method, the state and control input within each subinterval z'(¢), z!(t)
is approximated via Eq. (2.40). This leads to Ny, piecewise polynomial definitions. The
state and control input matrix, according to Eq. (2.43), are denoted for each interval
as X! € RV and U! € RM*™ . The formulation for LGL-LOC is given in NLP 2.7.
Continuity for the LGL-LOC method is ensured by the constraint (2.51) and (2.52). The
last row of X!, namely aclNl, is equivalent to the first row of X"*!, that is «}"!. This can
be seen in Figure 2.2, since two collocation points coincide on the interval borders. The
last point of the premier interval is identical with the first point of the second interval

for LGL.

NLP transcription for the Local Legendre Gauss Radau (LGR-LOC) method

The LGR-LOC state approximation in each segment is identical to Eq. (2.45). The state
and control input matrix have the shape X! € RWNitxnx and Ul ¢ RWitDxm — The
non-collocated endpoint of each interval is not included as an additional optimization
variable. Instead, the first point of the following interval is used. The state matrix in
each interval is given as

()" T T,
l
@)\

26



2.4. Model Predictive Control

NLP 2.7: Local Legendre Gauss Lobatto method (LGL-LOC)

Nint Nl
b —a
. _ Nint ! ! Lol ol
xl,...,xNigl,lIJnl,...,Uch J = Vf(:BNl )+ lz_; 5 ;wiﬁ(wi,ui) (2.49)
2
subject to D'X! = F(X,UY, 1=1,..., Nin (2.50)
1 —
L1 = Lstart
o' =al, =1, Ny—1 (2.51)
u =auly, =1, N —1 (2.52)
g(Xt, .. XNee Ul UNm) <0
Ty € X
The parameters w!, !, u! refer to the value at the collocation point i = 1,..., N,
in the interval [ = 1,..., Niy.
and the control input matrix as:
(uf)" up e Uy,
Ul = : = D :
(USV)T ué\/vll e uleu

For the final state another optimization variable " is introduced. It is incorporated

in the last state matrix Xt in the last row. This results in the NLP formulation 2.8.

The incorporation of the state value of the next interval [ + 1 in the state matrix X'
in (2.53) makes continuity constraints for the state redundant. For the control inputs no
continuity between intervals are considered to reduce computation time.

2.4. Model Predictive Control

Model Predictive Control (MPC) is an optimization-based control strategy in which, at
each sampling instant, an open-loop optimal control problem (OCP) is solved online and
only the first element of the resulting control sequence is applied to the plant. The
optimization is then repeated at the next time step, which yields closed-loop control
setup.

A schematic representation of an MPC scheme is shown in Figure 2.4. At each time step
tn, an open-loop OCP of the form (2.9) is solved, subject to system dynamics (2.10),
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2. Theoretical Background

NLP 2.8: Local Legendre Gauss Radau method (LGR-LOC)

Nint N
b —a
. . final l l l l l
xl,...,xNigl,lIJnl,...,Uch J = Vi(x™™) + ; 5 ;wiﬁ(wi,ui) (2.54)
2
subject to D'X! = F(X,UY, 1=1,..., Nin (2.55)
1~
L1 = Lstart
g(Xt, .. XNee Ul UNm) <0

wﬁnal c Xf

The parameters w!, !, u! refer to the value at the collocation point i = 1,..., N,

in the interval [ = 1,..., Niy.

which describe the evolution of the plant over time. This iterative reformulation of the
optimization over a shifting prediction horizon is the reason MPC is often referred to as
“moving” or “receding” horizon control [23].

If the model is nonlinear, the methodology is referred as Nonlinear Model Predictive
Control (NMPC). The continuous prediction horizon is denoted as T' (in seconds), while
the discrete prediction horizon is denoted with N (dimensionless). The corresponding

resolution in the OCP is given as At =t,,1 — t, = %

In standard MPC, only the first control input «(0) from the optimized sequence is applied
to the plant. At the next sampling instance t,,1, the MPC optimization is recomputed,
allowing the controller to compensate for disturbances and model mismatches. This
approach relies on a sufficiently accurate system model f. The closed-loop trajectory
shown in Figure 2.4 illustrates nine successive MPC iterations, each producing a single
control input that is applied to the plant.

Another requirement for solving the OCP is accurate information about the initial state
of the problem (2.11) at each time step. This involves precise state estimation based on
state measurements of past states [47]. This is assumed to be exact within this thesis.

Generally, one differs among tracking and stabilizing MPC [23]. Tracking MPC describes
the control of the state to follow a predefined reference ... Stabilizing MPC describes
the control of the states to an equilibrium point, that is the subcase of a tracking MPC
with Lyref = 0.

For the cost functional (2.9) quadratic costs are a common choice. Specifically, the
Lagrangian L for the case of a tracking MPC has the form

L(x(t),u(t) = (@(t) = zwer(t)” Q(2(1) — (1)) + (u(t)” R (u(t)) (2.56)
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Figure 2.4.: Moving horizon MPC scheme [23].

with the weighting matrices Q, R.

2.4.1. Terminal Region

A desirable property of the controller is to guarantee asymptotic stability. The integra-
tion of a terminal region and a corresponding terminal cost is a necessary condition to
show closed-loop stability in a formal proof. Chen et al. provide a detailed analysis and
framework for the determination of the terminal region with a fixed setpoint [11]. Kéhler
et al. extend the scheme to trajectory tracking [31]. The general form of a terminal region
X with reference tracking is given as

X = {x(t) € R™|(2(t) — Twet(t))" P (2(t) — Tret(t)) < a} (2.57)

with P denoting the penalty matrix for the terminal region. With the scaling parameter
a it defines an n,-dimensional ellipsoid as terminal region.

The terminal cost term uses the same metric
Vi = (@(t) — @yer(t) " P (@(t) — Zga)- (2.58)

For more information about the stability proof and properties of terminal conditions the
reader is referred to the literature, i.e. in [11, 23, 47].
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Survey of optimal control methods for
MPC on a benchmark example

One of the key components of MPC is the underlying OCP. The choice of the direct
method to discretize the OCP influences the computational runtime and the control
performance significantly.

This chapter compares different methods, namely Multiple shooting (MS), Trapezoidal
(TC) and Hermite-Simpson (HS) collocation and the pseudospectral methods Legendre-
Gauss-Lobatto (LGL) and Legendre-Gauss-Radau (LGR) on a benchmark example.

The setup of the comparison is described in Section 3.1, the methodology for identifying
comparable parameters for each method is explained in Section 3.2 and the closed-loop
results are discussed in Section 3.3.

3.1. Setup

3.1.1. Benchmark example: Multi-body system

The survey of collocation methods should be representative for multi-body systems with
the general form

M(6)0 + C(6,0)0 + g(0) = T, (3.1)

with M(6) denoting the mass matrix, C(6,6) denoting the Coriolis-centrifugal matrix
and g(f) denoting the gravity vector [51]. Externally applied momentum are referred
to as 7. Multi-body system dynamics have broad applicability across a wide range of
robotic platforms. A particularly relevant domain for this thesis is space robotics, where
robotic manipulators are mounted on a spacecraft to execute complex tasks in orbit.
Typical operations include on-orbit assembly of large structures, servicing of satellites
and active debris removal maneuvers [2, 32, 33, 38]. The unique challenges of these
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3. Survey of optimal control methods for MPC on a benchmark example

scenarios, such as the absence of a fixed base and the coupling between manipulator
motion and spacecraft dynamics, require precise modeling of the underlying multi-body
dynamics. These systems can be rigorously described by the joint-space formulation of
robot dynamics, as expressed in Eq. (3.1).

For a representative benchmark of general multi-body applications, an inverted pendulum
with a varying number of joints is used. Specifically, pendulums with one and three joints
in the plane are employed to evaluate different methods. The three-joint pendulum, in
particular, is an effective simplification of a robotic manipulator. Although real-world
robotics applications mostly incorporate all three dimensions, this example demonstrates
the scalability and compatibility of the optimal control methods for general multi-body
systems.

In the following, the Euler-Lagrange derivation of equations of motions are derived for
the one-joint and three-joint inverted pendulum. Each arm is assumed to have a mass of
m; = 2.5kg and a length of /; = 0.2m.

1-joint inverted pendulum

The inverted pendulum with one joint is shown in Figure 3.1a. The system dynamics are
derived with the Euler-Lagrange formulation as in [22]. This leads to the IVP for the
single inverted pendulum

&= f(x,u) = ( O ) : (3.2)

—2 5in(6;) + 271

The state and control input is defined as x = (01, él)T € R? and u = (1;) € R, respec-
tively.

3-joint inverted pendulum

The three-joint inverted pendulum extends the single-joint inverted pendulum model by
incorporating two additional arms within the plane. The state space is increased to
x € RS and the control input dimension to w € R3. Thus, ny = 6 and n, = 3. Due to
coupling effects of the different arms the non-linearity is increased.

To derive the equations of motion of a pendulum with 3 joints the Euler-Lagrange for-
mulation is used. A schematic is shown in Figure 3.1b.

The angles 6; are referenced relative to each other, which is common in robotics. However,
they can also be referenced to the vertical plane, resulting in a simplified formulation of
the dynamics [34]. Since this example should represent a reduced version of a space
manipulator, the more complex, relative referencing of the angles is used.
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7'3,93/

(a) 1 joint (b) 3 joints
Figure 3.1.: Schematic of the benchmark inverted pendulum.

Following the angle definitions from Figure 3.1b, the kinematic constraints for the x-
coordinate for each point mass are given as

Ty = sin(@l)é,

[
XTog = Sin(91)l1 + Sin(el + 92)527
[
T3 = sin(@l)ll + Sin(91 + 92)l2 + sin(91 + 92 + 03)53

The kinematics for the y-coordinate yield

[
Yy = — 005(91)51,

l
ys = — cos(by)ly — cos(0; + 02)52,
l
y3 = — cos(by)l; — cos(0y + 0s)ly — cos(6y + Oy + 03)53.
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3. Survey of optimal control methods for MPC on a benchmark example

The kinetic energy term

and the potential energy

3
U= Z m;gy;
i=1

form the Lagrangian £ = 7 — U. The Lagrangian expression for the model derivation
should not be confused with the Lagrangian in the cost functional (2.9), since both refer
to different expressions. Solving the Euler-Lagrange equation [22]

d /oL oL .
&(a_éi)_@_@_ﬁ’ 1=1,...,3, (3.3)

leads to an ODE of the form f(80, 0, 0) = 7, which corresponds to the standard manipu-

lator dynamics commonly used in robotics, as shown in Eq. (3.1).

All angles are grouped to the vector 8 = (61, 0, 03)T. Accordingly, the angular rates and
accelerations are grouped to @ and 6, respectively.

The system dynamics of the OCP (2.10) should be of the form of an IVP & = f(x, u).
Rearranging (3.1) leads to

6= 1(0,0)=M(@O) (T —g(0) — C(0,0)0) c R®.

The matrix M is extracted from the Euler-Lagrange (3.3) equation by taking the deriva-
tive with respect to 6

-5 (4 (]2
(5o n(-%) e
s la (e ()

The Coriolis matrix C is computed with Christoffel symbols [51]. The gravity vector g
is derived by taking the derivative of the potential energy g = 9/a6.

The aforementioned relations are combined to obtain a closed-form representation of the

system dynamics. The state vector is defined as x = (0, B)T € RS. Note that x represents
the state vector and is not to be mistaken for thgF Cartesian coordinate . The control
input vector is similarly defined as u = (7‘1, T, 7'3) € R3. This leads to the IVP

r = f(x,u) = 6 N
® = flww) (M<e>—1<r—g<9>—c<e,e>0>)‘ (3:5)
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3.1. Setup

3.1.2. Optimal Control Methods: A survey

An overview of the different methods taken into account in the survey can be found in Ta-
ble 3.1. Multiple Shooting (MS) with Euler integration and identical discretization for the
state and control inputs is used as a baseline configuration. An identical multiple shooting
method with RK4 integration (MS-RK4) is applied to evaluate the increasing complexity
in the NLP with higher-order integration. The Trapezoidal (TC) and Hermite-Simpson
(HS) collocation methods are used with equidistant spacing. Pseudospectral methods are
applied both globally (LGL, LGR) and on a local domain (LGL-LOC, LGR-LOC). For
the local method the interval is divided at one half of the prediction horizon 7. Other
interval borders or number of intervals are considerable, but are not further analyzed.
The accuracy of all collocation methods is aligned with the methodology derived in Sec-
tion 3.2.1. Consequently, each method has a different number of discretization points N.

Table 3.1.: Overview of the methods used for the survey.

Method NLP Description

Multiple Shooting (MS) 2.2 Uniform spacing with Euler-
Integration T,

Multiple Shooting RK4 (MS-RK4) 2.2 Uniform spacing with Runge-
Kutta order 4 Integration ®4.

Trapezoidal Collocation (TC) 2.3 Uniform spacing.

Hermite-Simpson Collocation (HS) 2.4 Uniform spacing.

Legendre-Gauss-Lobatto (LGL) 2.5 Spacing according to roots of

LGL polynomial.

Local Legendre-Gauss-Lobatto (LGL-LOC) 2.7 Spacing according to roots of
LGL polynomial. Two intervals
are used: (0,371, 37, 7).

Legendre-Gauss-Radau (LGR) 2.6 Spacing according to roots of
LGR polynomial.

Local Legendre-Gauss-Radau (LGR-LOC) 2.8 Spacing according to roots of
LGR polynomial. Two intervals
are used: (0,371, 37, 7).

For all methods, control input constraints over the whole prediction horizon are included
Umin < Wi < Upax, 1= 17-"7N' (36)

A terminal region A; and a terminal cost term V; is identified. Based on the procedure
from [31], the terminal region and terminal cost is given in the form of (2.57) and (2.58)
and are incorporated in all OCP methods.
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3. Survey of optimal control methods for MPC on a benchmark example

3.1.3. Implementation and nonlinear solvers

The survey is implemented in Matlab [41] with the nonlinear optimization and optimal-
control framework CasADi [4]. Three different solvers are evaluated in the survey: FAT-

ROP [55], IPOPT [57] and CasADi’s built-in SQP solver (sqpmethod) [4].

FATROP has the capability to automatically detect and exploit the block sparsity struc-
ture of multiple-shooting OCPs [55] resulting in more efficient computations. For MS and
MS-RK4 this feature is natively supported. For all collocation methods, FATROP does
not natively support the structure detection. FATROP requires an explicit functional
mapping from the current state to the next: z;.1 = f(x;,u;) to exploit the sparsity.
This is inherently given with shooting approaches, as seen in Eq. (2.19). Collocation
approaches natively implement an implicit strategy resulting in a different pattern. How-
ever, for specific collocation methods, the explicit sparsity pattern required by FATROP
might be achieved by incorporating additional optimization variables. Adapting the LGR-
LOC to FATROP’s required block-sparsity is shown in Section 3.4.

For the SQP solver, the quadratic solver OSQP [52] with exact Hessian approximation is
used.

To analyze the computational performance, mex-files are generated with CasADi’s code
generation capability. This significantly improves the computational runtime. The expand
option is disabled for all methods as tests have shown that enabling it increases runtime.
This is likely due to the conditional statements.

Unless otherwise stated, default values are used.

3.2. Methodology and assumptions for the comparative
analysis

This chapter explains the methodology for the survey. At first, in an open-loop manner
the cumulated error to a reference solution of each method is aligned. As an output, each
method is parameterized by the number of discretization points (prediction horizon) N.
The identified methods are then compared on different closed-loop trajectories to assess
performance and computation time.

Nomenclature

Throughout the chapter, the set M refers to all OCP methods
M = {MS, MS-RK4, TC, HS, LGL, LGR, LGL-LOC, LGR-LOC}.
The set M denotes all collocation methods, so excluding MS and MS-RKA4.
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Four different indices exist to distinguish between the i-th discretization point in the j-th
open-loop trajectory in the overall k-th closed-loop experiment

meMormeM OCP-method or collocation-cethod,
iz with i- e{1,...,N"} z"—th discretizati?n po.int,

je{l,...,NoL} 7-th open-loop iteration,

ke{l,...,NoL}  k-th closed-loop experiment.

The number of open-loop or closed-loop experiments is denoted with Ng;, and N¢r,,
respectively.

To give illustration of the above nomenclature, one can think of the indices 7, 7, £ have
increasing order when going from inner to outer loops of the pipeline. Assume having 5
closed-loop experiments k., = 5 consisting out of j., = 100 MPC-iterations each and
a number of nodes in the MPC of iy, = 10. The state 1z would then describe the
state value of the final point in the prediction horizon in the first open-loop iteration in
the experiment 7.

3.2.1. Open-loop error estimation and parameter finding

A difficulty when comparing different optimal control methods is to find a comparable
setup. Using a similar number of nodes for the different methods does not produce similar
results, since each method is mathematically constructed in a fundamental different way.
The idea in this analysis is to find a balanced configuration that facilitates comparable
performance of the methods.

Strategy for alignment of collocation methods to MS

The number of discretization variables N™ of each method m € M is adapted
to achieve comparable cumulative errors to MS with Euler integration in different
open-loop simulations.

The above criteria is evaluated on different open-loop trajectories by sampling No, init
initial conditions. The detailed pipeline is given in the following:

1. Sample initial condition: An initial condition is sampled from the terminal
region @, ~ uniform(X;) assuming uniform distribution. Sampling from within
the terminal region ensures a feasible optimization problem. However, by using this
approach, different convergence properties when starting from outside the terminal
region are neglected. To account for different trajectories, the following steps are
repeated for Nop, iy different initial conditions.
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2. Generate reference solution: A reference solution ™, u* is generated by solv-
ing the open-loop OCP with a finer discretized MS-RK4 method with N™f = 10 NMS
uniformly spaced shooting points.

3. Error estimation of methods to reference: The squared error is calculated by
measuring the weighted difference between the method’s results and the reference
solution at each discretization point of the latter

e = (2™(t") — ) TQ(x™(8) — ™), iy =1,..., N™L (3.7)

lref lref lref Tref Tref

The weighting matrix Q is chosen equivalently to the weighting matrix in the cost
functional (2.56). The deviation of the control input is not considered for the open-
loop parameter fitting, since it is sensitive to the discretization of the different

methods. However, it is taken into account in the closed-loop cost measure II (see
Section 3.2.2).

For MS and MS-RK4 the evaluation of ™ (¢") requires linear interpolation be-
tween the optimization variables M5 and a:i\fﬁ This is illustrated in Figure 3.2.

i
For all collocation methods m € M, a continuous state trajectory is inherently

T

Figure 3.2.: Illustration of the error estimation of the MS method to the reference.

provided, so the functions can directly be evaluated.
The cumulated error is then computed by

Nref
m m
(& = L,
lref

Iref=1

4. Parameter finding for the collocation methods: To align with the accuracy
of the shooting method, the cumulated error for each collocation method is required
to be less than or equal to 10 % of the cumulated shooting error:

e — MS|

5 <01, YmeM. (3.8)
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Note here, that the terms ™ refer to the cumulated error of the collocation method
m € M to the reference. The term eMS denotes the cumulated error of the MS
method to the reference. Consequently, Eq. (3.8) defines a measure requiring the
relative error of each collocation method to be in the range of 10 % around the
cumulated shooting error to the reference.

The reasoning for defining a threshold and not strictly better open-loop accuracy
than the MS method is the fact that for small cumulative errors, all collocation
methods would require at least as many points as MS. Specifically, the first control
inputs have high influence on the trajectory. If shooting methods have a relative
large NMS a small At is the consequence. To reproduce the same qualitative
behavior with collocation methods, a similar At is required, which leads to a similar
number of nodes.

Starting with a minimal number of discretization points N™, the grid is refined
step-wise by N™ <~ N™ + 1 until the criteria (3.8) is fulfilled. For TC and HS,
equidistant spacing is assumed when inserting new nodes. For the pseudospectral
methods LGL and LGR the collocation points for the increased number of nodes
are derived by finding the roots of a higher order Legendre polynomial. The local
LGL-LOC and LGR-LOC (that also retrieve the new points by the higher order
orthogonal polynomial) increase the number of points simultaneously within each
subinterval. This way an identical number of points within each segment is ensured.
The refinement is repeated until the criteria (3.8) is fulfilled.

5. Result of parameter finding: All collocation methods have a fixed OCP with a
given discretization N™. This parametrization is used for the closed-loop analysis
in the next section.

As described earlier, the MS method serves as the baseline, with its time step At deter-
mining the frequency of each closed-loop MPC iteration. All collocation methods operate
at identical sampling frequency. However, when a method employs a finer discretiza-
tion of the control input than the MS method, numerical instabilities may arise. This
is because control inputs defined before t318 cannot be considered within the closed-loop
framework (¢; is equivalent by constraint for all methods). Therefore, for methods re-
quiring a finer temporal resolution at the beginning, the control input is held constant
at the initial value. In the following, this is referred to as the

MPC-constraint u;”

. Vi=2,...,N™ (3.9)
u-

T else

. {u’f”‘, if 47 < ¢)S
This constraint is particularly likely to be required by pseudospectral methods. Due to
their spacing of points according to the roots of a Legendre-polynomial, a dense distri-
bution of nodes is at the beginning of the interval (see Figure 2.1). This leverages a finer
control input discretization compared to MS making the constraint (3.9) active for the
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3. Survey of optimal control methods for MPC on a benchmark example

first nodes. A detailed discussion about the choice of control inputs for multi-interval
pseudospectral methods is found in [5].

3.2.2. Closed-loop comparison and performance metrics

The parameterized methods are now evaluated for the computation time and cost on
closed-loop simulations. The following scheme is applied:

1.

Sample initial condition: Sample N¢p, initial conditions uniformly distributed
within the terminal region

pxt = x(t = 0) ~ uniform-(A&}), Vk=1,...,NcL.

Compute the closed-loop trajectory: Compute the closed-loop trajectories for
all methods m € M for a fixed simulation time Ti;,,. The sampling frequency for
the MPC is given for all methods by AtMS, that is the time discretization of the
shooting method.

For the closed-loop simulation a RK4 method is used to propagate in time. The

time-step increment is refined by a factor of ten relative to the MPC sampling
period, i.e., Atgy = 1/10 - AtMS,

No disturbances are considered for the closed-loop simulation. In each closed-loop
trajectory, the solution from the previous iteration is used as a warm-start guess
for all methods and solvers. As a cold start for a new closed-loop experiment k, the
state is set constant to ;& and the control input to zero.

Compute the metrics: The following measures are used to compare the different
methods:

» For each open-loop iteration: Computation time it’ggmp for the solver to gener-

ate a solution. This is measured with the Matlab command tic-toc. In total,
there are N¢r,Nor, samples for the computational time.

o For each closed-loop trajectory: The closed-loop cost II is evaluated by
NOL . .
I = et — @l + el YR =1,...,New, (3.10)
j=1

assuming equivalent weighting matrices as for the cost functional. The no-
tation || - ||3; refers to the quadratic norm similarly to (2.56) with weighting
matrix M. The index measures the closed-loop cost and only takes the first
state and control input of each open-loop trajectory into account. This results
in N¢p, closed-loop cost samples.

4. Repeat for all initial conditions Repeat above steps for all sampled initial
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3.3. Results

3.3. Results

3.3.1. Open-loop parameters

The simulations on the three-joint inverted pendulum are performed with different con-
figurations for the baseline method MS. Table 3.2 summarizes the combinations. For
each configuration an acronym is introduced. The first two digits indicate the prediction
horizon T and the last two digits the prediction horizon steps IV, i.e.

Configuration 01 10 .
~— =~
T=0.1s N=10

The focus is placed on maintaining a constant sampling interval At. As the prediction
horizon N is extended, the resulting NLP becomes more complex. By increasing N while
keeping At fixed, the total prediction time into the future, T, is adjusted accordingly.
The weighting matrices Q and R are kept unchanged throughout. Greater emphasis is
placed on deviations in angular positions compared to angular velocities. Meanwhile, the
control input weights in R are reduced to ensure satisfactory closed-loop performance.
Actuator constraints of the pendulum are considered and a terminal region in the form
of (2.57) is included in the NLP.

Table 3.2.: Prediction horizon and sampling frequency for three-joint inverted pendulum.

Config. T N At Weighting matrices Constraints

0110 0.1s 10 0.011s 6x6

Q=T1"" with Q11 = Q33 = Q55 =10 |ug| < 30Nm,
0330 035 30 00Us B oo o
0550 0.5s 50 0.011s - AR

With the procedure from Section 3.2.1, open-loop parameters for all collocation methods
are estimated. For this, five different initial conditions are tested, Nor, init = O.

Table 3.3 provides a comprehensive summary of all estimated parameters. For config-
uration 0110, the collocation methods HS, LGL, and LGR require fewer discretization
points compared to the MS method. The TC method is of lower order than HS, resulting
in 11 points. The two local orthogonal collocation methods, LGL-LOC and LGR-~-LOC,
demand a higher number of collocation points relative to MS. It is important to note
that within each subinterval, a minimum number of points is necessary to ensure an
adequately precise and smooth trajectory, particularly to maintain continuity between
intervals.

An examination of the configurations 0330 and 0550 demonstrate the efficiency of the
collocation methods. In particular, pseudospectral methods (PS) capitalize on their spec-
tral convergence properties [15]. While MS employs 50 discretization points, the global
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3. Survey of optimal control methods for MPC on a benchmark example

methods LGL and LGR require at most 20 points. Equidistant collocation methods such
as TC and HS also utilize fewer points than MS, although their scaling performance is
inferior to that of pseudospectral methods.

Table 3.3.: Parameter overview derived from the open-loop schematic.

COIlﬁg. NMS NMS-RK4 NTC NHS NLGL NLGL-LOC NLGR NLGR-LOC
0110 10 10 11 6 9 14 8 12
0330 30 30 23 13 10 22 16 22
0550 50 50 39 21 13 28 20 30

3.3.2. Computation time

The computation time for the methods summarized in Table 3.1 are shown in Figure 3.3
for Nor, = 10 closed-loop simulations. Fach closed-loop simulation is propagated for
two seconds, Ty, = 2s, which is sufficient to achieve convergence. An MPC iteration
is executed every At = 0.011s, which results in Nor, = 181 open-loop iterations. The
sampling time for the simulation is refined by the factor ten, resulting in Atg, = 0.0011s.

The boxes show the median, 5% and 95 % quantiles, as well as the minimum and maxi-
mum values. The gray crosses indicate the computation time of the first solution in each
closed-loop trajectory, without warm start information from the previous iteration. They
are not considered within the statistical evaluation. The top row shows the number of
parameters used within each method, that is evaluated with the methodology from Sec-
tion 3.2.1. The analysis is grouped by remarks followed by a more detailed explanation.

Remark 3.3.1 |

FATROP with MS is computationally most performant for prediction horizons N <
50 for the analyzed benchmark example.

For all solver and method combinations, MS with FATROP achieves the lowest maximum
value for the computation time. Specifically for a relatively short prediction horizon,
FATROP is most performant. With increasing prediction horizon, the LGL method
performs similar.

Comparing MS-FATROP with MS-IPOPT, one can observe a performance boost with
FATROP, that is mainly rooted in the structure detection algorithm to exploit the block
sparsity [55]. Considering only the IPOPT solver, collocation methods perform similar
as shooting with the tendency of becoming computational more feasible the longer the
prediction horizon.
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Figure 3.3.: Computation time for the three-joint inverted pendulum. The gray crosses
indicate the first solution of each closed-loop trajectory. The box plot shows
the median, 5% and 95 % quantiles and the corresponding minimum and

maximum values.

cretization parameters for each method.

The top-row of each plot indicates the number of dis-
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Figure 3.4.: Computation time scaling (95 %-quantile) for the different methods over in-
creased N™S on the three joint inverted pendulum.

The SQP solver achieves large variances in the computation time. The nonlinear system
dynamics require a larger number of iterations for to achieve convergence. A more detailed
discussion is found in Remark 3.3.7.

_[ Remark 3.3.2 ]

FATROP’s structure detection has positive effect on shooting methods outperform-
ing other solver combinations.

The preferred choice for collocation methods with sparse problem structure is
[POPT (assuming natively non-compatibility with FATROP’s structure detection).

Figure 3.4 shows the 95 %-quantiles of each method over increasing prediction horizon,
both for FATROP and IPOPT. Because of large variances of the SQP solver, it is excluded
from this analysis. Comparing the plot for FATROP with IPOPT one can clearly see the
three main effects.

The first effect is the performance boost when using shooting methods with FATROP.
Specifically the low order integration scheme RK1 significantly improves the computation
time. For the different combinations of N, the MS-RK4 method, solved with FATROP,
is slower by the factor between 2.75 (N = 10) to 3.5 (N = 30,50) compared to MS. If
the relative difference in computation time stagnates at 3.5 for increasing N has to be
further evaluated for longer prediction horizons. Nevertheless, a higher-order integration
scheme significantly increases the computation time.

The second effect is the loss of performance when using FATROP with sparse NLPs that
are not supported for structure detection. Comparing the gradient in computation times

of TC, HS, LGL-LOC and LGR-LOC for FATROP and IPOPT, the latter achieves signif-
icantly improved scaling properties. All those methods have a sparse constraint Jacobian,
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as shown in Figure 2.3 for the local pseudospectral methods, that is not exploited by FA-
TROP. In contrast, the computation time even increases. FATROP should consequently
only be used for problems that are compatible to its structure detection algorithm. Under
specific assumptions, implicit OCP formulation can be adapted to align with the spar-
sity pattern, what is shown in Section 3.4. Without adapting the OCP to this required
structure, IPOPT is the more performant solver that can universally be applied.

The third effect is the similarity of computation time for non-sparse NLPs. LGL or
LGR, with a relatively dense constraint Jacobian (see Figure 2.3), qualitatively scale
comparable for both solvers.

Remark 3.3.3 ]

Considering the benchmark example, global PS methods scale for longer prediction
horizons better in terms of computation times than shooting methods

A good property of global pseudospectral methods is their spectral convergence proper-
ties [15, 54]. The computation time for LGL methods with increasing prediction horizon
remain on a comparable level. Reason for this is, that for NMS = 10 and NMS = 50, the
collocation points for LGL only increase from NYGF' =9 to NV = 13,

Apart from this high-level observation, a contradiction in the computation time is iden-
tified. With increasing number of optimization variables, the computation time for the
LGL method decreases. This is exhibited in Figure 3.4. One reason for this odd behavior
is the MPC-constraint (3.9) that ensures that no control input is applied in between two
sampling points of the closed-loop MPC. For N = 10, this constraint is active, what
artificially increases the complexity of the NLP resulting in degraded computation time.
For N =30 and N = 50 this constraint is not active.

To some extent, pseudospectral methods might outperform shooting methods with in-
creasing prediction horizon steps N > 50. In the context of MPC, only a limited number
of prediction horizon steps can be considered due to computational constraints. Conse-
quently, it depends on the specific parametrization, model and accuracy requirements, if
pseudospectral methods outperform the standard shooting approach. As a general trend,
the more accurate the solution trajectory and the longer the prediction horizon, the better
collocation performs.

Remark 3.3.4 ]

Collocation points by LGL and LGR yield different accuracies on the benchmark
example.

If one compares the mathematical formulation of LGL (2.44) and LGR (2.48), the two
methods mainly differ in the choice of the collocation points, that are derived from the
roots of a different polynomial. This can effectively result in differing accuracies and com-
putation times. Where LGL only required 9, 10, 13 points, LGR required 8, 16, 20 points
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3. Survey of optimal control methods for MPC on a benchmark example

to achieve comparable accuracy with the methodology described in Section 3.2.1. Con-
sequently, the finer the discretization of each method, the larger the computation time.
Assuming the same number of discretization points for each method, the computation
times are comparable [26]. Which method performs better for given system dynamics
might be problem dependent.

Remark 3.3.5 }

HS and TC achieve similar computation times for similar accuracy on the bench-
mark example.

Considering the computation times of the collocation methods TC and HS (see Figure 3.3
and 3.4) the computation time and its corresponding variances are comparable. While
TC requires more discretization points which introduces more complexity in the NLP,
HS suffices fewer discretization points but has inherently an overall more complex NLP
due to the higher order polynomial. However, as discussed in the next Section 3.3.3, HS
provides better closed-loop performance making it the preferable choice among the two.

3.3.3. Closed-loop performance

Figure 3.5 shows the control cost for each collocation method and solver. More precisely,
the normalized deviation from the corresponding method m € M to the MS method
(IT™ — TIMS) /TIMS is shown. Consequently, positive numbers represent a worse closed-loop
behavior, while negative numbers indicate an improved trajectory. A detailed explanation
for the closed-loop cost index is given in Section 3.2.2. All examined solvers—FATROP,
IPOPT, and SQP—converged to comparable minima, differing only within the bounds
of numerical rounding errors, thereby yielding essentially equivalent closed-loop cost.

Remark 3.3.6 ]

The smaller N, the more variances occur in the closed-loop costs of the different
methods.

For a discretization level of N = 10, the worst-case closed-loop performance of the collo-
cation methods matched that of the MS method. The median performance outperformed
approximately 10 to 20 % relative to the baseline MS approach. For increasing horizon,
the closed-loop cost of the different methods align with each other.

This observation suggests that the discretization levels determined using the methodol-
ogy outlined in Section 3.2.1 are conservative. In fact, a reduced number of discretization
points would suffice for the collocation methods to achieve parity with the MS method in
terms of closed-loop cost. Nevertheless, this would also incorporate sample trajectories
to perform significantly worse than the MS method due to the variances. As a summary,
collocation method do not generally perform better than shooting, but are rather pa-
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Figure 3.5.: Normalized closed-loop cost of each method to the baseline multiple shooting
method. The median, 25- and 75% quantiles and the min. and max. values
are shown for Ngp, = 10 closed-loop trajectories.

rameterized more conservatively by having more optimization variables than potentially
required for achieving similar accuracy as MS.

An exemplary closed-loop trajectory for one initial condition is given in Figure 3.6. For
the angular positions, the deviation from the final point A = 6 — 05, is used. This
plot compares the MS method with the global pseudospectral LGL method. The position
states 67 and 6, outline minimal differences between the two methods. However, for the
third joint 63, the collocation method demonstrates a faster convergence towards zero
compared to the MS method. At the end of the simulation, tg, = 2s, the LGL method
achieves a position approximately 1.8° closer to the vertical than the MS method. Given
that the angular positions are assigned greater importance through the weighting matrix
Q (see Table 3.2), this improvement primarily accounts for the enhanced closed-loop
performance observed with the LGL method.

The angular velocities 01,05, 05 mostly align with each other. Only at the beginning of
the trajectory the collocation methods tend to oscillate, which is further discussed in
Remark 3.3.8. According to the observed behavior for the angle 65 with LGL, the rate
0 is constantly on a higher level than for MS.

With increasing number prediction horizon steps (N = 30, N = 50), the closed-loop cost
in Figure 3.5 of the different methods have reduced variances. Since more optimization
variables are involved in the OCP, less variance is achieved for the different methods.

Remark 3.3.7 ]

Assumption: Casadi’s built-in SQP with the quadratic solver OSQP.
The SQP computation times are sensitive to the magnitude of change in the states
per iteration. FATROP’s computation times remain on a constant level.
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Figure 3.6.: Closed-loop state and control input trajectory for the MS and the LGL
method for NMS = 10. For 6, the deviation A# to the final point is plotted.

Figure 3.7 compares the computation times for each solver over a closed-loop iteration,
consisting out of Ngi, = 187 open-loop computations. Apart from the computation times,
the state trajectory is plotted for all six different states.

The computation time of SQP clearly correlates with the magnitude of state changes
per iteration. This is particularly evident at the beginning of the closed-loop simulation,
where frequent control updates and significant state variations result in noticeably longer
solve times. Toward the end, as the system approaches the final setpoint and state changes
diminish, the computation time decreases accordingly and remains mostly constant.

In contrast, FATROP exhibits a more stable computational profile, largely unaffected by
the extent of state variation. Although increased dynamics can lead to slightly higher
computation times in some closed-loop scenarios, the overall trend remains comparatively
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Figure 3.7.: Computation times of FATROP and SQP for a single closed-loop trajectory
for the MS method. The corresponding state evolutions for the six states are
shown on the left y-axis, while the computation time is shown on the right
y-axis.

consistent.

This observation aligns with Figure 3.3. The column for SQP has significantly larger
variances in the computation time than FATROP or IPOPT. Reason for this behavior
are the nonlinear dynamics, that require SQP to have a large number of iterations.

3.3.4. Influence of the trajectories’ gradient on the open-loop
prediction

Within the following section, the gradient of the solution trajectory is referred to as the
time-derivative of the solution trajectory %—f = Vx.

Remark 3.3.8 ]
The smaller the gradient 9/a¢ of the solution trajectory, the better collocation meth-
ods outperform shooting methods. Rapidly varying dynamics lead to oscillations
with collocation methods in the open-loop trajectories.

A computed open-loop trajectory for the first iteration of the closed-loop simulation
(Figure 3.6) is illustrated in Figure 3.8. For better visibility, only a subset of the methods
(MS, TC, HS and LGL) and of the states (joint three: fs,6s) is shown. A reference
solution, generated by MS with RK4 and N = 10 - NMS | is plotted as a dashed line.

All collocation methods can accurately follow the angular trajectory #3 without causing
oscillations. The gradient 9#/a; is moderate and the solution trajectories’ gradient is
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Figure 3.8.: Open-loop trajectory for the joint three of the inverted pendulum. On the
left the angular evolution and on the right the angular right evolution is
shown for the config 0110.

moderate and overall on a comparable level.

The angular rate trajectory 05 is shown on the right in Figure 3.8. A rapidly changing
angular velocity, so a high gradient 9/ is identified at the beginning of the open-loop
interval. This results in oscillating solutions for all collocation methods while the shooting
method does not reveal this characteristic.

The gradient for the angular position 96s/s: is mostly on a constant level and changes only
gradually over the prediction horizon. The angular velocities’ gradient 96s/a: is rugged and
non-constant, specifically at the very beginning and the end of the interval. Reason for
this effect is rooted in the discretization of the control inputs. As identified in Eq. (3.5),
the control inputs directly affect the state derivative a.

When working on discrete systems, the control inputs are often assumed to be constant
over one control interval (see Section 2.4). Thus, the control input changes rapidly from
one iteration to another leading to an abrupt change in the state derivative, according to
Eq. (3.5).

The problem for collocation methods with rapidly changing state derivatives is the fact,
that the solution trajectory is generated by constraining the polynomials’ derivative to
be equivalent to the system dynamics at collocation points. Assuming a rugged state
derivative function as a result of applying piecewise-constant control inputs, makes the
polynomial approximation inaccurate. As a result, oscillations occur.

Another caveat comes along with the oscillating behavior. Constraints can only be as-
sured at discretization points. For MS, that assumes linear interpolation between the
states, the constraint cannot be violated in between, if it is fulfilled at the nodes. In
contrast, since collocation uses a polynomial, the oscillating behavior might result in
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the non-fulfillment of the constraints along the predicted trajectory. A workaround for
polynomials to estimate its safety bounds is given in [3].

Adaptive methods offer an alternative approach to mitigate oscillations [3, 12, 17, 35,
36, 45]. These methods estimate the error using a predefined metric, compare it against
a threshold, and then adjust the mesh for the next iteration — either by modifying
the polynomial order or the step size. Local pseudospectral methods are one way to
incorporate rapidly changing system dynamics within a pseudospectral framework. Their
interval borders can be chosen according to the highly changing state derivates. However,
for the specific example of an inverted pendulum, different parameter combinations for
local pseudospectral methods could not outperform global PS methods. This conclusion
aligns with the analysis performed in [27].

Remark 3.3.9 ]

Collocation methods: The closed-loop trajectory is mainly affected by the oscilla-
tions at points with large change in magnitude of the control inputs for the bench-
mark exapmle.

The open-loop plot in Figure 3.8 is the first iteration for the closed-loop simulation
illustrated in Figure 3.6. The oscillatory open-loop behavior for collocation methods,
explained in Remark 3.3.8, is also visible in the closed-loop simulation.

For the LGL method, the large change in the control input at the beginning of the
simulation facilitates oscillations in the angular rates. This phenomenon is observed for all
joints accordingly. However, when the first two piecewise-constant control input signals
are applied to the plant, the inputs only change gradually from iteration to another.
This enables relatively smooth trajectories of the angular rates without the occurring
oscillations and proves the correlation of the oscillations with large changes in the control
input.

3.3.5. Influence of coupled dynamics and model-dimension

To assess the influence of the coupling of different joints and the model-dimension on
the computation time, simulations with the single inverted pendulum in Figure 3.1a are
performed. For comparison, the same number of nodes as evaluated in Table 3.3 for the
pendulum with three joints is used. The MPC parametrization is listed in Table 3.4. The
control input constraints and the weighting matrices R are scaled down to the reduced
inertia of the pendulum. The computation times are illustrated in Figure 3.9. Similarly,
as in the previous plot for the three-joint pendulum, the methods with different solver
and prediction horizon parametrization are shown.
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Figure 3.9.: Computation time for
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Table 3.4.: Prediction horizon and sampling frequency for one-joint inverted pendulum.

Config. T N At Weighting matrices Constraints
0110  0.1s 10 0.011s Q =T1*? with Q;; = 10
0330 0.3s 30 0.011s 30 |u| < 1Nm

Il><1

0550  0.5s 50 0.01ls B= 555

_[ Remark 3.3.10 ]

SQP is a comparable alternative to FATROP and TPOPT with reduced model
complexity.

For the simplified model, the SQP solver demonstrates superior performance when con-
sidering the computation time median. For the shooting methods and all collocation
methods — except for LGL-LOC — the upper quantiles of computation times with SQP
are comparable to or lower than those of FATROP and IPOPT for NMS = 10. The worst-
case computation times of SQP generally fall between those of FATROP and IPOPT.
Consequently, for models with reduced complexity, SQP presents a viable alternative,
although its robustness, particularly in terms of worst-case execution times, warrants
further investigation.

Remark 3.3.11 ]

MS with FATROP achieves the best scalability in computation time with increasing
model complexity.

In Figure 3.10 the absolute computation times for the one-joint and the three-joint in-
verted pendulum are illustrated. The solving times (upper-quantiles) for the configuration
0330 are used. Other configurations with different prediction horizon are assumed to be-
have qualitatively similar. A detailed analysis of the influence of prediction horizon on
computation time is stated in Remark 3.3.2.

FATROP with MS achieves the fewest increase in computation time over all methods and
is the most performant solver for both model complexities. Applying IPOPT with MS
consumes significantly more time, since IPOPT is not capable of using structure detection
for shooting methods.

For MS-RK4 both solvers achieve a comparable increase in time, but the overall compu-
tation time for FATROP is below IPOPT. The difference in computation time between
the one-joint and three-joint inverted pendulum is significantly higher for MS-RK4 than
MS. With further added model complexity, a greater difference is expected. As a result,
a good trade-off between potentially enhanced closed-loop performance with higher-order
integration schemes and computation time needs to be established.
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Figure 3.10.: Scaling of computation times of the different methods for different model
complexity (dimension and coupling effects). The upper quantile for each
method is illustrated for configuration NMS = 30.

Remark 3.3.12 ]

Collocation methods should be solved with FATROP for reduced model complexity.
For large and complex NLPs, IPOPT is the most performant option for collocation
if they are not compatible with FATROP’s structure detection.

Figure 3.10 highlights that for low model complexity the best solver for collocation meth-
ods is FATROP. All computation times for the one-joint pendulum are below the ones of
IPOPT. However, as the NLP complexity increases by adding dimensionality and state
couplings, FATROP is not capable of efficiently handling the sparse structure of the
collocation NLPs. Thus, IPOPT is the preferable choice for collocation.

Specifically the methods TC, LGL-LOC and LGR-LOC, that produce a relatively large,
sparse NLP, cannot be efficiently solved with FATROP. The NLPs with dense structure,
LGL and LGR, perform comparable for both solvers and model complexities.

3.4. LGR-LOC*: A pseudospectral method compatible
with FATROP'’s sparsity pattern

The results in Section 3.3.2 outline the performance boost when combining the FAT-
ROP solver with multiple shooting methods. This result is highlighted and explained
in Remark 3.3.1. The collocation methods are not adapted to the structure detection
feature because of their inherent implicit formulation which is not natively compatible
with FATROP’s sparsity pattern.
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3.4. LGR-LOC*: A pseudospectral method compatible with FATROP’s sparsity pattern

However, by arranging the optimization variables in a special structure and introducing
additional optimization variables to preserve the expected pattern, certain collocation
methods can be adapted to FATROP with structure detection. For the global collocation
methods LGL and LGR this is not possible, because of their dense constraint Jacobian,
as shown in Figure 2.3. A detailed analysis of this aspect lies beyond the scope of this
work.

One important characteristic to make the pseudospectral method adapt to FATROP is
to have explicit continuity constraints

i1 = @(ZL‘Z',’U,Z‘), (311)

with ® denoting a mapping from the current state x; to x;11. Comparing the above
requirement with the equation ensuring continuity for TC (2.28) and for HS (2.39), one
identifies different structure. For both methods, the continuity constraints have the form
i1 = O(x;,u;, T;iy1,u;11). However, by introducing more optimization variables, the
required explicit structure might be achieved. This is not further analyzed within the
frame of this work.

Instead, the LGR-LOC method is chosen to adapt to the sparsity pattern. The LGR-
LOC method explained in Section 2.3.5 does not require continuity constraints, since the
interpolated final state in each interval is not considered as an additional optimization
variable. Instead, the variable of the next interval is used, as shown in (2.53).

However, by introducing additional optimization variables for the interpolated final state
in each interval, two optimization variable exist that represent an identical state in time.
As a result, continuity constraints have to be included to ensure the two variables to have
an identical state. This is desired to align with the required pattern in Eq. (3.11). The
state matrix then yields

()" ahy Al
. : B : - :
X = ()" | = ahy o T, (3.12)
(mlNlH)T IéNﬁ-l)l o xl(Nl—f—l)nx

with N, denoting the number of collocation points in each interval (constant for all in-
tervals) and the index [ generally referring to the current interval [ = 1,..., Niy. If one
compares Eq. (3.12) with Eq. (2.53) it is evident, that the variable (/™) is replaced by
the extra optimization Variable(mlNl +1)T. To compensate for the loss of continuity, the
constraints

2y = 2! (3.13)

are introduced. To further reduce the couplings between intervals, the control inputs are
assumed to be constant over each interval. The control input matrix reduces to a vector

U = ((u)?) = (ufy ... ). (3.14)
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3. Survey of optimal control methods for MPC on a benchmark example

Figure 3.11 shows an example of the state and control input discretization. The continuity
constraints are shown, too. In this example, the state is approximated with N; = 2

T, U ‘ ‘ ‘ ‘
: mg — wli’ : :E% _ mﬁnal
1 2 ! 3 4 |
T3 =T ! T3 =T i
I I I I
I I I I
I I I I
I I I I
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} } } } t
tadp,l tadp,Z tadp,3 tadp,4 tadp75 =T

Figure 3.11.: Schematic for the state and control input approximation of the LGR-LOC*
for N, =2 and Ny, = 4.

collocation nodes in all four intervals. The interval border of the first interval t,qp 2 is
always assumed to be greater than AtMS, that is the closed-loop frequency of the MPC.
With this assumption, the MPC-constraint (3.9) can be omitted in the NLP.

The method adapted to the structure detection algorithm is denoted as LGR-LOC*, to
distinguish from the baseline LGR-LOC. The NLP formulation is given in NLP 3.1.

NLP 3.1: Local Legendre Gauss Radau with sparsity (LGR-LOC%*)

Nint Nl
t —t
. _ final adp,l+1 adp,! l l l
xl,,,,,xNii?},fll,,,,,uNim J = Vi(x™) 4+ 121: 5 Z; wL(x;,u')  (3.15)
2
subject to D'X! = F'(X'u), 1=1,...,Nn (3.16)
Zfadp,lJrl - tadp,l
L1 = Tstart
ot :wlzvl+17 I=1,..., N — 1 (3.17)
g(Xt, . XN gt i) <0
mﬁnal c Xf
The parameters w!, ! refer to the value at the collocation point i = 1,..., N; in
the interval [ = 1,..., Nine. The control input value u! denotes the constant input

for the given interval.

In Figure 3.12 the sparsity pattern compatible with FATROP’s exploitation algorithm is
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3.4. LGR-LOC*: A pseudospectral method compatible with FATROP’s sparsity pattern

100 | B

0 20 40 60 80 100

Figure 3.12.: Sparsity pattern of the constraint Jacobian for the LGR-LOC* method
adapted to structure detection in FATROP for Ny, = 5. The highlighted
elements in red are continuity constraints, while the green elements are gen-
eral NLP constraints. The black circles indicate a non-zero element.

shown. The first six rows of the matrix represent the initial constraints for the state. The
continuity constraints (3.17) to align the state from one interval to another are highlighted
in red. The collocation constraints (3.16) together with control input constraints in
each interval are represented in green. The last row of the Figure shows the terminal
constraints for the final state. As can be seen, another optimization variable is introduced
for the terminal state to align with the sparsity pattern.

In theory, the LGL-LOC method could also be adapted to the sparsity pattern. However,
first evaluations have shown the OCP to become infeasible by not having enough degrees
of freedom. A potential reason for this behavior might be the necessity to include an
additional optimization variable for the final state. This might increase the dimension
of the NLP without introducing more DOF'. Further analysis is required for assessing

applicability of LGL-LOC to FATROP’s sparsity pattern.

Methodology to align MS with LGR-LOC*

In contrast to the described methodology to align all the methods in an open-loop setting,
that is explained in Section 3.2.1, the LGR-LOC* is aligned to MS with the criteria
of achieving comparable closed-loop cost. The resulting parameterization is shown in
Table 3.5. The weighting matrices and the baseline configuration is chosen equivalently
to as stated in Table 3.2.

More degrees of freedom for finding a suitable parametrization exist for the LGR-LOC¥*,
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3. Survey of optimal control methods for MPC on a benchmark example

Table 3.5.: Interval borders and parameters for the LGR-LOC*.

MS MS-RK4 LGR-LOC*
Conﬁg. NMS NMS-RK4 Nint tadp NLGR—LOC* Z N
0110 10 10 2 (0.011,7) (2,2) 4
0330 30 30 4 (0.011,0.05,0.1,7) (22,22) 8
0550 50 50 5 (0.011,0.05,0.1,0.3,7) (2,2,2,2,2) 10

due to the flexibility of changing not only the number of intervals, but also the number
of collocation nodes within. Apart from the constraint of choosing t.qp1 = AtMS | the
interval borders are chosen with increasing spacing the longer the prediction horizon.
The number of nodes is set constant to N; = 2 in each interval. Simulations have
shown to have enhanced computational performance with increased number of intervals
and fewer optimization variables in each leading to a sparser NLP. Importantly, the
number of intervals also defines the control input discretization, as previously illustrated
in Figure 3.11.

Results of LGR-LOC*

The LGR-LOC* and MS methods are compared in an identical scenario as applied in
Section 3.3.2. The results for the computation time and closed-loop cost are shown in
Figure 3.13. All solutions are solved with the solver FATROP with structure detection
enabled. The adapted method LGR-LOC* is additionally solved with IPOPT to assess

the improvement.

Remark 3.4.1 ]

MS and LGR-LOC* both solved with FATROP exhibit comparable performance
for short prediction horizon NMS = 10.

For a low number of prediction horizon steps, the LGR-LOC* and MS perform comparable
in terms of computation time. Specifically, for the given configuration, the worst-case
execution time for LGR-LOC* is slightly improved while the closed-loop performance is
slightly degraded compared to the baseline MS. However, if adding another interval in
configuration 0110 to the LGR-LOC* method, the computation time is slightly worse
than MS but the closed-loop performance is enhanced. Generally, as already observed
in Remark 3.3.6, the variance is high for low N concluding that both methods behave
relatively similar for a low number of nodes.
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3.4. LGR-LOC*: A pseudospectral method compatible with FATROP’s sparsity pattern
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Figure 3.13.: Comparison of LGR-LOC*, MS and MS-RK4 solved with FATROP and
structure detection.

Remark 3.4.2 }

LGR-LOC* outperforms for NM® > 10 and is the most-performant solver-method
combination over all evaluated parametrization.

For increasing prediction horizon, the closed-loop behavior for both methods is compa-
rable. The computation of LGR-LOC* is significantly improved compared to MS and
MS-RK4. For NMS = 30, the upper quantile of the computation time for LGR-LOC* is
reduced by factor of 1.75, for NMS = 50 of 2.45.

Comparing the LGR-LOC* solved with FATROP and with IPOPT (dashed), an im-
provement in computation time is observed. While in Remark 3.3.12 the solver of choice
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3. Survey of optimal control methods for MPC on a benchmark example

for all collocation methods is identified as IPOPT, this result could be outperformed with
the above designed LGR-LOC* method. Specifically, even if the number of nodes from
configuration 0110 (4 nodes) increased to configuration 0550 (10 nodes), the computation
time is mainly not affected because of efficient sparsity exploitation in the solver.

3.5. Discussion of the results

The results of the previous section outline the best method-solver combinations. To give
a throughout summary, Table 3.6 gives an overview about the properties of each shooting
and collocation method.

Table 3.6.: Property matrix for optimal control methods over different criteria evaluated
on the benchmark example.

MS MS TC HS LGL LGL LGR LGR LGR Ref.

RK4 LOC LOC LOC*
teomp NMS € [30, 50 + + 341
NMS > 50 (+)* + + 342
Scalability over in-
creased model com-  + (+)* 3.3.11

plexity and dimension

With rapidly changing dynamics

Closed-loop oscillations No  No (large gradient 22/a) 3.3.8
Oscillating behavior does not en-
Constraints fulfillment +  + sure constraint fulfillment in between  3.3.8

nodes.

L A suitable option when collocation methods tend to oscillate.
2 Not specifically analysed, but assumed to scale similar to MS due to FATROP’s structure detection.

The computational performance for small prediction horizons N = 10 is superior when
using multiple shooting (MS) or adapted LGR-LOC* method, both solved with FA-
TROP. For increasing prediction horizons, the LGR-LOC* method is computationally
more performant on the benchmark example while simultaneously achieving comparable
closed-loop performance. Shooting methods might be applied when incorporating rapidly
changing dynamics that produce oscillations for collocation methods. For longer predic-
tion horizons (N > 50), also other collocation methods such as LGL are anticipated to
become more efficient. In the MPC context, global pseudospectral methods are hindered
by the MPC constraint (3.9), which enforces piecewise-constant control inputs within
each sampling interval.
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3.5. Discussion of the results

Regarding scalability, MS combined with FATROP exhibits the most favorable scaling
behavior as the model complexity increases — from a single inverted pendulum to a three-
link inverted pendulum system. This advantage can be attributed to FATROP’s efficient
structure detection algorithm, which effectively exploits problem sparsity [55]. Due to
the ability to apply the sparsity exploitation algorithm to LGR-LOC*, the method is
expected to behave similarly. However, no specific analysis has been performed regarding
scalability.

In both open-loop and closed-loop simulations, collocation methods tend to produce
oscillatory state trajectories when predicting rapidly varying state derivatives. This be-
havior is particularly influenced by the discretized control inputs. Oscillations are largely
mitigated during iterations with minimal variation in control inputs. In practical appli-
cations such as On-Orbit Servicing — especially during rapid escape maneuvers — rapid
state changes may induce oscillations that render collocation methods less suitable. Con-
versely, for scenarios characterized by smoother state transitions, collocation methods
may represent a viable alternative.

The survey also contained the comparison of different solvers, namely FATROP, IPOPT
and SQP. Table 3.7 gives overview about the key aspects.

Table 3.7.: Property matrix for nonlinear solvers of different criteria.

FATROP IPOPT SQP Ref.
. simple model v v 3.3.10
Shooting complex model v 3.3.2
., simple model v v 3.3.10
Collocation complex model  (v')! v 3.3.12
Sensitivity to non-linearity low low high 3.3.7

1 FATROP is the solver of choice for collocation when the method can be aligned with the required
sparsity pattern, as shown for LGR-LOC*.

For shooting methods (MS and MS-RK4), FATROP demonstrates the highest compu-
tational performance. In particular, its structure detection algorithm, which exploits
sparsity, significantly reduces computation time compared to IPOPT. Inherently, collo-
cation methods cannot leverage the structure detection capability. However, with specific
assumptions and introduction of additional optimization variables some collocation meth-
ods might be aligned with the structure detection algorithm, as shown for the LGR-LOC*
method. If this is applicable, FATROP is rendered as the most performant option for
collocation. Otherwise, IPOPT is the preferred solver for complex models. For models
characterized by low coupling effects and limited state dimensionality, FATROP may
still represent a viable alternative even without active sparsity exploitation.
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3. Survey of optimal control methods for MPC on a benchmark example

Sequential Quadratic Programming (SQP) generally struggles to find solutions for cou-
pled nonlinear systems. Specifically, for the three-joint system, obtaining a feasible tra-
jectory requires a substantial number of iterations. SQP is most effective for smaller
systems with reduced dimensionality and couplings. Moreover, the maximum execution
times for SQP may exceed those of interior-point solvers. It is also worth noting the appli-
cation of CASADTI’s built-in SQP solver with OSQP. Alternative SQP implementations,
such as ACADOS [56] or MOSEK [42], might offer improved performance.

Further work The method for determining a comparable parameter setup for each op-
timal control strategy is critical for conducting a thorough analysis. The open-loop
approach described in Section 3.2.1 has been shown to yield comparable closed-loop costs
across the different methods. However, collocation methods demonstrated superior results
for shorter prediction horizons. Consequently, aligning each method based on equivalent
closed-loop cost may represent a viable alternative.

To further assess the influence of model dimensionality and complexity, an inverted pen-
dulum with more than three joints could be examined. This would provide deeper insights
into the effects of coupling and, in particular, state dimension. Such an analysis could
improve the extrapolation of performance across various method-solver combinations.

In this survey, multi-body dynamics are assumed. The physical parametrization of the
model incorporated relatively fast-changing dynamics, which are potentially better suited
to MS methods. Applying the same methodology to different benchmark examples, char-
acterized by inherently slow and gradually changing dynamics, could yield additional
insights regarding the applicability of collocation methods.
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The pseudospectral method for MPC in
On-Orbit Servicing

The survey in the previous chapter revealed a promising alternative to the standard
multiple shooting version: the LGR-LOC* method. It is adapted to the required sparsity
pattern of FATROP to enhance computation time. A consequent step is to evaluate the
performance of the newly developed method on a more complex model and simulation
framework for On-Orbit Servicing.

In Section 4.1 the specific scenario and the two implemented MPCs are explained. The
following two Sections 4.2 and 4.3 then compare the two optimal control methods on a
tracking and a hybrid maneuver.

4.1. On-Orbit Servicing maneuvers and controller design

The general purpose of OOS is introduced in Section 1.1. A distinction is made between
spacecraft base control and combined control. The former focuses on determining con-
trol inputs for the translation and rotation of the spacecraft servicer. In contrast, the
latter extends both the state and input dimensions to include the 7 DOF of the robotic
manipulator. This work is primarily concerned with spacecraft base control.

4.1.1. On-Orbit Servicing maneuver

As an initial condition for the OOS one assumes the servicing satellite in a close-range
corridor around the tumbling target. Figure 4.1 gives an overview about the different
tasks that are involved in OOS.

The pose estimation module computes the relative position and orientation of the servicer
with respect to the target. Measurements from Lidar and Cameras for relative pose
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Lmeasure U

Pose Estimation > MPC Plant

A

Planner Yref

Figure 4.1.: Schematic of OOS phases.

estimation in combination with star trackers and GPS for global estimation are processed.
The state vector is given in an orbital reference system.

The planner computes a reference for the MPC. It can either be used as a trajectory
planner or as an operational point planner. The first computes a time-varying reference
while the latter outputs a time-constant pose. Depending on the mode the servicer is in,
either trajectory planning or operational point planning is used.

Both signals, so the measurement state vector provided by the pose estimation and the
reference generated by the planner are inputs to the MPC. The controller computes forces
and torques that are in a consequent step applied to the plant. In the combined control
case additional torques for the robotic manipulator are computed.

A special mode for OOS is a so-called escape maneuver. If anomalies during the approach
phase to the target are detected, such a maneuver is performed. The purpose is to increase
the distance to the target as fast as possible to prevent potential collisions.

4.1.2. MPC design

The MPC for spacecraft base control involves the following state and control input vector

peR3
r=|qgeR*| eR? u = FeR e RS,
b e RS ’ T €eR3

The spacecraft position is denoted with p and the orientation in unit quaternions as q.
The velocity vector v = (v,w) consists of translational velocities v and angular velocities
w. As control inputs forces f and torques 7 are considered for each axis.

A multi-body dynamics formulation in the form of (3.1) is used as a dynamical model
for the spacecraft servicer. For orientation propagation, the quaternion representation is
used. Further details can be found in [40].

Actuator limits by box constraints are considered in the formulation throughout the
prediction horizon. As an additional OOS specific requirement, Field-of-View (FoV)
constraints are modeled as polytopes. They ensure the target satellite to remain in the
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4.2. Tracking maneuver

FoV corridor of the servicer. This is relevant for enabling pose-estimation which is camera
or laser based and consequently relies on visual contact to the target.

A terminal region in the form of Eq. (2.57) is included in the MPC formulation ensuring
recursive feasibility and stability. Quadratic cost according to Eq. (2.56) paired with a
terminal cost term (2.58) form the cost functional to minimize.

Baseline: Multiple Shooting The baseline MPC method uses a Multiple shooting
approach to discretize the optimal control problem with N = 10 uniformly spaced shoot-
ing intervals and a prediction horizon of T" = 1s. This results in an interval length of
At = 0.1s that is also the control loop frequency.

LGR-LOC*: Pseudospectral method As evaluated in the survey of optimal control
methods, a viable alternative to multiple-shooting is the LGR-LOC* method described
in Section 3.4. Specifically as demonstrated in Table 3.5, for N = 10 prediction horizon
steps, the LGR-LOC* with two intervals is supposed to perform similarly to MS (com-
pare Figure 3.13). Consequently, for this purpose an identical parametrization with two
intervals Ni,, = 2 and two collocated nodes in each interval N* = 2 is used. The predic-
tion horizon is set equivalently to the baseline MS method to 7" = 1s. All constraints
are embedded on both methods. To ensure better comparability, the FoV constraints are
implemented on 5 nodes for the baseline and for the LGR-LOC* version.

4.1.3. Simulation environment

The OOS simulation framework is implemented in Python. A more complex and detailed
model is embedded via Functional Mockup Units for the closed-loop simulation. This
further analyses the robustness of the MPC due to the different complexity of prediction
model and closed-loop model. The MPC is integrated by compiled executables generated
from C-source code from CasADi [4].

The computational measurements are performed on an 11th Generation Intel Core i7-
1185G7 on Windows Operating system with 16 GB of RAM. The process priority for the
simulation is set to high to reduce operating system based delays. For both methods the
maximum number of solver iterations is limited to 15.

4.2. Tracking maneuver

The purpose of the tracking maneuver is to synchronize position and orientation over
time with the tumbling target. The spacecraft base should remain at constant distance
from the target while continuously synchronizing orientation. In this mode, the actual
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Figure 4.2.: Tracking error between the LGR-LOC* and the MS method.

grasping maneuver with the robotic manipulator would be performed. However, since in
this thesis only the spacecraft base is analysed, this maneuver can be seen as a preliminary
for the actual OOS task. For tracking, the trajectory planner is used.

Figure 4.3 shows closed-loop plots for a tracking maneuver of the LGR-LOC* method.
The left column represents the states and control inputs for the translational DOF and
the right column for angular DOF. In the bottom left sub-figure the closed-loop cost II
is shown. It is identically evaluated as in described in (3.10) and measures the deviation
from the current state to the fed-in reference as well as the magnitude of control inputs at
each control update of the MPC. The closed-loop results for the MS method are attached
in the Appendix A.1. The deviation in closed-loop cost of the two methods is below
< 0.5 % resulting in a quasi identical closed-loop behavior.

At the beginning of the simulation, a peak in the force and torque control inputs is
observed, primarily due to the unsynchronized angular velocities and the associated linear
motion required to orbit the target. Once the rotational speed is identical to the target
after about ¢t ~ 10s, the torques are converging to zero. This is expected, since the
target is a tumbling object without external forces or torques being applied. The MPC
commands non-zero forces due to the translational motion required to orbit the target.

The quaternion to represent the orientation is enforced to have a positive scalar value.
Consequently, the sign of the quaternion switches after rotation over 180°. This is the
case at around ¢ = 50s. A full tumbling period is around ¢ = 100's, which can be observed
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Figure 4.3.: Closed-loop plot for the LGR-LOC* method in a tracking maneuver.
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in the position and quaternion plot as periodic curves.

The position and quaternion tracking error for the LGR-LOC* and the MS is revealed in
Figure 4.2. It underlines the quasi identical behavior of the two methods. The orientation
tracking error converges almost to zero, while the position error is bounded at £+2 cm.

The computation time of the two methods is shown in Figure 4.4. The dotted lines
represent the 95 % quantiles and the dashed lines the median. Computational advantages

— LGRLOC* 2-2
MS
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Figure 4.4.: Computation time for the two methods on a tracking maneuver. The dotted
lines represent the 5% and 95% quantile, the dashed lines represent the
median.

of approximately 24 % are observed for the MS method compared to the LGR-LOC*. The
second method shows occasional outliers in computation time. This may be due to the
testing environment, which runs on a desktop PC not designed for real-time processing.
Further analysis is needed to better understand the cause of this behavior.

4.3. Hybrid scenario with escape maneuver

A more challenging task for the MPC than tracking is a maneuver that does not involve
a pre-computed reference trajectory. The effect of only assuming an operational pose as
reference is analyzed in this Section. Specifically, the sequence of maneuvers shown in
Figure 4.5 and its visualization in Figure 4.6.

In a first step, the target is approached from a distance of 4m, with the objective of
achieving identical orientation as the target while maintaining a constant relative distance
of 1.5 m (see Fig. 4.6a and 4.6b). The second sequence represents the situation of detecting
anomalies during the approach, triggering an escape maneuver (Fig. 4.6¢). Once the
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t > 0s: t > 45s: t > 70s: t > 120s:
Approach Escape Return Wait for
and Sync Maneuver to initial tracking

Figure 4.5.: Sequence of maneuvers in a hybrid scenario.

(a) Approach to target (b) Tracking the target

(c) Escape maneuver (d) Back in initial position

Figure 4.6.: Sequence of maneuvers involved in OOS.

distance to the target has been sufficiently increased in this escape scenario, the target
returns to its initial position (Fig. 4.6d). At this point, the servicer is positioned to
initiate a subsequent approach, provided that the orientation of the target is within the
servicer’s FoV corridor.

The closed-loop plots for LGR-LOC* and MS are shown in Figure 4.7 and 4.8. An
improvement of about =~ 8% is achieved with the collocation method when comparing
the closed-loop cost.

Moreover, the two methods converge to different local minima. While the LGR-LOC*
methods flies a trajectory that is above the reference in p,, the MS method yields a
trajectory below the reference for the y-position. This is evident in Figure 4.9, too, that
shows the tracking error for the position and the orientation.
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Figure 4.7.: Closed-Loop plot for the LGR-LOC* method in a hybrid maneuver with
escape scenario and return to initial position.
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Figure 4.9.: Closed-Loop plot for the LGR-LOC* method.

The control inputs on the LGR-LOC* method are identified to be more rugged and ag-
gressive in contrast to MS. This can be seen specifically at the beginning of the simulation
in the forces f,, f., but also in torques 7,. As a result, the velocities of the Servicer are
smoother for the MS-case.

As a main reason for the collocation method to outperform shooting is the enhanced
behavior when returning from the escape pose back to the initial pose. This can be seen
in the tracking error plot in Figure 4.9 at ¢ > 100s: The MS quaternion error is delayed
by approximately 2s to the LGR-LOC* curve indicating an increased time to converge
back to the nominal pose.

Comparing the computation time of the two methods in Figure 4.10 for the hybrid ma-
neuver reveals further differences. As expected for the more complex hybrid maneuver,
the computation times are generally higher than for the tracking case. The LGR-LOC*
method requires approximately 22 % more computation time.

4.4. Summary

The pseudospectral method is successfully implemented for MPC in OOS scenarios. The
result is demonstrated on a tracking and on a hybrid maneuver.

An almost identical closed-loop behavior is observed for identical parameters such as pre-

72



4.4. Summary

— LGRLOC* 2-2
6 — MS
B
=g
o
% ] 2.86 ms
.8 1 ,'fﬂ ‘ ‘ 2.34 ms
2 q W VTN i) |\¢ "h‘ | R L K ‘ \
i o W R il LY I HIOSMALLA
0 T T T T T T T T T y y y T
0 40 80 120

Time [s]

Figure 4.10.: Computation time for the two methods on a hybrid maneuver. The dotted
lines represent the 5% and 95 % quantile, the dashed lines the median.

diction horizon and number of constraints. The computational efficiency is identified to
be more performant for the MS method making it the desirable choice for the application

in OOS.

Nevertheless, by incorporating only two control inputs in the LGR-LOC* method and still
yielding identical closed-loop performance, might enable some potential to also improve
the interval spacing and length for the MS method.
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A universal approach to find the best
optimal control method

One of the key aspects of MPC defining the performance is the choice of the optimal con-
trol method. It specifies the computation time, the accuracy of the predicted trajectory
and as a result the overall performance of the controller. This raises the question:

Is it possible to systematically identify the most performant optimal control
method and its parameterization for a given MPC' control problem?

In this Chapter, an answer to the above question is given by presenting a Bayesian
Optimization (BO) framework to find the best parameterization of the OCP.

In Section 5.1 the theoretical background for the BO is discussed. The framework and
the optimization scheme is presented in Section 5.2 and its application to the scenario of
OOS is discussed in Section 5.3.

5.1. LGR-LOC*: A universal method to incorporate
collocation and shooting methods

The method introduced in Section 3.4 combines a pseudospectral method on subintervals
with the sparsity pattern of FATROP. The performance on the benchmark example and
on the OOS framework is demonstrated. The LGR-LOC* method can be parameterized
by three different parameters:

Nine defines the number of intervals,
N' defines the number of collocation nodes in each interval and
t.ap specifies the interval borders.

It can be shown, that by choosing the above three parameters in a certain way, each
of the following evaluated optimal control methods can be derived as a subclass of the
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LGR-LOC*:
MS )
adapted TC
adapted HS » C LGR-LOC*.
LGR-LOC
LGR )

A detailed derivation for the MS, the adapted TC and HS is given in the appendix in
Section B.1. Table 5.1 summarizes the results. It shows for which combination of N; and
Nine the LGR-LOC* equals which specific method.

Table 5.1.: Overview of the methods that can be derived out of LGR-LOC*.

N; Ny Method Constraint Ref
3  >2 Adapted HS Tip1—x; = 2 (4f; + (16 + V/6) fi + (16 — V6) f12) B.1.3

>3 >2 Pseudospectral LGR-LOC with higher order polynomial
>3 =1 Global Pseudospectral LGR with higher order polynomial}

L Sparsity exploitation with FATROP is lost.

The derived Multiple-Shooting is mathematically fully equivalent to the formulation in
Eq. (2.20) using Euler-Integration. However, since the classical LGR-LOC* is implicit,
additional optimization variables are introduced to align with the sparsity pattern in FA-
TROP. Consequently, if the optimization algorithm converged, the classical MS method
and the LGR-LOC* with N; = 1 return the identical solution, even though the latter
incorporated more optimization variables. A comparative discussion is found in Sec-
tion 5.3.1.

For N; = 2 and N; = 3, adapted versions of the Trapezoidal and Hermite-Simpson
methods, respectively, are generated. The methods are adapted in the sense of using non-
uniform nodes for evaluating the dynamics. This increases the order of the quadrature by
one compared to the standard Newton-Cotes TC and HS. Thus, the adapted TC and HS
obtained by the LGR-LOC* are a more accurate approximation. A detailed derivation
of the equations is shown in the Appendix B.1.2 and B.1.3.

If more than three collocation nodes are considered in each interval a classical LGR pseu-
dospectral method defined on multiple segments is derived. Conversely, if a high number
of nodes are used on a single interval, so Ny, = 1, the classical global pseudospectral
method is extracted. However, as shown already in Figure 2.3, global methods result in
a dense constraint Jacobian. Therefore, they are not further considered in this chapter
since they cannot be combined with the performant sparsity exploitation of FATROP.
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To conclude, it could be proven that the developed LGR-LOC* method contains a variety
of different optimal control methods. The parameter NN, defines the optimal control
methods itself and the parameter Ny, specifies whether to use the methods on a global
or a local scheme. The more intervals are used, the finer the discretization. The third
parameter t,q;, is a configuration parameter to adapt the characteristic of a given method
to the incorporated dynamics and constraints. The so gained results induce, that if
one is capable of identifying the optimal parameter setup consisting of N;, Niy, and ¢,qp,
evaluated against a design-specific objective, one is able to find the best optimal control
method for a given setup. This is demonstrated in the following sections for On-Orbit
Servicing.

5.2. Bayesian Optimization framework

For finding an optimal set of parameters for the LGR-LOC* method a multi-objective
Bayesian Optimization (BO) is performed using the Optuna framework [1]. As a sampling
method the multi-objective Tree-Structured Parzen Estimator (TPE) is used [6, 44].
This sampler is chosen for the specific problem of simultaneously incorporating a multi-
objective optimization with conditional search space.

The workflow for the BO routine is shown in Figure 5.1. Each step is discussed individ-
ually in the following paragraphs.

v

( Sample )
+ Nedil2) Simulate Evaluate
* N €{1,2,3,4,5} tracking & hybrid multi-objective cost
o tadp,i € [At, 5] maneuver function Ji, Jo
Vi = 17"‘7Nint

Figure 5.1.: Schematic for the pipeline of the Bayesian Optimization.

Sampling The three parameters that describe the LGR-LOC* method are sampled.
The parameter NNV; defines the optimal control method. It is assumed to be one or two
resulting in only incorporating the MS and the adapted Trapezoidal method in the for-
mulation (see Table 5.1). A main criterion for the OCP in MPC is the computational
performance making LGR-LOC* methods of higher order computational infeasible for
the given scenario.
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The number of intervals is sampled between one and five intervals giving the optimizer the
flexibility to search for more accurate solutions while maintaining low order approximat-
ing polynomials. The more intervals are sampled, the more complex the NLP. Sparsity
in FATROP is ensured independently of the sampled number of intervals.

A conditional sampling parameter is the interval spacing t,q,. It relies on the previously
sampled number of intervals. Thus, for each interval the borders are sampled according
to the sampling strategy of the TPE method.

By the sampling strategy explained above, it can not be ensured to always generate
feasible MPC configurations. Therefore, a simulation can also be pruned by the BO
framework if the optimizer does not find a solution.

Simulation The hyperparameter optimization is performed for the specific use-case of
OOS. The specific maneuver on which the sampled method is evaluated is crucial for
ensuring feasible results. In Section 4.2 and Section 4.3 the case of target tracking and a
hybrid maneuver is compared. While the tracking scenario defines the nominal operations
in OOS, the hybrid maneuver sets the worst-case execution time which is crucial for the
fulfillment of real-time requirements. Hence, the combination of both scenarios is used
in the BO optimization. Consequently, one BO iteration consists out of two simulations,
one for the tracking case and one for the hybrid maneuver.

Evaluation The performance obtained in the simulation is measured against two ob-
jectives: The 95- % quantile of the computation time and the closed-loop cost for the
tracking (index T) and the hybrid maneuver (index H)

L[ qosr J95,H ) 1 ( Iy Iy )
Ji = Aqgs = = — 4 ’ , Jo =All = = + ) 5.1
' o5 2 ( 495, T-ref 495, H-ref ? HT—ref 1_IH—ref ( )

The mean of each metric is used as the objective for the BO. As a reference, the baseline
MS method described in Section 4.1.2 is used that is simulated once on a tracking and on
a hybrid maneuver to generate the reference values (-)r and (-)g. By this, the objective J;
gives information about the relative improvement in computation time and the objective
Jo about the relative improvement of closed-loop behavior.

A multi-objective optimization is chosen to have the flexibility of evaluating manually
whether to put more priority to computation time or to closed-loop cost.

The sequence of sampling, simulation and evaluation is repeated iteratively until a spec-
ified number of loops is performed.
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5.3. Finding the best optimal control method for
On-Orbit Servicing

A BO is performed with over 600 samples evaluating different methods, number of in-
tervals and spacing of the interval borders. The results and the best performing optimal
control methods are discussed in this Section.

A workflow on how to analyze the result from the BO is given in Table 5.2. Starting from a
high-level perspective by evaluating Pareto-optimal solution candidates the scheme gives
a strategy to parameterize the best optimal control method for a given scenario. This
workflow divides into High-level and Low-level analysis. This scheme is applied to the
problem and each step is sequentially executed for OOS.

Table 5.2.: Workflow for finding the best optimal control method.

Step Description Fig.
1 Method evaluation N, Decide on potential Pareto-optimal solu- 5.2
tion candidates evaluated along the multi-
objective.
2 Number of intervals Ny Decide on a local scheme that best fits the 5.2
evaluation multi-objective for the previously evalu-

ated method.

3 High-level prediction T, 1I Evaluate the impact of the prediction hori- 5.3
horizon evaluation zon on the overall CL cost.
High-level analysis

Low-level analysis

4  Low-level prediction T,11 Evaluate the impact of the prediction hori- 5.4
horizon evaluation zon for the specifically chosen method- 5.6
interval combination.

5 Interval spacing eval- t,qp,11  Evaluate the impact of different interval 5.5

uation for CL perfor- spacing on the closed-loop cost for the pre- 5.7
mance viously evaluated prediction horizon.

6 Interval spacing evalu- {%,qp,qo5 Evaluate suitable spacing of interval bor- 5.8
ation for computation ders to optimize computation time.
time
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5.3.1. A comment about the computation time of Multiple Shooting
methods derived out of LGR-LOC*

The MS approach is incorporated in the LGR-LOC* method. However, LGR-LOC* is by
construction an implicit method and the derivation of MS can be seen as a special case.
As required for implicit formulations to align with the sparsity pattern in FATROP,
additional optimization variables must be introduced. This is explained in detail in
Section 3.4.

As a result, when deriving an MS formulation out of LGR-LOC*, those additional opti-
mization variables can theoretically be omitted since MS is inherently an explicit scheme.
Mathematically the NLP describes the same problem and produces identical solutions if
the solver fully converges. The only impact of this property is a negatively influenced
computation time. Consequently, the computation time of shooting methods in the hy-
perparameter framework can be seen as a worst-case computation time.

If a shooting method is supposed to be the most suitable choice for a given problem, a
pure MS formulation that is not derived out of LGR-LOC* can reduce the number of
optimization variables by Ny - n with n denoting the dimensionality of the problem.

5.3.2. High-level analysis

Figure 5.2 provides an overview of the evaluated methods measured against the multi-
objective. Throughout the plots, the tuple (IV;-Nj,) denoted in the legend gives infor-
mation about the method and its number of intervals. All methods with (1--) denote
multiple shooting methods, while all methods with (2--) refer to implicit collocation

schemes. The abscissa represents the objective J; and the ordinate the objective J,, both
described in Eq. (5.1).

Only samples that ensure at least equivalent or better tracking performance "r/m, ., < 1
are shown. The improvement potential in Ily is substantially larger than for Ilt, which
could otherwise lead to cases where a strongly improved hybrid maneuver performance
appears to compensate for degraded tracking performance. Such behavior is undesirable,
since both maneuvers are required to improve simultaneously. A comprehensive analysis
of all samples, including configurations that yield degraded performance, is therefore
carried out in the low-level evaluation.

For both metrics J; and Jy, the goal is to obtain values that improve both objectives,
i.e., AIl < 1 and Agg; < 1. These desirable configurations lie in the bottom-left region
of the corresponding graph.

Step 1: Method evaluation Comparing the multiple-shooting method (N; = 1) with
the collocation method (N, = 2) identifies computational advantages for the shooting
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Figure 5.2.: Relative improvement of closed-loop cost against relative change of the 95 %
quantile in computation time. Only the samples with improved closed-loop
cost AIl < 1 are shown.

method. Collocation methods require at least about 25 to 30 % more computation time.
This result is already expected due to the analysis in the previous chapter. Considering
the computation time for the MS approach as a worst-case computation time (explained in
Section 5.3.1) underline the shooting methods further to be the most performant option.

On the other hand, the collocation methods have about 5% enhanced closed-loop costs
compared to shooting. Depending on the specific design objectives, either shooting or
collocation might be a suitable choice. However, for the requirement in OOS, the sig-
nificantly improved computation time by > 30 % outweigh the worse closed-loop cost of
~ 5%.

Remark 5.3.1 ]
Multiple-Shooting (1-+) should be chosen as a method for the OOS application.

Step 2: Number of intervals evaluation In the previous step the method of choice is
evaluated to be MS. Further, evaluating the Pareto objective in Figure 5.2 reveals insight
in the optimal choice of intervals. Considering the bottom left of the graph, two methods
stand out clearly: (1-2) and (1-3). While the first has the lowest computation time due
to the fewest optimization variables included, the second emerges by improved closed-
loop performance. Depending on the user-specific priorities, one or the other might be
the method of choice. Consequently, the MS method defined on two intervals is further
analyzed in Section 5.3.3 and the method defined on three intervals is discussed in detail
in Section 5.3.4.
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Remark 5.3.2 ]
For MS, the methods (1-2) and (1-3) achieve the best trade-off between 11 and gos.

Step 3: High-level Prediction horizon evaluation An overview about the behavior
of the methods for different prediction horizon is given in Figure 5.3. Only the samples
that achieved for the tracking and the hybrid maneuver an enhanced closed-loop cost are
revealed. Plotting the closed-loop cost over the prediction horizon in Figure 5.3a gives

1 T T T T
e]-2 4+ ° °1-2 |
095 « ° e1-3 1 °1-3
01-4 01—4
0.9} : 1 e1-5 || 3l el-5 |
*t . 2-2 . 22
= 085 {2 23| & T RS, oS
Tl ke s Tol w0
X ! L e o -9 ||
I 4 s h"“‘f": . .
e e e ot’e &e
0.75 ?w.ﬁ. .S.o * 1 ® °
(¥ % I o %30l ° N
& ..ﬁ...‘*'.’ 1 'q’.}“‘,
0.7} - | -
) 10 15 ) 10 15
T T
(a) Closed-loop performance (b) Computation time

Figure 5.3.: Closed-loop cost and computation time over the prediction horizon.

global information about the overall improvement potential of the controller, independent
of specific configurations. While for increasing horizons up to T" < 5s the closed-loop cost
is continuously minimized, no significant enhancement is observed for prediction horizons
longer T' > 5s. Methods with more intervals and consequently better accuracy achieve
slightly improved closed-loop performance.

Figure 5.3b shows computation time with increasing prediction horizon. Methods with
increasing number of intervals Ny lead to a larger NLP that consumes more computation
time to solve. As further pointed out in the low-level analysis, the number of intervals
mainly influences the computation since it defines the number of included optimization
variables.
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Remark 5.3.3 ]

A prediction horizon T' > 5s does not produce significantly enhanced closed-loop
performance.

5.3.3. Low-level analysis: Method (1-2)

In this section the previously identified solution candidate with N; = 1 and Ny = 2 is
evaluated.

Step 4: Low-level prediction horizon evaluation Step 4 analyzes the prediction hori-
zon for the specific configuration (1-2). The plot is shown in Figure 5.4, this time including
samples with worse closed-loop cost. One can see an optimum for the prediction horizon
between T' € [3,4.5]s. All samples with longer prediction horizon worsen the closed-loop
performance. This indicates, that for a parameterization with a low number of intervals
an upper bound for the prediction horizon exist. Intuitively, the accuracy with only two
nodes is not sufficient for prediction horizons longer than 4.5s.
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Figure 5.4.: Closed-loop cost over prediction horizon for (1-2).

Remark 5.3.4 ]
A prediction horizon of T' € [3,4.5] s is recommended for (1-2).

Step 5: Interval spacing evaluation for CL performance Figure 5.5 demonstrates
the correlation between At,q, and AlIl. For achieving optimal closed-loop performance,
the first interval spacing should be At,qp1 € [1.3,1.7]s while the second interval length
should be in the domain At,q,o € [2.4,2.8]s. The graph indicates a local minimum in
this region.
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Figure 5.5.: Closed-loop cost of the MS method (1-2) over interval spacing.

Step 6: Interval spacing evaluation for computation time FEvaluations on compu-
tation time with different interval spacings on two intervals could not identify specific
patterns. The computation time remains on a constant level independent of ¢,q4p.

_[ Remark 5.3.5 ]

The best performing optimal control method for OOS-MPC in terms of computation
time is given as:

. . . Atadp,l € [13, 17] S . ~
Ni=1, Ni=2, Aty = (Atadp,z cio42gs) = ZAtadp,Z ~3—45s.

5.3.4. Low-level analysis: Method (1-3)

The second solution candidate is an MS variant defined on three intervals.

Step 4: Low-level prediction horizon evaluation A similar plot for prediction hori-
zon as for the previous solution candidate is given in Figure 5.6. In contrast to the
method including only two intervals, the optimum for the prediction horizon is extended
to the domain 7' € [4,7]s. Horizons outside this region result in a decreasing closed-loop
performance for similar reasons as explained previously.
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Figure 5.6.: Closed-loop cost over prediction horizon for (1-3).

Remark 5.3.6 ]
For the method (1-3), the prediction horizon should be in the domain 7" € [4, 7]s.

Step 5: Interval spacing evaluation for CL performance For more than two intervals,
the spacing of interval borders cannot be represented in a 3D plot. Instead, a parallel plot
is chosen in Figure 5.7. It shows in the left plot the absolute values of interval spacing
(good for evaluation of T') and on the right the relative spacing (good for recognizing
specific patterns). The colors represent a different closed-loop cost.
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Figure 5.7.: Closed-loop cost of the MS method N; = 1 with three intervals N;,; = 3 over
sampled interval spacing.

In the left plot 5.7a the observation from Remark 5.3.6 is confirmed. Another trend that
can be observed is that all samples with a closed-loop cost AIl < 0.78 have a first interval
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length below t,q,1 < 1.5s. Specifically, good results could be achieved with ¢,q,1 ~ 0.6s.

Another trend for the spacing of the second interval is identified. It should be in the
domain At,qp2 € [1,1.8]s, as shown in Figure 5.7b. No general trend for the last interval
is observed. This leads to the conclusion, that the first two intervals have to align with a
specific pattern while the last interval can be chosen to align with the prediction horizon
in Remark 5.3.6.

Remark 5.3.7 ]

The first interval length should be below t,4,1 < 1.5s. The second interval should
have a relative spacing of At,qp,2 € [1,1.8]s. The third interval can be chosen to
achieve an overall prediction horizon between 4 to 7s.

Step 6: Interval spacing evaluation for computation time In the previous evaluation
steps a specific method is chosen, the number of intervals is analyzed, the prediction
horizon parameterized, and constraints for spacing of intervals are identified. A remaining
question is, if the spacing of the interval impacts the computation time. Figure 5.8 shows
the computation time over different absolute and relative interval spacing.
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Figure 5.8.: Computation of the MS method (1-3) over sampled interval spacing.

No general trend can be observed for the combined maneuver including tracking and
hybrid scenarios. Specifically, Figure 5.8b reveals no systematic spacing of the interval
nodes. When only optimizing for a single objective, such as tracking or a pure escape
maneuver, a clear trend might be identified. Due to the mixed approach of finding a
controller strategy for both scenarios such a general trend is not found.
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_[ Remark 5.3.8 ]

The method with the best trade-off between computation time and closed-loop cost
for OOS-MPC is given as:

Ataap1 € [0.1,1.5]
Ni=1, Nup=3 Atwgp=| Atagp2€[L,18] |,  T=> Atypind—Ts.
Ataaps € [0.1,5] i

5.4. Validation

The proposed configuration in Remark 5.3.8 is validated on another scenario. To ac-
count for the effect discussed in Section 5.3.1, a MS method omitting extra optimization
variables is implemented. The evaluated step-size and interval configuration previously
evaluated is hard-coded. Computation analysis on this MS implementation revealed
quasi-identical computation time for the methods (2-1) and (3-1). Hence, only the better
performing method (3-1) is further validated.

For the validation, a method derived out of Remark 5.3.8 with the parameters
Ny=1, N=3, ta=(06s 2.1s 4.65)"

is used. In similar notation as for the LGR-LOC*, the improved MS version is annotated
with a star (MS*) to distinguish from the baseline.

An overview of the performance increase is indicated in Table 5.3. It reveals a reduction
in computation time of ~ 45 % while achieving enhanced tracking cost of 8 % and of 43 %
for the hybrid scenario.

Table 5.3.: Performance characteristics for the improved method MS*.

Tracking Hybrid
495 II 495 11
Baseline MS 1.91s 223.07 2.48s 117643.69
MS* by BO 1.06s 205.124 1.30s 65998.48
-44.5 % -8.05 % -47.6 %  -43.9 %

The validation of the hybrid scenario is performed on an adapted variant to ensure no
overfitting of the parameters. More details can be found in following sections.
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5.4.1. Validation on a tracking scenario

The tracking case is validated on a similar setting as explained in Section 4.2. The closed-
loop plots are shown in Figure 5.11 and 5.12. The improved version MS* shows overall
smoother trajectories, specifically for the linear velocities and the corresponding forces.
The position tracking error is oscillatory and continuously below 1cm while the baseline
version indicates controller difficulties if the y-position changes nonlinear, i.e. around
50s. Overall, the behavior is comparable and only minor differences occur.

The computation time is plotted in Figure 5.9. The maximum solver iterations is set
to 15 for both approaches. The computation time of MS* is throughout the simulation

MS
— MS-N3

_ 1.06 ms

o s w150
Time [s]

Figure 5.9.: Computation time of MS baseline and MS* on a tracking maneuver. The
dotted lines represent the 5% and 95 % quantile, the dashed lines represent
the median.

below the baseline edition. Main reason for the improvement is the reduced number of
optimization variables included in the NLP.

5.4.2. Validation on a hybrid scenario

The setup for the hybrid maneuver is slightly adapted. The initial position of the servicer
is assumed to have an offset in all three axes before the simulation begins. This represents
a more complex scenario and is used to rule out overfitting by the BO routine.

The closed-loop plots are shown in Figure 5.13 and Figure 5.14. The overall closed-loop
improvement is over > 40 %. The main reason for the enhanced behavior is the increased
prediction horizon. It enables higher linear and angular velocities while still reaching
the terminal region. This leads to faster convergence to the corresponding reference
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pose. During the orientation synchronization with the target at the beginning of the
maneuver, the MS* aligns with the target after around 15s while the baseline version
requires approximately 30 s.

The computation time for the hybrid scenario is shown in 5.10. Similarly as for the
tracking, the solving time in each iteration is =~ 45 % below the baseline.
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Figure 5.10.: Computation time of MS baseline and MS* on a hybrid maneuver. The
dotted lines represent the 5 % and 95 % quantile, the dashed lines represent
the median.

5.5. Summary

A BO hyperparameter framework is created to identify the best optimal control method
for MPC under a given operating condition. The theoretical basis is the embedding of
explicit methods, such as shooting and implicit methods, such as pseudospectral methods
in one optimal control formulation. This enabled a global optimization algorithm to find
the best method itself, its local scheme and the ideal configuration of the intervals.

The workflow is successfully applied to the OOS framework. The optimal BO-MPC
parameterization reduces computation time by approximately 45 %, while also improving
closed-loop cost by about 8 % and 44 % in the tracking and hybrid scenarios, respectively.

The framework also exhibits strong potential for broader applicability across diverse
control-oriented domains. By further modularising its components, it can enable a more
autonomous and scalable workflow for developing and tuning MPC schemes.
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Figure 5.11.: MS baseline in tracking scenario.
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Figure 5.12.: MS* with N = 3 in tracking scenario.
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Figure 5.14.: MS* with N = 3 in hybrid scenario.
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Conclusion and Outlook

This thesis provides comparative insights about the question on how to choose the most
performant optimal control method for MPC. Specific solver-method combinations and
characteristics of the methods were derived in a thorough survey on a benchmark example.
The analysis outlined two promising solution candidates that are further implemented in
an OOS simulation. Lastly, a universal framework using BO is established that gives a
systematic workflow on how to find the optimal method and its configuration for specific
design criteria.

The survey of optimal control methods demonstrated the capabilities of each method
in combination with different solvers. Apart from explicit schemes such as Multiple-
Shooting, mostly implicit collocation method are addressed. Classical equidistant col-
location strategies such as Trapezoidal or Hermite-Simpson collocation are implemented
aside from non-uniform higher-order local and global pseudospectral schemes. All ap-
proaches are evaluated on the nonlinear solvers FATROP [55], IPOPT [57] and SQP [4].
The influence of model dimensionality and couplings is further discussed.

The best trade-off between computational efficiency and closed-loop performance is ob-
served for Multiple-Shooting combined with FATROP. Its sparsity exploitation natively
compatible with MS, outperforms the implicit collocation methods that cannot take ad-
vantage of this due to their implicit construction. To compensate for this, a local pseu-
dospectral method LGR-LOC* is made compliant by introducing additional optimization
variables that preserve the block sparsity of the constraint Jacobian.

Overall, the results of LGR-LOC* on the benchmark example indicate comparable per-
formance as for MS approach. In a consequent step, the above two were analyzed in OOS
simulations for a tracking and an escape maneuver. For identical prediction horizons the
two methods demonstrated quasi-identical tracking performance. For a hybrid scenario
including an escape maneuver the collocation achieved improved closed-loop performance
around 8 %. This comes at the cost of increased computation time of 20 % compared to
the shooting approach.

Three parameters configure the LGR-LOC* method: the number of collocation nodes
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per interval, the number of intervals and the spacing of the intervals itself. This descrip-
tion incorporates shooting and collocation approaches in one formulation. Depending
on the number of collocation nodes chosen, the LGR-LOC* is either explicit or implicit.
This capability enables global optimization to find the most performant optimal control
method without implementing each formulation separately.

A BO hyperparameter framework is developed that seeks the optimal choice of the above
three mentioned parameters. It evaluates the performance along a multi-objective cost
consisting out of the computation time and the closed-loop behavior. For all configura-
tions the sparsity pattern by FATROP is preserved. As a final output, one retrieves the
most performant parameterization for the optimal control method in terms of computa-
tion time and closed-loop behavior.

This framework is applied in OOS to evaluate the most performant MPC configuration in
a tracking and an escape maneuver. A multiple shooting method with three intervals and
customized interval spacing is evaluated as the most suitable choice. The combination
of using a low number of discretization nodes improves the computation time by 45 %
while simultaneously, non-uniform spacing of the interval borders enhances the closed-
loop performance for a hybrid scenario about 44 %. The above workflow can be applied
to various kinds of MPC-applications with different performance metrics.

Outlook The general characteristics of shooting and collocation methods in the MPC
context are compared. Various methods and solver combinations outlined the most-
suitable options for real-time implementations. A further valuable contribution to the
survey would be the analysis of a more performant SQP solver, such as Acados [56].

The hyperparameter optimization strategy provides a universal framework that optimizes
for the most suitable optimal control method without the need to implement each indi-
vidually. This fact facilitates the design process of MPC significantly. Tailored to the
specific MPC formulation (system dynamics, cost function, constraints), either shooting
or collocation approaches might be the method of choice. Specifically for stiff ODE the
proposed Radau collocation scheme provides a stable alternative to shooting [47, 24].
The used scheme includes the left endpoint of the interval (Radau IA). Only because
of this property the derivation of an explicit multiple-shooting was achieved. However,
Radau methods that include the right endpoint have even better properties with stiff
ODE [24]. Thus, extending the scheme to those methods might be a valuable alternative
when dealing with stiff systems. On the negative side, the explicit shooting formula-
tion turns into an implicit backward Euler scheme. This vanishes the key feature of the
proposed workflow to integrate explicit and implicit formulations in one formulation.

An additional degree of freedom can be introduced in the BO framework when assuming
a non-constant number of collocation nodes in each interval. This adapts the integration
accuracy individually in each interval.
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Another contribution to a more thorough workflow for finding the most performant
MPC is to incorporate the weighting matrices Q, R of the cost functional within the
BO. This might further improve the closed-loop performance, specifically in combination
with choosing the best optimal control method for a specific cost functional.

More specifically for the use-case of MPC in OOS, the results of the hyperparameter
optimization merge the fields of trajectory optimization and MPC. The global analysis
of the prediction horizon in Figure 5.3 exhibits, that a longer prediction into the fu-
ture not necessarily improves the control performance further. Instead, the closed-loop
performance stagnates when increasing the horizon. A detailed comparison for MPC
incorporating trajectory planning and control as a unified module versus a sequential
approach using MPC as a reference controller that receives a reference trajectory as an
input would further reveal insightful details.
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A

Appendix: Pseudospectral methods for
MPC in On-Orbit Servicing

A.1. Tracking maneuver supplement figures

The closed-loop plot in the tracking case for the MS method can be found in Figure A.1.
It shows closely identical behavior as for the LGR-LOC* method shown in Figure 4.3.
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Figure A.1.: Closed-loop plot for the MS method for a tracking maneuver.
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B

Appendix: Finding the optimal optimal
control method

B.1. Derivation of shooting and collocation methods
from LGR-LOC*

This chapter derives the formulation for shooting and collocation methods of the LGR-
LOC* method. The node at the current time step is denoted as x1, the next interval
border is denoted as x5 and all collocation nodes in between the borders are denoted
as x1;. The step size h represents the interval length of the corresponding interval h =
tadp2 — tadp1. The system dynamics f evaluated at a given node x; are abbreviated by

f(wisui) = fior f(zig, ) = fij -
B.1.1. Derivation of Multiple Shooting: N, =1

The differentiation matrix for N; = 1, that only includes one node 7 = —1 leads to the
following constraints (according to Eq. (3.16)):

2 1 1\ (21

P (5= (B.1)
This is the trivial case that does not require solving a nonlinear system of equations, as
i.e. in Section B.1.2. Instead, an explicit formulation for the state of the next interval is
retrieved:

x9 —x1 = hf] (Euler-Integration) (B.2)

The relation in (B.2) is equivalent to the explicit formulation of Euler-Integration method
derived in Eq. (2.7). This method is embedded in the Multiple-Shooting (MS) method.
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B. Appendix: Finding the optimal optimal control method

So speaking, the LGR-LOC* method with N; = 1 is mathematically identical to MS
when using identical intervals.

This unique property can only be ensured when using the Radau method TA. Since Radau
methods do only contain one endpoint of the interval one differs among Radau TA and
Radau ITA methods. The first one does not contain the right endpoint, while the second
one does not contain the left endpoint [24]. If one were deciding on using Radau ITA
methods, the above equivalence of forward Euler-Integration rule would change to Euler-
backward resulting in an implicit formulation. This would therefore differ from classical
Multiple shooting approaches in an explicit scheme.

B.1.2. Derivation of an adapted Trapezoidal Rule: N, =2
The differentiation matrix for N; = 2 for any interval is given by evaluating Eq. (2.46) at

the Legendre-Gauss-Radau nodes 7 = [—1,0.33]. This leads to the following constraints
that ensure the collocation, according to Eq. (3.16):

2(-3 3 N[, _(h
()

The nonlinear system of equations equals to:

2 > 5
2 (e Jou-n) = 5 (B.4)
2 1 3
ﬁ (_le — Z—ll’n + I'Q) = fll (B5)
From (B.4) z1; can be solved for:
1y = —%f + Z—lx + §:L‘
n=—ghtglatgn
Inserting the above expression in (B.5) results in:
To — T = % (3fu+ f1) (Radau TA method, see [24]) (B.6)

This is the integration rule when using Gauss Radau Quadrature with two nodes [24].
A similarity of Eq. (B.6) with the trapezoidal rule in Eq. (2.26) is evident. Their main
difference in construction is the choice of collocation nodes. For the classical trapezoidal
rule, equidistant nodes are assumed while for the Radau IA method the roots of an
orthogonal Polynomial are used. While the trapezoidal rule has the order m = 2 (compare
Table 2.1), the Radau TA method is of the order m = 2N, — 1 = 3 and is consequently
the more accurate solution.
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B.1.3. Derivation of an adapted Hermite-Simpson Rule: N, =3

In similar fashion as in the previous Section B.1.2, an expression incorporating three
collocation nodes N; = 3 can be derived. A detailed derivation is skipped here, but it
follows the approach for the adapted trapezoidal rule. The final expression results in

Tog —T1 = 3—}2 <4f1 + (16 + V6) fi1 + (16 — \/E)fm) (B.7)

that is an adapted version of the Hermite-Simpson rule in (2.36). The derived formula
in (B.7) is of the order m = 2N; — 1 = 5 which is one order higher than the Hermite-
Simpson rule (see Table 2.1) [24]. This specific subversion of the LGR-LOC* can therefore

be seen as a specific type of Hermite-Simpson collocation.
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