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Abstract— The increasing demand for gold, coupled with
persistently high market prices over the past decade, has driven
a significant rise in small-scale gold production. The expansion
of unregularized small-scale gold mines fuels environmental
degradation and poses a risk to miners and mining communities.
To promote sustainable mining practices, support reclamation
initiatives, and pave the way for understudying the impacts
of mining on human and environmental resources, we present
SmallMinesDS, a benchmark dataset derived from multisensor
satellite imagery covering five districts in southwestern Ghana
in two time periods. SmallMinesDS provides precise reference
data for artisanal mining sites, enabling the development of
machine learning models for timely, large-scale, and cost-effective
monitoring. Notably, foundation models (FMs) fine-tuned on
SmallMinesDS achieve up to 75% intersection over union while
maintaining a strong balance between minimizing false positives
and negatives.

Index Terms— Earth observation, foundation models (FMs),
machine learning, mining, semantic segmentation.

I. INTRODUCTION
RTISANAL and small-scale gold mining (ASGM) is
the primary livelihood for 10-15 million people world-
wide [1]. Unlike large-scale mining, ASGM operates on a
smaller scale, with distinct regulatory frameworks and socioe-
conomic impacts. These differences shape how communities
engage with and are affected by mining activities.

Central to most ASGM operations is the use of mercury
amalgamation for gold extraction [2], a practice responsible
for approximately 2000 tons of mercury emissions annually.
This makes ASGM the largest source of anthropogenic mer-
cury emissions globally [1]. Beyond mercury emissions, the
environmental and health implications are far-reaching, with
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ASGM linked to deforestation, water pollution, soil degrada-
tion, reduced agricultural productivity, economic disruptions,
and severe health issues such as kidney dysfunction and
neurological disorders [3], [4], [5], [6], [7], [8].

ASGM has a large global presence and is practiced in more
than 70 countries [1]. In response, numerous national and
international initiatives have been launched to formalize the
ASGM sector to promote mercury-free and environmentally
sustainable mining practices [9], [10]. These efforts underscore
the need for efficient methods to map and monitor ASGM
activities to quantify their scale and assess the functioning of
interventions to ensure that countries meet their commitment
to the Minimata Convention and the realization of sustainable
development goals.

Satellite imagery offers a valuable resource for identifying
and mapping ASGM activities due to their distinct visual char-
acteristics. The existing studies have predominantly relied on
optical or radar imagery to rapidly map the spatial distribution
of ASGM using image thresholding [11] and classical machine
learning or deep learning approaches [12], [13], [14]. However,
these efforts face significant challenges, including the lack of
publicly available ASGM labels, which limits reproducibility
and broader use by the scientific community and stakehold-
ers. Openly accessible databases of mining areas [15], [16]
delineated from satellite basemaps also lack information to
indicate acquisition dates, hence limiting their alignment to
satellite images and consequently prohibiting their use as
labels for machine learning. Furthermore, other accessible
datasets only target large-scale mines [17] whose spatial and
spectral characteristics differ from ASGM.

Machine learning models used in existing studies for map-
ping mining sites are often highly specialized, tailored to
specific tasks, and do not capitalize on the broader capabilities
offered by pretrained or foundation models (FMs). In con-
trast, FMs offer a more generalized and adaptable approach,
learning from large, diverse datasets and providing pretrained
baseline that can be fine-tuned for a variety of downstream
tasks [18], [19]. This paradigm allows for greater flexibility,
improved generalization, and the potential for more robust and
scalable ASGM mapping particularly given the geographically
dispersed nature of ASGM activities.

In this letter, we present the first version of open-access
ASGM labels over southwestern Ghana, marking a pivotal step
toward global ASGM mapping. We demonstrate the potential
of both the task-specific and geospatial FMs in mapping
ASGM sites using satellite imagery. By addressing current
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Fig. 1. Map showing the location of the study area in Africa—Ghana (left)
and the five districts it covers (right).

limitations and leveraging advanced methodologies, this work
lays the foundation for scalable and reproducible ASGM
mapping, contributing to the broader objectives of sustainable
development and responsible mining practices.

II. SMALLMINES DATASET

This first version of SmallMinesDS covers five administra-
tive districts in southwestern Ghana with a ground area of
about 3500 km? (see Fig. 1). The study area is ecologically
diverse, supporting rich biodiversity and serving as a hub for
various land-use activities, including agriculture, forestry, and
both industrial and small-scale gold mining. This complex and
dynamic landscape of the region mirrors the characteristics
of ASGM sites in other parts of the world, highlighting
the critical need for accurate mapping and monitoring of
ASGM activities. The area is also characterized by two rainfall
regimes, which commence around March and September each
year. Satellite imagery acquired with optical sensors in this
area is often heavily obscured by cloud cover, yielding only
a limited number of usable images annually. While radar
imagery is less affected by cloud cover and is available
throughout the year, its utility during the wet season is compro-
mised by atmospheric interferences caused by intense rainfall
events [11]. To facilitate the mapping of ASGM amidst this
drawback, SmallMinesDS includes dry-season satellite images
from both the optical and radar sensors. This strategic selection
ensures improved image quality and reliability for analysis.

A. Satellite Data

Artisanal mining sites can be observed in riparian zones,
represented as depressions in terrain data. Hence, elevation
data can be a useful feature for ML models. Data from
the Copernicus Digital Elevation Model [20] are acquired
from GEE [21]. The data represent a 10-m digital surface
model which includes natural and built features on the Earth’s
surface. Dry-season Sentinel-1/2 images of January 2016 and
2022 are included in the SmallMinesDS. The selection of the
base year was due to the earliest cloud-free imagery available
for the study area. 10- and 20-m bands of Sentinel-2 surface
reflectance images (L2A) are retrieved from the Coperni-
cus Sentinel Data Hub [22]. Consequently, radiometrically
terrain-corrected Sentinel-1 images (VV, VH) are acquired
from Microsoft Planetary Computer [23] for the same period.
To reduce the effect of speckles, a circular mean filter of size
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Fig. 2. Sample patches showing ASGM sites as observed from Sen-
tinel-2 RGB, Sentinel-2 VV, and Copernicus DEM.

3 x 3 pixels is applied which also preserves the edges of
the circular-like structures of ASGM. The resulting image is
converted into d B scale using 10 x log 10(x).

B. Small-Scale Mining Labels

ASGM sites may look similar to sand-winned regions or
settlements with bright roofs when observed in a true-color
composite. Their spatial footprint may appear circular and
follow the pattern of river networks. To manually create
mining labels, Sentinel-2 images for each year are indepen-
dently segmented using the mean shift algorithm [24]. First,
the study area is divided into four geographic blocks, each
processed separately to account for potential spatial variations
in mining site characteristics and to maintain manageable
data sizes. Each block contains approximately one million
image segments. About 2% of the segments corresponding to
1000 samples each of mining and nonmining classes are manu-
ally labeled. Nonmining areas include settlements, vegetation,
clear water, barelands, and forests, and mining areas are digi-
tized near settlements or vegetation and on different elevation
forms. A random forest algorithm is fit on the labeled segments
aligned with features consisting of Sentinel-2 spectral bands
and COP-DEM for each block and applied to predict the unla-
beled segments. This ML-assisted labeling process is followed
by a meticulous and rigorous visual validation of the predicted
segments. Misclassified segments are manually corrected by
cross-checking historical high-resolution imagery from Google
basemaps. In total, approximately 150000 ASGM segments
are labeled altogether. This comprehensive labeling effort
provides a valuable dataset for advancing ASGM monitoring
and research. Fig. 2 shows a sample patch and Fig. 3 presents
a schematic overview of the workflow used to generate the
ASGM labels.

C. Dataset Structure

A fishnet with grid dimension 128 x 128 pixels, correspond-
ing to a ground distance of 1280 x 1280 m, is overlaid on
the study area. Each grid is used to subset the coregistered
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Fig. 4. Sample patches showing ASGM sites as observed from Sen-
tinel-2 RGB, Sentinel-1 VV, and Copernicus DEM images.

composites of Sentinel-2, Sentinel-1, and COP-DEM inde-
pendently for each year to produce an image of dimension
128 x 128 x 13 bands and a corresponding binary mask
of the same height and width. In total, 4270 patches were
generated, with 2135 corresponding to each year. Each patch
follows a naming conversion as shown in Fig. 4.

ITII. EXPERIMENTS

SmallMinesDS is partitioned into training and validation
subsets in a 70:30 ratio, using a histogram binning technique
to ensure a balanced representation of mining and nonmining
areas in both the sets. The task is formulated as a semantic
segmentation problem, where each pixel in an input image is
classified into one of two target classes: mining or nonmining.
The rest of the section describes the models applied, evaluation
metrics, and the results.

A. Models Used

Baseline: We used a random forest model with 300 esti-
mators. This model required the input patches and masks to
be flattened prior to training. To address the pixelwise class
imbalance, the majority class (nonmining) was undersampled
to match the number of samples in the minority class (mining).

U-Net: The U-Net architecture [25] using a ResNet-50
encoder [26] was implemented using the python library
segmentation_models_pytorch. Two variants of the
model—one initialized with ImageNet weights and another
from scratch—were trained using a learning rate of 1 x 1073,
reduced by a factor of 0.1 every ten epochs.

SAM-2: The second version of the segment any-
thing model (SAM) [27] was accessed via Meta’s pub-
licly available checkpoints. Out of the four available
options, sam_2_hiera_small.pt was chosen to balance
fine-tuning speed and performance. Fine-tuning was carried
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Collaborative workflow for ASGM annotation and validation, where two annotators cross-validate each other’s mapped data to ensure accuracy and

out using a learning rate of 1 x 107 and weight decay
of 4 x 1073,

Prithvi: The Prithvi-EO-2.0 backbone [28] was accessed
through TerraTorch [29], a Python library based on PyTorch
Lightning and TorchGeo, designed for flexible fine-tuning of
geospatial FMs. The Prithvi foundation model is pretrained on
the Harmonized Landsat Sentinel-2 (HLS) dataset. Fine-tuning
was carried out using a learning rate of 1 x 103 and weight
decay of 0.05.

Deep learning models were optimized using the binary
cross-entropy loss [30] and the AdamW optimizer [31]. Due
to the relatively lower occurrence of mining sites compared
with the background class, a class weight in the ratio of 0.9 to
0.1 was used.

B. Evaluation Metrics

The models examined in our study were quantitatively
evaluated using intersection over union (IoU), Sgrensen—Dice
coefficient (SDC), precision (P), and recall (R), such that

ToU = M ¢))
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R |A N B @
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where A and B denote the prediction and ground-truth seg-
mentation maps ranging between [0—1], respectively. In binary
segmentation, SDC is equal to F-score, which is the harmonic
mean of precision and recall.

C. Results

Table I shows comparison of the performances of various
models on the independent validation set considering only the
target class (mining). Two band configurations were tested:
RGB (three bands) and RGB+ (six bands). This selection was
driven by the input data requirement of the pretrained and
FMs. The Prithvi FMs attained an IoU of 75% similar to a
pretrained U-Net but with better predictability of mining sites
(87% against 80%) and a good balance between minimizing
false positives and false negatives. No substantial difference
was observed between the 300M and 600M Prithvi models,
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TABLE 1

QUANTITATIVE COMPARISON ON THE INDEPENDENT VALIDATION SET FOR THE MINING CLASS ONLY. PRETRAINED MODELS ARE INDICATED BY
*, BOLD VALUES DENOTE THE BEST PERFORMANCE COLUMNWISE. EXPERIMENTS USING ONLY THE RED, GREEN, AND BLUE BANDS ARE
REFERRED TO AS RGB, WHILE THOSE THAT ALSO INCORPORATE NARROW INFRARED AND THE TWO SHORT-WAVE INFRARED BANDS
ARE REFERRED TO AS RGB+

Sentinel-2
Ground  (RGB)

Random
Forest

SAM* U-Net*

Prithvi*
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Fig. 5. Sample patches showing ASGM predictions in year 2016 for the
baseline, pretrained/FMs. The positive class (mining) is shown in yellow.

indicating that they perform similarly. Random forest and
SAM (although fine-tuned using point prompts on SmallMi-
nesDS) showed significantly lower performance in the RGB
configuration than the pretrained U-Net. Some studies suggest
that text prompts and postprocessing using morphological
operations can enhance semantic ambiguity in SAM [32].
When additional bands are augmented to RGB (referred to
as RGB+), the performance of the random forest increases
by around 20% in IoU, accuracy and recall. These results
highlight the importance of extended spectral information for
classical ML models. In contrast, the U-Net models did not
exhibit the same behavior. The observed enhancement in U-
Net* performance can primarily be attributed to its reliance
on pretrained weights rather than the inclusion of additional
spectral information [19].

From Fig. 5, Prithvi produces a better discrimination of min-
ing segments with precise boundaries than the other models.
Salt and pepper effects in the predictions are prominent in
random forest [14] and SAM models. Where mining sites are
close to settlements, such as in tile ID 0121, U-Net and random
forest classified them as mining, exaggerating their footprints;
however, the Prithvi model deciphered them better.

Model Band Metric Parameters
RGB RGB+ ToU Precision  Recall SDC Trainable Total
Random Forest v 0.4109 0.9238 0.4253  0.5825 - -
SAM-2* v 0.4261 0.7416 0.5004  0.5976 46M 46M
U-Net* v 0.7539 0.9278 0.8009  0.8597 M 33M
Random Forest v 0.5027 0.9531 0.5155  0.6691 - -
U-Net v 0.6513 0.9642 0.6675  0.7889 M 33M
Prithvi-EO-2.0%* v 0.7579 0.8558 0.8689  0.8623 15M 300M
Prithvi-EO-2.0* v 0.7560 0.8457 0.8769 0.8610 19M 600M
ID: 0113 ID: 067 ID: 0121 IV. POSSIBLE TASKS
4 (,. Y,

While SmallMinesDS is primarily designed to facilitate the
mapping of ASGM, it also contributes to the growing demand
for high-quality and domain-diverse datasets to advance the
development of FMs. Beyond its primary purpose, SmallMi-
nesDS offers versatility across a range of research domains,
particularly when supplemented with auxiliary datasets. Poten-
tial applications include the below.

1) Environmental impact  assessment: Analyzing
the spatiotemporal relationship between mining
activities and vegetation cover, croplands, and water
resources.

Socioeconomic analysis: Evaluating the effects of min-
ing on population dynamics, shift in livelihood, and
income levels within affected communities.

3) Health and safety studies: When paired with health-
related datasets, SmallMinesDS can support the identifi-
cation of mercury exposure pathways and investigation
of mercury-induced health conditions.

Land reclamation and restoration: Supporting the mon-
itoring and evaluation of land reclamation initiatives,
as well as identifying mining sites that fail to adhere
to sustainable practices.

Through its broad applicability, SmallMinesDS is an important
resource for advancing interdisciplinary research and inform-
ing policy and decisions in sustainable mining, environmental
protection, and community health.

2)

V. LIMITATIONS

The development of SmallMinesDS is accompanied by lim-
itations that warrant careful consideration. The segmentation
process preceding the annotation of ASGM sites resulted in
fine segments that were more precise than generalized. There
is a tendency to find tiny spots (few pixels) of mining sites.
Where there exist small islands of vegetation surrounded by
ASGM sites, they may not be included in the mining class.
The labels are also highly imbalanced, with small-scale mining
areas constituting a disproportionately small fraction relative
to the background class. Small patches of vegetation or linear
features of polluted water located within mining sites may
inadvertently be classified as part of the ASGM land use.
In addition, pockets of cloud (occurring at low frequency in the
2016 image) in the southeastern portion of the study area were
incorporated into the background class, as these regions do
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not represent the target class of interest. Segments containing
mixed land uses, where mining constitutes a relatively small
proportion, have their labels assigned to the background class.

VI. CONCLUSION

In this study, we introduce SmallMinesDS, a novel and
open-access multimodal dataset for mapping ASGM sites. This
effort aims to bolster regulatory efforts for promoting sus-
tainable and environmentally responsible practices within the
ASGM sector by encouraging the development of innovative
solutions that rely on remote sensing and artificial intelligence
including the application of super-resolution techniques to
potentially enhance the detection of small-scale gold mining
activities [33]. Building on this work, future efforts will focus
on expanding SmallMinesDS to cover other ASGM-prone
regions in Africa, South America, and Asia. This expansion
will enable the representation of cross-regional variations in
ASGM practices, reflecting the diverse operational character-
istics of mining activities globally and promoting case studies
in transfer learning.
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