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The development of Integrated Modular Avionics (IMA) has revolutionized the avionics industry by allowing
multiple functions to be present on the same General Processing Module instead of only a single function per line-
replaceable unit in federated avionics architectures. However, the diversity in IMA solutions limits the portability of
applications, which eventually led to the development of IMA standards and guidelines. One such standard is
ARINC 653, which outlines, among others, the necessary data for specifying any ARINC 653 configuration. To meet
the requirements set by aforementioned standards, this paper proposes a Model-Driven Development approach
for engineering ARINC 653-compliant avionics configurations. The authors present a setup for automated
configuration, verification, and validation of such configurations. The approach involves the use of MATLAB,
System Composer, and Simulink for modeling and configuring the system, as well as generating ARINC 653-
compliant configurations in XML format. The paper further exemplifies the approach for modeling and
automatically configuring ARINC 653-compliant systems and highlights the potential for system verification and
validation at both the design and software implementation stages. The results show that model-driven engineering
of ARINC 653-compliant avionics architectures is a viable way to automate the engineering process and increase
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the quality of the system.

I. Introduction

N THE ever-evolving world of aviation, technological advance-

ments play a vital role in enhancing safety, efficiency, and reli-
ability. One such breakthrough is the concept of Integrated Modular
Avionics (IMA), which revolutionized the way avionics systems are
designed and implemented in aircraft.

IMA consolidates multiple avionics functions onto a common
hardware platform. Before the introduction of IMA, aircraft systems
were predominantly developed using federated architectures, in
which each system function has its own dedicated hardware. How-
ever, IMA takes a different approach by providing a shared comput-
ing platform that hosts multiple applications, reducing weight,
power consumption, and overall system complexity [1].

At its heart, IMA incorporates the ARINC 653 standard [2], which
is defined by Aeronautical Radio, Inc. (ARINC), and involves the
requirements for partitioning and scheduling of software applications
on an IMA platform. ARINC 653 ensures that different software
modules, known as partitions, coexist in a safe and independent
environment, which prevents interference and ensures fault tolerance.
By adhering to this standard, aircraft manufacturers can achieve a
high level of system reliability and maintainability.

The Model-Driven Development (MDD) of avionics architec-
tures has emerged as a powerful paradigm to design and implement
IMA systems [3—6]. This approach leverages models to describe the
behavior and structure of avionics systems, allowing for rapid
prototyping, verification, and validation of complex systems. Fur-
ther, MDD enables engineers to simulate and analyze the system’s
performance, optimize resource allocation, and ensure compliance
with safety regulations.

By employing a model-driven approach, engineers can create high-
level models representing the functionality of the system, interactions,
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and timing requirements. These models serve as a blueprint for gen-
erating ARINC 653—compliant configurations and ensure that the final
software implementation adheres to the standard’s strict guidelines.
The model-driven configuration of ARINC 653—compliant partitioned
avionics architectures involves several steps, including system model-
ing, software architecture design for partitions, and Verification and
Validation (V&V). Through these steps, engineers can effectively
manage the complexity of IMA systems, allocate computing resources
to different software components, define their execution schedules,
and verify the system’s behavior against its requirements.

This paper explores the MDD of ARINC 653-compliant avionics
architectures. This approach enables several beneficial steps in the
overall development process: 1) the use of models as a means for
single source of truth development, 2) domain-specific modeling
with ARINC 653 profiles, 3) automatic generation of configurations
from IMA architecture models, and 4) V&V of these architectures.
The remaining paper is structured as follows: In Sec. II, back-
ground information on technologies and methodologies is presented.
Section III delves into the current state of configuration development
for ARINC 653—compliant systems. The main part, Sec. IV, discusses
MDD for automatically generating said configurations and possible
V&V methods for such models. The results of the work are discussed
in Sec. V, before concluding the paper in Sec. VI.

II. Background

IMA contains many functions on the same General Processing
Module (GPM) as opposed to a single function per Line-
Replaceable Unit (LRU) in federated architectures [1]. As the
diversity of the IMA solutions in the avionics industry was moving
toward restraining the portability of the applications, several stan-
dards were developed, with one of them being ARINC 653.

The recognized acceptable means of compliance for certification
of airborne software is the DO-178C/ED-12C [7]. It defines Design
Assurance Levels (DALs) A, B, C, and D, which classify software
based on their level of criticality and required rigor for development
and verification. In the context of DO-178C/ED-12C, the develop-
ment of state-of-the-art IMA refers to the deployment of functions of
mixed DAL (A-D) inside the same GPM. Further, the standard sets
requirements for software partitioning for containing/isolating
faults. The specification of software partitioning is standardized in
ARINC 653 [2]. ARINC 653—compliant hypervisors are typically
used in IMA contexts, with some software items implemented as
partitions reaching up to the highest of DAL, i.e., DAL A.
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The most relevant standards that are of particular interest for this
paper are presented in the next sections.

A. DO-297/ED-124

DO-297/ED-124 [1] is a standard for the development and cer-
tification of IMA systems. It serves as a primary resource for
certification authorities, such as the Federal Aviation Administration
(FAA) and European Union Aviation Safety Agency (EASA), in
approving IMA systems for flight. The document provides specific
guidance and certification considerations for stakeholders involved
in the development of IMA platforms, including platform and
module suppliers, application suppliers, IMA system integrators,
and certification authorities.

One of the core aspects emphasized in DO-297/ED-124 is the
adherence to safety requirements. The document provides detailed
instructions on how to conduct safety assessments, identify hazards,
and mitigate risks associated with IMA systems. It also highlights
the importance of thorough testing and validation procedures to
ensure the reliability and integrity of the developed systems. By
following these guidelines, developers can mitigate potential risks
and ensure that IMA systems meet the stringent safety standards
required in the aviation industry. Another crucial aspect addressed
by DO-297/ED-124 is the use of standardized interfaces, particu-
larly the ARINC 653 standard. In accordance with ARINC 653,
DO-297/ED-124 highlights the significance of robust time and
space partitioning to ensure the isolation of failures and prevent
interference between different applications within the IMA system.

The methods for developing IMA platforms presented in the work
on hand are continuously being improved. One of the main consid-
erations during the development of the methods is compliance with
different standards applicable to IMA platforms. That is, ETSO-
2C153 [8] and ETSO-C214 [9] for compliance of IMA platforms
and aircraft parts with minimum performance standards, DO-178C/
ED-12C for certification of airborne software, and DO-297/ED-124
for the certification of IMA systems. Lastly, ARINC 653 plays a
significant role in IMA platform development regarding the parti-
tioning properties of hypervisors.

B. ARINC 653

Focusing on the execution of software on GPMs, the ARINC 653
standard proposes the Application Executive (APEX). APEX is a set
of behaviors and Application Programming Interface (API) func-
tions to be implemented by avionic software vendors into their
hypervisor. It implements the isolation of software running on the
GPM and prevents erroneous software components from affecting
others, according to DO-178C/ED-12C. Relevant for this paper is
the APEX isolation primitive Partition as well as its scheduling and
communication channels.

Isolation is enforced in the unit of partitions, with each having its
exclusive memory region to execute upon. This includes not only
the disk memory but also the Random-Access Memory (RAM). As
for the scheduling, a static schedule is carried out, enforcing preset
time windows to be used by each partition [2]. For the configuration
of the static schedule, the most important datum is the major frame,
which determines the smallest frequency at which partition time
windows can be configured. The partition time windows are
arranged within the major frame, which repeats periodically, as
demonstrated with three partition time windows in Fig. 1.

Just like the major frame, the partitions need to be aligned
sequentially to run periodically. This means that only three values
are necessary for the configuration of the time window for each
partition: duration, offset, and period. The duration specifies the
length for each partition time window, and the period sets its
frequency, which always needs to be a divisor of the configured
major frame duration. The offset shifts the periodical occurrence of
a partition’s time window.

In this example, the periods of partitions 2 and 3 are equal to the
major frame duration, and the period of partition 1 is half the
duration of the major frame. There is no offset for partition 1, there
is for partitions 2 and 3. Suppose that the major frame duration in the
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Fig.1 Static scheduling in ARINC 653. Dashed arrows: offset; normal
arrows: period.

setup is 1 s, with the period for partition 1 being 500 ms and 1 s for
partitions 2 and 3. The offset for partitions 2 and 3 would then be
~200 ms and ~350 ms, respectively.

APEX allows interpartition communication through predefined
channels, with ARINC 653 introducing two different types of chan-
nels, namely, sampling and queuing ports. Both of them are unidi-
rectional, and sender and receiver cannot be changed during runtime.

Sampling ports are channels with a one-to-many communication
act where the last written value is retained. Because of this, sampling
ports are well suited for sensor data values, which are continuously
updated and where missed reads do not pose an issue. Queuing
ports, on the other hand, only support communication from one
partition to another. Here, written messages are stored in a queue,
and, except for when the queue is full, no message is lost.

C. ARINC 653-Specific Configuration

According to ARINC 653, configurations are used for general
partition specifications, including interpartition communication,
partition scheduling, and health monitoring at boot time. In the
configuration specifications, the root element MODULE contains
three sequence elements: Partitions, Schedules, and HealthMonitor-
ing [10].

The Partitions element describes the partitions configuration in the
module and contains the subelement Partition. The subelements of
Partition are PartitionDefinition—the name and ID of the partition,
PartitionPeriodicity—the partition periodicity, MemoryRegions—the
memory region mapped into the partition, and PartitionPorts—the
ports of the partition. The Schedules element describes the schedule
configuration and contains the subelement PartitionTimeWindow.
The HealthMonitoring element represents the health-monitoring
configuration for the module. It contains the subelements System-
Errors—the list of system errors, ModuleHM—the module-level HM
table, MultiPartitionHM—the partition-level HM table for multiple
partitions, and PartitionHM—the partition-level HM table [2]. These
configuration elements contain unique attributes, which are not fur-
ther detailed in this section. They are presented and applied in the
main part of this paper. Some attributes that are, according to ARINC
653, explicitly not included in the configuration are the following:

1) Number of associated processor cores—the number of logical
processor cores used to schedule processes associated with a partition

2) Operating mode—the partition’s execution state

3) Partition processes—the executable processes running within
partitions

These attributes are associated with the software integration part
of the systems engineering framework. This means that the speci-
fication of these attributes is bound to the development with the
respective software development tools. The division between sys-
tem design and system integration within the systems engineering
framework is illustrated in detail in the main part of this paper.

D. ARINC 653 Configuration Data Format

The ARINC 653 standard presents an expandable XML schema
that outlines the format of the necessary data for specifying any
ARINC 653 configuration. This XML schema allows for defining
configuration tables and elements within ARINC 653 systems.
Although the standard itself does not explicitly mention it as a
configuration format, XML configuration files play a role in defining
the configuration structure for time and space isolation within ARINC
653—compliant systems [2].

These configuration files adhere to specific XML schemas that
define the necessary configuration requirements. They lay the foun-
dation for “an intermediate form of the configuration definition that



Downloaded by DLR Deutsches Zentrum fuer Luft und Raumfahrt on December 12, 2025 | http://arc.aiaa.org | DOI: 10.2514/1.1011439

316 LUKIC, FRIEDRICH, AND DURAK

allows the system integrator to create configuration specifications in
a form that can be readily converted into an implementation-specific
configuration” [2]. The schema ensures the accuracy and uniformity
of the configuration data within ARINC 653 systems. Access to
these XML configuration files is typically restricted to the operating
system of the ARINC 653—compliant system [11,12].

The ARINC 653 standard does not provide detailed specifications
regarding the structure or content of the XML configuration files. The
exact format and elements within these files may vary depending on
the specific implementation or configuration tools employed for
ARINC 653 systems [13]. While the ARINC 653 standard does not
explicitly discuss XML configuration, it appears that XML configu-
ration files are commonly employed in defining the configuration data
for time and space partitions in ARINC 653 systems [14,15]. For this
paper, the XML format is used to provide all necessary information for
custom configuration of end systems according to ARINC 653.

E. Metamodeling with Profiles and Stereotypes

Metamodeling is the process of creating models that describe the
structure and behavior of other models. In the context of MDD,
metamodeling is the process of defining the syntax and semantics
of modeling languages, which are then used to create models of
software systems. There are two distinct forms of metamodeling:
linguistic and ontological. These two forms give rise to two distinct
forms of instantiations [16,17].

Metamodeling enables the creation of Domain-Specific Modeling
Languages (DSML) and provides a formal representation of the
concepts and relationships within a particular domain. By defining a
metamodel, a common vocabulary and set of rules for creating
models can be established. These models then accurately represent
the desired system or application [17]. Metamodeling in MDD
involves the following key concepts:

1.  Metamodel

A metamodel is a model that defines the structure, constraints,
and semantics of other models within a specific domain. It specifies
the types of elements, their relationships, and the rules that govern
their usage. Metamodels are typically represented using standard-
ized modeling languages [18].

2. Model

A model is an instance of a metamodel. It represents a specific
system or application within a given domain. Models are created by
conforming to the structure and constraints defined by the meta-
model. They capture the essential aspects of the system being
developed, such as its structure, behavior, and data [19].

3. Model Transformation

Model transformations are operations that convert models from
one representation to another. They allow for the manipulation,
refinement, and generation of models based on predefined rules
and mappings. Model transformations in MDD enable the automatic
generation of code, documentation, and other artifacts from models
[20]. There are three basic types of transformations, namely, model-
to-model, model-to-text, and text-to-text transformation.

Application

Nziee Metamodel
Application
L I Metadata

MO level Application Data

Model-to-model transformation refers to the process of converting
one model into another model. This transformation is typically
performed to bridge the gap between different modeling languages,
tools, or representations, allowing for interoperability and seamless
integration between different parts of a software system.

Model-to-text transformation, also known as model-to-code
transformation, involves generating executable code or other textual
artifacts from a high-level model. The transformation process
involves defining templates or patterns that specify how elements
and relationships in the source model should be mapped to code or
textual representations.

Text-to-text transformation, also known as text-to-text genera-
tion, refers to the process of transforming one textual representation
into another [21,22].

Through metamodeling, models can be created that capture the
essential characteristics of a system and its components. Metamodel-
ing also promotes MDD practices, where models serve as the primary
artifacts for system development and analysis. This provides a struc-
tured approach to system development by defining the vocabulary,
structure, and constraints of models within a specific domain. It
promotes reusability, consistency, and automation in the development
process, leading to increased productivity and improved software
quality [23].

The Object Management Group (OMG) defines a standard called
Meta-Object Facility (MOF) for a metamodel architecture in MDD.
The four-layered architecture is the Model-Driven Architecture
(MDA) for creating and manipulating models and metamodels.
Figure 2 shows three of the four modeling layers from the MDA.
The information layer consists of the particular runtime data that the
modeler intends to depict [24].

The M3 metamodel level is omitted. This paper focuses on the
use of custom profiles as metamodels that extend the SysML M2
metamodel to the MO information level.

In the context of metamodeling, profiles and stereotypes are
concepts used to extend and customize existing metamodels, such
as the Unified Modeling Language (UML) metamodel. Although
they complement each other, there are some differences:

4. Profiles

UML profiles are a method of expanding the UML to create a
modeling language that is customized to a specific platform or
application domain. They offer a precise way of using UML in a
specific context and can be combined within the MDA context to
define a series of model transformations. Private organizations and
software companies can define UML profiles, and the OMG has
standardized several UML profiles [25-27].

5. Stereotypes

Stereotypes are defined within a profile and serve as a means to
extend existing metaclasses from the base metamodel. A stereotype
defines new properties, operations, and constraints that can be
applied to instances of the metaclass it extends. It allows users to
add domain-specific characteristics and semantics to existing meta-
model elements. Stereotypes that are associated with model ele-
ments are typically highlighted within the model, indicating their
special meaning [26,27].

Metamodel
(defines the modeling language)

Model
(is an instance of the modeling language)

Information

Fig. 2 Metamodeling layers and patterns in MDD.
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By using profiles and stereotypes, metamodels can be customized
to represent specific domains, industries, or application contexts.
They enable the creation of DSMLs that capture the unique aspects
and requirements of a particular problem domain [28,29].

III. Related Work

There are several publications on the development of ARINC 653—
compliant systems. Some are more general papers about requirements
for proven IMA development, while others describe custom tools for
generating configurations with transformation tools.

Uludag et al. [30] discuss the safety, security, and certification
challenges of developing a highly complex distributed IMA platform.
The main challenges of the development include the necessity for the
management of modular and reusable certification processes, IMA
systems with reconfiguration capability, and the safe management of
shared resources within IMA. The authors propose a model-based
system engineering approach to address these challenges and present a
practical implementation framework for the Turkish fighter program.
The outcome of the paper is that the approach and framework can
effectively address the challenges of developing a complex distributed
IMA platform and be used as a basis for future avionics development
projects. With their work, Uludag et al. tackle some disadvantages
from other related works. Their method presents a collaborative
model-based systems engineering environment that outperforms solo
development practices that do not involve multiple experts.

Lafoz et al. [11] present the design and development of ARINC
653 systems, which are used in IMA architectures. The paper pro-
poses a UML extension to deal with the design of these systems and
describes the use of XML schema for defining their configuration.
They also present an automatic generation of configuration tables and
a qualified validation process of them, as well as an automatic
generation of ARINC 653 artifacts in terms of code and partition
tests and stubs. In particular, the paper proposes a UML approach for
defining configurations with an XML schema, the automatic gener-
ation of configuration tables, and ARINC 653 artifacts. The main
advantage of the method proposed in the paper is the coverage of
large parts of the ARINC 653 configuration development process.
This concerns the automatic generation of code, the definition of tests
and required stubs, and the use of qualified tools for verification. The
main disadvantage of the method is that it does not extensively
address how the proposed methods scale with an increasing number
of partitions or applications. The performance overhead associated
with context switching and interpartition communication may
become more pronounced in larger systems.

Horvith et al. [31] show the application of MDD to the develop-
ment of ARINC 653 configuration tables in the aeronautic domain in
their paper. The paper presents a toolchain that generates configura-
tion tables from high-level architecture models and demonstrates the
benefits of using MDD in this context. The authors point out that
MDD can be effectively applied to the systematic development of
ARINC 653 configuration tables and that it can improve the efficiency
and quality of the development process. Additionally, the paper high-
lights the importance of end-to-end traceability information to support
certification for V&YV activities. The work from Horvith et al. excels
by addressing current certification challenges for generating ARINC
653 configuration tables. One disadvantage of the paper is that it is
mainly tailored for the Wind River VxWorks 653 platform.

The paper [12] by Duprat et al. is about the model-based approach
in configuration data management for LVCUGEN Flight Software.
The paper shows how this approach is implemented to ensure the
consistency and qualification of each component in the software. It
covers the technical context of flight software with the CNES
solution LVCUGEN, the model engineering chain, and the qualifi-
cation strategy for some checker tools and generators. The relevant
outcomes in this paper are the model-based approach as an effective
way to manage configuration data in generic software frameworks
and the assurance of consistency and qualification of each compo-
nent in the software. The approach covers model verification and
code generation from the model and integrates a qualification
strategy. The methodological solution is adapted to a collaborative

organization where the product is developed and integrated by
increments. The paper also highlights the importance of qualifica-
tion issues and proposes qualification strategies for multidomain
engineering tools. One disadvantage of the paper is that the reliance
on formal methods and Object Constraint Language (OCL) requires
a certain level of expertise that may not be readily available.

Other publications in this context are [32], which discusses a
verification method of end-to-end real-time properties on IMA
systems; [33], about the use of the Simulink environment to
implement IMA partition models through an ARINC 653 blockset;
and [14], presenting a software tool for integrating configuration
data of ARINC 653 operating systems. The contribution of the
paper at hand is the exemplification of an expandable pattern for
modeling and automatically configuring ARINC 653—compliant
systems. It involves a split between systems engineering and
software integration with automated configuration generation
and potential for systems validation both on the system design
and on the software implementation side. Some of the previously
mentioned challenges from related work that the work at hand tries
to tackle are the generalization of the system development to
satisfy different platforms and the scalability of the method using
MDD. By using a pragmatic model-to-text transformation, the
model-based toolchain is generic enough to conform to different
platforms and configuration formats. The different levels of
abstraction used for modeling help with scaling the system up,
depending on the use case.

IV. ARINC 653 System Modeling, Model
Transformation, and Configuration

The method for developing ARINC 653—compliant avionics archi-
tectures, presented in this paper, involves two parts: first, modeling
the logical architecture of the ARINC 653 system with its compo-
nents and attributes; second, modeling the functional architecture of
the applications. For the first part, the avionics architecture is modeled
in System Composer, while for the second part, the functional
architecture is modeled in Simulink. For the functional part in Simu-
link, a complete ARINC 653—compliant system metamodel called
ARINC 653 blockset® is provided as an add-on. This add-on is used
for functional architecture modeling of ARINC 653 systems. For the
development of functional system elements, more software tools are
available, as shown in a later part of the paper.

The setup has multiple facets: One part is concerned with modeling
a discrete ARINC 653—compliant system and generating a configu-
ration in XML format. Another part handles the integration of the said
high-level system representation in Simulink and the automated
creation of a functional model. In a final step, the generated functional
model is used as a wrapper, i.e., a template, which can be extended
with code and system functions. The workflow is illustrated in Fig. 3.

Apart from the software integration in Simulink, other possible
platforms for system integration are illustrated in the workflow.
Examples are C/C++ and Rust. As Simulink provides code gener-
ation in C/C++, the integration of the high-level representations of
an ARINC 653—compliant system can further be linked to C/C++
software development steps.

Ultimately, the aim is the automated and seamless integration
between system design and software integration within the systems
engineering framework. For the specific use case, this implies the
automated generation of configurations from a System Composer
profile and their integration into a functional Simulink model. A
sample configuration taken from the ARINC 653 standard is shown
in Listing 1.

One of the major advantages of the presented approach is its MDD
nature. MDD allows developers to work at a higher level of abstrac-
tion, which simplifies the design process. By using models instead of
code, teams can focus on system behavior and architecture without
getting distracted with implementation details. Using a model-driven
approach promotes consistency across the system. Standardized mod-
els help ensure that different parts of the system adhere to the same

SArinc 653 blockset, as presented in Ref. [33].
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Systems Engineering

System Composer

...... WAPe

IMA model instance

A653_config.xml

Fig. 3 Workflow followed in this paper portrayed in the systems and
software engineering landscape.

design principles and frameworks. This is particularly beneficial
when adhering to domain-specific standards, such as the ones men-
tioned in this paper, that is, DO-297 and ARINC 653.

A. Metamodeling of Partitions

The model contains multiple architectural layers. In the context of
ARINC 653, all components making up an IMA architecture can be
regarded as the highest level of abstraction. Inside, multiple stand-
ardized IMA-specific components can be found, such as network
switches, legacy units, and the GPM. The IMA layout is illustrated
in Fig. 4.

GPMs refers to computing modules that execute application soft-
ware. Essentially, these modules consist of a Central Processing Unit
(CPU), a Real-Time Operating System (RTOS), an allocated amount
of memory, and a hypervisor. An exemplary GPM with its compo-
nents is shown in Fig. 5.

Sensors/Effectors LRUs/Devices
- RDC RDC
Legacy Units cee Sensors/Effectors

I ]
s B

ARINC 664 Switch ARINC 664 Switch

¥ ¢ i i

GPM GPM GPM GPM

¥ ¥ i i

ARINC 664 Switch ARINC 664 Switch
L — |
] ||

Sensors/Effectors RDC RDC LRUs/Devices
Legacy Units Sensors/Effectors

Fig. 4 Integrated system architecture.

GPM

Memory

{Part'n 1} [Part'n 2’ [Part'n n

A A A
v v v
RTOS/Hypervisor
CPU

Fig. 5 One GPM with three partitions on discrete memory spaces.

The CPU computes various processes, such as the flight control or
flight entertainment systems. A hypervisor is software that facilitates
the creation and operation of Virtual Machines (VMs), enabling a
single host to support multiple VMs concurrently, each with its own
set of applications. By means of virtualization, partitions are estab-
lished to host and execute applications. The number of tasks executed
within a partition may vary depending on the complexity of the
system. A discrete space in the memory is assigned to each partition,
assuring spatial separation between partitions [34]. Given that the
scope of this paper is to specifically target the configuration of
partitions and their schedules, only the GPM inside of an overall
IMA architecture is discussed.

The avionics architecture modeled in the System Composer has
three levels of abstraction. The highest level contains the GPM
inside a generic IMA architecture. The second level contains the
hypervisor inside the GPM, and the lowest level the case-specific
partitions managed by the hypervisor. The respective model can be
seen in Fig. 6.

The use case for this demonstration covers five different applica-
tions, with one dedicated partition for each application. The exam-
ple is taken from the ARINC 653 standard and demonstrates
applications typically found in avionics systems. These applications
are 10 Processing, IVHM, Flight Controls, Flight Management, and
System Management. As this paper demonstrates the MDD of
configurations for running such applications in hypervisors, the
exact functionality of the applications is out of scope. Hence, they
can be regarded as dummy applications. For a more detailed use
case, refer to [35].

By using the System Composer model as a single source of truth
artifact, compliance with DO-297 and ARINC 653 can be guaranteed
to some degree. For instance, by restricting the model to elements
limited to IMA, major development specifications from DO-297 are
obeyed. The V&YV steps described in the standard are then met with
simulation in Simulink. By adding constraints to the model, some
fundamental requirements from ARINC 653 can be met. Those are
spatial isolation, temporal isolation, and fault coverage. The require-
ment of spatial isolation is met by ensuring that each modeled
partition is contained within some unique memory region. Temporal
isolation is ensured with correct scheduling and sequential execution
of partitions. Using model correctness, the requirement of fault cover-
age can be met. Specifics regarding model correctness and verifica-
tion are discussed in Secs. IV.D and IV.E.

B. Automated XML Configuration Generation

The profile affiliated with the metamodel contains multiple ster-
eotypes that are part of the IMA system. These are, namely, CPU,
Hypervisor, Memory, Partition, Queuing Port, and Sampling Port.
Although each stereotype is part of the complete system, which is
needed in case of extensions, the Partition, Queuing Port, and
Sampling Port stereotypes are of most interest. Each stereotype
contains specific properties. The properties of Partition are listed
in Table 1.
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Fig. 6 Three levels of abstraction in System Composer model.

Table 1  Properties contained in the Partition

stereotype
Property name Type Unit Default
partitionDuration unit16 ms 100
id string N/A ‘Default_ID’
periodical boolean N/A true
startTime uint16 ms 0
periodicity uintl6 ms 500
priority uintl6 N/A 0
name string N/A ‘partition’
memoryRam uint32 Bytes 1048576
memoryFlash uint32 Bytes 524288
memorylO uint32 Bytes 524288

accessRightsRAM enumeration N/A READ_ONLY
accessRightsFlash enumeration N/A READ_ONLY
accessRightsIO enumeration N/A READ_ONLY

The properties of Queuing and Sampling Port are listed in Table 2.
Note that the property maxNbMessage, which is the maximum
number of messages sent, is exclusive to the stereotype Queuing
Port.

Table 2  Properties contained in the Queuing
Port and Sampling Port stereotypes

Property name Type Unit Default

maxMessageSize unit16 Bytes 4096

minMessageSize unitl6 Bytes 16
name string —_— ‘Stat’
direction enumeration — — SOURCE

maxNbMessage uintl6 Bytes 4096

The properties included in the profile contain the content from the
sample XML configuration of the ARINC 653 standard, partly
shown in Listing 1, and more. The profile is generic and scales
with additions and modifications to existing reference configura-
tions. Model transformation refers to the transformation of models
to their representation in a different format. This transformation
can be accomplished in different forms, with one example being
model-to-text transformation. For the automated generation of
configurations from the System Composer model, model-to-text
transformations are implemented pragmatically using the System
Composer API and a MATLAB script. The script, wrapped in a
function, parses and writes model properties from the System
Composer model to an XML configuration file. It obeys the logic
shown in the pseudocode in Algorithm 1.

This logic can be applied to any modeling software with its
respective model transformation language, i.e., model transforma-
tion framework. The complete script is illustrated in Listing 2. Part
of the code for writing properties to a file is omitted for reasons of
conciseness. By applying the script to the System Composer model,
the modeled configuration is exported to an XML file. Part of the
generated XML file for the use case presented in this paper is
illustrated in Listing 1.

C. ARINC 653 Blockset

The ARINC 653 blockset is a set of blocks used to implement
IMA partition models in the Simulink environment, as part of the
methodology and toolset developed for rapid prototyping of avion-
ics functionalities on IMA architectures. The blockset includes
blocks for partition management, process management, interparti-
tion communication, and time management. These blocks are used
to model the functional IMA partition infrastructure, which is the set
of services provided by the ARINC 653 RTOS to support the
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Algorithm 1:  Pseudocode for parsing and writing model properties
from System Composer to an XML configuration file

Input: System Composer model.

traverse model to Hypervisor architecture level
for each Object in Hypervisor
if Object is of stereotype Partition
for each property in Object
save property to property_array
end

for each Port in Object
for each property in Port
buffer property to temp_array
end
save temp_array to port_array
end

build XML file with information from property_array
and port_array
end

end

Output: XML configuration file; optional: property_array, port_array

execution of multiple applications on a single hardware platform.
The ARINC 653 blockset allows for the functional modeling of the
partition infrastructure in a high-level environment, which facili-
tates the development and testing of avionics functionalities on
IMA architectures. The blockset is integrated with the Simulink
infrastructure partition model, which is given as input to the
customized automatic code generator environment in order to
generate compliant PikeOSY and VxWorks 653= code ready to
be deployed on the IMA system. The use of a single code gen-
eration environment for the automatic code generation of whole
partitions (partition infrastructure and applications) satisfies the
need to follow a single qualifying process in order to develop
safety-critical systems [36].

Further, the blockset defines mandatory APIs that an
ARINC653 OS must support. The APIs are broken into 6 catego-
ries with a total of 57 services, namely, partition management—?2
services, process management—14 services, time management—
4 services, interpartition communication—11 services, intraparti-
tion communication—22 services, health monitoring—4 services,
and an XML schema for specifying an ARINC 653 configuration.
The behavior specified in ARINC standard 653 is implemented
with Simulink blocks. These blocks are used to generate func-
tional code for ARINC 653 services. The outputs of the architec-
tural design phase described in the previous subsections are inputs
to the partitions development process in the Simulink environ-
ment. More specifically, the XML configuration file generated
from the System Composer model is used as an artifact in the
blockset, as shown in Fig. 3. The developed toolbox allows
modeling an IMA partition in terms of APEX blocks for partition
and process management, intra- and interpartition communica-
tion, time management, and health monitoring. The Simulink
blocks of the ARINC 653 package are implemented as fully
in-lined S-Functions based on the ARINC 653 standard APEX
and ARINC 653 RTOS-specific code execution characteristics.
The S-Function of the software application and the related
Target Language Compiler (TLC) file are generated through
the standard MATLAB Embedded Coder and Legacy Code
Tool application. Such outputs are integrated into the Simulink

IPikeOS, as presented in: SYSGO, “PikeOS Certifiable RTOS & Hyper-
visor,” 2024, https://www.sysgo.com/pikeos.

*#Wind River VxWorks 653, as presented in: Wind River, “VxWorks 653
Multi-core Edition,” 2022, https://www.windriver.com/resource/vxworks-

653-product-overview.

infrastructure partition model implemented through the ARINC
653 blockset.

The blockset provides an automated way of generating models
from the XML reference file. The functional blocks are then created
and cross-checked with the deposited configuration file. Part of this
paper is aimed at developing a fully integrated development scheme
for ARINC 653—compliant avionics configurations. For this reason,
the continued development of those avionics architectures from
configurations in Simulink and other software development tools
is not in the scope of this paper.

D. Model Correctness

In order for the ARINC 653 configurations to be valid when
implemented in end systems, model correctness has to be guaran-
teed at design time. In the scope of this paper, the correctness of a
model can be determined with V&V activities, such as simulation
and testing.

Verification refers to the process of evaluating a system model or
design to determine if it meets the specified requirements and
adheres to defined standards. It involves checking the consistency,
completeness, and correctness of the system model or design.
Verification activities focus on ensuring that the system is built right
and that it satisfies the intended functionality. Validation, on the
other hand, is the process of evaluating a system model or design to
determine if it meets the needs and expectations of the stakeholders.
It involves assessing the system’s performance, functionality, and
suitability for its intended use. Validation activities focus on ensur-
ing that the right system is built and that it satisfies the stakeholders’
requirements [37].

Simulation, an activity in the aforementioned verification proc-
ess, involves a virtual representation of a system or process to
analyze its behavior and performance. It allows engineers to study
and evaluate the system’s response under different conditions and
scenarios without the need for physical prototypes. Simulation
enables the exploration of system behavior, identification of poten-
tial issues, and optimization of system design. It aids in under-
standing system dynamics, validating system requirements, and
making informed decisions during the development process. Testing
involves executing the system model or design to assess its func-
tionality, performance, and compliance with requirements. It aims to
identify defects, errors, or deviations from expected behavior. Test-
ing activities include designing and executing test cases and analyz-
ing the results. Testing helps to ensure that the system functions as
intended and meets the stakeholders’ requirements. It also helps to
identify and rectify any issues before the system is deployed or
implemented [38].

Taking Fig. 3 as a reference, V&V is performed in the design
phase, while simulation and testing is exclusive to the software
integration phase. This is evident when considering the different
levels of abstractions these two phases cover. Delange et al. [39]
describe a validation approach for ARINC 653 avionics architec-
tures. The authors discuss four steps for checking the correctness of
generated ARINC 653 configurations, three of which are of interest
in this paper:

1) Time isolation—each partition is executed within its desig-
nated time window without overlap with other partition time win-
dows; The major frame is consistent and aligned with the defined
partition time windows

2) Space isolation—association of each memory segment with a
single partition

3) Fault coverage—recovering faults on the module, partition,
and process layer

These properties can be checked in different ways. Delange et al.
[39] use a custom Architecture Analysis & Design Language
(AADL). For the paper at hand, more methods, such as Object
Constrain Language (OCL) (see [40]), were identified as potential
candidates for verifying model correctness. Moreover, simulation
and testing have been conducted within the software integration part
of the discussed setup. With simulation, for instance, the runtime
analysis on the end systems can be verified.


https://www.sysgo.com/pikeos
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Fig. 7 ARINC 653 blockset model from generated XML configuration.

E. Simulation and Testing

The Simulink environment of the ARINC 653 blockset offers
a variety of simulation properties. The developed ARINC 653
system is imported through a generated XML configuration file,
like the one exemplified in Listing 1. Each partition is treated as a
subsystem with distinct features in the Simulink environment.
Each partition subsystem contains a user interface dialog box for
defining parameters for the ARINC 653 service. For example, the
READ_SAMPLING_PORT dialog enables specification of port
name, maximum size, and refresh period. Figure 7 shows the
ARINC 653 blockset model created from the configuration that
was modeled in Fig. 6.

The partition itself, with its designated execution duration,
periodicity, priority, and deadline behavior, is treated as a process.
Those parameters are handled within a separate block inside
each subsystem. Another level of abstraction deeper lies the
functional environment with the specified ports and interfaces.
The code that can be generated from the model is compliant with
the ARINC 653 API and is treated as a skeleton model that can be
extended. Custom applications are either added directly in the
functional environment of each partition or in the code skeleton
itself.

An important characteristic of ARINC 653 is the time isolation
of partitions. Each partition executes within its designated parti-
tion time window and only resumes execution within its following
window. In the blockset model, a counter is added to each
partition to track executions over time. The signals from the
counter are logged and plotted after a simulation run. This is to
verify that each partition is executing only within its designated
schedule and only for as many times as is intended within a
certain time frame. Figure 8 shows an exemplary plot with the
number of executions over time for each partition in the devel-
oped system.

The partitions have different execution frequencies: IOProcess-
ing—200 executions, I[VHM—100 executions, flightControls—66
executions, flightManagement—50 executions, and system-
Management—33 executions, over a time period of 10 s. The
frequency of executions is dependent on the PartitionPeriodicity
Period parameter specified in the developed configuration for each
partition.

2001 — IOProcessing

— IVHM
flightControls

— flightManagement

—— systemManagement

Number of executions
=
~ o
w o

vl
o

N
[

Time in sec
Fig. 8 Plot showing the number of executions over time for the five
partitions I0Processing, IVHM, flightControls, flightManagement, and
systemManagement.

Other properties to be verified through simulation are, for
instance, the computational speed and the adherence to deadlines
for partitions running custom applications. The computational
speed refers to the speed at which partitions compute custom
applications assigned to them. That is, for example, how many
major frames a partition requires to finish computing single lines
of code or functions from assigned applications, or even the whole
application. Simulating these properties presumes the same com-
putational speed in the simulation software as in the hardware on
the end system. Adherence to deadlines refers to the temporal
boundaries of partitions when running processes. According to
ARINC 653, a partition cannot overrun its specified partition
duration. The running process has to be paused and can only
continue at the start of its subsequent partition time window. A
typical deadline exception occurring with faulty partitions tested
on hardware is, for instance, P4_TRAP_DEADLINE. The simu-
lation of deadline exceptions requires the simulation software to
have deadline exception handler functionality consistent with
ARINC 653.

It is important to note that the aforementioned simulations are
dependent on hardware and software specifications and character-
istics and might not reflect the same behavior as observed when
testing the system on the final end system. For this work, the timing
simulation of partitions is out of scope but will be considered for
future work.

V. Discussion

The main methods used in this paper are MDD, generic profile
creation, and automated configuration generation for ARINC 653—
compliant avionics architectures. These methods have significant
implications for the development and verification of these avionics
systems.

MDD is used as a means for single source of truth development.
This approach ensures the validity of the integrated system during
design time. The use of generic profiles facilitates the creation of
various architecture instances with a single source of truth before
continuing with software integration. Moreover, MDD allows for
improved development efficiency by offering a higher level of
abstraction and consistency across the system by developing with
standardized models. Automated configuration generation can be
leveraged in this approach by using generic model transformation.
This approach can reduce the time and effort required for configu-
ration generation, which is particularly important given the strict
restrictions and expensive verification processes associated with
IMA platforms.

The implication of these methods is that the MDD of ARINC
653—compliant avionics architectures is a complex process that
requires careful consideration of various technologies and method-
ologies. However, the use of the presented methods can reduce the
development and verification time of IMA platforms.

Major advantages of the work proposed here are twofold. The
pragmatic script used for model-to-text transformation enables the
system developer to extract information in a concise format. With
some extensions, the transformation can be applied easily for differ-
ent platforms and formats. Also, the method is scalable: on the one
hand, for modeling multiple levels of abstractions within the system;
on the other hand, for an increasing number of system parameters
within the single architecture levels. Compared to related studies,
the work on hand excels by being generic enough to be used for
different platforms but specific enough within its domain to meet
fundamental requirements set by ARINC 653 and related standards.
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Moreover, the method is pragmatic and does not rely on major
expertise by the user.

VI. Conclusions

The MDD of ARINC 653—compliant avionics architectures is a
complex process that requires careful consideration of various
technologies and methodologies. This paper provides a comprehen-
sive overview of this process, highlighting the benefits of using an
MDD approach for the development of IMA platforms.

One of the key benefits of this approach is the use of MDD as a
means for single source of truth development. This allows for the
creation of generic ARINC 653—compliant profiles from metamo-
dels, which can then be used to automatically generate configura-
tions from profile instances. The generality of the proposed method

enables the extension for other formats and system parts without
major adjustments to the underlying processes. The scalability
allows developers to extend the modeled IMA system while keeping
noticeable efficacy and efficiency for generating configurations.

In conclusion, this paper provides a clear and concise overview
of the MDD of ARINC 653—-compliant avionics architectures,
highlighting the benefits of this approach in terms of rapid proto-
typing, verification, and validation of complex avionics systems.
The use of generic profiles and automated configuration genera-
tion can further facilitate the creation of various architecture
instances from a single source of truth. Some of the works that
will be researched further in the future are the real-time simulation
capabilities of the ARINC 653 blockset as well as verification
processes for the development of avionics systems set at
design time.

Appendix: Referenced Configuration Instance and Model Parsing Script

<?xml version="1.0" encoding="US-ASCII"?>

<MODULE xmlns="http://www.aviation-ia.com/aeec/ARINC653/P1S5"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.aviation-ia.co/aeec/ARINC653/
P1S5 ExampleSchema.xsd" Name="MyModule'>

<Partitions>
<Partition>

<PartitionDefinition Name="systemManagement" Identifier="1"
PartitionHMNameRef="systemManagement HM table" />
<PartitionPeriodicity Duration="20000000" Period="100000000"/>

<MemoryRegions>

<MemoryRegion Type="RAM" Size="1048576" Name="mainMemory"
AccessRights="READ_WRITE"/>
<MemoryRegion Type="Flash" Size="524288" Name="Flash"

AccessRights="READ_ONLY" />

</MemoryRegions>
<PartitionPorts>
<PartitionPort>

<QueuingPort MaxMessageSize="30" Name="Stat_2Dq"
MaxNbMessage="30" Direction="DESTINATION"/>

</PartitionPort>
<PartitionPort>

<QueuingPort MaxMessageSize="30" Name="Stat_3Dq"
MaxNbMessage="30" Direction="DESTINATION"/>

</PartitionPort>
</PartitionPorts>
</Partition>
</Partitions>
<Schedules>

<PartitionTimeWindow PeriodicProcessingStart="true" Duration="20000000"
PartitionNameRef="systemManagement" Offset="0"/>

<PartitionTimeWindow PeriodicProcessingStart="true" Duration="20000000"
PartitionNameRef="systemManagement" Offset="100000000"/>

</Schedules>
<HealthMonitoring>

<ModuleHM StateIdentifier="1" Description="module init">

<ErrorAction ErrorIdentifierRef="1"
ModuleRecoveryAction="SHUTDOWN" />
<ErrorAction ErrorIdentifierRef="2"
ModuleRecoveryAction="SHUTDOWN" />
<ErrorAction ErrorIdentifierRef="3"
ModuleRecoveryAction="SHUTDOWN" />
<ErrorAction ErrorIdentifierRef="4"
ModuleRecoveryAction="IGNORE" />
<ErrorAction ErrorIdentifierRef="5"
ModuleRecoveryAction="IGNORE" />

</Modul eHM>
</HealthMonitoring>
</MODULE>

Listing 1 ARINC 653-compliant sample XML configuration.
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function [pars, poar] = transform(m)
obj = m.Architecture.Components;

catcher = "";
stringlit = char("obj.0OwnedArchitecture.Components");
while catcher ~= "Error"

try get(obj.OwnedArchitecture.Components, "OwnedArchitecture")
obj = eval(stringlit);
catch
catcher = "Error";
end
end

for i = 1:1length(obj)
if getStereotypes(obj(1l, i)) ==
"Integrated_Modular_Avionics_new.Partition"
prop = getStereotypeProperties(obj(1l, i).Architecture);
pos = strfind(prop(1l), '.');
pars = [1;
for j = 1l:length(prop)
con = getProperty(obj (1, i).Architecture, prop(j));
pars = [pars, {[extractAfter(prop(j), pos(end)), conl}];
end

opor = obj(1l, i).Ports;
poar = [1;
for j = 1l:length(opor)
prop = getStereotypeProperties(opor(1l, j).ArchitecturePort);
pos = strfind(prop(1l), '.');
port = [1;
for k = 1:length(prop)
con = getProperty(opor(1l, j).ArchitecturePort, prop(k));
port = [port, {[extractAfter(prop(k), pos(end)), conl}];

end
poar{j} = port;
end

o°

o°

% Writing to XML file omitted for reasons of conciseness

end
end
end

Listing 2 MATLAB code for parsing model properties and writing to XML file.
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