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Abstract

This study introduces a comprehensive modeling framework for optimizing hydrogen-powered trains to
facilitate zero-emission railway operations. Focusing on the Heidekrautbahn project in Brandenburg, Germany,
the work addresses the unique challenges associated with hydrogen-powered trains by developing a modular
python-based simulation environment. The approach enables easy and quick testing of operational strategies
using simulative results before implementing only the most promising ones into actual operation. Four core
components comprise the framework: (1) driving dynamics, (2) heating, ventilation, and air conditioning (HVAC),
(3) energy management systems (EMS) and (4) hydrogen refueling processes. Collectively, the entire energy
chain of hydrogen from refueling to traction force generation is represented. In this work, two key components,
the driving dynamics and energy management modules, are validated using real-world measurement data from
the Heidekrautbahn project. The sub-models are able to replicate the vehicle’s behavior, demonstrating high
fidelity with errors below 5% compared to measurement. Leveraging the model, energy-saving potentials in the
order of 10% for improved driving and energy management strategies were quantified. By means of simulation-
based testing, efficient yet easy to implement operational strategies with increased range and flexibility are
chosen. This research, conducted alongside the implementation, enhances the in-depth understanding of
operation with hydrogen-powered trains, potentially improving their performance and positioning them as
viable alternatives to traditional diesel-powered counterparts.
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1. Introduction

Railway electrification with catenary is not possible or economically feasible for all available tracks. Therefore,
in the Heidekrautbahn project [1] an emission-free alternative is implemented in Brandenburg, Germany as the
first hydrogen-powered networks of passenger railway vehicles with local, green hydrogen. The challenge of
reliable access to sustainable energy is addressed by electrolyzers, utilizing the extensive availability of wind
energy. Currently, there is a lack of experience and knowledge in the operation of hydrogen-powered trains,
since application only started in recent years. Processes which are standard procedure for diesel-powered trains
such as refueling scheduling need to be rethought. Similarly, driving characteristics and optimal operation points
of the drivetrains can significantly differ between these train types. This means that application of conventional
driving strategies and timetables can be inefficient for hydrogen-powered operation and may lead to
unnecessarily low vehicle availability.

The primary goal of this accompanying research is to simulate and evaluate the technical relationships and
optimization potentials in the operation of the trains and refueling stations. A digital model of the hydrogen
railway vehicles shall support the knowledge gain and competitiveness against diesel trains. Therefore, a novel,
holistic model approach is chosen, which includes all relevant steps of the hydrogen, from refueling over driving



strategies to the energy management on the train. It aims to promote the level of understanding and thus
identification of improvement potentials for availability and energy efficiency of the vehicles.

The paper is structured as follows: a summarized description of the models, validation of the two main model
components Driving Dynamics and Energy Management with measurement data from the Heidekrautbahn
project, a discussion of optimization measures and finally the takeaways.

2. Methodology

The holistic model of the hydrogen energy flow from refueling station to propulsion of the train is built in python
as a framework of interfacing modules (see Figure 1). These submodules include:

a) Driving Dynamics: the dynamic physical model of the train in its movement on the track with relevant external
parameters, such as gradients, speed limits and timetable

b) Heating, Ventilation and Air Conditioning (HVAC): a thermodynamic model of train compartment

c) Energy Management System (EMS): the power control strategy and system on the train, applied on all
powertrain components including fuel cell and battery

d) Hydrogen Refueling: a model of the hydrogen tank during the refueling process

The modules are built with clear separation of functionality, but predefined interactions which enable an
integrated, single simulation run. This reduces susceptibility to errors and allows for fast results through
automation.
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Figure 1: Schematic illustration of the data and simulation flow throughout the holistic train model.

In this work, the focus is put on the two modules Driving Dynamics as well as Energy Management as they are
the key modules in the determination of the hydrogen demand. Traction demand is usually predominant when
compared to HVAC and auxiliaries. Furthermore, EMS plays a crucial role in how efficiently this energy demand
is supplied. Both modules are newly built, based on experience from previous in- house models [3-4].

2.1 Driving Dynamics Module

In this module, a speed profile and the corresponding mechanical power profile at the wheel are determined,
based on route and vehicle data. This part of the simulation environment therefore refers to the dynamic
interaction with the environment and the route, and thus to the mechanical part of energy modeling. All
electrical power flows in the train are handled in the Energy Management module.

Detailed route data serves as the basis of the simulation: timetable, maximum speeds, gradients, curve radii,
and electrification. The dynamic behavior of the vehicle is determined by its weight (M - static and
rotational), length, resistance coefficients, traction and braking force characteristics (mechanical and
electrodynamic for recuperation) as well as limits for speed, acceleration, deceleration and jerk. Based on this
data, the equation of motion is solved to determine the longitudinal dynamics of the train:



b= Firaction (V) — Fresistance (V) S)

Myotal
The maximum force at the wheel Fi action 1S determined by the current speed v from the traction or braking

force characteristic. The resistance force Fiesistance 1S SPeed and position dependent and consists of gradient,
curve, and rolling resistance, with the latter two approximated using the Rdckl and Davis formulas [5].
To determine the speed profile, a rule-based approach with different phases is chosen:

e  Acceleration phase: Within the constraints of route and vehicle, the maximum available force is applied
to the wheels. The acceleration can also be modulated to a percentage of the available force.

e Constant speed (cruising): A certain speed is maintained through adjustment of the traction force.

e Coasting phase (optional): The vehicle is allowed to coast without applying force.

e Braking phase: Within the constraints of route and vehicle, a given amount of the available braking
force is applied. Additionally, the priority can be set from mechanical to electrodynamic braking to
recover as much energy as possible.

From these driving phases, three different rule-based driving modes are currently implemented (see Figure 2,
left), with further modes possible:

e All-Out driving: Acceleration, constant speed at the speed limit and braking phases are combined such
that the vehicle arrives at the next station as quickly as possible. This driving style is time-optimized and
therefore energy-intensive with maximum speeds.

e Timetable-compliant driving with Reduced Velocity: Acceleration, constant speed at reduced speed,
and braking phases are combined, with the level of the constant speed phases adjusted to the time
buffer between All-Out and the scheduled time.

e Timetable-compliant driving with Coasting: By combining all four phases mentioned above, a trajectory
can be generated that maintains the timetable while reducing the net energy requirement at the
wheels compared to the Reduced Velocity mode through the use of coasting.

With combinations of these modes, realistic driving behavior can be replicated in a simulative manner.
Additionally, rule-based driving strategies present easily applicable optimization measures for manually driven
vehicles. Compared to dynamically optimized, complex speed trajectories, the combination of pre-set driving
phases can be applied in a straight-forward manner by train drivers in today’s operation, e.g. through driver
advisory systems.

2.2 Energy Management Module

In this module, the power at the wheels from the previous module is used as input. Together with auxiliary
demands, component specifications and an EMS logic, the hydrogen demand is simulated. To accurately
determine this demand, the following power balance equation has to be balanced (considering the efficiency
characteristics of all electric components on the drivetrain):
Piraction Paux,HVAC + Prheostatic = Pruel cen + Pbattery

The distribution between fuel cell and battery is not predetermined and must be determined by the EMS in such
a way that the desired boundary conditions are met. These may include, for example:

e Balanced state of charge (SoC) of the battery at the beginning and end of a cycle

e  Compliance with maximum C-rates for the battery

e Avoidance of certain SoCs, especially very low or very high

e Avoidance of highly dynamic fuel cell operation

e Reduction of hydrogen demand by efficient power control
EMS for hybrid vehicles can generally be divided into offline and online algorithms. Offline-EMS include
optimization-based and rule-based approaches, while online-EMS are based on real-time optimization,
predictive, and learning-based approaches [2]. For hybrid rail vehicle applications, offline algorithms are very
suitable due to the strongly repetitive character of operation. Often, rule-based approaches such as finite-state



machines (FSMs) are used. These provide a fixed fuel cell power output based on the state, e.g. based on the
power demand and battery SoC (see Figure 2, right). Similar to the driving module, a rule-based approach was
chosen to represent the real EMS within the project. However, multiple different EMS are implemented in the
model and can be applied for different kinds of operation scenarios and to identify optimization potentials.
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Figure 2: Left — Speed trajectories for different driving styles. Right — Exemplary energy management strategy
for fuel cell power based on the current load and battery state of charge.

3. Results - Validation

The model is parametrized and validated within the project with data from real train operation of the existing
Siemens Mireo Plus H hydrogen trains. Seven trains operate on the Heidekrautbahn since December 2024 [1]
and data will be collected from the trains as well as the refueling station over several years. Physical parameters
like speed, hydrogen consumption, as well as power and temperature at various components of the powertrain
are measured and used as reference for the simulated values. With the early state of data collection and
processing within the project, the validation process in this publication is based on characteristic sections. The
modules Driving Dynamics and Energy Management are validated individually to avoid error propagation.

First, a characteristic driving section was chosen in which clean acceleration, cruising and braking phases are
combined. Based on route and train data as well as the force control by the driver, speed and acceleration
trajectories were simulated and compared to the measured data (see Figure 3, left). Qualitatively, there is
satisfying accordance between them. In all three phases, the simulated data is “smoother”. This is due to data
noise in measurements, but also because of the manual operation, which can never be fully precise or consistent.
Quantitatively, the speed trajectory has an average absolute error of 1.3 km/h, with a root mean square error
(RMSE) of 1.6 km/h. The absolute deviation in acceleration is 0.037 m/s? and the RMSE 0.055 m/s2.

For the EMS, a longer section with roughly constant fuel cell input power was chosen (see Figure 3, right). The
measured power of auxiliaries and traction demand was used as input for the model. Calibrating the efficiency
characteristics of the model components, the power required by the battery during the measurement could be
replicated within the model, leading to an accurate determination of the battery SoC. For the SoC, the measured
data has rather coarse resolution of data values, thus the simulated curve differs in spots, but approximates the
behavior well. The simulated battery power follows the measured data very well. Deviations can be found in
peaks and slight systematic offsets. For different orders of magnitude of power, the offset between the two lines
varies due to load dependent efficiency approximation. Quantitatively, the battery power has a mean deviation
of approximately 2.0% of its maximum power during the section, which corresponds to a RMSE value of 4.3%.
The SoC deviates with 0.31% in absolute values and 0.38% in RMSE. The overall hydrogen consumption matches
the measured data, which was to be expected during the constant fuel cell power phase.

With all deviations below 5% of the maximum values in the respective section, the model could be calibrated
successfully and is able to reproduce measured data for characteristic operational sections. During the project
phase all submodules will be validated and the procedure will be extended to the growing data set. With the
model matching the real hydrogen demand, it is expected that it shall be able to predict required hydrogen



consumption for optimized operational strategies as well.
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Figure 3: Left — driving dynamics simulation of speed and acceleration over distance compared to the measured
data. Right — Energy management simulation with fuel cell power, battery power and battery state of energy
over time in comparison with measured data.

4. Outlook - Energy Efficiency Measures

One major use case of the holistic model is to identify optimization potentials in operation. A key target figure
is the hydrogen consumption. With energy efficient operation, range and flexibility of the vehicle are increased,
leading to cost reductions for hydrogen supply and higher availability. To analyze the energy flow on the vehicle,
energy sources, sinks and all losses are quantified. In order to increase efficiency, the most evident options are
to either reduce the demand (traction and/or auxiliaries) or the losses (i.e. utilize more efficient operation
points). These two major approaches can be tackled with the presented sub-models. Compared to the use of
conventional, rule-based driving and energy management strategies in current operation, potential
improvement measure can be tested in a simulative manner.

To demonstrate this, the three different driving styles mentioned above were tested against each other. While
the All-Out style is the fastest, it also has the highest traction demand and prioritizes mechanical over
regenerative braking, thus missing out on potential energy recovery. On the roughly 1 h operational scenario,
Reduced Velocity and Coasting led to 9.1 and 11.2% reductions in traction demand, respectively. This decreases
overall hydrogen demand, but also battery stress, since acceleration phases are shorter and more braking energy
is recovered, which avoids deeper discharges of the battery.

Similarly, different EMS strategies were tested on the same scenario. It was found that the operation point of
the fuel cell has major impact on the overall efficiency. If operated in higher power levels, not only the fuel cell
efficiency decreases, but the battery is saturated during most of the ride, unable to store incoming braking
energy. It is therefore more efficient to charge the batteries either with a lower fuel cell power or optimally
during idle times of the train. The exact operation of the fuel cell also has a significant effect, e.g. preference of
constant power, following the load or the possibility to turn the fuel cell off during operation. The test cases
have shown a 13.7% decrease in overall hydrogen consumption between the shown EMS and the one from
Zhang et al. [2]. Besides the improvement potential demonstrated here, it is also worth mentioning that a very



simple EMS with high fuel cell power levels can be extremely inefficient with exceedingly high increases of up to
40% in hydrogen demand. It is therefore crucial to analyze the EMS.

With the fully validated toolchain, it is the aim to find a suitable driving and EMS strategy during project time
with easy to apply measures that can be introduced into ongoing operation, e.g. manual driving and fuel cell
control. These measures will be communicated to the operators for discussion and potential implementation.

5. Conclusion and Outlook

In the accompanying research of the Heidekrautbahn project, a holistic model was built for simulation and
evaluation of technical relationships and optimization potentials in the operation of hydrogen-powered trains
and refueling stations. The digital model of the hydrogen railway vehicles has been successfully validated using
data from real train operation. With deviations below 5%, the ability to accurately replicate the energy flows
and hydrogen consumption of the trains could be demonstrated. The results of this study have shown that there
are simple, rule-based measures for reducing hydrogen consumption through improved driving strategies and
energy management strategies. Both, the utilization of driving adaptations with reduced speed or coasting
phases and optimized EMS strategies can lead to decreases in energy demand of up to 10%.

The recommendations for energy- and thus cost-efficient operation can be used on one hand to reduce the
demand of hydrogen as a rare and valuable resource and, on the other hand, to gain operational flexibility and
avoid failures, thus increasing availability. Using the presented models, operators and infrastructure managers
can be supported in transition to emission-free railway transport, while the findings can serve as blueprints for
future implementations. In addition, the database offers a reference for operational knowledge with hydrogen
trains collected in various operating situations.

In this work, the model is tuned and parametrized for the trains used within the project. However, its capabilities
extend beyond this scope. It is possible to simulate various train types, such as battery electric, pure overhead-
line or bi-modal with respective energy management systems. Furthermore, besides the use case to rapidly
implement and tests further driving styles or energy control strategies, it also allows to estimate the required
component sizes of battery and fuel cell for specific use cases [4]. Finally, it is planned to include aging estimation
in the future, to utilize this information in further cost reductions.
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