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ABSTRACT Failures of safety-critical systems such as highly automated cars may result in loss of life,
significant property damage, or environmental harm. Their trustworthiness and acceptance by society relies
on safe operation, i.e., they have to be safer than their human-controlled counterparts, which is called
the positive risk balance and which is a prerequisite for the operation in the EU. Hence, guaranteeing
sufficient safety is a crucial task that requires rigorous examination. However, critical events such as severe
accidents are assumed to occur with probabilities of order 107 or less. For this, automated simulation-
based approaches for the purpose of statistical model checking contribute significantly to quantitative
safety assessment. Common methods such as pure Monte Carlo simulation are inadequate to estimate the
probability of these rare critical events due to excessively high simulation budget required. To overcome
this, we provide a mathematical framework for combining an optimization algorithm, here from the family
of optimistic optimization algorithms, with importance sampling in order to assess the safety of these
systems quantitatively. Our methodology relies on a given criticality function that assesses each state
of the underlying deterministic system regarding prescribed safety requirements. Applying the approach
to a common test function and a simulated braking scenario using the software SILAB showcases that
our method significantly reduces the required effort to quantify acceptable risk levels, compared to pure
Monte Carlo simulation.

INDEX TERMS Safety verification, safety-critical systems, optimistic optimization, statistical model

checking, rare events.

. INTRODUCTION

AFETY-CRITICAL systems (SCSs) are by definition
S systems whose failure can lead to severe consequences:
loss of life, significant property damage, or environmental
harm. Hence, guaranteeing that they are sufficiently safe is a
crucial task that requires rigorous examination. For complex
systems like robotic assistance (e.g., in surgeries) or even
more complex for automated mobility (e.g., autonomous
cars), that interact with a complex environment, this is diffi-
cult as i) hand-crafted analytical proofs require abstractions
that are often too pessimistic, ii) automated reasoning, e.g.,

The review of this article was arranged by Associate Editor Johannes
Betz.

model checking, needs a complete, accurate, and formal
description of the system and its environment, iii) exhaustive
examination (comparison with expectation) is impossible
due to its uncountably many instantiations, and iv) real-
world testing is very time- and cost-intensive, but also
far too risky. This can be partly overcome by an (1)
automated (to address i,iv) (2) simulation-based approach (to
address ii,iv)! involving (3) statistical methods for inferring
adequate safety arguments (to address i,iiiii). The latter
is due to the fact that statistical methods can provide
evidence although only finitely many instances are inspected
while each instance allows for individual simplifications, and

IThis relies on the validity of the models used for simulation.
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quantitative statements can take a level of significance and
accuracy into account.

As SCSs are typically carefully constructed already from
the beginning, we assume the probability of fatal failures
to be of small order of magnitude, say 107° or less. To
name an example, highly automated driving is introduced
(among other reasons) to decrease the number of accidents,
fatal or not. Therefore, automated cars have to be safer
than human-controlled ones, i.e., they achieve a positive risk
balance, which is a necessary requirement for the licensing
process, as prescribed by the German Ethics Commission
([7]) and ethics experts of the European Commission ([6]),
and recognized as acceptance criterion for automated road in
the ISO/TS 5083:2025 norm.? In particular, severe accidents
with humans caused by automated cars need to occur fewer
than about twice per one million miles [12], [21]. Tackling
the problem with finite, predefined test catalogs leaves blind
spots and makes relevant cases hard to identify due to the
SCS being a complex system operating in open context [27].
On the other hand, sampling-based methods such as pure
Monte Carlo simulation—where one randomly generates
simulations—are inadequate to estimate the probability with
a sufficient accuracy as the simulation budget required for
this may be excessively high [29].

In this article, we therefore investigate a system under
test (SUT) together with its environment by criticality-driven
simulation, regarding some imposed safety requirements
on the SUT, addressing the following research task:
Efficiently estimating the probability of rare critical events,
i.e., when the SUT violates the safety requirements. To this
end, we further assume the existence of a deterministic
function—we call it criticality function (regarding safety
requirements)—that maps each state of the combined system
“SUT+environment” onto a numerical value representing
the satisfaction or violation of the safety requirement.
This comes along with a threshold reflecting the safety
requirements such that critical events, i.e., violations of the
requirements, coincide with the criticality exceeding the
threshold.

In this context, we propose applying statistical hypothesis
testing to infer whether some generated sampling results give
probabilistic evidence that the safety requirements hold in
order to obtain a safety argument for the SUT [14]. For
efficient hypothesis testing of high quality, we need to derive
a low-variance estimator for the critical event probability
with tight confidence bounds from the simulation results. For
this, we suggest to deploy the common variance reduction
technique of importance sampling (IS) (see, e.g., [25]) to
artificially increase the occurrence of the (actually) rare
critical events during simulation. IS draws realizations from
a second so-called proposal distribution and accounts for
this when estimating the probability of interest. Although
other types of model checking approaches such as numerical

2https://Www.iso.org/standard/Sl920.html
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algorithms exist, the closed box nature of the mapping
between the scenario parameters and the criticality values
as well as the large number of states in complex scenarios
such as driving scenarios necessitates a statistical approach
(e.g., [14], [38]), which, as we are interested in checking
whether the probability of fatal failures exceeds some
threshold, directly amounts to statistical model checking.

For statistical model checking, observing fatal events is
not necessary. In particular, if prior knowledge about the
failure probability already exists, even without any observed
critical event, one may be able to provide accurate estimates
using Bayesian methods (e.g., [5], [38]). However, while
variance reduction is of course vital in order to keep the
model checking costs low, observing fatal events has the
practical advantage to inspect the causes in more detail and
maybe to even optimize the SUT again. Moreover, when
performing model checking of complex systems, the required
prior knowledge may not be available. Therefore, we aim at
guiding the simulations into critical regions and using IS in
order to get unbiased estimates.

We extend the well-established use of IS by accompa-
nying IS with an optimization algorithm for assembling
a proposal distribution. Applied to the criticality function,
the optimization algorithm guides the system into critical
events by incorporating previous simulation results. In this
work, we restrict ourselves to the family of optimistic
optimization (0OO) algorithms because they yield a partition
of the input space, which we exploit in a mixture importance
sampling approach. Ideally, the fineness of this partition
correlates with critical regions. Existing alternatives to OO
algorithms are cross-entropy techniques in order to find
a suitable proposal density. Such approaches often require
distributional assumptions (e.g., [36], [37]). In addition, OO
algorithms are powerful algorithms that are widely applicable
as they assume only minimal smoothness assumptions and
knowledge about the objective function [4], which we aim
at harnessing for finding a suitable proposal density for IS.

A usual approach to the here considered problem is
importance splitting (see, e.g., [30], [32]), which however
relies crucially on finding a suitable transition kernel to
simulate from a conditioned probability density, which is far
from trivial. In addition, as opposed to our work, a commonly
faced problem statement in literature is to modify transition
probabilities in a Markov decision process in order to see
critical situations more frequently (see, e.g., [3], [28]).

In this work, however, we modify the static environment
parameters of the SUT in the sense that we search for
parameter configurations that lead to critical events. Here, we
restrict our attention to the case of SUTs with deterministic
behavior w.r.t. static parameters. That is, if we run a
simulation of the combined system with the same parameters
again, we get exactly the same results in terms of criticality.
In other words, our goal is to assess the safety of the SUT by
estimating the probability that scenarios exhibiting a critical
behavior of the SUT occur.
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FIGURE 1. A graphical representation of the workflow. The idea is to use optimistic optimization in order to increase the fraction of critical samples. By applying importance

sampling, an unbiased estimator for the probability of a critical event can be computed.

Our proposed methodology should be seen as supplement
to, rather than substitution of, expert-driven safety assess-
ment. Apart from that, we also require a certain degree
of expert knowledge within the scope of our methodology,
e.g., for modeling a parameter space that includes relevant
phenomena and a well-defined criticality function (from
criticality analysis) that reflects the safety requirements
adequately.

1) Contribution: We contribute to the safety verification of
SCSs by providing a mathematical framework for combining
algorithms from the field of optimistic optimization with
IS. Our framework assesses the safety quantitatively by
estimating bounds on the occurrence probability of critical
events w.r.t. some given safety requirements. Experimental
results with a common test function and, in particular, on a
driving scenario simulated via the software SILAB,> confirm
the notably improved efficacy compared to pure Monte Carlo
simulation. An overview of our methodology is depicted in
Fig. 1.

2) OQOutline: In Section II, we briefly recapitulate the
idea of importance sampling and discuss related work. In
Section III, we outline the proposed methodology. Section IV
describes an exemplary application of the methodology, on
the test function Mishra’s Bird and on simulated driving
scenarios using Silab. In Section V, our findings are reflected
and future work is identified.

Il. BACKGROUND AND RELATED WORK
We start with a brief description of importance sampling and
its required ingredients.

Let Fy be an absolutely continuous distribution on
some space X with corresponding density px. Let further
g: X > R be some function. Consider the problem to
approximate the expectation E[g(X)] for X ~ Fx empirically.
The pure Monte Carlo (MC) method draws independent
and identically distributed (i.i.d.) realizations x1, ..., xy and
approximates E[g(X)] ~ ), g(x;)/N. If p .= P(k(X) > ¢,)
should be estimated, where in our setting x: X — R is a
criticality function and ¢, some threshold (see Section III),

3 https://wivw.de/de/silab
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we set g(X) := I(k (X) > ¢,) where I(-) denotes the indicator
function, taking the value 1 if the logical statement in the
brackets is true, O otherwise. MC, however, requires a huge
number of samples to reliably estimate small p, rendering
it computationally intractable. More precisely, in order to
obtain a reasonable relative error, the number N of samples
must be of order p_l, e.g., [18], which would require 100
samples in order to reasonably estimate a probability of
order 1076,

The idea of importance sampling (1IS) (see, e.g., [25]) is to
draw the realizations from another distribution, a so-called
proposal distribution with a corresponding proposal density,
which should put more mass on the region of interest.
However, since just sampling from the proposal distribution
and averaging the function values g(x;) would clearly impose
a bias, a change of measure has to be executed which
requires that the proposal density ¢ dominates the density
px. The motivation behind IS is that a clever choice of g can
significantly decrease the variance of the IS estimator pg,
which is defined as p, = 1/N Y I(k(x;) > c)px(xi)/q(x;)
in our case. In other words, a change of measure from Fy
to the distribution corresponding to ¢ is performed, leading
to the importance weights px(x;)/q(x;). Setting g(x) =
pxX)I(k(x) > c¢,)/p would result in an unbiased, zero-
variance estimator, however, it is intangible due to the
unknown value p that has to be estimated in the first place.
The crucial question therefore is how the proposal density
has to be chosen in practice since an inappropriate one may
even increase the variance of the estimator compared to the
variance of the MC estimator. For the variance &, of the IS
estimator, an approximate (1 —«) confidence interval is given
by [pg :l:tl\_ll_l(l —a/2)6,], where t{,l_l(l —a/2) denotes the
(1 — a/2)-quantile of a r-distribution with N — 1 degrees of
freedom.

Approaches based on IS for statistical model checking in
the context of SCSs and hybrid systems have already been
suggested in the literature. There are methods using, e.g., IS
with a cross entropy criterion [37], IS combined with guided
simulation by a variant of reinforcement learning [28],
mixture IS with a Rényi distance minimization criterion
[31], adaptive IS techniques [26], and adaptive IS combined
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FIGURE 2. A graphical representation of the methodology. Boxes depict elements of the methodology (inputs and output in dashed lines), arrows depict dependencies or data
flow. The numbering (1 — 8) is provided as a reference in the textual description of the methodology.

with Kriging in the sense that the unknown function is
approximated by Kriging to detect a suitable region where
to sample from next [1], [2].

Further, there are approaches invoking stochastic
optimization algorithms to some extent like [36] where the
optimal proposal density for IS is computed via stochastic
optimization. Ernst et al. [8] provide a tree search algorithm
that iteratively finds critical inputs. In contrast to our work,
they do not intend to estimate the probability of critical
events. Gerwinn et al. [9] use statistical model checking
for the safety verification in nested optimization problem
setting to which they apply a randomized maximization
algorithm to compute confidence bounds for the probability
of satisfaction.

The application of a multi-armed bandit strategy for sta-
tistical model checking has been done by Musavi et al. [20],
but with a different goal, i.e., approximating the probability
of attaining a critical state after at most k time steps,
starting from a non-critical initial state. They do not perform
statistical tests as they restrict themselves to approximating
these probabilities of failure.

Reference [15] propose the Daisee algorithm which
combines stratified IS and multi-armed bandits by starting
with an initial partition of the underlying space and defining a
proposal distribution on each region which leads to a mixture
proposal distribution. They iteratively select a region in a
multi-armed bandit style, i.e., taking the region for which the
respective upper confidence bound is largest, and adaptively
update the weights while letting the partition fixed. They also
propose the HiDaisee algorithm which iteratively learns
a finer partition in the regions where the density fluctuates
strongly.

Currently, there are several approaches in the literature
where the cross-entropy, the Kullback-Leibler divergence
or some specific criterion is optimized. We are not
aware of an approach where an optimization algorithm
is applied first and the results in form of a partition
of the input space or the sampled points are used for
finding a suitable proposal density, which is done in this
work.
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. METHODOLOGY

The general structure of our proposed methodology to derive
quantitative safety statements for SCSs is depicted in Fig. 2,
along with involved elements, dependencies and data flows.
Following the numbering (1 — 8) given therein, we lead
through the process in detail.

A. INPUTS AND OUTPUT (ELEMENTS 1 AND 8)

The proposed methodology is intended to contribute to the
safety verification of a safety-critical system (SCS) w.r.t.
imposed safety requirements, both of which we assume are
given beforehand (El. 1). More precisely, we consider the
SUT together with the environment in which it is intended
to function (operational design domain), also referred to
as combined system “SUT+environment”. Our methodology
ultimately aims at testing the system’s compliance with the
safety requirements (El. 8).

In order to ensure the applicability of the methodology,
we assume a d-dimensional space of relevant parameters
X CRYdeN, reflecting the environment of the SUT to
be given (e.g., specified as a logical scenario [16], [22]). A
fixed parameter configuration is denoted by x € X'. Attached
to the parameter space, we further assume that a probability
density function py is given, where X denotes the random
variable whose realizations correspond to single parameter
configurations.

As a further crucial prerequisite for applying our method-
ology, we require the user to be able to determine a
numerical, bounded criticality value for every realized
parameter sample x € X with regard to the imposed safety
requirements.4 That is, a bounded criticality function «
defined on the realizations of X is required reflecting the
degree of violation of the safety requirements (El. 1). In
addition, the user has to determine a suitable threshold c,
so that the event {«x(X) < c,} coincides with the safety

4For instance, if a model of the combined system “SUT+environment”
is at hand that can be simulated with a simulator, the criticality may be
obtained by a criticality monitor observing the criticality of the simulation
runs. For the sake of simplicity, we assume this case for the following
considerations.
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requirements being satisfied. Thus, the objective we aim for
with the methodology is to obtain a confidence statement
about the probability that a critical event w.r.t. the pair (k, ¢,)
occurs:

p=PX) = cp). (D

In this work, we do not consider uncertainties that might
arise from, e.g., non-deterministic behavior of the SUT,
i.e., we assume that the system behavior can be considered
deterministic in the sense that the same parameters defining
the scenario lead to the same criticality value. In our
simulations, we start with a logical scenario w.r.t. the pair
(k, ce) (see Section IV-B) from which random concrete
scenarios are realized. We assume that simulating the
concrete scenario does not add further uncertainties to p
(cf. [22]).

B. STATISTICAL HYPOTHESIS TESTING (ELEMENTS 4
AND 7)

We propose employing statistical hypothesis testing in order
to infer whether the probability of critical events occurring
for the SCS is below a prescribed threshold 6 [14].
This translates to the following null hypothesis for testing
(El. 4):

Hy:p>0, H :p<0, for p=PkX)>ce) (2)

with level o}

C. CRITICALITY-DRIVEN OO SIMULATIONS (ELEMENTS
5 AND 3)

As explained earlier, we expect the critical event probability
p wrt. (cc,k) as given in Eq. (1) to be of order of
107% or less if « and ¢, are chosen suitably to reflect
the safety requirements. To overcome the ineptitude of pure
MC for estimating p,® we propose a two-phase approach
that combines IS with OO. With the ideal proposal density
q < pxI(k(-) = ¢,) in mind, a natural strategy is to try
to detect the critical regions, i.e., where ¥ > ¢,, and to
significantly increase the mass of those regions. In other
words, we draw criticality-driven OO samples in the first
phase of our approach, guiding into critical regions, while
resampling from the resulting proposal distribution in the
second phase (El. 5; see Section III-E).

The core idea of OO is to optimize a given function
(here the criticality function k) over a measurable space
X by iteratively finding a gradually finer partition of X,
aiming at obtaining the finest resolutions in regions with
high function values (see, e.g., [4], [19]). More precisely, OO
methods incrementally build a hierarchically structured K-ary

SNote that for a given SCS and given safety requirements, both 6 and «
will be of individual nature as they may be domain- and stakeholder-specific,
although they might be derived from generally accepted values [12].

®Note that we would have to provide a number of samples in the
reciprocal order of p, i.e., 10% or more, to ensure that the variance of the
pure MC estimator is reasonably low. In general, this is far from feasible
in terms of available simulation budget.
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tree {Py;} that forms a disjoint partition of the parameter
space X at every depth & > 0, where each node (h, i) (h:
depth, i: index) is associated with a specific subregion of X.
Whenever a node is split, meaning that K child nodes are
created, the corresponding subset P, ; will be divided among
its children, which leads to smaller subsets with increasing
depth h. Based on the respective assumptions, some OO
approaches compute optimistic upper bounds on the maximal
function value on each of the subregions to indicate the
profitableness of choosing the corresponding nodes.

As to obtain criticality values «(x;) for the IS proposal
distribution, the following iteration loop is carried out in
the first phase (criticality-driven OO simulation, El. 5).
According to the OO algorithm at hand, single parameter
configurations x; € X are generated iteratively and passed as
input, e.g., to a simulation engine to simulate the combined
system SUT+environment for the parameter configuration x;.
The corresponding criticality values «(x;) are determined.
For instance, a criticality monitor (El. 3) observes « for the
simulation run induced by x;. The criticality monitor might
also observe whether a critical event occurs (i.e., kK > c¢,).
Then, the corresponding criticality value is passed back to
the OO test manager (see Section III-D) to derive the next
configuration x;;; according to the chosen OO algorithm.
This realization x;1 serves as next input for the simulation,
etc., until some stopping criterion becomes valid.

D. OO TEST MANAGER (ELEMENT 2)

For criticality-driven OO simulation, we need to instantiate
the OO test manager (El. 2). That is, a specific OO
algorithm is chosen and set up with the corresponding
hyperparameters (if any), along with the simulation budget N.
In this work, we consider the following three OO algorithms.

The Deterministic Optimistic Optimiza-
tion (DOO) algorithm, introduced by Munos [19],
exploits certain knowledge of the smoothness of the critical-
ity function to approximate its global optimum sequentially,
quantified by a so-called semi-metric which is assumed to be
known. The algorithm hierarchically partitions the parameter
space X into regions whose diameters decrease with the
depth (hierarchy level) A. In the present work, we restrict
ourselves to the setting §(h) = vo with v > 0, p € (0, 1),
as suggested in [19, Sec. 3.2].

In the same setting, Munos proposes a second approach:
the Simultaneous Optimistic Optimization
(S00) algorithm [19]. It allows for the semi-metric to
be unknown, which makes SOO applicable in a broader
sense. A user-given function hpmax(f) is intended to control
the algorithm’s behaviour regarding the trade-off between
exploration and exploitation, and thus has to be chosen
carefully. Large values for . (f) can lead to deep exploiting
trees such that regions with high rewards in the past are
sampled from more often, while small values force the
algorithm to sample more in less explored regions.

Bartlett et al. [4] provide the Sequential Online
Optimization (SequOOL) algorithm that only requires
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a local smoothness of the function around (all of) its global
optima However, SequOOL can be applied without knowing
the corresponding smoothness parameters as emphasized
in [4].

As for drawing samples during an OO algorithm, we
suggest to sample realizations uniformly from the regions
(instead of defining a fixed, representative point for each
region as suggested in [4], e.g.,) for our purposes. By
this, each region is armed with a uniform proposal density
due to the fact that OO algorithms aim at finding the
global optimum whose occurrence probability is clearly zero
(unless the distribution has a point mass there). Note that
sampling from a non-uniform density, e.g., the conditional
density of X on the given region, would potentially lead
to the conflictive situation that the interesting subregion is
disadvantaged if the region-specific proposal density is low
there, which can be expected as critical cases are assumed
to be rare, hence decelerating the respective algorithm.

E. RESAMPLING AND CONFIDENCE ESTIMATE
(ELEMENTS 5 AND 6)

Now, deriving a suitable estimate along with an upper
confidence bound for the critical event probability p (El. 6)
would typically require i.i.d. realizations x;. However, this is
not the case when applying an OO algorithm since we have
realizations from different distributions, where the realization
x; in a given iteration determines which density is sampled
from in the subsequent iteration. This dependence and an
unknown dependence structure due to « being a unknown
function (i.e., the distribution of « (X) is intangible) do not
allow for the application of standard estimation techniques.

As our criticality function is unknown, we first sample
OO-simulations x,(cl), k = 1,...,N; < N, to identify
critical regions and apply a mixture IS technique afterwards
(resampling, El. 5). Since OO algorithms are designed to
(asymptotically) find a global optimum, we can expect them
to provide a much finer resolution of the partition where the
criticality function takes large values than in regions with
small function values.

Let J be the number of final leaves of the partitioning
tree that the applied algorithm has computed, corresponding
to disjoint regions. In order to maintain this partition, our
idea is to apply mixture IS, i.e., our proposal density is a
mixture of densities in the sense

J
G =Y _Wigj. 3)
j=1

where g; is the uniform density on the region P; correspond-
ing to cell j. Such uniform region-specific densities also have
been suggested in [15]. It remains to define suitable mixture
weights wy, ..., wy such that Zj wj =1, wj > 0 for all j.
We use criticality-based weights, based on the mean
criticality of all samples found in a particular partition.
For this, we first normalize all criticality values sampled
from the OO-simulations to [0, 1], using a standard linear
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transformation that maps the lowest observed value to 0
and the highest to 1. Based on these normalized evaluations
iE(x,({l)) we define the weight w; of cell j as

Nj
- 1 .
wj=c+ IVJ ZK(x,(:)>Ij(xl(<l)) “)
k=1
where
1, xeP;
iw=ly 17 ®

and N; < N; denotes the number of observations from this
particular cell. We add an additional constant ¢ = 1.0 to the
weights to prevent regions with zero weight (due to the lack
of corresponding observations). As the weights from Eq. (4)
are contained in the interval [1.0, 2.0], the final weights are
computed by the standardization

wj = % (6)
Dim1 Wi

As for the drawing process for the subsequent (N — Ni)
samples, note that w; can be interpreted as the probability
of drawing a realization according to the respective g;. This
can be easily realized with a multinomial distribution on
the set {1,...,J} with the probability vector (Wi, ..., wy).
However, it has been pointed out (see, e.g., [24]) that
deterministic mixture sampling, i.e., generating around
Wwj(N — N1) samples according to g; for all j, leads to an
estimator with even lower variance. Hence, this variant may
be recommended which can be realized by standard stratified

sampling.
Once the mixture proposal density is selected, we can
draw independent realizations x,(cz), k=1,...,N—Ni, from

it and compute the approximate confidence interval for p.
The mixture IS estimator is then given by

1 N—N; I(K(x,(f)) > cK)pX (x,((z))
Pay = 57— — NN C)
N=Mis Wik or(er)

where ji indicates the region in which x,({z) falls and where
vol(P)) = fpl_ 1dx. As for the variance of the mixture
IS estimator p,, (see, e.g., [11]), we can only use the
evaluations /c(x,i )) to empirically approximate it since the
actual shape of the function « is not known, which leads to

2
2 2
A2 1 N—N; I(/c(x,(C )) > ck)px<x,({ )> .
qu = N—_N A~ 1 _pqg, 5 (8)
b k= Wi vol(Py)

F. ALGORITHM
Our overall algorithm is given in Algorithm 1.

We assume that a suitable criticality function « is
available. Of course, the design of such a criticality function
is very difficult in practice (cf. [35]). This is however not a
problem induced by our methodology but the quantification

VOLUME 6, 2025
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TABLE 1. Mean variance of the probability estimators (based on 1000 replications each) using the reward-based weights, compared to pure Monte Carlo (MC) (left column). Ng
denotes the number of repetitions in which the algorithm was able to detect at least one critical event. The number in brackets denotes the variance estimated by MC based on

these Nj repetitions.

MC D00(2000,0.7) 500(0.6) SequOOL
Cr a.lg/IC NR o 31?) NR o 211) NR 4 211) NR
60 0.02281013 1000 0.00428413 1000 0.00381313 1000 0.00811913 1000
100 0.00250513 1000 0.00016713 1000 0.00004513 1000 0.00015213 1000
106.5 0.00009313 634 0.00000513 1000 0.00000013 1000 0.00000013 1000
(0.00014713)

Algorithm 1 OO-Driven Mixture IS
Require: Total simulation budget N, OO budget N, OO
algorithm, density py, criticality function «, confidence
level «
Output: Confidence interval for crit. event probability p
as in Eq. (1)
k<1
while k£ < N; do
x,(cl) < APPLYOOALGORITHM
k<—k+1
end while
(Pj); < GETREGIONS(OO algorithm)
(g));j < (1/vol(Py));
(Wj); <= (Wj); as defined in Eq. (6)
for k=1,.... N—N; do
X ~ Qy, i.i.d. for a distribution Qy;, with density g, as
defined in Eq. (3)
x,(f) < DRAWREALIZATION(X})
end for
qu <« pq‘ as defined in Eq. (7)
62 L 67 as defined in Eq. (8)

qn
return fo, P+ Gasty w1 (1 = /N =, .

of criticality is a general requirement for safety verification.
It is important to note that the choice of the threshold ¢, is
not necessary for the OO-algorithm. Therefore, our method-
ology is robust against potential changes in the criticality
threshold, e.g., by updated safety standards, allowing for
re-computing the estimates for a different safety threshold
without requiring to repeat the expensive simulations or real-
world runs.

IV. EXPERIMENTS AND RESULTS

A. APPLICATION ON A TEST FUNCTION

We apply Algorithm 1 in different variants on a test criti-
cality function to initially validate our proposed probability
estimation (El. 6 in Fig. 2). Mishra’s Bird [17] is a standard
test function for optimization and used, among others, in the
context of reliability analysis for automated driving [23]:

[(l—cos()q))z}

K (x1,x2) = —sin(x2)e )
e 2
— cos(xl)e[(1 sintx2)) ] — (1 —x2)%,
here constrained on X =[—10,0] x [—6.5,0].
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TABLE 2. Mean relative absolute error of the probability estimators (based on 1000
replications each) using the reward-based weights. The number in brackets denotes
the error estimated by MC based on the Nj repetitions where at least one critical event
was detected.

Ck MC D00(2000,0.7) | 500(0.6) | SequOOL
60 0.0498 0.0229 0.0217 0.0307
100 0.1621 0.0403 0.0219 0.0341
106.5| 0.7243 (0.5652) | 0.1941 0.0282 0.0453

Mishra’s bird can be seen as a typical criticality function
that exhibits multiple local extrema and only few very critical
peaks. In this particular case, we further know that the
function is Lipschitz continuous and bounded with optimum
k* ~ 106.764537 on X.

We consider ¢, € {60.0,100.0, 106.5}, corresponding
approximately to p € {0.02336,0.00248, 9.362 - 10’5},
respectively.” We instantiate Algorithm 1 with N = 10%,
N1 = 500, px = 1/vol(X) (uniform dist.), « = 0.05, and
apply all three OO methods DOO, SOO, and SequOOL with
binary trees (K = 2). While no hyperparameters are required
for SequOOL, we heuristically test several admissible
configurations for DOO and SOO w.r.t. the exploration-
exploitation trade-off in the OO simulation phase. As a result,
we investigate DOO instances with (v, p) = (2000, 0.7) more
closely, whereas for SOO we follow an approach in [19]
by choosing hmax () = ¢, and opt for ¢ = 0.6 (hpax fairly
restrictive w.r.t. exploitation). We denote these parameter
settings by writing DO0(2000,0.7), S00(0.6), and SequOOL
(since no parameters are required here) in the tables below.
The experiment is repeated with 1000 replications for every
instantiation of Alg. 1. In Tab. 1, we report the mean
variances for the different experiments, comparing standard
MC with our approach (Alg. 1), while Tab. 2 shows the mean
relative absolute errors, i.e., the average of the [p® — p|/p,
for the estimated probabilities p® on replication b, over all
1000 replications.

We can see from Tab. 2 that our approach reliably
estimates the critical event probability with a lower mean
absolute relative error than MC in all experiments. At the
same time, it improves the variance (see Tab. 1), up to two
orders of magnitude, compared to MC.

As for the applied OO algorithms, it seems that SequOOL
and SOO are better suited for our methodology than DOO.
The reason for that is, that our methodology heavily favours
exploration over exploitation. Note that we are not interested
in a single global optimum, but in the full area where the

7TEstimated by 108 Monte Carlo samples.
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FIGURE 3. Depicted are four different states of the scenario. In a), during the initialization condition, the ego-vehicle is still far away from the lead vehicle. Compared to the
lead vehicle, ego is set up with a slightly higher speed (+3ms~") and slowly approaches the leading car until it has reached the time headway of 1.5s in b). Reaching the time
headway of 1.5s, the front vehicle will abruptly start braking until it has reached its target velocity Viarzer, Which is shown in c). Because the ego-vehicle requires a certain
reaction time and has a limited maximum deceleration, its actual time headway distance will fall under the ACC’s target time headway distance of 1.5s, which is visualized by the
two different arrow lengths between the vehicles. During this phase, the criticality given by Eq. (10) and (11) is measured. The braking maneuver ends as soon as the velocity of
the ego-vehicle will fall below the velocity of the lead vehicle. This is the end condition shown in d). The start and target velocities Vst and viager of the leading vehicle are the

scenario parameters and are held constant for each scenario.

criticality « can exceed the critical event threshold ¢,. SOO
and SequOOL naturally lean more towards exploration, since
they do not require any information about the smoothness
of the input function. However, DOO leans more towards
exploitation as it works on assumptions on how much the
criticality can raise in its individual partitions. Due to this,
SO0 and SequOOL are not only more easily configurable
than DOO but also much more naturally-suited towards our
methodology.

B. APPLICATION TO A DRIVING SCENARIO IN SILAB
Additionally, we also applied the algorithm to a driving
scenario simulated in the commercial software SILAB, v7.2,8
which we have extended with a specific traffic controller
to generate the repeatable traffic conditions required by our
scenario.

The scenario for our study is a typical highway braking
scenario. Our ego-vehicle is equipped with an Adaptive
Cruise Control (ACC) system. The goal is to keep a
fixed target time headway of 1.5s to the leading vehicle.
The scenario is structured into two scenes. During the
initialization scene, the ego-vehicle approaches a slower lead
vehicle from a distance of initially 1.75s time headway.
When the ego-vehicle has reached the distance of 1.5s time
headway, the scenario will enter the second scene, where the
leading vehicle suddenly begins to brake. As the ego-vehicle

Bhttps://wivw.de/en/silab-2/
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cannot brake fast enough, this will lead to a distance smaller
than the intended target distance and thus to possible critical
behavior. A more detailed overview of the scenario can be
found in Fig. 3.

The internal traffic engine in SILAB allows to mainly
control additional vehicles based on virtual waypoints /
event locations, e.g., the ego vehicle drives over a certain
virtual waypoint and triggers a behavioral change of a certain
traffic participant. This procedure is helpful if one wants
to repeat the same scenario in a specific road layout and
everything can be triggered location-based. For our scenario,
we need to re-setup the other traffic participant thousands
of times with varying relative distance and speed to the ego
vehicle on a highway. Because the speed and behavior of ego
changes in every situation, there is no way to define this in
a location-based manner. But, SILAB offers the possibility
to control up to 20 additional traffic participants through a
specific interface which allows to manipulate the 6 degrees
of freedom of the 3D objects. A simplified physics model
for longitudinal and lateral position, speed and acceleration
was implemented and used and can be configured to relocate
the vehicles, change speed instantaneously to create new
scenario starting conditions and also allows to command
acceleration and deceleration maneuvers. Fig. 3 shows that,
e.g., during initialization the lead vehicle is set up at a certain
relative distance and speed and whenever c) is reached, a
braking command is issued with a certain deceleration. It
should be mentioned, that the automation system is using
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ground truth data from the simulation, we did not add, e.g.,
a radar simulation, which would add noise and make the
experiments non-repeatable.

The scenario is parameterized using the following two
parameters. The first parameter is the start velocity Vgart
of the leading vehicle in m/s at the beginning of the
simulation. The second parameter is the target velocity
Vtarget Of the leading vehicle after the braking process
in m/s. The parameter space is constrained to X =
[24.0, 32.0] x [15.0, 20.0] (uniformly distributed). As metric
for the criticality, we measure the largest difference between
the intended target distance diarget(f) and the actual distance
dyehicles (Vstart, Vtarget, 1) between the two vehicles w.r.t. the
scenario parameters Vgeare and Viarget. More precisely, for each
test run, the respective distance is measured at each time step
and the criticality value assigned to the whole test run is this
largest difference. Let the timestamps ¢, and #, denote the
start and end of the measuring time period during the braking
maneuver. Formally, the criticality ¥ of one simulation run
is therefore defined by

deritical (Vstarts Vtarget)

(10)

K (Vstart» Vtarget) = c
norm

and

dcritical (Vstarts Vtarget) = tlgazf (dtarget(t) — dyehicles (Vstart> Viarget, l))
s (4
(11

normalized by a constant cporm. By this definition, the crit-
icality increases proportionally with the decreasing distance
below the intended target distance of 1.5s time headway (ego
undershoots or cuts into the target distance of the ACC).
For the scenario and ACC at hand, we choose ¢porm = 15m,
because in none of the scenarios the ego vehicle undershot
the target distance with a higher value, and ¢, = 0.85. In
the context of certification of SCSs, the manufacturer and
the corresponding authorities have to choose values for these
constants in dependence of the targeted safety requirements.
¢, should be chosen in a way that all values above ¢, can
be considered critical or undesired.

We initialized Algorithm 1 with N = 1000, N; = 150.
Since SOO is easily configurable and achieved the best results
in Section IV-A, we only ran the experiments with SOO as
subroutine, using the same hyperparameter configuration as
in Section IV-A. Due to the long runtime of the individual
simulations, we repeated the experiment only 40 times,
leading to overall 40.000 simulation runs being performed.
The results are compared to Monte Carlo simulations (N =
1000) and reported in Tab. 3. In this experiment, most of
the MC repetitions fail in the sense that no critical event is
observed. On the contrary, our method was able to detect
in all 40 repetitions at least one critical event and also
decreased the variance by multiple orders of magnitude
compared to Monte Carlo. Of course, one would in practice
not use the degenerate zero-variance estimate p = 0 but
compute a confidence interval based on other means, for
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TABLE 3. Results from the simulation study in SILAB. The experiment was repeated
40 times. The calculated values for mean 62 are based on the Ny repetitions for which
the algorithm was able to detect at least one critical event.

Monte Carlo S0O0(0.6)
mean p 7.5-107° | 815-10°°
mean 62 1.0-1073 | 3.73-10°7
Ng 3 40

TABLE 4. Results from the simulation study in SILAB. The experiment was repeated
20 times. The calculated values for mean and median 62 are based on the Ng
repetitions for which the algorithm was able to detect at least one critical event.

Monte Carlo SO0O(0.6)
mean p 0.00105 0.00096
mean 62 0.00175 0.00183
median &2 0.001 4.83-107°
Ng 12 17

example, a Clopper-Pearson confidence interval (e.g., [34]).
However, this interval would, for example for o = 0.05, be
approximately [0, 0.00368], i.e., with a width of order 1073,
while the corresponding one-sided IS-intervals would have
a width of order 1073.

We performed 40 repetitions of the experiment on the
SILAB scenario (and 1000 for the experiment on Mishra’s
Bird) to show the improvements of our algorithm compared
to Monte Carlo. In practice, one would run only a single
batch of simulations instead. For this, an exemplary 95%-
confidence interval for SOO from one of our 40 batches
from the SILAB experiments is [2.97 - 107>,9.81 - 1077].
In the context of our methodology, this confidence interval
indicates that, with a confidence of 95%, the probability p
that a critical event occurs (here: that the ego vehicle is more
than 0.85-15m = 12.75m below the targeted safety distance)
is lower than 0.00981%. If p is lower than the 6 specified
for this scenario by the responsible authorities, then the
system would be accepted w.r.t. the safety requirements, else
it would be returned to the engineer for further modification.

We considered another scenario with a larger search space.
In particular, we allowed for the time headway at which the
ego vehicle starts to brake as well as the maximum decelera-
tion to vary, leading to the four-dimensional parameter space
X"V =124.0, 32.0] x[15.0, 20.0] x[1.25, 1.8] x[—5, —3.2].
We again consider a uniform distribution, now over A"V,
All other settings are as before, we only change the safety
threshold to ¢, = 0.99. We simulated 20 repetitions. The
results are presented in Tab. 4.

While the results in Tab. 3 clearly favor our approach,
apparently, when considering the mean variance, the results
in Tab. 4 favor Monte Carlo, However, the median variance
achieved by our approach is considerably smaller than the
median variance achieved by Monte Carlo. As explained
above, all cases where no critical event has been observed
does not correspond to a meaningful estimated variance. We
now compute the confidence interval widths and consider
the Clopper-Pearson intervals [0, 0.00368] for all repetitions
without critical event. The resulting boxplots are shown in
Fig. 4. They reveal that while in the simulations over the
parameter space X, all interval widths corresponding to our
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FIGURE 4. Boxplots of the confidence interval lengths corresponding to the simulations with parameter space X (top) and X"V (bottom), respectively. The left boxplot

always corresponds to Monte Carlo, the right boxplots to our method.

method are smaller than those corresponding to Monte Carlo,
there is one outlier in the simulations over the extended
parameter space X"V, resulting from a variance outlier that
distorts the arithmetic mean in Tab. 4. The effect results from
the well-known fact that the proposal distribution is often
skewed (e.g., [13], [33]) and can be considered as a general
issue of IS, and not of particularly our approach. Apart from
this instance, our method clearly dominates Monte Carlo.

V. CONCLUSION AND FUTURE WORK

We presented a methodology for applying optimization
algorithms in order to assess the safety of SCSs w.r.t. some
given safety requirements quantitatively. Our mathematical
framework comprises applying these optimization algorithms
on a (deterministic) criticality function reflecting the safety
requirements to increase the frequency of rare critical events
during simulation, and estimating bounds on the probability
of their occurrence. For this, we proposed a strategy that
combines optimization and importance sampling (IS). The
optimization methods identify critical regions, enabling to
suitably select the weights in the resulting mixture proposal
density for IS. In the context of this study, we restricted
ourselves to optimization algorithms from the field of
Optimistic Optimization (OO) (specifically DOO [19], SOO
[19] and SequOOL [4]) as input algorithms as they provide
some advantages for our methodology like a ready-to-use
partitioning of the input space.

Strengths of our approach: i) Reliable estimation of rare
event probabilities with a lower relative error than MC in
all performed experiments. ii) A considerable improvement
of the variance estimator compared to MC which improves
even further with a decreasing critical event probability.
iii) Reliable detection of rare critical events despite limited
simulation budget. iv) User-friendly applicability thanks to
the absence of hyperparameters for SequOOL and a single
hyperparameter for SO0, respectively.”

9As for a good hyperparameter selection, our methodology enables the
use of parallel approaches such as POO [10] with, e.g., DOO as base
algorithm so that suitable hyperparameters can be chosen adaptively.
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Topics for future work: i) Considering multiple safety
criteria, given by criticality functions «,, r = 1,..., R,
in parallel, may either lead to a weighted aggregation of
these functions into a single criticality function or, more
informative and avoiding defining the respective weights, to
multiple testing. ii) Extension of our approach for the case of
noisy function evaluations, e.g., induced by non-deterministic
behavior of the SUT. This amounts to the application
of stochastic OO algorithms and the estimation of p via
potentially nested simulations in order to capture the non-
determinism for each parameter configuration. iii) Lastly, as
our methodology is not strictly depending on the use of OO
algorithms, it would be interesting to apply other types of
optimization algorithms as well (like, e.g., gradient-based
methods or particle swarm methods).
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