
Bridging XLUUV and MASS – Technologies for
Autonomous Multi-Domain Operations

Carsten Rethfeldt1, Alexander Klein2, Malte Riesner3,
Martin Kurowski1, Jannis Stoppe2, Svenja Schubert3, and
Torsten Jeinsch1

1Institute of Automation, University of Rostock, Germany
2German Aerospace Center, Germany
3TKMS GmbH, Germany

E-mail: carsten.rethfeldt@uni-rostock.de

Abstract.
The development of extra-large unmanned underwater vehicles (XLUUV) has made sig-
nificant progress. In that context, the paper describes firstly the evolution of the innova-
tive technological vehicle basis MUM (Modifiable Underwater Mothership). A MUM full
scale demonstrator of 25 meters length has been developed and is currently in production.
MUM has been designed to be operated autonomously. This includes both the execution
of mission-specific tasks as well as transit (surfaced and submerged) and port opera-
tions. In order to achieve a successful system realization, situation awareness capabilities
and safe autonomous navigation become mandatory, requiring specific technologies that
bridge XLUUV and MASS. This connection to MASS is shown by explaining the de-
velopments in the areas of maneuverability and automated vehicle guidance as well as
reliable environmental perception, which are essential for the realization of vehicle auton-
omy, especially in surface operation. On the one hand, the article describes the methods
for designing the MUM demonstrator’s actuator configuration and maneuvering system
ensuring the necessary maneuvering capabilities and, on the other hand, outlines the se-
lection process for optical sensor systems and AI-based evaluation methods in a dynamic
maritime environment enabling reliable obstacle avoidance on the XLUUV. The study
concludes with simulations of the performance of the maneuvering system of the MUM
demonstrator configuration and the results of the implemented visual perception system
using recorded sensor data in a port scenario.

1 Introduction
1.1 Motivation
The market for unmanned underwater vehicles (UUV) is growing. New developments reach higher levels
of vehicle autonomy and extend their mission capabilities consistently. Such autonomous underwater vehi-
cles can fulfill a wide range of mission types, depending mostly on the main vehicle particulars and system
configuration. In common usage, it has become established to distinguish between AUVs (autonomous
underwater vehicles), LUUVs (large uncrewed underwater vehicles) and XLUUVs (extra large uncrewed
underwater vehicles). In principle, each of these three vehicle types can operate in an autonomous man-
ner. Thus, the vehicle type does not classify the level of automation, but rather the vehicle size. No
clear definition exists. However, the term AUV usually refers to small autonomous underwater vehicles



Figure 1: Isometric view of the MUM demonstrator applied for ROV operations

of a length less than approximately 5 meters. Vehicles larger than AUVs and smaller than approximately
15 meters are usually called LUUV. These vehicles can often be launched and recovered by a service
vessel. Provided with the necessary energy capacity, they can start their mission from harbor. However,
this requires their safe participation in maritime transport. Often, LUUVs do not have the required
performance in surfaced mode to operate and maneuver in waves and wind and are not safely visible for
other participants in maritime traffic. They are usually not equipped with a navigation mast that brings
navigation and communication systems into a reasonable height above the sea surface. For this reason,
most LUUVs have to be transported to the operational sea area by a service vessel. The main dimensions
of such LUUVs are often constituted to fit into standard container sizes, thus allowing easy transport by
truck or ship. Several designs include a small payload bay to integrate medium size payloads, e.g. small
remotely operated vehicles (ROVs).

Vehicles of the XLUUV type are not limited in size. Current developments reach lengths of more
than 25 meters and a width of more than 6 meters [1]. While such dimensions allow submarine-like
applications, which is why the most unmanned vehicles are attracting increased interest for military
applications, XLUUV are well suited for a wide range of civil applications, e.g. protection of critical
maritime infrastructure or maintenance work on subsea structures and systems without the need for a
surface vessel. Within the civilian context, the concept of a subsea shuttle tanker was presented as a
potential alternative to subsea pipelines, umbilicals, and tanker ships [2]. The proposed design has a
length of 100–200 m and a diameter of 10–20 m. However, the size of the vehicles also leads to new
technical and legal challenges in the operation of these unmanned vehicles. Recent innovations aim to
develop new approaches towards modularity. A leading example of this is the Modifiable Underwater
Mothership (MUM), where the overall aim is to develop a novel class of underwater vehicles to cope with
a wide range of operations [3]. The modular vehicle design breaks with the traditional concept of a fixed
hull structure. Its shape is completely variable in consequence of the mission dependent assembly and
arrangement of basic and mission specific modules, as illustrated exemplarily in Fig. 1.

A comparison between XLUUVs and the smaller AUVs and LUUVs shows significant differences.
Usually, AUVs are deployed for scientific or commercial purposes and can be equipped with specialized
payloads for a specific monitoring mission. They are designed for short to medium missions at depths
of up to 6,000 m and are able to operate autonomously for limited periods of time and space. The
authors of [4] provide a comprehensive overview of different vehicle platforms with a focus on under-ice
applications. What all these vehicles have in common is the fact that a ship is required for deployment,
allowing the AUV to be launched and recovered using the ship’s crane or A-frame or a specialized launch
and recovery system (LARS). This can be quite challenging depending on the weather conditions [5]. In
contrast to that, XLUUV are designed for longer, complex missions in which more or larger sensor arrays
or simply heavy payloads can be transported. In the case of payloads that are transported for use in the
operational area, interaction with the environment may be necessary, such as placing a station on the
seabed or using a drilling rig to extract raw materials [3]. Another key difference is the way the vehicles
are deployed and recovered, as XLUUVs are not deployed from a ship in the area of operation as usual,
requiring a transition to port-to-port missions instead.

Port-to-port missions generally impose strict requirements on the vehicle technologies used for au-



tonomous vehicle guidance and the potential remote access by a supervisor. Basically, a port-to-port
mission can be divided into several phases. These include the ship-like surface passage in public fairways
or in restricted and safety-critical areas such as ports, the usually submerged transfer to the area of opera-
tion, and the execution of the mission itself while submerged or surfaced. The different mission phases are
subject to specific requirements, which can be roughly grouped into localization and navigation, vehicle
guidance and control and operational safety, of which the first two challenges will be addressed in this
contribution. In terms of vehicle operational safety, fault tolerance has to be considered with regard to
sensor and actuator faults, as these can restrict both navigation and vehicle control [1].

1.2 Related Work
Precise localization and navigation are key elements for autonomous vehicles in ports, as they ensure that
the vehicles follow their path and thus are able to avoid collisions. In ports in particular, buildings and
environmental and weather conditions such as wind, currents, tides and sedimentation make navigation
difficult since individual sensors may be limited. The navigation solution will have to be robust against
increased sensor data variance and sensor failures. In addition, advanced sensor setups such as lidar, radar
and cameras have to be used to ensure reliable environmental perception and localization of structures
on the surface. Current development presented in literature mostly deals with environment perception
for uncrewed surface vessels (USVs) from an AIs point of view given certain factors based on angle or
weather conditions [6]. These solutions often lack the connection within a holistic system, as they only
solve partial problems of detecting objects using a single camera. The requirements for safe navigation
also include hardware requirements, creating a complex system that further imposes challenges on the
software pipeline extending the proposed methods. Besides the more technical aspects, the solution must
be integrated into an existing legal framework that has so far been more focused on human navigation. The
standard rule set is defined by the International Regulations for Preventing Collisions at Sea (COLREGs)
[7]. Especially Rule 5 requires a lookout on each vessel to asses a situation and minimize collision risks.
Various organizations are in the process of modernizing these rules especially for the MASS topic [8],
but they define the base capabilities of a system’s sensor functions and decision process, which rely on a
single or a crew of experienced seafarers.

Automated vehicle guidance and control in public fairways or in restricted and safety-critical areas
such as ports are particularly important and comparable to aspects of the development of functionalities
of MASS. This concerns autonomy and decision-making in dynamic environments. Vehicles must be able
to react to unexpected obstacles, avoiding collisions with fixed structures and moving objects. Numerous
studies on path and trajectory planning can be found in the literature in order to resolve encounter
situations collision-free in principle and to adapt the vehicle paths in accordance with the rules [9]. In
addition, interaction with the port infrastructure is necessary, e.g. by detecting and engaging target
points. This includes automated docking [10] or the precise approach of platforms, buoys or underwater
stations during submerged missions. Essential for these operations is equipping the MASS or the XLUUV
with high-performance and potentially redundant propulsion and steering devices to ensure a necessary
maneuvering capability. The evaluation of the capabilities of a maritime vehicle to perform a specific
operation is derived from Dynamic Positioning (DP) of ships, called DP capability [11]. Following on
from this, the authors of [12] present a framework that can be used to determine whether an ROV
motion system has sufficient propulsion capacity to withstand environmental and operational loads while
maintaining a given position or motion. For the modular MUM XLUUV, the methodology can be used
to find a suitable configuration for a defined operation scenario. In that context, the work [13] presents
results of maneuvering capability calculations comparing two MUM variants concerning their actuator
configuration. Once a suitable configuration has been found, the automated maneuvering system can
be applied. Here, the actuator allocation, i.e. the distribution of force and torque specifications to the
available actuators [14], forms the basis for all higher automation functions. In contrast to ships, specific
requirements of multi-domain operation have to be integrated into the allocation for XLUUV.

1.3 Contribution
In the context of MASS, this contribution introduces the innovative vehicle platform MUM and illustrates
the modular approach as well as exemplary application scenarios in Section 2.

Section 3 addresses the methods for designing the basis of an automated maneuvering system focusing
on actuator allocation. Here, the previous work on actuator allocation is extended by formulating the
problem in the context of multi-domain operations navigating in surfaced and submerged mode. The
comprehensive application of propulsion and steering devices, which are specifically designed for surfaced
or submerged operation, poses challenges in terms of methodological implementation of the actuator
allocation.



In Section 4, the contribution will be extended by the work on environment perception specifically
for surface operation, introducing a novel optical sensor system. In contrast to today’s standard sensor
systems, the work shows that long ranges in object detection can be achieved by applying high-resolution
cameras and demonstrates the feasibility of monocular distance estimation.

Both approaches are validated in simulation and real-world experiments in Section 5. The contribution
closes with a conclusion and an outlook.

2 Modifiable Vehicle Basis
2.1 Application Scenarios for MUM
As aforementioned, MUM is an XLUUV designed for civil operations. Its main areas of application are
dedicated to offshore and scientific scenarios. Operations at sea are highly affected by meteorological
conditions. Fair weather conditions usually only occur on a few days a year. Severe wind and waves
encumber work at sea and lead to enormous safety requirements. Although modern offshore supply
vessels (OSV) or research ships are optimized for such operating conditions, wind and waves remain a
major challenge for operations at sea. Numerous offshore and research operation are performed below
the water surface. Whether maintenance work at pipelines via a remotely operated vehicle (ROV) or
seismic measurements at the sea bottom, the required systems and measuring instruments are usually still
launched and recovered by surface ships. Even if the actual control of the subsea ROV and sensors might
be carried out by experts at an onshore station, where data transfer is realized via satellite communication,
the operation of the surface vessel still requires a certain amount of crew. The research project MUM2 has
the goal to develop an unmanned and autonomous vehicle that will fully replace manned OSV or research
ships for many mission types. This approach considerably reduces the influence of weather conditions
and thus maximizes the number of operation days per year.

One of the most complex, but also innovative applications of MUM is the multi-vehicle operation,
in which a payload ROV carries out underwater work in a joint mission together with the MUM carrier
vehicle, as sketched in Fig. 1. This is also intended to enable a transition from a human-centered approach
to a human-supervised scenario. MUM may operate submerged or on the water surface, requiring a
high degree of vehicle autonomy of MUM and ROV, especially for coordinated vehicle movement and
automated docking and undocking processes. A typical mission scenario could be described as follows:

1. MUM starts from its base, e.g. in a port, and navigates through the confined areas in surfaced
operation.

2. MUM travels autonomously to the operational sea area preferably while submerged.

3. Once the operation area has been reached, MUM releases its communication buoy to set up a
satellite communication to a command and control center.

4. Via satellite communication, the command and control center is able to supervise the operation
and offer the possibility to change the mission parameters of MUM and the ROV.

5. After the operation, MUM retracts the communication buoy and travels autonomously back to its
base.

To minimize the risk of collisions, the autonomous transit should be carried out in submerged mode.
However, depending on the sea area, this is not always possible. Especially when moving in navigation
channels near ports with intensive maritime traffic, the ability to conduct transits at surface based on
autonomous collision avoidance is essential and bridges the gap between the required XLUUV and MASS
technology.

2.2 Modularity and Evolution of MUM
The exemplary mission discussed previously is only one of many possible use cases. The payload outfit
of MUM is highly adaptable according to the requirements of multi-domain missions. The vehicle is
fully modular and based on ISO container dimensions of 10-ft and 20-ft containers. Therefore, the entire
vehicle can be dismounted and transported to a new base via truck, train or container ship. Modules
are differentiated into basic modules and mission modules. Basic modules comprise systems that are
mandatory for the vehicle operation, such as energy supply systems, energy storage or propulsion and
maneuvering systems. Mission modules can be almost freely chosen by the operator, such as an ROV
module, an AUV launch and recovery module, a communication buoy module, a drilling module and
many more [3, 15]. Depending on the number and size of the mission modules carried, MUM can vary



Table 1: Main particulars of the MUM demonstrator

Properties Value
Classification XLUUV
Dimensions (Demonstrator) 26 m length, 7 m beam, 3.5 m height
Energy system Electric, Fuel Cell supported by battery
Communication RF Com (LOS), (tethered) SATCOM buoy,

UW Com (EvoLogics acoustic modem)
Maximum speed 4 knots in 2 kn current
Maneuvering capabilities Dynamic positioning (in current up to 2 kn)
Payload capacity Flexible / Mission adaptive

in length and displacement. Within the MUM2 project, the project partners develop and manufacture a
full scale demonstrator with the main particulars shown in Table 1

The MUM demonstrator is equipped with three payload modules, namely the communication buoy
module, the swim-out-modem module (launch and recovery module for AUVs) and the ROV module.
Complex underwater operations may require a remote operator, e.g. underwater maintenance work with
an ROV. The communication buoy is able to generate a control and communication gateway via satellite
connection to allow data transfer and remote operation of the total vehicle or single payload systems.

Based on the variety of payload requirements, MUMs length may change up to a maximum length
of 50 meters. A change in length significantly affects the propulsion and maneuvering behavior of the
vehicle meaning that a new configuration has to be evaluated using suitable methods, for example as
presented in [13]. However, according to the changing inertial and hydrodynamic properties, a changing
vehicle shape also affects the vehicle guidance and automated maneuvering control system.

3 Automated Maneuvering System for Multi-domain Operations
3.1 Modularity on the Operational Level
The highly automated operation of MUM and the diverse range of tasks to be performed by the vehicle
implicate varying sets of requirements and performance levels for the control system. As a consequence
of the modular structure and shape due to the mission-dependent assembly and arrangement of modules,
the dynamic behavior varies significantly between different configurations, requiring the control system
to adapt accordingly. Considering these highly variant vehicle characteristics, standardized procedures
for design and parametrization of the automated motion control system are non-existent, as pointed out
in [16]. Instead, the authors in [16] present an approach towards a generalized design framework. By
designing their methods to be applicable to generic configurations of a MUM vehicle, they create an
iterative control system design loop for generating and parameterizing the motion model and the control
system, thus making the process automatable. In this contribution, we adopt the generalized modeling
and control concept. One key aspect of the design loop is the definition of different control modes for
different operating ranges of the vehicle in accordance with the envisioned set of tasks to be performed.
Apart from surfaced and submerged transit, a MUM mission plan might additionally require the vehicle
to be capable of dynamically positioning, which is not only relevant in the mission area, but especially
for automated docking procedures and slow-speed maneuvering in the light of port-to-port missions.

Basically, the MUM demonstrator operates in six degrees of freedom (DoF) when submerged, resulting
in the state vector x = [ηT νT ]T , where η = [x y z ϕ θ ψ]T corresponds to the position and attitude
in the Earth-fixed frame. The vector ν = [u v w p q r]T describes the vehicle’s translational and
rotational velocities in body-fixed coordinates and the vector τ = [X Y Z K M N ]T contains actuator-
generated forces and moments acting in total in the respective DoF. The distinction between surfaced
and submerged motion means that degrees of freedom are limited in both transit and DP mode. In
transit mode at high(er) speed, surfaced or submerged, the focus is on energy efficiency. For operation
at the water surface, the state vector is reduced to three DoF (u, v, r) and (x, y, ψ), respectively. These
vehicle state definitions also apply to DP at speed about zero and for docking procedures with slow speed
maneuvering, as these operations can be carried out either surfaced or submerged, as well. The focus here
is on control quality, meaning that fast alteration of actuator forces and directions have to be expected.
These qualitative requirements have to be satisfied by the maneuvering system including the actuator
allocation and the available propulsion, steering and ballasting systems.



Motion
Controller

Actuator
Allocation

Propellers

Thrusters

··
·

VBS, e.g.
Ballast Tanks

Underwater
Vehicle

Demanded control
forces & movements

control
inputs

Acting
control
forces &
moments

Figure 2: Maneuvering system structure focussing on actuator allocation interfacing the higher-level
motion control and the vehicle’s drives.

3.2 Maneuvering System Structure
Fundamental for the control system generalization is the separation of higher-level motion control and
lower-level actuator allocation, where the former generates vehicle-fixed abstract forces and moments that
are to act on the vehicle in order to meet the control objective and the latter distributes these demands
among the available propulsion and maneuvering actuators. As clearly conveyed in the illustration of the
control system structure in Fig. 2, the allocation serves as the interface between the motion controller
and the actuators. This is advantageous especially in the context of adaptability to diverse vehicle
and actuator configurations. On one side, the allocation layer allows flexible reconfiguration without
necessarily requiring an adaptation of the motion controller. On the other side, the same motion controller
design can be reused across different actuator configurations, as long as the allocation layer is properly
adapted.

Despite variable vehicle and actuator configurations, MUM’s modular system approach envisages a
specific set of configurable actuator types. The MUM demonstrator vehicle as shown in Fig. 3 is one
exemplary configuration in which all of the envisaged actuator types are represented. At this stage, the
actuator types involved are conventional propulsion and maneuvering devices such as propellers, rudders,
maneuvering thrusters, pump jets, and diving planes, as well as variable buoyancy systems (VBS) such
as water ballast tanks and movable trim bodies. In favor of a more straightforward handling of system
variability, the classical allocation method employed for MUM in [16] disregards actuator dynamics and
handles actuator saturation only implicitly. However, when combining conventional propulsion and ma-
neuvering units with VBS in a unified allocation problem, as proposed in [17] for the MUM concept,
actuator dynamics cannot be left out of consideration anymore. To this end, the approach in [17] draws
from techniques used in dynamically positioning (DP) surface vessels, see [14], which employ an opti-
mization algorithm targeting a power-optimal actuator usage considering their physical characteristics
and limits explicitly, thereby factoring in the different operating characteristics of the actuators.

3.3 Actuator Allocation
A common formulation of this actuator allocation strategy is given in [18] as

f∗ = arg min
f , s

fTQff + sTQss (1a)

s.t. Tf = τd + s (1b)
Lf ≤ k. (1c)

According to the cost function (1a), the optimization problem minimizes the approximated power de-
mands of the actuators (P ≈ fTQff) as well as the deviation s between demanded forces and moments τd

and the actual forces and moments τ (sTQss). The positive-definite diagonal matrices Qf and Qs serve
as the respective weighting factors. For the calculation of s = τ − τd, the equality constraint (1b) in-
corporates an actuator configuration matrix T that relates the forces and moments τ generated by the
actuators to their individual forces f exerted in the respective actuator-fixed coordinates. The inequality
constraints (1c) represent the actuator limitations such as maximum thrust or limited rate of change.
As outlined in [19], the formulation (1) of the allocation problem can be implemented and solved as a
quadratic programming (QP) optimization problem which has benefits regarding computational effort and
guarantees a solution, rendering this approach popular for, e.g., industrial DP applications [20, 21]. The



Vertical
Thrusters

Diving Planes

Main Propulsion

Side Rudders

VBS: Ballast Tanks
& Trim Bodies

Pump Jets

Vertical
Thrusters

Figure 3: Actuator configuration of the MUM demonstrator, body-fixed reference frame {b} of the vehicle,
actuator-parallel reference frame {p} of a generic actuator, and actuator force vector fi.

integration of conventional propulsion units such as rotatable and non-rotatable thrusters [22], pumpjets
[18], or cycloidal propellers [23] in QP-based allocation algorithms has been shown in literature. Addi-
tionally, water inflow was taken into consideration in the allocation approach in [19]. When considering
control surfaces for QP-based formulations, available approaches focus on combinations of propellers and
rudders [14, 24], but not on standalone rudders or diving planes as in the case of MUM. As proposed by
[17], VBS can be regarded as a type of maneuvering actuator allowing for integration in the QP-based
allocation solution for combined utilization with conventional actuators.

3.3.1 Actuator Types and Modeling Targeting a joint actuator allocation algorithm for the propulsion
and maneuvering actuators of MUM as well as for its VBS, the necessary actuator modeling is presented
in the following and the incorporation of these actuator models and characteristics in the formulation of
the allocation problem is shown.

Main Propulsion and Maneuvering Thrusters For the MUM vehicle class, non-rotatable, fixed-pitch
propellers are responsible for the main propulsion, while thrusters can be utilized for slow-speed ma-
neuvering. Both types can be modeled in a similar way starting from considering a force magnitude fi,
i.e. the thrust, which relates to the actuator’s control input, i.e. the propeller speed n, through some
function fi = h(n) which incorporates the thruster geometry and characteristics. For DP applications,
environmental influences such as propeller inflow are commonly neglected. For static behavior, simple
models such as the open-water characteristics

f = ρD4Kf |n|n (2)

in [25] relate the thrust f and n quadratically using the propeller diameter D, fluid density ρ, and a
scaling term Kf . With (2), the control input to the thruster can be calculated from the thruster force
given by the actuator allocation.

Given the force magnitude fi of the thruster i, the vector fp
i = [fi, 0, 0]T describes the actuator’s

force in the actuator-parallel reference frame {p}, whose x-axis is defined to be aligned with the direction
of the force. Depending on type and orientation of the thruster, it generates fi at an azimuth angle αi

and an elevation angle βi with respect to the body-fixed reference frame {b}, as visualized in Fig. 3. The
angles αi and βi correspond to the fixed orientation of a non-rotatable propeller or thruster defined by
the actuator configuration. In order to express the actuator force in {b}, the rotation matrix R(αi, βi)
transforms the vector fp

i using
fi = R(αi, βi)fp

i (3)



into the force vector fi = [fx,i, fy,i, fz,i]T in {b} which results in

fi =
[
fx,i

fy,i

fz,i

]
=

[cosαi cosβi

sinαi cosβi

− sin βi

]
fi, (4)

see [26]. Depending on the actuator position rb
a,i = [xi yi zi]T on the vehicle, the actuator forces fi

produce forces and moments τi = [Xi Yi Zi Ki Mi Ni]T in six DoF acting on the vehicle in {b}.
They are related by τi = Tifi, where

Ti =
[

I3×3
S(rb

a,i)

]
with S(rb

a,i) =
[

0 −zi yi

zi 0 −xi
−yi xi 0

]
(5)

is the actuator configuration matrix for actuator i making use of the skew-symmetric matrix S(rb
a,i) for

the cross product rb
a,i × fi yielding the roll, pitch and yaw moments in τi.

While the actuator dynamics can be modeled efficiently using linear differential equations for approx-
imation [27], the thruster’s physical limits are commonly treated in terms of static lower and upper limits
nmin and nmax as well as a maximum rate of change ṅmax of the propeller speed n for implementation
in the allocation algorithm. Considering the time interval ∆t between consecutive optimization calls,
the attainable minimum and maximum propeller speeds n and n in the next optimization run can be
expressed by

n = max(nmin, n− ṅmax∆t) (6)
n = min(nmax, n+ ṅmax∆t), (7)

which enables us to calculate corresponding dynamic thrust limits f and f using the relation (2) between
speed and thrust at every sampling instant for the next optimization run [18]. Since the allocation
formulation (1) works with bounds (1c) on the actuator force, the thrust bounds (6) and (7) can be
integrated straightforwardly into the allocation algorithm.

Azimuth Thrusters Thrusters that are rotatable about the azimuth angle expand the set of MUM
actuator types by an actuator that is particularly useful for maneuvering. As before, we consider fixed-
pitch propellers and thrusters in zero-inflow condition. Considering the two pump jets installed on the
demonstrator, which we treat as rotatable thrusters, we confine the modeling and implementation of
this actuator type to positive thrust, only. Following [18], the same static behavior (2) of non-rotatable
thrusters relating generated thrust and propeller speed applies to rotatable thrusters. While the azimuth
angle α is considered as a second control input of the rotatable thruster, we assume the elevation angle
β to be zero, so that (4) simplifies to two thrust components

fi =
[
fx,i

fy,i

]
=

[
cosαi

sinαi

]
fi. (8)

in the body-fixed reference frame {b}. With only two of three force components in fi, we construct the
configuration matrix the same way as for non-rotatable thrusters using (5), but omit the third column
accordingly resulting in a 6×2 configuration matrix Ti for the azimuth thruster. Similar to non-rotatable
thrusters, the physical limits in terms of propeller speed and thrust are treated following (6), (7), and
(2). Additionally, the maximum rate of change α̇max of the azimuth angle limits the attainable minimum
and maximum azimuth angle in the next optimization run according to

α = α− α̇max∆t (9)
α = α+ α̇max∆t. (10)

As outlined in [18], the thrust region formed by the bounds on thrust and angle corresponds to an annulus
sector as depicted in Fig. 4a. This does not meet the requirements of convexity, rendering it unusable in
a QP formulation. Instead, the thrust region can be approximated by a set of linear inequalities which
define an area of attainable thrust vectors fi. For the approximation variant shown in Fig. 4b, the five



(a) Cylindrical thrust region. (b) Approximation by straight lines.

Figure 4: Approximation of the dynamic thrust region representing the physical limits of the azimuth
thruster.

corresponding inequalities

sin(α)fx − cos(α)fy ≤ c |cos(α)| (f − f), (11)
− sin(α)fx + cos(α)fy ≤ c |cos(α)| (f − f), (12)

cos(α)fx + sin(α)fy ≤ cos(α− α)f, (13)
cos(α)fx + sin(α)fy ≤ cos(α− α)f, (14)

− cos(α)fx − sin(α)fy ≤ −f, (15)

express the lines 1 to 5 in this order. The right-hand side terms in line 1 and 2 are necessary for the
allocation to be able to rotate the actuator at zero thrust by allowing small negative thrust values. They
do not noticeably influence the QP problem solution, but it has to be rechecked regarding the constraints
on angle and thrust magnitude afterwards. For further details on the derivation of the inequalities and
their implementation in the constraints (1c) of the allocation algorithm, refer to [18].

Control Surfaces MUM vehicles can be equipped with control surfaces such as side rudders or diving
planes, as is the case with the demonstrator. They generate lift and drag forces depending on the control
input, i.e. the rudder deflection, as well as the inflow and the rudder characteristics. When treating
control surfaces as actuators, several model simplifications are commonly agreed upon [28]. We neglect
any drift angle, assume the inflow due to the vehicle’s forward motion to be acting in negative x-direction
of the body-fixed coordinate system, and neglect current, inferring that drag and lift act along the axes of
the body-fixed coordinate system, that the angle of attack between control surface and inflow corresponds
to the deflection of the control surface, and that the inflow velocity corresponds to the vehicle’s forward
velocity. Moreover, neither of the demonstrator’s control surfaces are situated aft of the main propulsion,
meaning that there is no direct inflow from the main propulsion toward the side rudders or diving planes.
Based on these assumptions and considering control surfaces only for forward motion, we can adhere to
[28] and express drag and lift as

fD = −1
2 ρACD u2

f δ
2 (16)

fL = −1
2 ρACL u

2
f δ (17)

depending on deflection δ, vehicle forward velocity uf , water density ρ, area A of the control surface, and
rudder-specific lift and drag coefficients CL and CD. Manipulating the control input δ changes both drag
and lift according to these linear and quadratic dependencies of lift and drag on deflection δ. While drag
acts along the vehicle’s x-direction, side rudders and diving planes differ in the direction of lift which acts
along the vehicle’s y- or z-direction, respectively, yielding force vectors

fsr =
[
fsr,x

fsr,y

]
and fdp =

[
fdp,x

fdp,z

]
(18)



(a) Drag-lift curve and bounds for a given inflow. (b) Approximation by straight lines.

Figure 5: Approximation of the curve segment of attainable drag and lift representing the physical limits
of the control surface for a given inflow.

in the body-fixed reference frame {b} for a single side rudder (sr) or a single diving plane (dp). Thus,
similar to rotatable and non-rotatable thrusters, we construct the configuration matrix of a control surface
using (5), but omit the third or second column according to the control surface type resulting in a 6 × 2
configuration matrix T for either one of the control surface types.

We follow previous strategies, e.g. (6) and (7) for thrusters, to express the physical limits of control
surfaces in terms of the attainable minimum and maximum rudder deflection in the next optimization
run according to

δ = max(δmin, δ − δ̇max∆t) (19)
δ = min(δmax, δ + δ̇max∆t) (20)

using the maximum positive and negative rudder deflection δ, δ and its maximum rate of change δ̇max.
Using the relations (16) and (17), we can calculate dynamic bounds f

D
, fD for drag and f

L
, fL for lift

at every sampling instant for the next optimization run. For implementation of the physical limits in
the allocation, we need to bear in mind that one control input, i.e. deflection δ, manipulates two force
components fD and fL at the same time. The bounds on deflection and the resulting upper and lower
drag and lift bounds correspond to a segment on the curve of the quadratic relation between lift and drag,
as indicated in 5a. This is in contrast to rotatable thrusters, where the bounds on the thrust components
form an annulus sector. For approximation of the non-convex constraints on the control surfaces, we
express a region of feasible force vectors that approximates the curve segment tightly, as shown in 5b.
Defining the coefficient

CLD = 2CD

ρAC2
L u

2
f

(21)

that relates drag and lift using fD = −CLD f2
L, we construct five inequalities that circumscribe the

feasible area. Line 1 expressed by

fD + (2CLD fL) fL ≤ CLD f2
L (22)

describes the tangent to the quadratic function at the current drag and lift values [fD, fL]. Line 2 and 3
are tangents at the lower and upper bounds

[
f

D
, f

L

]
and

[
fD, fL

]
, respectively, expressed by

fD + (2CLD f
L

) fL ≤ f
d

+ 2CLD f2
L
, (23)

fD + (2CLD fL) fL ≤ fd + 2CLD f
2
L. (24)

Line 4 intersects the lower and upper bounds
[
f

D
, f

L

]
and

[
fD, fL

]
according to

−fD +
fD − f

D

fL − f
L

fL ≤ −f
D

+
fD − f

D

fL − f
L

f
L
. (25)



Lastly, with line 5 we impose a constraint solely on the drag which ensures that drag is never positive,
i.e. fD ≤ 0. Generally defined by

fD ≤ max(f
D
, fD), (26)

the inequality for line 5 changes depending on the upper and lower bounds on the lift, i.e. if sgn f
L

̸=
sgn fL, to the expression

fD ≤ 0. (27)
Approximating the curve segment of feasible force vectors using a tightly encompassing region allows the
allocation algorithm to deviate from the curve segment of feasible drag and lift forces. Therefore, after
solving the QP problem, the constraints on drag and lift as well as on the control surface deflection need
to be rechecked, as was the case for the approximated thrust region of the azimuth thruster.

Variable Buoyancy System Apart from conventional maneuvering actuators, MUM features variable
buoyancy systems (VBS) such as water ballast tanks and movable trim bodies. While VBS are typically
utilized to maintain neutral buoyancy, they might also be incorporated in automatic motion control tasks
such as pitch and depth control. In contrast to the conventional actuators, the VBS exert gravitational
forces, i.e. ballast water weight or trim body weight, meaning that their direction relative to the vehicle
can change depending on the current orientation of the vehicle. While the water weight fBW of the
ballast tank can be regarded as its manipulated variable, the trim body has to be moved in order to alter
its influence on the vehicle, i.e. to generate different roll or pitch moments. Thus, the position rb

T B in
the vehicle corresponds to the control input of the trim body. By imposing lower and upper limits on the
water weight and on the trim body position and considering maximum rates of change of water weight
and trim body position, the VBS’s physical limits can be formulated in a way similar to non-rotatable
thrusters in order to regard them in the allocation problem.

The integration of the VBS actuator type into the allocation formulation (1) has been shown previously
in [17], to which the reader is referred for further information.

3.3.2 Combined Actuator Allocation Having defined the actuator types and modeled their characteris-
tics as well as their effect on the vehicle, we can formulate the combined actuator allocation. The actuator
types defined in this work form the generalized actuator variables

u =
[
· · · fthr,i · · · fazi,j · · · frud,k · · · fBW,l · · · rb

T B,m · · ·
]T (28)

and the generalized actuator configuration matrix

T = [· · ·Tthr,i · · · Tazi,j · · · Trud,k · · · TBW,l · · · TT B,m · · ·] (29)

yielding the forces and moments Tu = τ acting on the vehicle. Adapting the allocation formulation (1)
accordingly, we can use the generalized variables to construct the optimization problem

u∗ = arg min
u, s

uTQuu + sTQss (30a)

s.t. Tu = τd + s (30b)
Lu ≤ k. (30c)

A choice of very high weights in Qs compared to Qu reflects the main optimization goal of minimizing
the deviation s between demanded and generated forces and moments acting on the vehicle.

Similar to the concatenated matrices and vectors in (28) and (29), the inequality constraints (30c)
with L and b can be constructed by concatenating the corresponding matrices and vectors of the indi-
vidual actuators. Therefore, different actuator configurations with different combinations, positions, and
physical specifications of the actuators can be implemented intuitively, given that all actuator types in
scope are modeled and adapted to the allocation problem.

During operation, the allocation can be easily adjusted so that certain actuators are excluded from
the generation of τ . For example, setting the maximum rates of change of the thrusters to zero and
resetting their states fT hr to zero, as well, alters the inequality constraints (30c) of the algorithm such
that the thrusters can’t contribute to τ . Based on this, allocation modes can be defined and implemented.
One may wish to exclude the vertical thrusters and pump jets from the allocation during transit, as the
actuators are much less effective due to the higher vehicle velocities and the resulting inflow effects. While
dynamically positioning about zero velocity of the vehicle, the control surfaces are basically ineffective,



so that they should be excluded from the allocation in order to avoid unreasonable usage. Additionally,
this represents an intuitive way to implement allocation reconfiguration in case of actuator failure during
operation. Faulty actuators can each be excluded individually, so that the motion control task stays
operative using the remaining functional actuators.

4 Environmental Perception
4.1 Requirements
MASS must replace the human lookout with a reliable sensor system in order to enable autonomous
navigation in harsh marine conditions as a prerequisite for achieving a high level of autonomy. The selected
systems must contend with physical, technical, and legal constraints, which create mutual dependencies
that require consideration in software and hardware integration. The performance of AI methods e.g.
depends on object distance, camera resolution and field of view, which can lead to challenges in detecting
other parties and obstacles at varying ranges. However, there is no clear performance indicator for
functional collision detection, as laws and regulations are vague on these technical aspects. From an
engineering perspective, this leaves uncertainties concerning the question of what has to be solved. Laws
and regulations for operating seafaring vessels imply that an autonomous surface vessel requires perception
capabilities of a human, but do not define them in values and tolerances.

This creates a strong dissonance in the discussion in which machine vision, using machine learning
models to infer the current environmental state, is compared to the more intertwined biological processes
of humans.

A holistic approach that can fully mimic human perception and reasoning is therefore beyond the scope
of this work. Thus, the focus is primarily on visual perception for surface travel during daytime.
A simplistic but feasible approach is to design a camera system that mimics the visual system of the
human lookout as a basis. This poses the challenge of comparing the complex biological visual system
of humans to a camera system. Both work by generating a projected image from incoming light, but
differ in how this information is collected. A camera sensor constructs an image by counting photons for
each pixel, thus generating a single snapshot of the scene over the exposure time. In contrast, the human
eye employs photoreceptor cells rather than pixels, with the key distinction being their inhomogeneous
distribution, as they are most densely concentrated in the fovea centralis. To compensate for the lower
resolution in the peripheral regions and to continuously update the visual projection, the human eye
performs constant micro-movements, thereby enhancing information acquisition over time.

The first directly measurable metric relevant when selecting a camera system is visual acuity, which
quantifies the sharpness and clarity of vision, specifically the ability to resolve two closely spaced points.
It is typically expressed as the angular size of the smallest resolvable detail [29]. For humans with perfect
vision under ideal lighting conditions and precise focus on a specific object, the limit of visual acuity is
approximately 28 seconds of arc (or 0.0078◦) [30]. Furthermore, the Field of View (FoV) for humans can
be defined as the spatial extent within which an object can be fixated without head movement. Studies
indicate that the binocular FoV of a human covers approximately 180◦ horizontally and 130◦ vertically
[31, 32].

Although humans posses stereo vision for depth perception, similar to technical systems, it is ineffec-
tive for large distances. This limitation arises from the challenge of projecting a three-dimensional object
space onto a two-dimensional space with finite resolution, further discussed in Section 5.2.2 on monocular
depth estimation. To compensate for this perceptual limitation, the human visual system employs known
object sizes as reference cues for depth estimation.

4.2 Hardware
Applying the maximum acuity, i.e. an angular resolution α = 0, 0078◦, for the FoV of an ideal camera
system without overlap given values of FoVh = 180◦ and FoVv = 130◦ for horizontal and vertical FoV,
the system would require a pixel resolution of 23077 × 16667 or 384.6 Megapixels. This estimate does
not consider lens distortion or the simple fact that the projection on a flat imagining sensor yields non
linear acuity for pixels if a pinhole camera model is assumed. Extending camera perception to achieve a
full 360◦ horizontal field of view would require doubling the pixel count.

The biggest limitation of a system with such capabilities is not necessarily the available image sensors,
but data management. A fluent monochrome video at 30 frames per second would yield a data bitrate of
92.32 Gbit/s, which would then require further processing. A generic Ethernet connection would not be
suitable for such an application, but is necessary for MUM because the modularity and size of the vehicle
class requires the data processing unit to be housed in a pressure-resistant container that may be placed



Table 2: Specification of a single ATL196S camera used in the mum perception system.

Sensor Sony IMX367 CMOS
Shutter Global
Sensorsize 21, 7mm
Resolution 4416 × 4428
Pixel Size 3.45µm× 3.45µm
Framerate 27.9 FPS
Connection 5GB POE

quite far from the cameras themselves. Given this environment, the camera system was constrained to a
reduced feature set for the selection process.

In order to increase the sight distance, the camera system will be mounted on top of a 7 m tall
retractable mast that will be fully extended during surface travel. Its primary function is to detect
potential collisions along the path of travel and transmit the footage upon request to an operator in
a command and control center. Varying sea states and vehicle movements introduce dynamics in the
system have to be compensated for. Since lighting can vary significantly due to operation under different
daytime and weather conditions, the camera should deliver an acceptable image even in poor lighting
conditions. Based on these considerations and on discussions with experts, the following requirements
were placed on the system:

• The cameras should be connect via Ethernet, preferably Power over Ethernet which allows for easy
integration and expansion using common network infrastructure.

• The system has to be robust an easy to accommodate in a pressure container.

• Strong external forces such as wind and waves cause the vehicle to tilt. The overall viewing angle
must therefore compensate for up to ±20◦ of external rotation.

• The camera requires a large-format imaging sensor as well as a global shutter to reduce motion blur
and function in low-light conditions.

• The horizontal field of view should be in the range of at least 120◦ to 180◦.

• All obstacles, including incoming vessels, must be reliably detectable at distances of multiple kilo-
meters.

• For optimal AI-based obstacle detection the camera must produce an image in RGB or an adjacent
spectral color space.

• For smooth object identification and tracking, the system must achieve a processing speed of at
least 5 Hz, with 30 Hz being desirable.

For the basic camera setup, there are essentially two distinct lines of thought. The first option is to
build a single- or multi-sensor platform placed on a pan-tilt unit, as shown in [33]. This configuration
offers two key advantages:

1. It significantly reduces the required bandwidth.

2. The camera can mimic human head or eye movements to scan the environment in specific patterns.
For the MUM system, this setup was discarded during the design phase mostly due to its mechanical
complexity. Instead, the implemented solution employs a multi-view camera system with intentionally
overlapping fields of view. While this method drastically increases the bandwidth, it avoids potential
occlusion, simplifies the mechanical integration, and allows the observation of the complete field of view
at all times. Following this, the selected MUM camera system consists of three Lucid Vision ATL196S
cameras [34] using 18 mm lenses. The specific camera parameters are listed in Table 2. In combination,
the perception system achieves a horizontal field of view of ∼ 130◦ with some overlap of the individual
view cones. The cameras use the Precision Time Protocol [35] to synchronize the shutter timings, ensuring
that frames are synchronized before further processing. This feature requires each camera to interleave
the network packet so that all frames arrive at the same time, which in turn limits the cameras’ network
bandwidth. This reduces the possible frame rate of the cameras to about 1

3 of the maximum possible
frame rate specified in the data sheet, i.e. to ∼ 9 FPS.
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Figure 6: Software pipeline

4.3 Software
The visual perception module plays a crucial role in enhancing collision avoidance capabilities. However,
it is essential to recognize that this module is just one component of a broader, more comprehensive
collision avoidance system that encompasses traditional methods such as sonar, radar, and the Automatic
Identification System (AIS). Given the potential unreliability of AI methods and their experimental
nature, the visual perception system is designed to be complemented by AI rather than to be solely
dependent on it for accurate collision detection.

The system is tailored to address the specific requirements of the MUM setup, especially the relatively
large image size. The architecture of the visual perception system is containerized, allowing access and
integration with higher-level systems via a well-defined API. This modular design ensures scalability,
flexibility, and ease of maintenance.

Machine learning models are often deployed as micro services, e.g. using specialized frameworks such
as Triton Inference Server [36] or Ray [37]. They are designed as designated service architectures, handling
incoming requests and spreading the workload in an optimized fashion for distributed computing. The
request-based API of such service-based inference frameworks is not suitable for the real-time requirements
of autonomous systems such as MUM, especially since onboard processing cannot be further distributed
beyond the limited resources used in situ. An alternative framework for a more integrated system would
be a pure media pipeline such as gstreamer [38], where information from a media source is processed and
transformed in subsequent steps until the results reach an end node. This type of processing is more
media-related, having an appropriately optimized pipeline and leveraging metadata to store additional
information, enabling strong performance on embedded devices [39]. Other approaches rely on individual
pipelines acquiring and processing a single image, with large portions of pre- and postprocessing being
negligible in comparison to the execution time and complexity of the machine learning algorithm.

While this may be generally applicable to the given scenario, the overall requirements differ, as the
software must process large amounts of data streamed from the camera – up to 5 Gbit/s of raw data –
while synchronizing frames and preprocessing the footage. The main goal of the software pipeline is
to detect objects, estimate their distance, and track them across multiple frames and camera images,
ultimately providing this data via an API. Additionally, the recorded frames should be provided as a
panoramic image to a command and control center in case a human wants to inspect the current state
and/or has to intervene.

The full pipeline is shown in Fig. 6. It is built on the idea that each module in the pipeline at runtime
only depends on a single input x and produces some output y, or – in case of the camera system – is
a pure source that only provides data, so that each connection in the figure represents an independent



process on the host machine that only becomes active when new data is available and can be restarted at
any time in the event of a failure without causing a complete collapse. Data exchange takes place using
shared memory and always contains the timestamp of the recording of the source data. This allows for
the measurement of pipeline delay and decouples the detections from the original video data, while still
allowing for later reassembly of the metadata. A design decision of this particular architecture was that
frame drops are to be expected and accepted when there is insufficient computing power is available, e.g.
the AI process is slower than new data being fed by the camera module. This means each processing node
always works on the most recent data available instead of trying to always process a full input buffer.

Generally, the pipeline works as follows:

• The camera system initializes the three mast cameras described in 4.2 and handles their warm-up
as well as the frame buffer synchronization. During runtime, the camera images are received and
preprocessed. As each frame consists only of raw footage, debayering with edge-aware demosaicing
is applied to convert from mono to RGB color space. Further steps include converting from uint8
to float16 for the later inference part and loading the data from RAM to the GPU. The pipline
then splits between the visualization path and the machine learning path.

• In the visualization path, the images are stitched together based on their 6D pose and then stored
in virtual memory so that the API can access the data.

• The second path handles data extraction such as object detection, distance estimation and tracking.
General object detectors are trained on a fixed image size, which requires resizing the input image.
This carries the risk of missing distant or small objects. The pipeline therefore uses Slicing Aided
Hyper Inference (SAHI) [40] to slice the recorded frames into smaller chunks and create a resized
version of the the full image. This process takes place in the SAHI module, which also combines
the data into a large batch for optimized inference.

• The YOLO Detection module uses a modified YOLOv8 network [6, 41] (ScatYOLOv8CBAM +
SAHI) which is based on the YOLOv8 architecture [42]. The inference results are bounding boxes
for each potential obstacle for each frame slice.

• Based on the previous slicing settings, the pipeline runs a SAHI Merge module for each cam-
era. Each module uses a merging process based on non-maximum suppression to reduce multiple
detections of the same object in multiple slices to a single bounding box that describes the object
location the image.

• Afterwards, Multi-Cam Merge transforms the detection coordinates from local camera coordi-
nates to global polar coordinates and applies the same merging algorithm as SAHI Merge to
embed the detections in a global context.

• Based on the orientation of the MUM, the object detection, and a camera model, the Distance
Estimation determines where the points of potential obstacles touch the water and then calculates
the distance to these determined target points.

• To assess wether an object is moving or static and could cause a collision, the Tracking modules
uses the Simple Online Realtime Tracking (SOTA) algorithm [43] which only requires observation
of the bounding box as input.

• The detected obstacle in global coordinates, including the distance estimate, the tracking ID, and
the timestamp of the original frame from which the data was extracted, is stored in a virtual file
system in RAM and made available via the API.

• A central watchdog that observes the individual modules controls the modules, sends status infor-
mation and restarts them if necessary, enabling a resilient execution of the data pipeline.

4.4 Object Detection for High-Resolution Images
A key challenge in MUM’s perception system stems from its high-resolution camera array with a total of
58.8 megapixels, which is used for visual obstacle detection. Conventional detection architectures based
on convolutional neural networks (CNN) (e.g. [44, 45]) are inherently resolution-specific in their design.
While these models permit limited resolution adjustment, their receptive fields and feature hierarchies are
fundamentally optimized for their native training resolution. CNNs operate through progressive feature
aggregation, where each layer combines and transforms features from preceding layers. The effective



Figure 7: Annotated objects in a magnified image taken from the MUM dataset aboard a vessel during
a port-to-mission in the Baltic Sea.

receptive field at each layer determines the spatial context available for feature extraction, with earlier
layers typically processing localized patterns [46]. This architecture creates resolution-sensitive behavior,
as the fixed receptive field structure assumes particular spatial relationships between features.

For inference, these models typically resize the images to their optimized resolution. Especially for
high-resolution images, this leads to a loss of information in high-frequency components and limits the
detection of small objects. Transformer models [47, 48, 49] have shown better performance, partially
due to the fact that their architecture has shown to offer superior feature matching in a global context.
However, this advantage comes at the cost of significantly higher computational complexity, particularly
when processing high-resolution images.

An alternative approach used by the software pipeline in MUM is Slicing Aided Hyper Inference [40].
The algorithm divides high-resolution input images into smaller, overlapping slices while simultaneously
maintaining a resized version of the original image at the detector-optimized resolution. This dual-
representation approach creates a multi-scale representation improving small object detection. Fig. 7
shows that such small objects constitute the vast majority of possible obstacles during the MUM system’s
operation.

The detection results are obtained by inferring the detections on each slice using the object detector,
accumulating the local results and recalculating the scale and position of each bounding box for a final
global merging process based on their intersection over union. This process allows the detection of
small as well as larger objects even for pre-trained models without any further steps. For MUM, the
model was improved by further fine-tuning based on data from [50, 51] in conjunction with an additional
custom dataset recorded with the MUM hardware. All datasets were preprocessed with SAHI, creating
overlapping slices for training. The model employed in MUM is the nano variant which has fevers
parameters and is faster in execution, with a slight loss of prediction accuracy. A further speed increase
is achieved by compiling and optimizing the model during an initialization phase, batching every sliced
image for a single inference call.

4.5 Monocular Distance Estimation
Effective path planning in three-dimensional space necessitates precise localization and tracking, partic-
ularly when obstacles are anticipated. In the context of MUM, radar sensors are widely regarded as the
most reliable medium for this task. However, these sensors are not without limitations. Specifically, ob-
jects with low radar reflectivity, such as fiberglass hulls or small underwater targets, may not adequately
respond to radio waves, rendering their detection unreliable. To mitigate this issue, supplementary sensor
data must be incorporated, even if the measurements show high degrees of uncertainty.

One such unreliable depth estimation can be obtained from the camera and is known in the literature
as monocular depth estimation. The reason for the unreliability of such methods is that when projecting
a 3D scene onto a 2D camera sensor, a degree of freedom is lost, which makes the inverse transformation
an underdetermined system. Similar to humans, AI methods [52] can use scene information and an
accumulated knowledge base to fill in the lost information and produce estimates of how far away an
object might be. Usually, such methods do not estimate the “real” distance, but rather a unitless disparity
map that shows how far a pixel is from the camera relative to every other pixel in the image. Utilizing
precise camera parameters, this disparity map can be transformed into an accurate depth map. However,



the computational cost of these methods is substantial, rendering them infeasible within the constraints
of MUM’s computational power.

To improve computational efficiency, MUM employs a model-based algorithm that provides a more
efficient approach to object distance estimation. Changes in height due to wave movement are negligibly
small compared to the detected object distances from the vehicle, so it can be assumed that both the
vehicle and all detected obstacles are accurately localized at the same height, i.e. the sea surface, and thus
the z-axis (height) is eliminated. Building upon this assumption, the degrees of freedom for localization are
reduced to two independent variables describing the location on the water surface. For the implemented
model, this surface is represented as the surface of a sphere in 3D space with the radius of earth.

Assuming this holds true and given the precise transformation TCM from the sensor space of a single
camera to the global MUM vehicle space, with the axes of the coordinate system aligned to the global
world coordinates so that the vehicle’s roll, pitch, and yaw angles (e.g., caused by waves) can be included
in this transformation, the model distance estimation for each pixel on the sensor can be solved using
a simple ray-sphere intersection calculation based on ray tracing. The distance d can be estimated by
calculating the intersection of a direction vector v, originating from pixel position p and aligned with the
camera’s line of sight, with a sphere located at s with radius r, as described in [53] and formulated as

vM = TCMvT (31a)
tca = vMsT (31b)

h =
√

vvT − t2ca (31c)

thc =
√
r2 − h2 (31d)

d = tca − thc (31e)

Given equations (31), the distance of every pixel to the water surface can be calculated. With the pixel
locations describing the corners of a detected bounding box, the distance of an obstacle can therefore
be estimated taking the minium positive distance of all corners. As the software pipeline uses the
merged bounding boxes in polar coordinates, the directional vectors of these bounding boxes have to
be transformed from the directional angles to Euclidean coordinates obtaining the three dimensional
directional vectors v necessary for the calculations.

5 Simulations and Experimental Results
5.1 Maneuvering System Simulation Results
With the actuator allocation laying the foundation for higher-level motion control, we focus our results in
the following on tests that showcase the workings of the algorithm. For this, the test procedure specifies
control forces and moments that are to act on the vehicle. These demands are fed to the allocation which
distributes them among the individual actuators using their respective control inputs. The allocation is
formulated for and applied to the envisioned actuator configuration of the MUM demonstrator vehicle as
specified in Section 3. The chosen sequence of manually commanded control forces and moments τd in this
test corresponds to a meaningful motion sequence of the demonstrator induced by the allocated actuators,
demonstrated using a six DoF simulation model of the motion behavior of the demonstrator. This
simulation model is based on engineering and design data of the demonstrator provided by TKMS GmbH,
i.e. the module configuration, rigid-body and hydrostatic data as well as parameters of the propulsion and
maneuvering systems. Moreover, the model incorporates hydrodynamic data, i.e. acceleration-dependent
added mass coefficients as well as linear and nonlinear damping coefficients, provided by the project
partners of ”Technische Universität Berlin” (TU Berlin), chair of Design and Operation of Maritime
Systems. The hydrodynamic data describe the hydrodynamic forces and moments during a submerged,
steady-state transit operation of the demonstrator at speeds of 6 m/s. For testing of the allocation
algorithm in surfaced operation, we adapted the hydrodynamic coefficients heuristically to represent the
vehicle’s motion behavior at surface. Both the actuator allocation as well as the motion model are
implemented and tested in MATLAB/Simulink.

As visualized in Fig. 8, the vehicle initially is surfaced being in forward motion at a surge velocity
u = 2 m/s. As defined in the design phase of the control system, this higher surge velocity calls for
the transit operation mode. Here, the controller demands only a surge force X and a yaw moment N to
fulfill control objectives such as desired surge velocity or desired heading. As illustrated in Fig. 9, we
manually demand a positive yaw moment at t = 10 s in order to initiate a turning maneuver toward
starboard. Following the large step in the yaw moment, the allocation quickly acts by rotating the side
rudders toward the starboard side. Additionally, it engages the two main propulsion units in opposite



Figure 8: Visualization of the MUM demonstrator at the beginning of the simulated maneuver sequence.

directions for a short amount of time. This is a measure to counteract the limited rotation rate of the
side rudders in an effort to generate the large yaw moment demand as quickly as possible. The resulting
turn of the vehicle is obvious in the bottom of Fig. 9. Shortly after, the main propulsion acts in unison in
forward direction to compensate for the rudder-induced drag. In the course of the maneuver, the rudders
gradually loose lift effect due to the vehicle slowing, which in turn is compensated for by the allocation
at t ≈ 40 s by utilizing the main propellers in an opposing manner, again. Shortly after, the vehicle is
demanded to come to a halt in the form of a negative surge force X commanded at t ≈ 45 s, to which
the allocation reacts by permitting deviations in the yaw moment N in favor of generating demands in X.
With the vehicle slowing further, the allocation eventually switches to DP mode employing actuators that
are more favorable for DP operations. While the control surfaces are being excluded from the allocation
due to them losing effect at slow velocity, now the pump jets are factored in, instead. Having been
omitted at higher transit velocities due to inflow effects, the pump jets now are allocated to generate
the yaw moment and help in generating the negative surge force. With the vehicle coming to a halt at
t ≈ 85 s with a heading ψ ≈ 30◦, both demands X and N are lifted resulting in neutral allocated
control inputs of the actuators.

As a follow-up maneuver, we proceed with submerging the vehicle by demanding a heave force Z at
t = 100 s. Consequently, the allocation engages the four vertical thrusters as quickly as possible to
their maximum speeds. We assume a neutrally buoyant vehicle at the beginning of the maneuver, which
results in the vehicle responding almost immediately to the generated thrust and gaining depth, as can
be seen in Fig. 9. In response to the generated heave force, the trim bodies move a few centimeters to
the starboard side to compensate for roll moments due to asymmetric lever arms of the thrusters relative
to the vehicle’s center of gravity. The vertical thrusters are not capable of fulfilling the great heave force
demand Z on their own. Consequently, as the maneuver progresses, the allocation orders the ballast
tanks to fill up with more water until the demand is met at t ≈ 285 s. Accordingly, the trim bodies
continue to compensate for roll moments induced by asymmetric lever arms of the tanks filling up. At
t = 300 s, the commanded heave force is lifted, i.e. Z = 0 N, to which the allocation reacts with high
negative speeds of the vertical thrusters in order to compensate for the additional water ballast in the
tanks and generate a zero heave force in the aggregate. For the remainder of the maneuver, the allocation
orders the ballast tanks to discharge water in order to transfer the forces from the thrusters to the VBS
until the vehicle is neutrally buoyant at t = 500 s, again.

5.2 Perception System Experimental Results
5.2.1 Object Detection Within MUM’s implemented software pipeline (Section 4.3), a critical remain-
ing question concerns the fundamental performance limits of the system. For the hardware selection, it
was assumed that the images would not require mechanical stabilization due to the camera’s high vertical
field of view, thus reducing mechanical complexity. Analysis of the dataset collected for MUM’s visual
obstacle detection appears to confirm this assumption. Fig. 10 presents a spatial heat map visualization
of the aggregated bounding box distribution across the entire annotated dataset. The dataset was col-
lected during a port-to-port mission, which suggests that other vessels and obstacles are more likely to be
encountered at closer ranges, particularly during maneuvers in the harbor area, as opposed to open-sea
transits. Upon examining the spatial obstacle distribution, it is notable that a majority of the annotated
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Figure 9: Simulation results of the exemplary maneuver sequence.
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Figure 10: Heat map showing the spatial distribution of annotated obstacles in the custom MUM detection
dataset.

objects are situated near the horizon line. This implies that, under normal operating conditions and
with proper virtual stabilization, the horizontal field of view can be strategically cropped to minimize
the image area requiring further computational processing. Consequently, this reduction in image data
leads to lower computational overhead, resulting in faster detection and tracking of potential obstacles.
Furthermore, the observed distribution indicates that close-range encounters with other vessels are rela-
tively rare, suggesting that any detected object can be treated as an anomaly deserving special attention,
irrespective of whether a collision is imminent.

A crucial aspect of integrating the detector into the hardware pipeline is determining the theoretical
maximum detection range, defined as the farthest distance at which objects can be reliably detected
within the system’s optical and computational limitations. This limitation is particularly pronounced in
the detection of small objects, a well-studied problem in the literature [54, 55, 56], as they offer fewer
distinctive features for identification and classification. The widely used object detection dataset COCO
[57] considers any object with an area smaller than 32 pixels a small object.

Equation (32) computes the projected span i of an object in pixels, given the object’s maximum
length lobj and the function r(dobj), defined in (32b). The function r(dobj) calculates the real-world size
represented by a single pixel at a distance dobj between object and camera sensor, given the camera’s
focal length f and the physical size p of a pixel on the camera sensor.

rp(dobj) = p

f
dobj (32a)

i = lobj

rp(dobj) (32b)

Using the parameters of the camera sensors deployed in MUM’s perception system shown in Table 2, the
theoretical limits can be calculated.

• An incoming Panamax-sized container ship with a width of 33.5 meters at a distance of 5 kilometers
would span ∼ 35 pixels and is thus at the borderline of being considered a small object.

• A small pleasure craft with a beam of 4 meters would have to be more than 650 meters away to be
considered a small object, improving potential detection and thus reducing the risk of collision.

5.2.2 Monocular Depth Estimation For monocular depth estimation, a static scene was simulated using
the algorithm outlined in Section 4.5, with camera parameters specified in Table 2. Although this
simulation does not account for finer details such as the uneven ocean surface, it calculates the distance
based on simulated light rays intersecting the camera sensor, assuming a realistic camera pose and a
spherical Earth model. The results of this simulation for a single camera sensor are presented in Fig. 11.
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Figure 11: Monocular distance for a high-resolution camera 7 m above sea level. The simulation is based
on a ray tracing approach, calculating the intersection of the camera rays with a sphere (earth). This
simulation is based on a pinhole camera model parametrized as the one used in the MUM mast camera.

The left figure displays the estimated distance for each spatial pixel of the central camera. The
right figure illustrates the distance along the central vertical axis of the camera revealing an exponential
relationship between pixel position and estimated distance, with values increasing rapidly as objects
approach the horizon. This non-linear relationship gives rise to significant challenges in estimating larger
distances, as small errors in object localization propagate exponentially, producing substantially larger
errors in distance estimation as the range increases. The cause of this effect lies in the projection of
the three-dimensional scene onto a two-dimensional plane, which is further accentuated by the Earth’s
curvature. In this projected space, parallel lines extending from the camera into the distance converge
at a common vanishing point, theoretically located at infinity. Consequently, each point along these
parallel lines corresponds to a unique real-world distance, ranging from a finite value to infinity, and is
thus preserved in the projection. Furthermore, the Earth’s curvature introduces an additional geometric
compression, where the apparent height of a target decreases with increasing distance from the vantage
point, ultimately reaching a point where the surface is no longer visible at the horizon line.

This limitation explains why distance estimates based on stereo vision, as well as human perception,
are generally reliable only at close ranges. Projection-based sensors that provide pixel-wise depth mea-
surements are also constrained by this limitation, and while stereo cameras can theoretically be used
for this purpose, they would require an impractically large baseline to achieve accurate results. Even
then, their performance would deteriorate at longer ranges due to insufficient spatial resolution, leading
to inaccurate estimates. Consequently, the values represented in Fig. 11 are beyond the measurement
capabilities of available sensors, which lack the necessary accuracy to provide reliable estimates.

The horizon crowding phenomenon evident in Fig. 10 directly results from this distance-projection
relationship. Maritime vessels attempt to maintain a safe distance, and any object farther than ∼100
meters away is projected into the upper half of the vertical space occupied by the sea surface.

The monocular distance estimates in MUM exhibit significant uncertainty especially for distant ob-
jects, which must be accounted for by higher-level systems. A primary source of this uncertainty stems
from imperfect bounding box detections, which may not precisely encapsulate obstacles, as well as mi-
nor localization errors of a few pixels. Additionally, uncertainty in vehicle orientation measurements
propagates into the distance estimation, further contributing to the overall error.

6 Conclusion
In summary, this contribution presented current developments within the MUM2 research project. In this
context, the innovative modular XLUUV vehicle platform and the applications that can be derived from it
have been introduced. The envisaged approach of autonomous port-to-port operations marks a significant



challenge. With regard to vehicle control, the actuator allocation was described as an optimization
problem, which was identified as an essential component of the vehicle maneuvering system in order
to be able to carry out the multi-domain operations of the XLUUV. The proposed strategy adheres to
the control system generalization of the modular MUM UUV, enables an intuitive implementation of
the actuators, and allows the algorithm to take advantage of the different actuator characteristics and
overcome the ambiguity in the utilization of the multitude of actuators. The maneuvering system was
tested in extensive simulations using a physical vehicle model. For surface navigation in particular, a
camera-based system was presented for reliable environmental perception and as an efficient replacement
for the human lookout. The performance of the perception system was evaluated in tests with real data.

The work presented so far provides the crucial basis for developing higher-autonomy functions, where
key aspects are automated route or trajectory planning, obstacle and collision avoidance strategies as
well as decision-making frameworks for dynamic environments. Since these capabilities are crucial for
autonomous port-to-port operations, the project consortium will address these research issues in future
developments.
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