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Abstract

Machine learning methods have demonstrated remarkable performance across various domains. In en-
gineering, they enable the creation of data-driven models that are highly accurate and computationally
efficient. These models not only facilitate complex design optimization, but also allow real-time deploy-
ment under resource-constrained conditions, an essential factor for applications ranging from autonomous
driving to spacecraft control. As part of the ESA project ADMIRE, the potential of machine learning
techniques for the design and operation of chemical space propulsion systems has been thoroughly in-
vestigated. The suitability of models such as neural networks, as well as their prerequisites, have been
critically evaluated. In particular, an assessment of the available versus required (experimental) data has
been conducted. Furthermore, promising application areas have been identified and quantitatively assessed
through various test cases. These test cases cover key aspects such as cooling channel design, prediction
of thermoacoustic instabilities, injection processes, and engine control.

1. Introduction

Machine learning methods have the potential to make the development and operation of space propulsion systems
more efficient, faster, and safer. In addition to the associated cost savings, the expected increases in performance are
essential, especially for future reusable systems. The main reason for the great opportunities associated with the use
of machine learning is the following. Many engineering problems typically need accurate models and simulations to
evaluate the implications of design variables and constraints. Furthermore, the computational cost needs to be moderate
to enable optimization loops or even real-time applications. Machine learning models like neural networks represent a
convincing way to fulfill both aspects. In the ESA project ADMIRE the suitability of state-of-the-art machine learning
methods within typical design and development processes for space propulsion systems was investigated.

2. Assessment of machine learning methods

2.1 Modelling and simulation

The main disadvantage of high-fidelity computational fluid dynamics (CFD) or finite element method (FEM) calcu-
lations is that they are not suitable for design space exploration and extensive sensitivity analysis due to their large
calculation effort. By constructing surrogate models using samples of the computationally expensive calculation, one
can alleviate this burden. However, it is crucial that the surrogate model mimics the behaviour of the simulation model
as closely as possible and generalizes well to unsampled locations while being computationally cheap to evaluate. Ma-
chine learning models like neural networks have been successfully applied as surrogate models in several domains, e.g.
fluid mechanics, structural mechanics, acoustics, and combustion.

Copyright © 2025 by Waxenegger-Wiling et al.. Published by the EUCASS association with permission.



DOI: 10.13009/EUCASS2025-523

MACHINE LEARNING METHODS FOR CHEMICAL SPACE PROPULSION ENGINES

2.2 Control and monitoring

Key technologies for the successful operation of reusable space transportation systems are the control and condi-
tion monitoring of the engines.*'?> Space transportation systems that land again with retro-thrust require additional
deep thrust throttling and restart capabilities. Ongoing work to integrate machine learning methods into control and
monitoring systems spans a wide range of industries, aiming to improve system performance, adaptability, and fault
diagnosis.!> Furthermore, machine learning techniques are increasingly being used for prognosis, enabling the estima-
tion of a system’s remaining useful life based on historical and real-time data. This supports predictive maintenance
strategies, where maintenance actions are planned based on the predicted condition of components rather than fixed
schedules.

2.3 Data requirements

The amount of training data required for machine learning depends on several factors, such as the complexity of the
problem, the quality of the data, and the type of model being used."” In general, the more training data you have,
the better the model will perform. However, there is no set rule for how much data is required. Some problems may
require only a few hundred data points, while others may require millions. As a general guideline, it is recommended
to have at least several thousand data points per class or category in classification problems, and enough data to cover
the range of variations in the problem. It’s important to note that having a large amount of data does not necessarily
guarantee good performance. The quality of the data is equally important, and it is important to ensure that the data is
representative of the problem being solved and does not contain biases or errors. In addition to the amount and quality
of data, the training process itself is also important. Hyperparameters, such as the learning rate and batch size, can have
a significant impact on model performance, and it is important to experiment with different settings to find the optimal
combination for ones problem.

2.4 Synthetic data

For some problems there is the possibility to increase the number of data samples with the help of so-called synthetic
data. This data is created using algorithms or simulations and is designed to mimic the characteristics of real-world
data. Synthetic data can be useful in situations where there is limited or no access to real-world data, or where the
real-world data is insufficient. It is important to note that synthetic data should be validated to ensure that it accurately
represents the characteristics of the real-world data it is meant to mimic. Otherwise, the machine learning model trained
on synthetic data may not perform well when applied to real-world scenarios. In case the synthetic data contain a minor
modelling error but some real data exist, approaches like transfer learning can be used. Transfer learning is a machine
learning technique where a model is first pre-trained on a large dataset, and then fine-tuned on a smaller dataset. The
idea behind transfer learning is that the pre-trained model has already learned useful features and patterns from the
initial dataset, which can then be applied to the new dataset.

3. Test cases

Since the requirements are different for different learning methods and application topics, different application topics
have been investigated: cooling channel design, injector design, combustion instability forecasting, and engine control
design.

3.1 Cooling channel design

Several methods exist to study the regenerative cooling of liquid rocket engines thrust chambers. A simple approach
is to use semi-empirical one-dimensional correlations to estimate the local heat transfer coefficient. However, one-
dimensional relations are not able to capture all relevant effects that occur in asymmetrically heated channels like
thermal stratification or the influence of turbulence and wall roughness. Especially when using methane as the coolant,
the prediction is challenging and simple correlations are not sufficient.

The starting point of the test case was a neural network, which was developed by Waxenegger-Wilfing et al.'”
and later improved by Dresia et al.> using data from computational fluid dynamics to predict hot gas wall temperatures
along cooling channels. The proposed neural network was a fully connected, feedforward network, fully connected
meaning every neuron of one layer is linked with all neurons of the next layer. The network consisted of 4 hidden
layers with 408 neurons per layer. Figure 1 shows such an exemplary network. The input parameters shown are all
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Figure 1: Schematic neural network architecture for wall temperature prediction

parameters used for this case as well: coolant mass flux, heat flux, pressure, enthalpy, channel area, aspect ratio, wall
thickness, wall roughness, curvature, and fin thickness.

This baseline neural network was then used for transfer learning with experimental data from different application
cases. First, data from the HARCC (High Aspect Ratio Cooling Channel) experiments with methane at the P8 test
bench in Lampoldshausen were used.® Second, data from experiments with a nitrous oxide cooled 22 N thruster that
has been operated at the M11 test bench in Lampoldshausen were investigated.” In both cases, the transfer learned
network was able to adapt without the need of extensive training data by using only a very small set of experimental
data points. Thus, the transfer learning approach could be concluded successfully.

The HARCC combustion chamber segment is divided into four sectors around the circumference, each contain-
ing different cooling channel geometries. Table 1 and Table 2 show the mean average error and the maximum absolute
error for two HARCC test cases.

Test case / quadrant | Mean average deviation [K] | Maximum absolute error [K]
T1/Ql -444.99 605.51
T1/Q2 -330.49 492.96
T1/Q3 -30.87 81.26
T1/Q4 -97.68 135.42
T2 /Ql -221.83 264.81
T2/Q2 1.43 38.67
T2/Q3 -72.46 108.99
T2/ Q4 -83.6 101.41

Table 1: Performance of baseline neural network

Test case / quadrant | Mean average deviation [K] | Maximum absolute error [K]

T1/Ql1 -19.96 115.92
T1/Q2 6.26 79.35
T1/Q3 25.87 34.46
T1/Q4 5.58 42.96
T2/Ql1 19.84 58.36
T2/Q2 -6.93 23.68
T2/Q3 -58.19 74.5

T2/Q4 -58.42.6 71.58

Table 2: Performance of refined neural network

In Figure 2 the results for the predictions with both the baseline neural network and the refined neural network
are shown.
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Figure 2: Predictions for HARCC test cases with baseline and refined neural network
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Figure 3: Predicted wall temperatures and associated errors for a test case with nitrous oxide cooling

Figure 3 shows a typical result for a test case with nitrous oxide cooling. Predictions have also been made for a
representative combustion chamber geometry and heat flux profile of an upper stage engine using methane as coolant.
However, the transfer learning (with HARCC data) caused the neural network to specialize in the new case instead of
a generalization. It was noticed that this capability of a neural network to efficiently fine-tune to a specific test case
could provide a new possibility for adapting to a specific combustion chamber instead of creating a generalized tool.

3.2 Injector design

Surrogate models that map the influence of design variables on the performance of injection systems with a high degree
of precision have great potential to accelerate the design of new combustion chambers.'%!7 However, models such as
neural networks are bound to learn the structural relations of the data they are trained upon. Consequently, models
obtained from low-fidelity data will reproduce the inherent errors of low-resolution samples.

In this work, we intended to address this conundrum by adopting a multi-fidelity strategy. For such, two large-
eddy simulation (LES) datasets of shear-coaxial injectors, operating on a gaseous oxygen (GOx) and gaseous methane
(GCH4) propellant couple, were created. The number of high-fidelity samples was limited due to their high computa-
tional cost. The application of transfer learning techniques while making use of both the high and low fidelity datasets,
enabled the creation of data-driven emulators with satisfactory performance on the high-fidelity test dataset.

MF (Top), LF (Bottom)
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Figure 4: Difference between predicted time-averaged temperature field and ground-truth value for both the multi-
fidelity (MF) and low-fidelity (LF) models
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The change between multi-fidelity (MF) and low fidelity (LF) is shown in Figure 4, where the difference between
the estimated, and the ground-truth field, for the same sample, is displayed. A strong red area, below the stoichiometric
line, is shown for the LF model. Comparatively, the MF model error figures do not display this region, indicating that
transfer learning provided the sought correction.

Furthermore, the same exact network and methodology as above was used to finetune the model to the LUMEN
injector.'* Tt is important to remember that there are many differences between the two cases: thermodynamic con-
ditions, perfect vs real gas, geometrical details of the injectors. Figure 5 shows the difference between reference and
predicted temperature fields for both the original model (top) and the finetuned one (bottom) on a validation case. It
clearly shows the strength and possibilities offered by the developed transfer learning methodology.
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Figure 5: Temperature difference between reference solution, original and finetuned models

3.3 Combustion instability forecasting

Having a reliable forecast of the dynamic pressure in the combustion chamber can be an important tool in instability
forecasting. The early detection or prognosis of instabilities could protect test combustion chambers from the damage
caused by combustion instabilities during the development phase.?’

In this test case we further developed models that forecast the mean RMS (Root Mean Square) value of all
dynamic pressure sensors within the combustion chamber into the future.!> The available dataset consisted of ignition-
sequences of the BKA, which was operated at the DLR test bench P8 in Lampoldshausen.!! Combustion instability
was frequently observed during these ignition tests. For each ignition sequence, data from several sensors has been
gathered and analyzed. This included (dynamic and static) pressure sensors, thermometers, fuel rate sensors and so
on. Two different neural network categories were trained and evaluated for the given task. First, we investigated
Feedforward Neural Networks (FNNs), consisting of Convolutional and Dense Layers. These are the most basic
and straight-forward neural network models, and perform well on a wide variety of tasks. Second, we investigated
Recurrent Neural Networks (RNNs), consisting of stateful LSTM layers. These networks contain connections that
form cycles, therefore giving them a kind of memory of previous inputs, making them particularly suitable for time
series forecasting. Furthermore, autoregressive models were investigated, but discarded as they did not show any
significant improvements. Figure 6 shows the predictions for an exemplary test ignition sequence. The mean RMS
value is predicted 150 ms into the future.
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Figure 6: Prediction of the mean RMS of the dynamic pressure
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One can see that the trend is predicted quite well. However, depending on the point in time and test case, the
prediction of the exact value may show larger deviations. Table 3 and Table 4 show the mean absolute error and the
maximum absolute error for all test ignitions.

Test case | Mean absolute error [bar] | Maximum absolute error [bar]
T1 0.015 0.052
T2 0.018 0.180
T3 0.075 0.388
T4 0.139 0.413
T5 0.009 0.028

Table 3: Trained FNN

Test case | Mean absolute error [bar] | Maximum absolute error [bar]
T1 0.023 0.108
T2 0.025 0.478
T3 0.050 0.363
T4 0.129 0.491
T5 0.009 0.031

Table 4: Trained RNN

For the last case, the prediction is very accurate, for the third and fourth test case, there are maximum deviations
in the range of 0.4-0.5 bar. Thus, the predictions are still too inaccurate to be reliably used for combustion instability
forecasting. This is mostly due to the following facts. First, the available training dataset is limited, especially once
short or ill-suited experiments are sorted out. Second, the experimental data originates from the ignition phase, which
has much more complex dynamics than the phases thereafter, in which combustion instabilities have already been
successfully forecasted with greater accuracy using machine learning methods.

3.4 Engine control design

An already existing 22 N experimental nitrous oxide/ethane thruster was used as test case and is shown in Figure 7. The
thruster operates with a self-pressurized propulsion system. Due to the evaporation of the propellant, the tanks cool
down during thruster operation. Thus, the vapor pressure in the tank changes continuously and for a steady operation
of the thruster, a permanent adjustment of the mass flow is needed. The control objectives were given by regulating the
mixture ratio and the combustion chamber pressure via flow control valves.

Figure 7: Thruster used for testing

Based on a simulation model with EcosimPro / ESPSS, deep reinforcement learning was used to train the con-
troller represented by a neural network.?'%18 First, the trained controller was tested in the simulation environment.
Two different scenarios were evaluated. First, the controller had the task of setting a specific target operating point in
terms of pressure and mixture ratio, when starting from a different operating point. Second, it had to follow a time
dependent target. The Control frequency was 10 Hz in both cases. Figure 8 shows a single simulation of a set-point
control task.
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Figure 8: Simulated single set-point control for mixture ratio and chamber pressure

In Figure 9 a trajectory of six different set-points is given. The set-point changes every 10 s in a ’step response-
like’ manner. Both controlled variables (chamber pressure and mixture ratio) are changed. First the chamber pressure is
kept constant while the mixture ratio is changed. At 40 s the mixture ratio is kept constant, while the chamber pressure
is changed. It can be seen, that the target values of chamber pressure and mixture ratio were met nearly perfectly.
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Figure 9: Simulated trajectory with step response like changes in mixture ratio and chamber pressure

Although the controller worked very well in the simulation environment, the performance at the test facility
was worse and not yet satisfying. As can be seen in Figure 10 the neural network was able to settle the right values,
however strong superimposed fluctuations in both controlled variables and long settling times are not acceptable for
real applications.
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Figure 10: Real single set-point control for mixture ratio and chamber pressure
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4. Conclusions and outlook

Two main conclusions can be drawn from the results. First, machine learning methods can support the design process
and development of new engines by, for example, enabling efficient optimization based on powerful surrogate models
or extending the lifetime of test combustion chambers through improved online prediction of combustion instabili-
ties. In addition, the use of trained controllers promises increased performance for propulsion systems with limited
computing resources. Second, the biggest challenge is the small amount of training data that is naturally available in
the development of (new) rocket engines. Solutions such as the use of synthetic data or transfer learning approaches
improve the situation but are not always possible and must be adapted to the particular real application.

Follow-up activities should further increase usability so that machine learning methods can prove that their
application can improve the development and operation of engines, save costs by reducing development times, and
ensure that the engine control meets the increased requirements resulting from reuse. These activities include:

e Improve transfer learning approaches that enable fine-tuning surrogate models (e.g. NN-based heat transfer
predictors) from one engine design to another with minimal additional data.

o Investigate transfer learning methods that align simulation output with test-stand or flight data.
e Explore transfer learning across related tasks, for example, from steady-state operation to transient startup.

e Develop domain adaptation approaches to handle distributional changes as engines move between test stands,
ground hotfire, and flight application.

¢ Investigate the lifelong adaptation of control policies to enable controllers to maintain performance as the engine
ages.

A recurring theme across these activities is bridging gaps-between different engines, between simulation and
test-stand data, and between evolving operating conditions. By leveraging techniques such as transfer learning, domain
adaptation, and continual learning, practitioners can develop models that generalize across engine variants, adapt to
new regimes without retraining from scratch, and continuously improve.
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