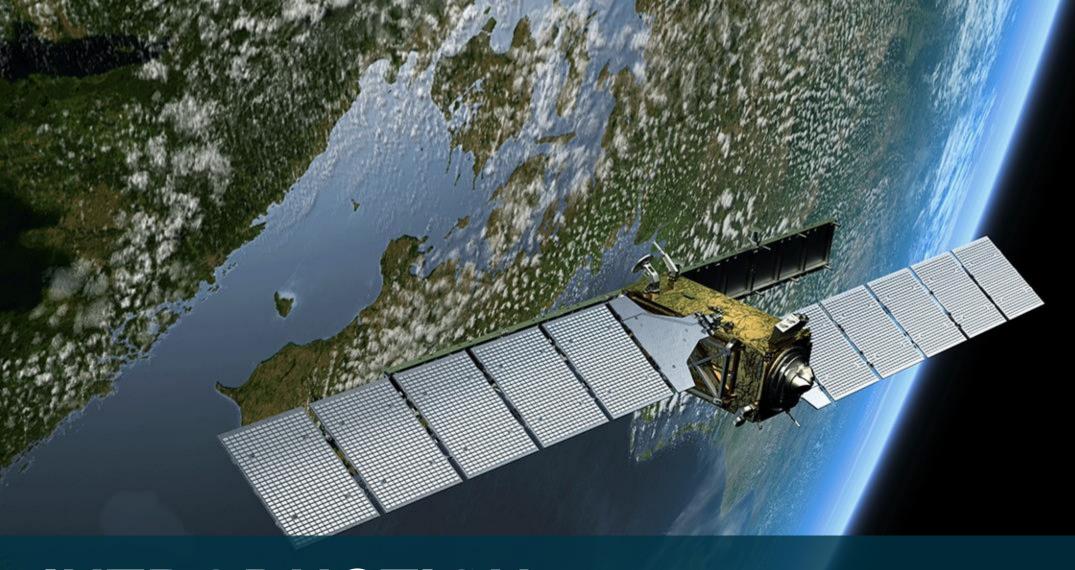
PROGRESS WITH VERIFICATION AND STABILIZATION OF REYNOLDS STRESS MODELS USING THE CFD SOFTWARE BY ONERA, DLR, AIRBUS (CODA)

Keerthana Chandrasekar Jeyanthi¹, Tobias Knopp¹, Johannes Löwe¹, Michael Werner²

¹DLR, Institut für Aerodynamik und Strömungstechnik, Abteilung C²A²S²E

²DLR, Institut für Aerodynamik und Strömungstechnik, Abteilung Hochgeschwindigkeitskonfigurationen,


Bunsenstraße 10, 37073 Göttingen

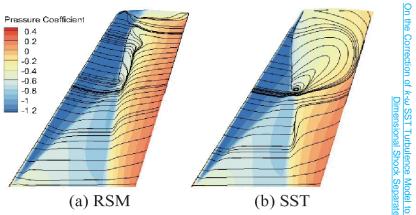
INTRODUCTION

Reynolds stress models - RSM SSG/LRR-In(ω) model

What are RSMs?

- A family of RANS models providing transport equations for all the components of the symmetric Reynolds stress tensor.
- 6 transport equations for the Reynolds stresses (R_{ij}) and 1 additional **equation** for the length scale (ω)
- When do we need RSMs?
 - Accurate representation of anisotropic turbulence and complex flow phenomenon like 3D separation, vortex dominated flows, etc.

$$\frac{\partial(\overline{\rho}\widehat{R_{ij}})}{\partial t} + \frac{\partial(\overline{\rho}U_k\widehat{R_{ij}})}{\partial x_k} = \overline{\rho}P_{ij} + \overline{\rho}\Pi_{ij} - \overline{\rho}\varepsilon_{ij}$$


Reynolds stresses equations

Where, $P_{ij} \rightarrow \text{Production}$, $\Pi_{ij} \rightarrow \text{Pressure-strain correlation}$, $\varepsilon_{ij} \rightarrow \text{Dissipation tensor}$

Length scale equation

$$\frac{\partial(\overline{\rho}\widehat{\omega})}{\partial t} + \frac{\partial(\overline{\rho}U_{k}\widehat{\omega})}{\partial x_{k}} = \frac{\alpha_{\widehat{\omega}}}{k} \frac{\overline{\rho}P_{kk}}{2} - \beta_{\widehat{\omega}}\overline{\rho}e^{\widehat{\omega}} + \frac{\partial}{\partial x_{k}} \left[\left(\overline{\mu} + \sigma_{\widehat{\omega}} \frac{\overline{\rho}k}{e^{\widehat{\omega}}} \right) \frac{\partial\widehat{\omega}}{\partial x_{k}} \right] \\
+ \sigma_{d} \frac{\overline{\rho}}{e^{\widehat{\omega}}} \max \left(\frac{\partial k}{\partial x_{k}} \frac{\partial\widehat{\omega}}{\partial x_{k}}, 0 \right) + \left(\overline{\mu} + \sigma_{\widehat{\omega}} \frac{\overline{\rho}k}{e^{\widehat{\omega}}} \right) \frac{\partial\widehat{\omega}}{\partial x_{k}} \frac{\partial\widehat{\omega}}{\partial x_{k}}$$

 $\widehat{\omega} = \ln \omega$, hence, $\omega = e^{\widehat{\omega}}$

Upper-surface flow and C_n distribution comparison of different models for ONERA M6 wing at Ma = 0.84, $Re_{MAC} = 11.72 \times 10^6$, $\alpha = 6.06^\circ$.

Challenges with RSMs SSG/LRR-In(ω) model

$$\frac{\partial(\overline{\rho}\widehat{R_{ij}})}{\partial t} + \frac{\partial(\overline{\rho}U_k\widehat{R_{ij}})}{\partial x_k} = \overline{\rho}P_{ij} + \overline{\rho}\Pi_{ij} - \overline{\rho}\varepsilon_{ij}$$

■ High non-linearity → dense Jacobian

- Mean flow $(S_{ij}, W_{ij}) \rightarrow \text{Reynolds stresses}$
- Reynolds stresses $(\partial R_{ij}/\partial x_j)$ → Mean flow
- Reynolds stresses (P_{ij}) → Length scale equation
- Length scale equation (ε) → Reynolds stresses
- Reynolds stresses (All source terms, mainly $\Pi_{i,i}$) \leftrightarrow Reynolds stresses

Different time scales → III conditioning of Jacobian

•
$$\frac{T_c}{T_S} \sim 10^3 \ to \ 10^6$$
, i.e. $T_c \gg T_S$

- RSM vs Eddy Viscosity Models (SA or SST)
 - Less robust
 - More iterations
 - More memory

Production term

$$\overline{\rho}P_{ij} = -\overline{\rho}\widehat{R_{ik}}\frac{\partial\widehat{u_j}}{\partial x_k} - \overline{\rho}\widehat{R_{ik}}\frac{\partial\widehat{u_j}}{\partial x_k}$$

Dissipation term

$$\overline{
ho}arepsilon_{ij} = rac{2}{3}\,\overline{
ho}arepsilon\delta_{ij}, \quad arepsilon = \,C_{\mu}\widehat{k}\omega, \,\,\widehat{k}\,=rac{\widehat{R_{ii}}}{2}$$

Pressure-strain correlation term

$$\widehat{a_{ij}} = rac{\widehat{R_{ij}}}{\widehat{k}} - rac{2}{3} \; \delta_{ij}$$

$$egin{aligned} \overline{
ho}\Pi_{ij} &= -igg(C_1\overline{
ho}arepsilon + rac{1}{2}C_1^*\overline{
ho}P_{kk}igg)\widehat{a_{ij}} \ &+ C_2\overline{
ho}arepsilon \left(\widehat{a}_{ik}\widehat{a}_{kj} - rac{1}{3}\widehat{a_{kl}}\widehat{a_{kl}}\delta_{ij}
ight) \ &+ \left(C_3 - C_3^*\sqrt{\widehat{a_{kl}}\widehat{a_{kl}}}
ight)\overline{
ho}\widehat{k}\widehat{S}_{ij}^* \ &+ C_4\overline{
ho}\widehat{k}\left(\widehat{a_{ik}}\widehat{S_{jk}} + \widehat{a_{jk}}\widehat{S_{ik}} - rac{2}{3}\widehat{a_{kl}}\widehat{S_{kl}}\delta_{ij}
ight) \ &+ C_5\overline{
ho}\widehat{k}\left(\widehat{a_{ik}}\widehat{W_{jk}} + \widehat{a_{jk}}\widehat{W_{ik}}
ight) \end{aligned}$$

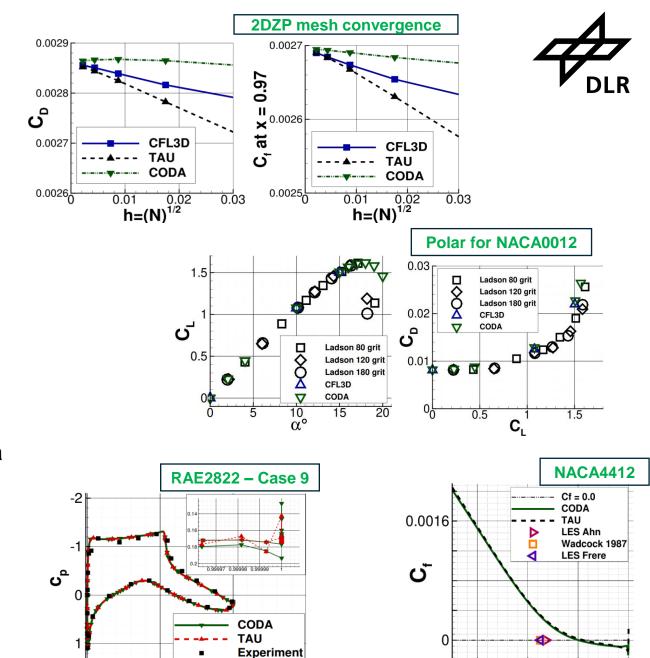
Generalized Gradient Diffusion

$$\overline{\rho}D_{ij} = \frac{\partial}{\partial x_k} \left[\left(\overline{\mu} \delta_{kl} + D \frac{\overline{\rho} \widehat{R_{kl}}}{C_{\mu} \omega} \right) \frac{\partial \widehat{R}_{kl}}{\partial x_l} \right]$$

)LR project Digital-X: towards virtual aircraft design and flight testing based on delity methods

CFD software by ONERA, Airbus and DLR (CODA)

- CODA is the CFD software being developed as part of a collaboration between the French Aerospace Lab (ONERA), the German Aerospace Center (DLR), Airbus, and their European research partners. CODA is jointly owned by ONERA, DLR and Airbus.
- Features of CODA:
 - Cell-centered unstructured fully coupled solver
 - Common framework for both second order Finite volume (FV) and Discrete Galerkin (DG) discretizations
 - Fully implicit time integration (using Newton method)
 - Algorthmic differentiation (AD) for calculating derivatives
 - Modular design to facilitate highly parallel simulations
 - Object oriented design using C++17 with Python API to enable coupling to FlowSimulator framework
- The main aim of the work is to have a robust implementation of the SSG/LRR-ln(ω) RSM model in CODA.


Spatial Python **DXCommon** Discrete Time Equation Discretization Integration Interface Data containers · Loops Definition of PDEs Finite Volume Runge-Kutta · Control of Parallelization · Closures (e.g. Gas- Discontinuous • Explicit · Execution flow Template-Helper Models) Galerkin · Implicit · Data flow Turbulence models Acceleration FSDM compatible (e.g. SANeg) Techniques · Multigrid

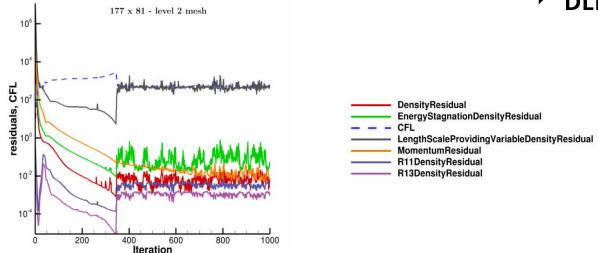
Modular structure of the next generation flow solver (previously) Flucs (now CODA) software

Preliminary verification & validation (V&V) of 2D cases

- Zero pressure gradient flat plate (2DZP): Very good convergence for all meshes with dependence on CFL ramping
- Bump in channel (2DB): Convergence was possible only with simple diffusion (SD) and GGD failed due to realizability violation.
- RAE2822 Case 9: A two stage convergence with first order in the first stage and second order in mean flow during the second stage.
- NACA0012 Full Polar: The simulations converged for the full polar until maximum lift with a two stage approach as well.
- NACA4412 Trailing edge separation: A two stage approach worked well for this case as well.
- The meshes for all the below cases were taken from NASA TMR (except for NACA4412 & RAE2822)

X/C

0.5


x/c

Challenges from initial implementation

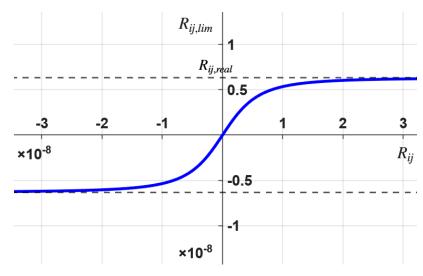
- Robustness issues leading to realizability constraints (2DB case)
- Failure of traditional clipping due to AD (differentiability of Reynolds stresses in Jacobian)
- Mesh & parameter studies (NACA4412) factors affecting convergence:
 - Mesh & Case/Configuration
 - Realizability constraints
 - Gradient reconstruction
 - CFL setting
 - Entropy fix
 - Convection scheme
- Moving to 3D cases like ONERA M6 lead to even more challenges – failure of convergence without realizability constraints.

Spurious residual behaviour in 2DB after implementing realizability constraints

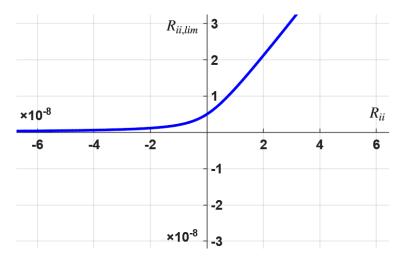
Mesh & Parameter study for NACA4412

Ma = 0.085, Re = 1.64e6, AoA = 10°, Realizability OFF in Last Stage	Mesh_yp1_blunt_TE	NASA_HexMesh_897 x257	Re_1- 6Mio_wake_panel_y p1_v1b	Re_1- 6Mio_yp1_blunt_TE v1c_fine
run_1c_composite-scheme_grad-recon-stdGG_Efix-0.2-0.0			Divergence in 2nd Stage (very high residuals, 10^10 to 10^40)	Residual stall
run_1c1_composite-scheme_grad-recon-stdGG_Efix-0.2-0.1- 0.0		Changing second stage Efix to 0.2 and increasing number of iterations lead to	Inf in 2nd Stage	Residual stall
run_1c2_composite-scheme_grad-recon-stdGG_Efix-0.2-0.1-0.05		Changing second stage Efix to 0.2 and increasing number of iterations lead to	Inf in 2nd Stage	Residual stall
run_2c_composite-scheme_grad-recon-extGG_Efix-0.2-0.0			Divergence in 2nd Stage(very high residuals, 10^10 to 10^40)	Residual stall
run_2c1_composite-scheme_grad-recon-extGG_Efix-0.2-0.1 0.0		Residual stall - changing Stage 2 Efix to 0.2 and Stage 3 SER exp to 0.4, integral		Residual stall
run_2c2_composite-scheme_grad-recon-extGG_Efix-0.2-0.1- 0.05		Residual stall - changing Stage 2 Efix to 0.2 and Stage 3 SER exp to 0.4, integral	Divergence in 3rd Stage(very high residuals, 10^10 to 10^40)	Residual stall
run_7c_composite-scheme_grad-recon-LSQ_Efix-0.2-0.0			Divergence in 2nd Stage (very high residuals, 10^10 to 10^40)	Residual stall
run_7c1_composite-scheme_grad-recon-LSQ_Efix-0.2-0.1- 0.0				Residual stall
run_7c2_composite-scheme_grad-recon-LSQ_Efix-0.2-0.1- 0.05				Residual stall

Realizability constraints

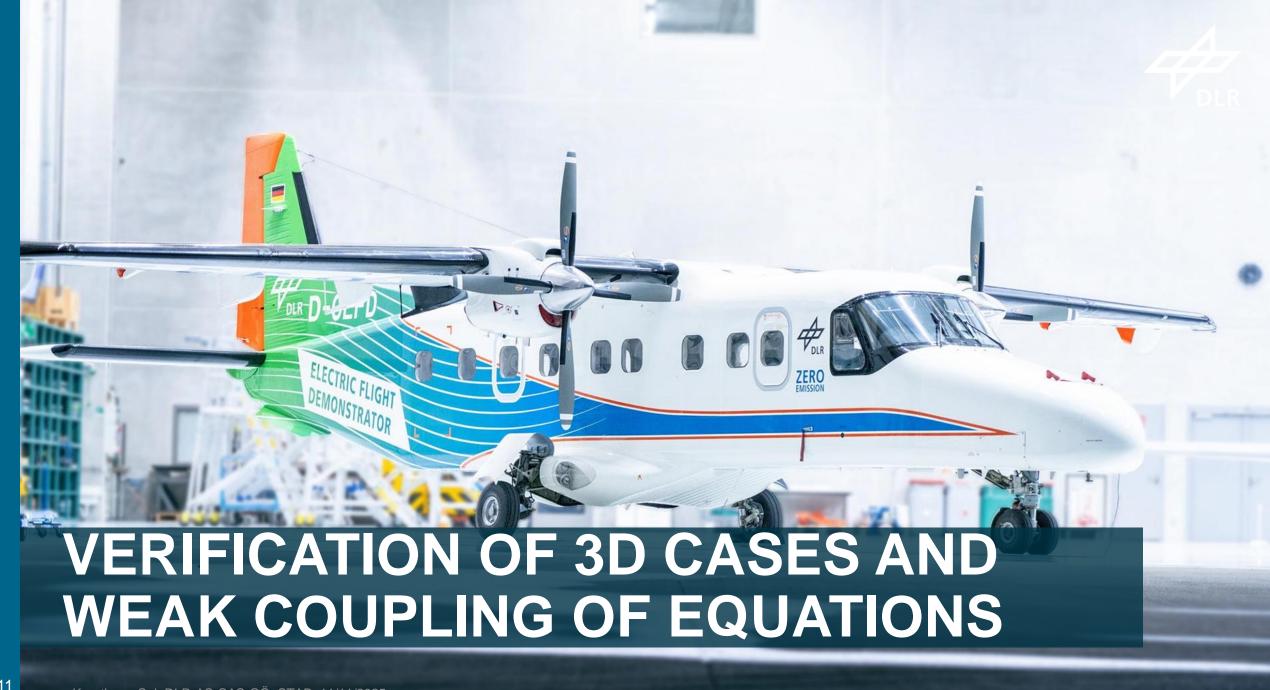

- Non-physical turbulence can arise due to turbulence modelling and discretization errors affecting convergence - <u>Schumann</u>
- Realizability constraints: Reynolds stress tensor should be Symmetric Positive Semi Definite (SPSD) tensor throughout the simulation.
 - $R_{ij} \geq 0$, $\forall i = j$
 - $R_{ij} \leq \sqrt{R_{ii}R_{jj}}, \ \forall \ i \neq j$
- Several attempts were made to implement the realizability constraints
 - Pure hard clipping directly at the source terms: Failed as it is not AD differentiable.
 - Use of non-linear positivity filter with eigen value decomposition of Reynolds stress tensor: Eigen decomposition becomes expensive as more cells violate differentiability.
 - Hard clipping in the python layer (for testing): Simulations stalled even the ones which may converge
 otherwise.
 - Realizability preserving time stepping (through implicit/explicit linearization of source terms): Worked only for basic test cases, further investigation needed.
 - Smoothed clipping of Reynolds stress variables in closure: The most possible way which worked for several 2D/3D cases like NACA4412, coarse meshes of ONERA M6 and could be integrated easily to the CODA architecture.

Smooth clipping for realizability constraints

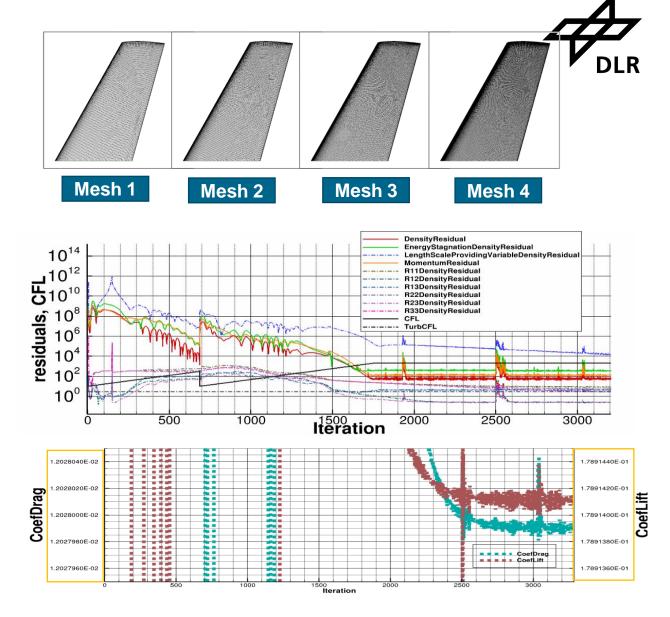


For normal stress, R_{ii} :

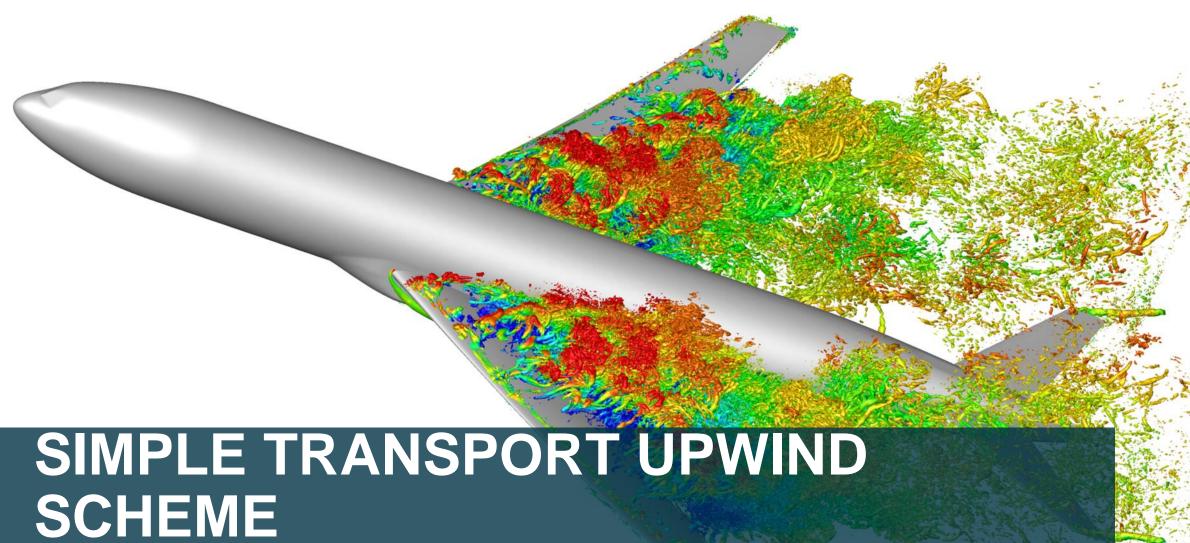
- $R_{ii,min} o ext{Minimum normal stress}$
- $R_{ii,lim} = 0.5 (R_{ii} + \sqrt{R_{ii}^2 + R_{ii,min}^2})$


A plot for $R_{ij,lim}$ when $R_{ii,lim}=1 \times 10^{-8}$, $R_{jj,lim}=4 \times 10^{-9}$

A plot for $R_{ii,lim}$ when $R_{ii,min} = 1 \times 10^{-8}$

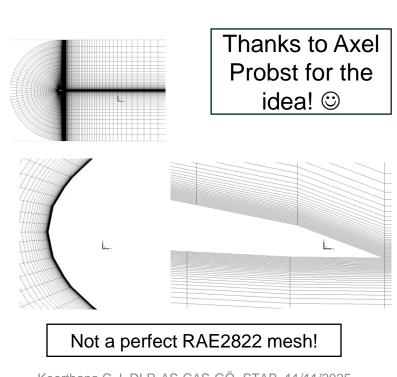

For shear stress, R_{ij} :

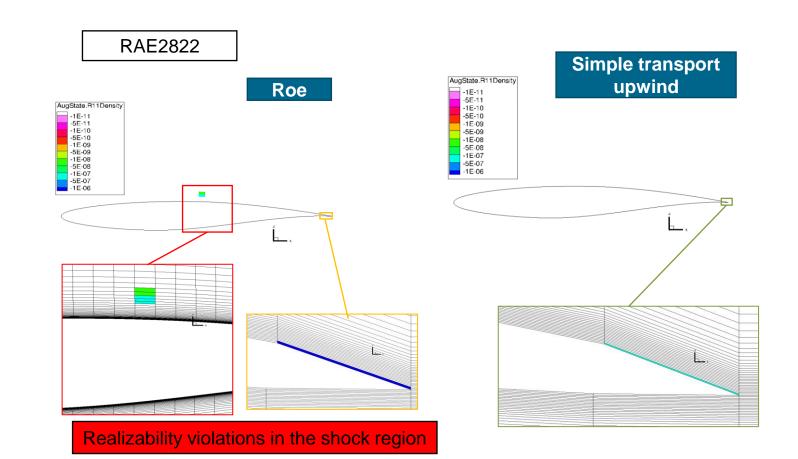
$$R_{ij,real} = \sqrt{R_{ii,lim} R_{jj,lim}}$$
 $R_{ij,lim} = \frac{R_{ij}}{\sqrt{1 + \left(rac{R_{ij}}{R_{ij,real}}
ight)^2}}$


Verification of 3D cases ONERA M6

- Centaur meshes
- Flow conditions: Ma = 0.84, $\alpha = 3.06^{\circ}$, $Re = 14.6 \times 10^{6}$, $L_{Re} = 1$.
- Challenging to converge even with realizability constraints in place.
- Converged only with LLF
 Upwinding scheme for turbulence or with a weak coupling of the mean flow and turbulent equations.
- However, weak coupling approach for the equations did not always improve convergence.

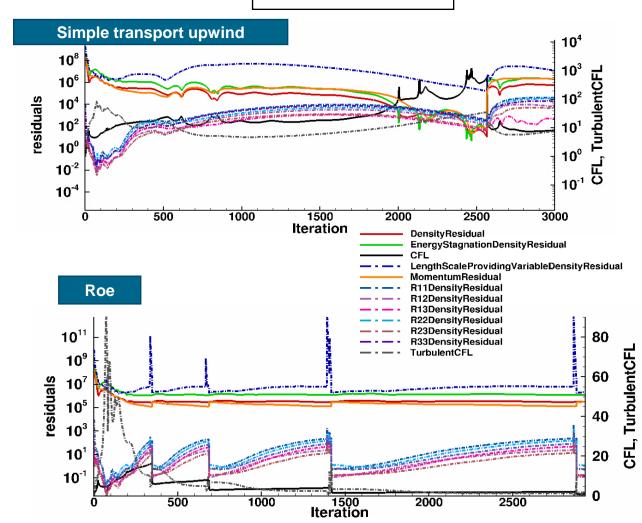
Convergence plots for Mesh 1 with weak coupling





Simple upwinding scheme for turbulence equations

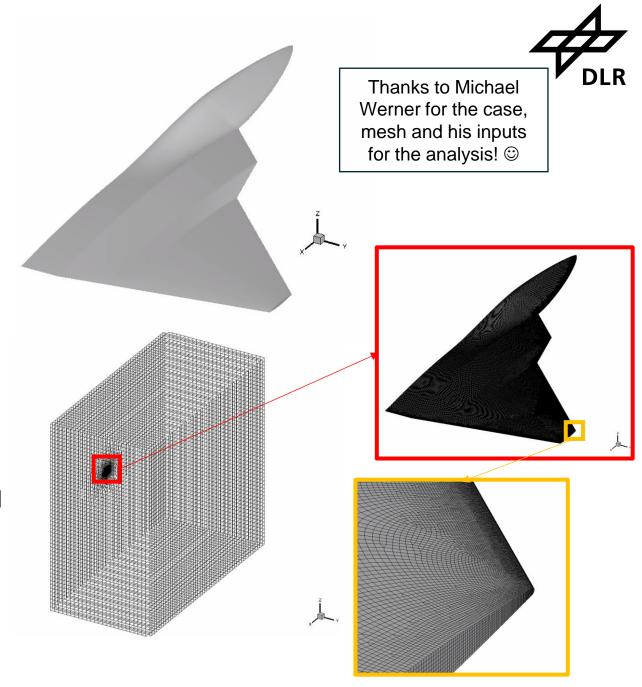
 $L, R \rightarrow \text{left}$, right fluxes, $v \rightarrow \text{convective velocity}$, $\varphi \rightarrow \text{turbulent variable}$


Simple transport upwind scheme

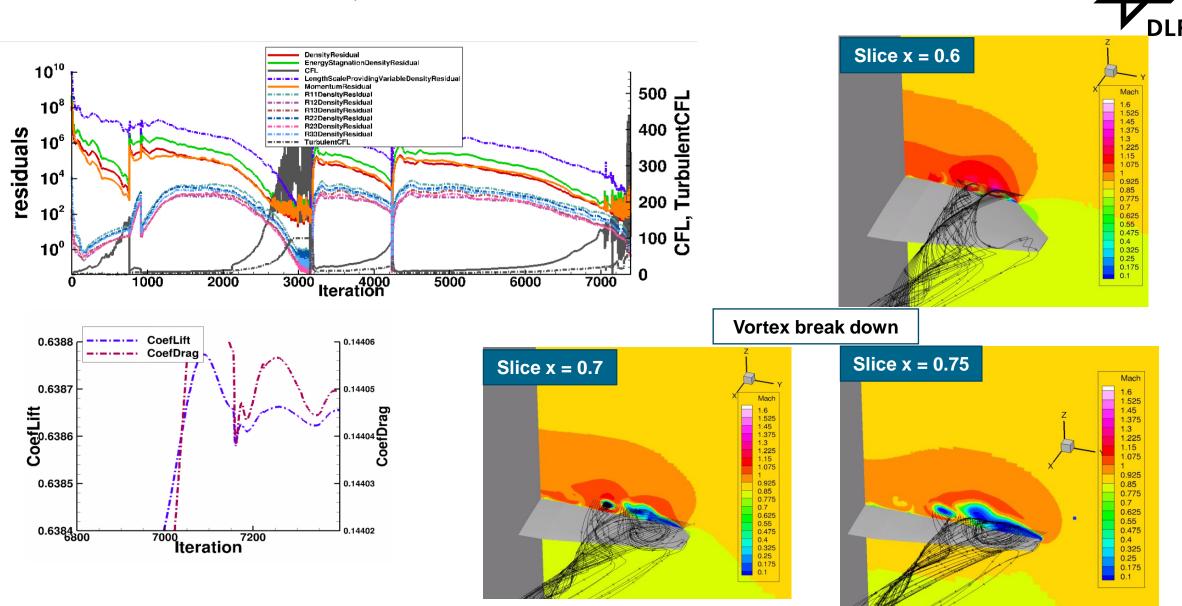
ONERA M6 – Mesh 3

- 2D Bump in Channel converged for the first time with coupled solver approach.
- All the meshes of ONERA M6 converged for the coupled solver and also for second order (except finest mesh)!
- Turbulent CFL numbers can be higher (x2 or x3) compared to Roe scheme.

Thanks to Deepak Kunhappan for the combined framework of Simple Upwind scheme ©

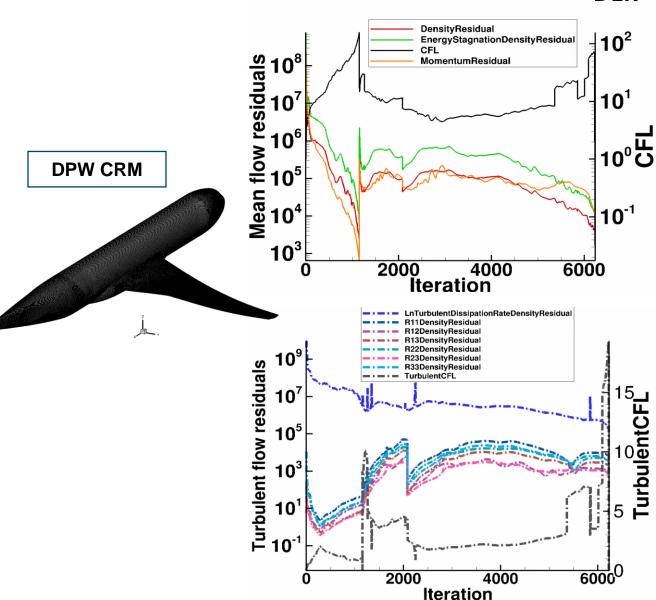


Verification of 3D cases DLR – F23


- Case & meshes from Michael Werner (DLR–AS-HGK): Delta wing with 32725358 hexas or 36267940 nodes ANSA hex-dominant mesh
- Flow conditions: Ma = 0.85, $\alpha = 12^{\circ}$, Re = 3022728.49491777, $L_{Re} = 0.382$.
- Dimensional specs:

$$p = 37410.7109 \ kg/ms^2$$
, $T = 270.8606 \ K$, $R = 287 \ m^2/Ks^2$, $grid\ unit\ length = 0.382 \ m$

- Initially tried to start with α =12° which failed for any run – weak coupling/coupled, LLF/Roe/Upwind. Restart from α =9° worked well for upwind scheme.
- For α =12°, stalling of residuals with unsteadiness in the solution vortex breakdown in the flow.


DLR – F23 Results, $\alpha = 12^{\circ}$

Cases with convergence issues & challenges yet to be solved

- We may still have meshes/cases which don't converge
- **DPW CRM:** Mesh obtained from Tobias Knopp, results available for Tau for SST and RSM wing body configuration, solar mesh
- Flow conditions: Ma = 0.85, $\alpha = 2.5^{\circ}$, $Re = 5 \times 10^{6}$, $L_{Re} = 0.18914364$.
- Appearance of NaN Still under investigation!

Conclusion & further work

- With every CODA version, we obtain improvements. A better convergence of RSM has been possible due to several additional improvements like CFL splitting, equations scaling etc. from other developers. Thanks to all CODA developers and verification engineers!
- A textbook implementation can lead to some struggles (Simple upwinding for turbulence).
- Further knowledge of implicit solvers for turbulence models is still needed – stability analysis for RSM in implicit solvers.

- Appearance of NaN is of primary concern. Weak coupling may help to improve but further tests are needed.
- Linearization of source terms:
 Previous attempts to linearize source terms were not that successful, a careful linearization may help.
- Effect of linear solvers: Algebraic multigrid may help to have better linear system convergence. With integration of PetSc interface, this can be tested.
- Tackling the issue at discretization level: Efforts are being undertaken currently for Eddy viscosity models (SST) in CODA, outcomes from these efforts can be extrapolated to RSM.

Special thanks to

- Tobias Knopp, Johannes Löwe for their ideas & support.
- Andreas Krumbein, Axel Probst for their guidance.
- Matthias Lühmann (Airbus) for meshes & verification activities.
- Roberto Sanchez, Deepak Kunhappan for their support with debugging & settings.

THANKS!

Impressum

Thema: Progress with verification and stabilization of Reynolds stress

models using the CFD Software by ONERA, DLR, Airbus

(CODA)

Datum: 2023-11-11 (JJJJ-MM-TT)

Autor: Keerthana Chandrasekar Jeyanthi

Institut: DLR-AS-CAS-GÖ

Bildcredits: Alle Bilder "DLR (CC BY-NC-ND 3.0)",

sofern nicht anders angegeben