Deformation and Leakage Test of a Type III Composite Pressure Vessel

Contact Information

- Martin Liebisch, Institute of Lightweight Systems, German Aerospace Center, martin.liebisch@dlr.de
- Bernd Hildebrandt, Institute of Lightweight Systems, German Aerospace Center, bernd.hildebrandt@dlr.de
- Jan Rehra, Institute of Lightweight Systems, German Aerospace Center, jan.rehra@dlr.de
- Andrija Dabanovic, Institute of Aerodynamics and Flow Technology, German Aerospace Center, andrija.dabanovic@dlr.de
- Joel Martin, Institute of Aerodynamics and Flow Technology, German Aerospace Center, joel.martin@dlr.de
- Georg Poppe, Responsive Space Cluster Competence Center, German Aerospace Center, georg.poppe@dlr.de

Abstract

The present dataset describes the deformation behaviour of a Type III composite pressure vessel during its qualification for the ATHEAt sounding rocket flight experiment [1] from the German Aerospace Center (DLR). The tank is used as a pressure supply for the pressure fed oxidizer supply system of the ALDUINA hybrid rocket.

Description of the Composite Vessel

The tested vessel is one two nominal identical composite vessels labelled SN01 and SN02. The present dataset refers to SN01. The Liner is made of Aluminum Faser. The laminate is made of the carbon fiber type T700SC-12000-60E-P1 and the matrix type LY556/HY917-1/DY070. It is cured for 4 h at 80 degree celsius followed by 5 h at 150 degree Celsius.

Table 1: Liner dimensions of vessel SN01.

Symbol	Parameter	Unit	Value
$\overline{D_{a,l}}$	Outer liner diameter	mm	355.6
$D_{a,l} \\ l_{zyl} \\ l_{tot}$	Length of cylindrical segment	mm	280.0
l_{tot}	Total liner length	mm	645.0
t_l	Liner thickness	mm	4.0
$D_{a,t,avg}$	Average tank diameter	mm	400.0
V	Tank Volume	1	39.3

Laminate Design Considerations:

The laminate design was created based on the following modified design load specifications based on the space standard ANSI/AIAA S-081 [2].

Table 2: Pressure levels and safety margins considered in design.

Symbol	Name	Unit	Value
MEOP	Maximum expected operating pressure	bar	600
SF	Safety Factor	-	2.0
DBP	Design burst pressure	bar	1200
PP	Proof Pressure	bar	900

Test Setup

The tank was mounted in vertical position via a spring ring at the top fitting towards a mounting plate. The top fitting was connected to the fluid system which provides pressurization. Two valves were used to control the pressurization and depressurization of the tank. A pressure sensor was used to measure the acting tank pressure.

Test Matrix

The following table highlights the test matrix conducted throughout the program. From test no. 2 to 11, the tank is filled with water which is removed during test no. 12. Test no. 8. represents the proof pressure (PP) test. In test no. 10 and test no. 11, 14 cycles of pressurization and depressurization between 0 bar and 600 bar (MEOP) are conducted to investigate the degradation and fatigue behavior. The leakage test in no. 13. uses gaseous helium for pressurization to represent the real flight conditions as close as possible. The leakage is measured indirectly by the measured pressure loss. Several pressurization steps are used to investigate the leakage at different pressure levels. It has to be emphasized, that the resulting leakage is an integral measure of tank and pipe leakage, which is a conservative estimate for the real leakage between fueling of the tank and rocket lift-off in the finale flight experiment.

Table 3: Test Matrix

No.	Designation	Date	Time	Pressurization
$\frac{1}{2}$	Visual Inspection Volume	08.04.2025 $08.04.2025$	-	0 bar 0 bar
	quantification			

No.	Designation	Date	Time	Pressurization
3	Trial recording	09.04.2025	_	0 bar
4	Initial pressurization	09.04.2025	10:48:44	up to 50 bar
5	Pressurization	09.04.2025	10:23:38	up to 245 bar
6	Pressurization	09.04.2025	10:48:37	up to 425 bar
7	Pressurization	09.04.2025	11:15:25	up to 550 bar
8	Pressurization	09.04.2025	11:36:18	up to 840 bar
9	Max. Pressurization	09.04.2025	14:30:46	up to 900 bar
10	Cycle Test part 1	09.04.2025	15:08:50	7×0 bar up to 600 bar
11	Cycle Test part 2	10.04.2025	08:07:35	7×0 bar up to 600 bar
12	Water removal	10.04.2025	-	0 bar
13	Leakage Test	10.04.2025	12:01:49	up to 600 bar

Data Acquisition

The measurement of strain and pressure is conducted with two separate data acquisition (DAQ) systems. The first DAQ system recorded pressure over time and was used to control the system valves. The second DAQ system recorded strains. In the present dataset, the measurements of both systems is aligned and reduced from a data rate of 300 Hz measurement frequency to 10 Hz to reduce the file size. The data has been reviewed for verifying that no significant detail has been removed/lost by this procedure. It has to be highlighted, that some of the strain gauges failed over the measurement campaign. The measured tank pressure signal contains an offset. An zeroized version of the pressure signal is appended to the data with 0 bar refering to the atmosphere pressure level acting at test start. The strain levels of each sensors are zeroized at the beginning of the campaign and were not further manipulated throughout the test campaign.

File Structure and Data Description

This repository contains following files:

- readme.txt
- SN01 metadata straingauges.csv
- SN01_metadata_pressuresensor.csv
- testdata.7z
 - SN01_test04_synced.csv
 - SN01 test05 synced.csv
 - SN01_test06_synced.csv
 - SN01 test07 synced.csv
 - SN01_test08_synced.csv
 - SN01_test09_synced.csv

- SN01_test10_synced.csv
- SN01_test11_synced.csv
- SN01 test13 synced.csv
- images.7z
 - $\ SN01_Liner.jpg$
 - SN01_WindedTank.jpg
 - SN01_Testsetup.jpg

Notes: - the file "test_data.7z" contains the test data named in accordance with Table 3. - the file "SN01_metadata_straingauges.csv" contains all metadata available for each strain gauge sensor. The coordinate system given refers to the central tank axis.

References

- 1. Dabanović, A., Martin, J., May, S. et al. Design of a sounding rocket upper stage based on the hybrid rocket engine VISERION. CEAS Space J 15, 467–476 (2023). https://doi.org/10.1007/s12567-022-00451-2
- 2. Standard: Space Systems—Composite Overwrapped Pressure Vessels (ANSI/AIAA S-081B-2018 (Reaffirmed 2024)) https://doi.org/10.2514/4.105425.001