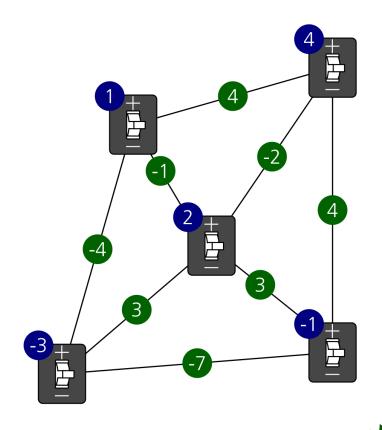
PRACTICAL EVALUATION OF THE OPTIMAL EMBEDDED ISING PROBLEM

Dr. Elisabeth Lobe

German Aerospace Center (DLR) – Institute of Software Technology (SC)

Ising Problem



Definition

An Ising model over graph G with weights $W \in \mathbb{R}^{V(G)}$ and strengths $S \in \mathbb{R}_{\neq 0}^{E(G)}$ is a function $I_{W,S} : \{-1,1\}^{V(G)} \to \mathbb{R}$ with

$$I_{W,S}(s) := \sum_{v \in V(G)} W_v s_v + \sum_{vw \in E(G)} S_{vw} s_v s_w.$$

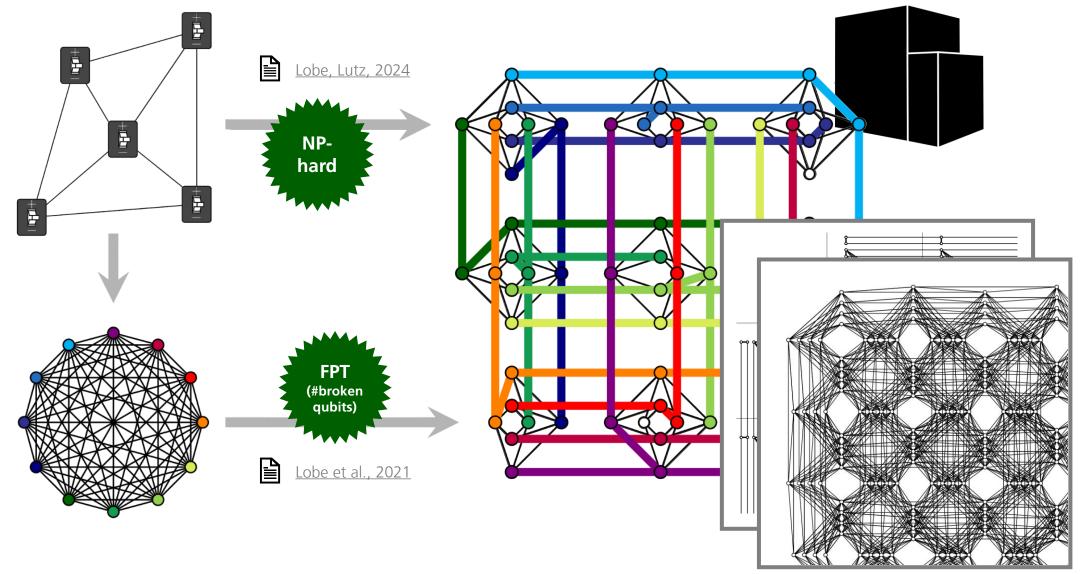
We call G the **interaction graph** of the Ising model.

ISING PROBLEM

Given a graph G, $W \in \mathbb{R}^{V(G)}$ and $S \in \mathbb{R}^{E(G)}$, find s that solves

$$\min_{s \in \{-1,1\}^{V(G)}} I_{W,S}(s).$$

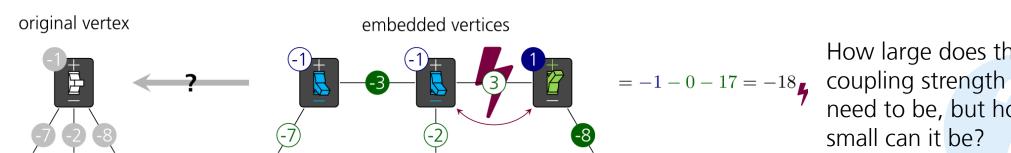
Embedding Problem for Restricted Hardware Graphs



Embedded Ising Problem

$$\begin{split} \bar{I}_{\overline{W},\overline{S}}(s) &:= \sum_{q \in V(H_{\varphi})} \overline{W}_q s_q + \sum_{pq \in E_{\varphi} \cup E_{\delta}} \overline{S}_{pq} s_p s_q \\ &= \sum_{v \in V(G)} \left(\sum_{q \in \varphi_v} \overline{W}_q s_q + \sum_{pq \in E(H[\varphi_v])} \overline{S}_{pq} s_p s_q \right) + \sum_{vw \in E(G)} \left(\sum_{pq \in \delta_{vw}} \overline{S}_{pq} s_p s_q \right) \end{split}$$

- with proven equivalence to original problem
- such that (at least optimal) solutions correspond to each other
- based on **synchronization** of the embedded variables

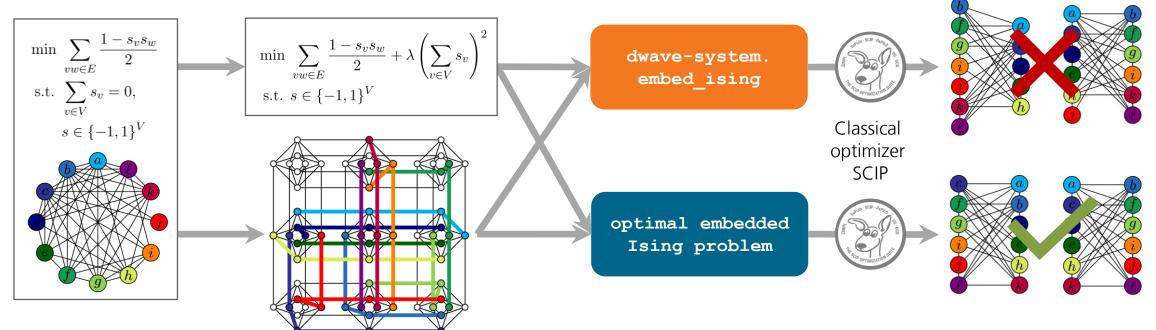


How large does the need to be, but how small can it be?

Get Embedded Ising via "Uniform Torque Compensation"

- Current implementation in D-Wave dwave-ocean-sdk with method embed ising
 - calls dwave-system.dwave.embedding.chain strength.uniform torque compensation
- Found counterexample
 - where the method does **not** provide an equivalent embedded Ising problem
 - based on the Graph Partitioning Problem with 12 nodes
 - embedded by D-Wave using minorminer.find embedding

https://github.com/dwavesystems



Get the Optimal Embedded Ising Problem

Requires to solve for each individual original vertex:

GAPPED WEIGHT DISTRIBUTION PROBLEM

Given graph G = (V, E), $\sigma \in \mathbb{R}^{V}_{>0}$, $W \in \mathbb{R}_{\geq 0}$ with $W < \sigma(V)$ and $\gamma \in \mathbb{R}_{>0}$: $\min \vartheta$

s.t.
$$\vartheta \in \mathbb{R}, \ \omega \in \mathbb{R}^V$$

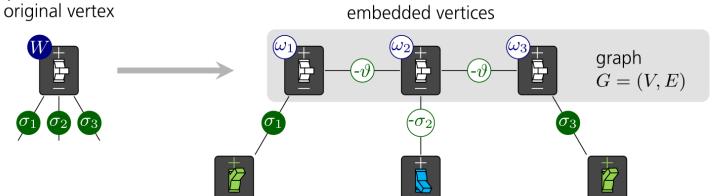
$$\vartheta \geq \frac{\min\left\{\sigma(S) + \omega(S), \sigma(V \setminus S) - \omega(V \setminus S)\right\} + \gamma}{|\delta(S)|} \quad \forall \emptyset \neq S \subsetneq V,$$

$$\omega(V) = W$$

cut constraints are redundant for S or $V \setminus S$ not being connected

efficiently solvable in practical embedding setup

embedded vertices



How large does the coupling strength ϑ need to be, but how small can it be?

Get the Optimal Embedded Ising Problem

Lobe, Kaibel, 2023

Lobe, PhD Thesis, 2022

Requires to solve for each individual original vertex:

GAPPED INTEGER WEIGHT DISTRIBUTION PROBLEM

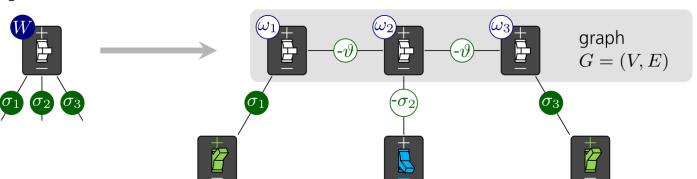
Given graph G=(V,E), $\sigma\in\mathbb{N}^V$, $W\in\mathbb{N}$ with $W<\sigma(V)$ and $\gamma\in\mathbb{N}_+$: min ϑ

s.t.
$$\vartheta \in \mathbb{Z}, \ \omega \in \mathbb{Z}^V$$
,

$$\vartheta \geq \frac{\min\left\{\sigma(S) + \omega(S), \sigma(V \setminus S) - \omega(V \setminus S)\right\} + \gamma}{|\delta(S)|} \quad \forall \emptyset \neq S \subsetneq V,$$

$$\omega(V) = W$$

embedded vertices



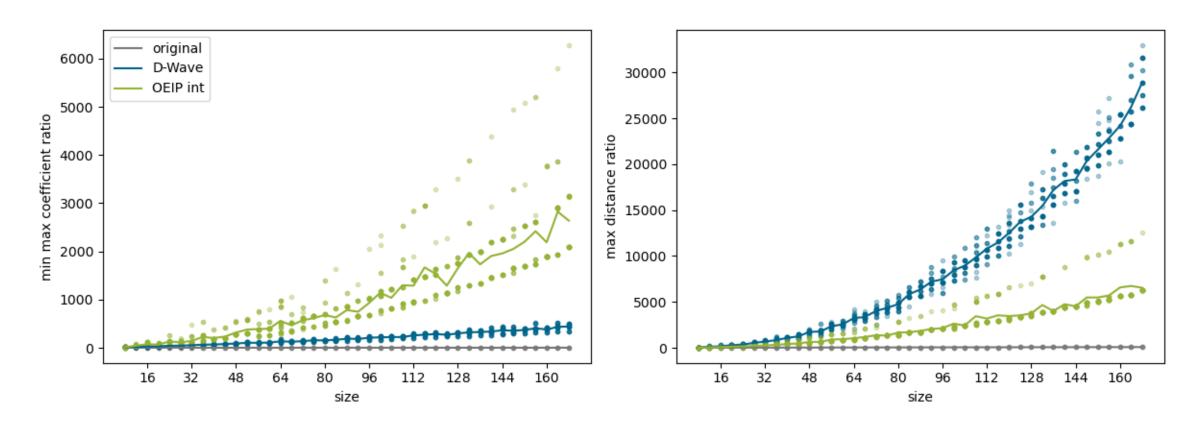
- cut constraints are redundant for S or V \ S not being connected
- efficiently solvable in practical embedding setup
- even in integer case

optimal embedded
Ising problem

original vertex

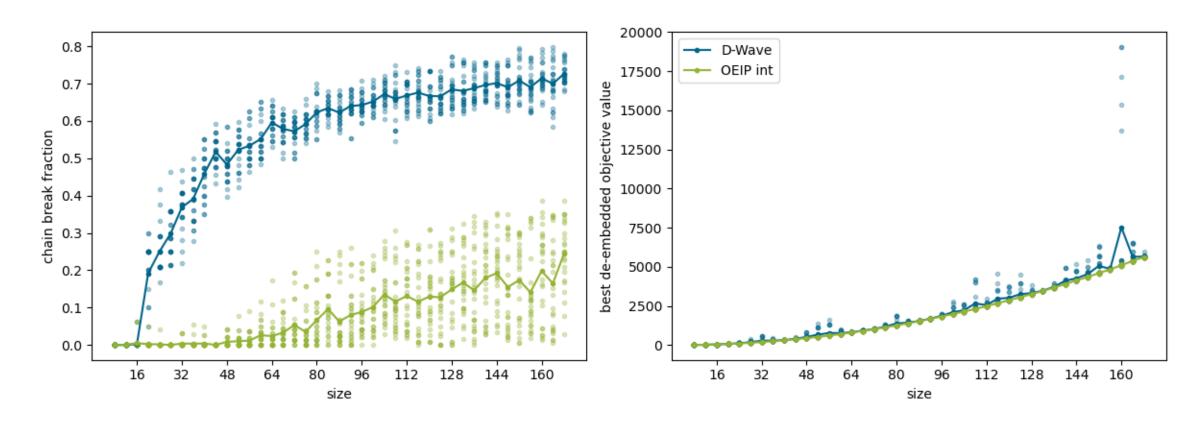
Preliminary Results of Experiments

- Graph Partitioning instances
 - with fixed density of 0.8 for increasing size
 - averaged over 5 random instances and 5 precalculated embeddings for each size



Preliminary Results of Experiments

- Graph Partitioning instances
 - with fixed density of 0.8 for increasing size
 - averaged over 5 random instances and 5 precalculated embeddings for each size

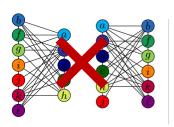


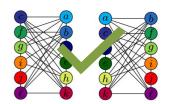
Conclusion & Outlook

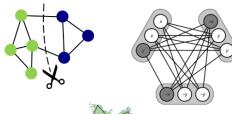
- The Uniform Torque Compensation method does in general not provide provable equivalent embedded Ising problems
 - Spreads doubt in particular for larger problems, where the optimal solutions cannot be checked against anymore
 - How is the annealer supposed to solve the problem, if it was ill-defined?
- The optimal embedded Ising problem formulation does
 - Improves the chain break fraction significantly and the success probability to some extent
 - Independent of hardware graph, only embedding structure required

→ Next Steps

- Actually study the performance of the annealer on well-defined problems
- Try more problems with different properties
- Investigate different de-embedding methods
- Explore the average rather than the worst case estimation







Imprint

Topic: Practical Evaluation of the Optimal Embedded Ising Problem

Event: APS Global Physics Summit

Date: 2025-03-18

Author: Dr. Elisabeth Lobe

Institute: German Aerospace Center (DLR) – Institute of Software Technology (SC)

Image sources: All images "DLR (CC BY-NC-ND 3.0)" unless otherwise stated