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Methodology: Rotor Loading Source é
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Methodology: Rotor Broadband Noise Prediction

2D automated tool-chain for rotor broadband noise prediction.
Inputs are airfoil profiles at different rotor blade spanwise locations.
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Model Application Examples
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Validation Cases

Single Propeller | Three Propellers

Isolated Isolated

Flap Retracted Flap Retracted

Flap Deployed Flap Deployed
15° 15°

* 6 bladed TU Delft X-PROP model propeller, diameter D = 0.2032m

* Inflow velocity U,=30m/s, Angle of attack = 0°

* Propellers RPM = 8858 [rev/min], Advance Ratio = 1

* RANS Computational Domain Size: Free-field setup of dimensions 50*D
 CAA Computational Domain Size: Dimensions 30*D
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Model Validation, RANS Vel. Contour Plots
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Model Validation, CAA p fluct. Contour Plots

Single
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Propellers
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Model Validation, Pressure Coefficient
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Model Validation, Pressure Coefflcllen_t  Three Propellers

DLR

Flap Retracted Flap Deployed

-2.107
-1.107 .-... . '.. .ot e g ® 00 0 o o “ o o
0.107y ~." ® o 6 06 000 6 500 o o 8 8 080 %% P g0t i o o o0 b
1 s WL T T ——, —\
U » ] = — — _ _ LJ e Py
0.893,: -l" o
e N #M
1.893¢
o Experiments ® RANS e Experlments e RANS
0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
x/c x/c
—-2.615 —-4.377
-1.615 s —-3.377 e
A L L LR B —2.377 . {
—_ L] ]
Q o "::.'0 :o. e o o 0 o 88 o 0% o '.' ® "" '......".“M:_w: D-_l'377 . . . . . . ¢ l
O 0.385 . 2 O_0.377 « _ . g —— _,_i > .
L _ ®|
1.385 0.623 .
1.623 o
2.385 e Experiments e RANS [ ) Expenments e RANS
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
X/c x/c

10

Advances in Rotor and Propeller Noise: Prediction, Mitigation, and Future Challenges, Andrea Franco, Roland Ewert, Jan Delfs, DLR AS-TEA, 21.10.2025



11

Model Validation, Directivity Plots, Single Propeller

Simulations results for
isolated prop. with
experiments in
agreement for 1st and
2"d BPF. Max SPL
location and values
captured

Simulations results for
installed prop. show
differences in 1stand
2"d BPF with
experiments, to be
investigated (influence of
wind tunnel jet shear
layer?)
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Model Validation, Directivity Plots, Three Propellers

Simulations results for
isolated prop. with
experiments in
agreement for 1stand
2"d BPF. Max SPL
location and values
captured

Simulations results for
installed prop. show
differences in 1st and
2"d BPF with
experiments, to be
investigated (influence of
wind tunnel jet shear
layer?)
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Model Validation, Narrow Band Plots, Single Propeller, Mic. 90°
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* Simulations results for isolated

Isolated prop. with experiments in
agreement for 1st and 2nd BPF.,

« 1stand 2" BPF captured

Frequency/BPF * Propeller’s blade trailing
edge broadband noise
levels very low as expected
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Model Validation, Narrow Band Plots, Three Propellers, Mic. 90°
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Simulations results for isolated
prop. with experiments in
agreement for 1st and 2nd BPF.,

« 1stand 2" BPF captured

* Propeller’s blade trailing
edge broadband noise
levels very low as expected

* Relevant SPL
expected to be shifted
to higher frequencies
due to Strouhal
number similarity for
small scale propellers

Simulations results for installed
prop. show differences in 18t
and 2"d BPF with experiments, to
be investigated.

* Broadband noise
experimental levels
probably related to rotor tip
vortices interaction with
wing
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Computational Cost of the Model é
: : DLR
Computational Cost [CoreHours]

2D RANS for AD table

) 128 Cores * 15 blade sections * 1.5 Hours = 2880 CoreHours
creation

3D AD RANS to generate
background meanflow 640 Cores * 1 Hour = 640 CoreHours
and AD solution for CAA

3D CAA tonal noise

prediction 1536 Cores * 5 Hour = 7680 CoreHours

2D CFD-CAA trailing edge
broadband noise 128 Cores * 15 blade sections * 5.5 Hours = 10560 CoreHours
prediction

TOTAL 21760 CoreHours
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Conclusions Q
DLR

« EXxperiments show strong unexpected tones, probably related to the electric
motors

« Isolated propeller tonal results in agreement with experiments
* Installed propeller tonal results show differences with experiments
« A possible reason could be the influence of wind tunnel jet shear layer on
wave propagation

« Propeller trailing edge broadband noise predictions in agreement with
expectations for small scale propellers

« Relevant SPL expected to be shifted to higher frequencies due to
Strouhal number similarity for small scale propellers

* Nevertheless, propeller trailing edge noise prediction approach efficient
(~ 10000 CoreHours needed)

« Can tackle realistic propeller sizes, for which this additional acoustic
component might be relevant
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