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Muon scattering tomography is a well-established, non-invasive imaging technique using cosmic-
ray muons. Simple algorithms, such as PoCA (Point of Closest Approach), are often utilized
to reconstruct the volume of interest from the observed muon tracks. However, it is preferable
to apply more advanced reconstruction algorithms to efficiently use the sparse muon statistics
that are available. One approach is to formulate the reconstruction task as a likelihood-based
problem, where the material properties of the reconstruction volume are treated as an optimization
parameter.
In this contribution, we present a reconstruction method based on directly maximizing the under-
lying likelihood using automatic differentiation within the PyTorch framework. We will introduce
the general idea of this approach, and evaluate its advantages over conventional reconstruction
methods. Furthermore, first reconstruction results for different scenarios will be presented, and
the potential that this approach inherently provides will be discussed.
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1. Introduction

Muon tomography is a powerful imaging technique which exploits the properties of naturally
occurring cosmic-ray muons. The Earth is constantly hit by high-energy particles, notably protons
and heavier atomic nuclei, originating from the cosmos. As these particles interact with the Earth’s
atmosphere, cascades of secondary particles are initiated. From these cascades, especially muons
are capable of reaching the Earth’s surface, leading to a nearly constant flux of one muon per cm2

per min [1]. Due to their large mass, which is more than 200 times higher that the mass of an
electron, as well as the absence of strong interactions, muons possess a tremendous penetrating
power, making them highly valuable for tomographic tasks.

As muons pass through a medium, they interact with atomic nuclei through Coulomb scattering,
leading to a deflection from their normally straight path. Since the magnitude of these deflections
is correlated to the properties of the traversed material, mainly the mass density and the atomic
number, it is possible to measure the muons before and after passing an unknown object, and obtain
material information from the observed directional changes. This method is called muon scattering
tomography. Compared to alternative imaging techniques, such as X-ray scanning systems, muon
scattering tomography offers several advantages: Since muons occur naturally, no active sources
are needed, which means that no additional radiation exposure for humans and animals is necessary,
reducing the bureaucratic effort of dealing with radiation protection and eliminating any possible
health hazards. Furthermore, the penetrating power of muons allows for the examination of heavily
shielded materials, which poses a problem for traditional methods. Both points make muon
scattering tomography especially interesting for an application in the security domain, for example
for contraband detection at border crossings, airport, or harbors [2].

Since muon detectors are well-understood and commercially available [2], the most important
remaining challenge in muon scattering tomography is the most efficient usage of the limited
available muon statistics to be able to reconstruct materials with adequate accuracy in an acceptable
time. Simple geometric reconstruction approaches, such as the Point of Closest Approach (PoCA)
algorithm [3] or the Angle Statistics Reconstruction (ASR) algorithm [4], are inherently limited
in their capabilities due to their underlying simplifications. On the other hand, more advanced
statistical methods [5] are computationally expensive and often numerically unstable, requiring
careful tuning of these methods.

In this contribution, a likelihood-based reconstruction method for muon scattering tomography
is presented. The main idea of this algorithm is the direct minimization of the negative log-
likelihood of the problem, using the automatic differentiation framework provided by the Python
machine learning library PyTorch [6]. This workflow allows for the utilization of modern optimizing
techniques provided by PyTorch, as well as an easy path to extend the algorithm in the future. After
introducing and formulating the reconstruction task as a likelihood problem in Section 2, the
implementation of the algorithm is detailed in Section 3, together with the presentation of first
reconstruction results based on simulation data. Lastly, future prospects of the presented approach
are outlined in Section 4.
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2. Methodology

2.1 Reconstruction Task in Muon Tomography

When a muon traverses a medium, its direction is continuously altered due to multiple scat-
tering. For a muon covering a distance 𝐻, multiple scattering can be defined via the variable
Δ𝜃, describing the angular change between the initial direction ®𝑑in and the final direction ®𝑑out,
and the variable Δ𝑥, describing the displacement of the muon. Both variables are visualized in
Figure 1. Accurately describing the distributions of Δ𝜃 and Δ𝑥 is complex. Therefore, a commonly
used simplification is to describe them as a joint Gaussian distribution [7], which provides a good
approximation of small scattering angles. In this case, the likelihood of a deflection Δ𝜃 after a
distance 𝐻 is given as [5, 7]

𝑓 (Δ𝜃) d(Δ𝜃) = 1
√

2𝜋𝜎𝜃

exp

(
−Δ𝜃2

2𝜎2
𝜃

)
d(Δ𝜃), (1)

with

𝜎2
Δ𝜃 = 𝜆𝐻 (𝑝0/𝑝)2, 𝜆 ≡ (15/𝑝0)2 1/𝐿rad, (2)

where 𝑝 is the momentum of the muon, 𝑝0 is a reference momentum, 𝜆 is the scattering density,
and 𝐿rad is the material-dependent radiation length. The variance of the Gaussian distribution
describing Δ𝑥 and its correlation with Δ𝜃 are given as [7]

𝜎2
Δ𝑥 =

𝐻

3
𝜎2
𝜃 , 𝜌Δ𝜃Δ𝑥 =

√
3

2
. (3)

This means that within this approximation, the traversed medium is only characterized by 𝜆.
Obtaining the distribution of 𝜆 within a medium, given the measured scattering of muons, is the
reconstruction task at hand. For this purpose, the scanned medium is often discretized into voxels,
where 𝜆 is assumed to be constant in each voxel. The obtained map of 𝜆 can either be used directly
for material identification, or fed to subsequent analysis steps such as anomaly detection.

®𝑑in

®𝑑out

Δ𝜃

𝐻

Δ𝑥

Figure 1: Visualization of the multiple scattering variables Δ𝜃 and Δ𝑥. Adapted from [8].

One of the simplest geometric approaches to perform this reconstruction task is the PoCA
algorithm, which works under the assumption that the entire scattering along the muon path
occurred at a single point [3]. This simplification restricts the capability of the approach to
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reconstruct complex scenes, and it leads to an inefficient use of the limited available statistics since
every muon contributes scattering information only to a single voxel. The ASR algorithm [4] tries
to improve the latter by assuming that the scattering occurred in an extended region around the point
of closest approach. While adding additional information to the reconstruction, this approach leads
to a typical elongation of the reconstruction results along the direction of the ingoing muons. As an
alternative to these geometric methods, statistical methods can be used: Based on the probability
distributions of Δ𝑥 and Δ𝜃 in (1), a likelihood L is formulated. This likelihood, which will be
introduced in Section 2.2, describes how well the voxel map of 𝜆 is capable of describing the
observed scattering data. In [9], minimizing this likelihood directly by optimizing 𝜆 has been
successfully attempted, however, the approach was found to be unsuitable for real-time application
due to high computational demands. Subsequently, an approach to optimize the likelihood via an
iterative expectation maximization algorithm has been developed first in [5].

2.2 Likelihood Formulation

The measurable observables in muon scattering tomography are the positions and directions
of the muon when entering and when exiting a VOI (volume of interest). From this, the data vector
D𝑖 = (Δ𝜃𝑖 ,Δ𝑥𝑖)𝑇 is defined for each muon 𝑖, where the definitions of Δ𝜃𝑖 and Δ𝑥𝑖 are visualized in
Figure 1. In analogy to the Gaussian multiple scattering distribution in (1), the likelihood of 𝜆 in a
voxelized VOI for a single muon event is given as [5]

L(D𝑖 |𝜆) =
1

2𝜋
√︁
|𝚺𝑖 |

exp
(
−1

2
D𝑇
𝑖 𝚺

−1
𝑖 D𝑖

)
, (4)

with the covariance matrix

𝚺𝑖 = (𝑝0/𝑝𝑖)2
∑︁
𝑗

(
𝜆 𝑗W𝑖 𝑗

)
, (5)

where the index 𝑗 runs over all voxels that are hit by the muon path. It is important to note that the
muon trajectory within the VOI is unknown, which means that assumptions about the real muon path
based on the measured ingoing and outgoing positions need to be made. Two possible assumptions
are the straight line path, where the known ingoing and outgoing positions are connected by a
straight line, and the PoCA path, where the muon path is drawn from the ingoing muon position to
the point of closest approach to the outgoing muon position. While 𝑝0 is a fixed reference value,
as defined in (2), 𝑝𝑖 is the absolute muon momentum per event. For 𝑝𝑖 , usually no or only rough
estimations are available since a precise estimation on a per-event basis is currently not feasible. In
many cases, 𝑝𝑖 is therefore set to a value that does not necessarily represent reality. The weight
matrix W𝑖 𝑗 contains the geometric information about the assumed voxel path, and is defined by [5]

W𝑖 𝑗 =

[
𝐿𝑖 𝑗 𝐿2

𝑖 𝑗
/2 + 𝐿𝑖 𝑗𝑇𝑖 𝑗

𝐿2
𝑖 𝑗
/2 + 𝐿𝑖 𝑗𝑇𝑖 𝑗 𝐿3

𝑖 𝑗
/3 + 𝐿2

𝑖 𝑗
𝑇𝑖 𝑗 + 𝐿𝑖 𝑗𝑇

2
𝑖 𝑗

]
, (6)

where 𝐿𝑖 𝑗 denotes the distance muon 𝑖 covers in voxel 𝑗 , and 𝑇𝑖 𝑗 the distance of muon 𝑖 from the
end of voxel 𝑗 until the end of the VOI. From the likelihood L(D𝑖 |𝜆) for a single muon, the negative
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log likelihood for 𝑀 muons is obtained via

− log (L) = − log

(
𝑀∏
𝑖

L(D𝑖,𝑥 |𝜆) · L(D𝑖,𝑦 |𝜆)
)
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1
2

D𝑇
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−1
𝑖 D𝑖,𝑦

)
+ const., (7)

where D𝑖,𝑥 , D𝑖,𝑦 describe the data vector projected onto the 𝑥𝑧-plane, respectively the 𝑦𝑧-plane.

3. Implementation of the Method and Evaluation on Simulation Data

Since the negative log likelihood in (7) quantifies how likely it is that the voxel map 𝜆 describes
the observed muon data, minimizing − log (L) with respect to 𝜆 can be used as the reconstruction
approach. For that, the calculation of − log (L) is implemented in Python within the PyTorch
framework [6]. This allows for the usage of the torch.autograd functionality, which offers auto-
matic differentiation: After calculating a result (here: − log (L)), torch.autograd automatically
collects the gradients from all numerical calculations with respect to a given set of parameters (here:
𝜆), and combines them using the chain rule. The calculated gradient is used in combination with an
optimizer (here using the adam algorithm [10]) over several epochs to find an optimal value for 𝜆.

To validate this method, two muon tomography simulation datasets are created using realistic
cosmic-ray muon distributions generated with the CRY library [11], muon propagation performed
with the Geant4 toolkit [12], and 3D scenes generated with the B2G4 framework for usage within
Geant4 [13]. The first scene, see Figure 2a, features a water cube and an iron box, each containing
smaller tungsten cubes. The second scene, see Figure 3a, consists of three randomly distributed
solid objects. These scenes are chosen since they represent scenarios where imaging is challenging,
involving objects that block or enclose each other. For each scene, 1.5 × 107 muons are injected
on a 10 m × 10 m plane, corresponding to a measurement time of 15 min. The detectors have a
dimension of 2 m × 2 m with a detector distance of 1 m for the first scene, respectively 1 m × 1 m
and 0.65 m for the second scene, where a perfect detector resolution is assumed.

The reconstruction results using the PoCA algorithm [3], the ASR algorithm [4], and the
gradient descent reconstruction presented in this work are shown in Figure 2 and Figure 3. For
the gradient descent approach, the algorithm is stopped after 25 epochs, since no significant
improvement in the reconstruction result is visible afterward. As an initialization, all voxels are
initialized with 𝜆 = 𝜆air, which means that no prior information is introduced. Furthermore, the
algorithm is performed in a mini-batch gradient descent approach: This means that for each epoch,
the dataset is split randomly into 𝑀batch batches (here: 𝑀batch = 15, corresponding to 1× 106 events
per batch), and the optimization step is performed separately for each batch. The path assumption
made for the voxel tracing is the PoCA path approximation, as explained in Section 2.2. The
momentum is set to 𝑝 = 750 MeV in (5) for all muons, assuming that no momentum estimation is
available, with a reference momentum of 𝑝0 = 3000 MeV. These numerical values are chosen via
a simple hyperparameter search since they provide the best convergence behavior.
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(a) Ground truth of the scene. The left object is a
water cube, the right object is a hollow iron box. The
small cubes within are made out of tungsten.

(b) Reconstruction result of the scene using the PoCA
algorithm [3].

(c) Reconstruction result of the scene using the ASR
algorithm [4].

(d) Reconstruction result of the scene using the gra-
dient descent method presented in this work.

Figure 2: Evaluation of different reconstuction algorithms based on simulation data for the first scene.
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(a) Ground truth of the scene. The cylinder is made
of iron, while the two sculptures are made of CaCO3.

(b) Reconstruction result of the scene using the PoCA
algorithm [3].

(c) Reconstruction result of the scene using the ASR
algorithm [4].

(d) Reconstruction result of the scene using the gra-
dient descent method presented in this work.

Figure 3: Evaluation of different reconstuction algorithms based on simulation data for the second scene.

Visually, the results show that the 𝑥𝑦 projection is well reconstructed with all algorithms in
both scenes. For the 𝑥𝑧 and 𝑦𝑧 projections, the general shapes are clearly visible, although no
algorithm is able to clearly distinguish between the individual blocks in the first scene. In addition,
the ASR algorithm contains a visible smearing along the 𝑧 direction, which is characteristic for
this approach, while the PoCA algorithm is unable to fully reconstruct the small boxes within the
first scene. A quantitative analysis of the similarity between the reconstruction results and the
ground truths is given in Table 1. The applied metrics are the Peak Signal-to-Noise Ratio (PSNR),
the Structural Similarity Index Measure (SSIM) [14], and the Learned Perceptual Image Patch
Similarity (LPIPS) [15]. Note that for the PSNR and SSIM, higher values correspond to a higher
similarity, while lower values correspond to a higher similarity for the LPIPS. For the first scene,
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Table 1: Numerical evaluation of the reconstruction results using different metics. The best result for each
scene and each reconstruction is highlighted in bold.

Scene 1 Scene 2

PSNR SSIM LPIPS PSNR SSIM LPIPS

PoCA 22.324 0.870 0.477 19.666 0.737 0.378
ASR 22.321 0.829 0.477 19.699 0.685 0.395
Gradient descent 22.348 0.863 0.480 19.960 0.838 0.326

Table 2: Computational benchmarking of the algorithms for the first scene. Note that for the gradient descent,
convergence and runtime of the algorithm depend on the exact problem and the chosen hyperparameters.

Memory consumption Execution time

PoCA ≈400 MB ≈1.4 s
ASR ≈2300 MB ≈14.5 s
Gradient descent ≈3400 MB ≈21.7 s

the quantitative results are very similar, with a different best-performing algorithm for each metric.
For the second scene, the gradient descent algorithm performs the best, although again the margins
are very small, especially for the PSNR. This result shows that the gradient descent algorithm is
already capable of performing at least as good as existing standard algorithms without extensive
optimization, and without the usage of its further potentials which will be outlined in Section 4.

A benchmarking of the memory consumption and the execution times of the algorithms is
presented in Table 2. Both the memory consumption and the execution time are the smallest for
the PoCA algorithm due to its simplicity. In the use case presented here, the benchmark results
for the ASR algorithm and the gradient descent algorithm are comparable. Note that the memory
consumption of the gradient descent algorithm can be steered via the batch size 𝑀batch, since only
the relevant data from each batch needs to be stored at a time. This makes the gradient descent
method scalable in terms of memory consumption. For the scenes at hand, batch sizes between
𝑀batch = 1 and 𝑀batch = 500 all produced similar reconstruction results, validating that the approach
is also viable for smaller batches where the statistical variance for each batch is larger.

4. Further Prospects and Conclusions

In this work, a likelihood-based gradient descent reconstruction method for muon scattering
tomography has been presented. After formally introducing the likelihood, the algorithm has
been implemented in PyTorch, making use of the torch.autograd automatic differentiation
functionality to perform the optimization. Using two created simulation datasets, it has been shown
that the reconstruction results are already qualitatively and quantitatively able to compete and
even surpass results obtained with traditional reconstructions methods such as the PoCA and ASR
algorithms. The required computational resources are comparable to those required by the ASR
method, with scalability possible due to the mini-batch gradient descent approach.
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The greatest potential of the presented method lie within the improvements to the algorithm
that are intrinsically possible due to its likelihood formulation. This allows for the introduction
of penalty terms 𝑝(𝜆), with − log (L) → − log (L) + 𝑝(𝜆). With that, prior information can be
introduced to the problem, for example knowledge about expected materials or geometric shapes.
As introduced in Section 2.1, the multiple scattering distribution is described as Gaussian. While
this approximation is valid for small scattering angles, it is unable to correctly incorporate the large
scattering angles caused by the tails of the real scattering distribution. This issue can be encountered
by formulating the likelihood in (4) as a Gaussian scale mixture model [16],

LGSM =
∑︁
𝑘

𝑤𝑘𝑔(𝚺𝑖,𝑘) with 𝑔(Σ𝑖,𝑘) ∝ exp
(
−1

2
D𝑇
𝑖

1
𝑠𝑘
𝚺−1
𝑖,0D𝑖

)
,

where the parameters 𝑤𝑘 and 𝑠𝑘 can either be set to appropriate values, or treated as free parameters
during optimization.
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